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Abstract: Droughts can cause significant damage to agriculture and water resources, leading to
severe economic losses and loss of life. One of the most important aspect is to develop effective
tools to forecast drought events that could be helpful in mitigation strategies. The understanding
of droughts has become more challenging because of the effect of climate change, urbanization
and water management; therefore, the present study aims to forecast droughts by determining an
appropriate index and analyzing its changes, using climate variables. The work was conducted in
three different phases, first being the determination of Standard Precipitation Evaporation Index
(SPEI), using global climatic dataset of Climate Research Unit (CRU) from 1901–2018. The indices
are calculated at different monthly intervals which could depict short-term or long-term changes,
and the index value represents different drought classes, ranging from extremely dry to extremely
wet. However, the present study was focused only on forecasting at short-term scales for New
South Wales (NSW) region of Australia and was conducted at two different time scales, one month
and three months. The second phase involved dividing the data into three sample sizes, training
(1901–2010), testing (2011–2015) and validation (2016–2018). Finally, a machine learning approach,
Random Forest (RF), was used to train and test the data, using various climatic variables, e.g., rainfall,
potential evapotranspiration, cloud cover, vapor pressure and temperature (maximum, minimum
and mean). The final phase was to analyze the performance of the model based on statistical metrics
and drought classes. Regarding this, the performance of the testing period was conducted by using
statistical metrics, Coefficient of Determination (R2) and Root-Mean-Square-Error (RMSE) method.
The performance of the model showed a considerably higher value of R2 for both the time scales.
However, statistical metrics analyzes the variation between the predicted and observed index values,
and it does not consider the drought classes. Therefore, the variation in predicted and observed SPEI
values were analyzed based on different drought classes, which were validated by using the Receiver
Operating Characteristic (ROC)-based Area under the Curve (AUC) approach. The results reveal
that the classification of drought classes during the validation period had an AUC of 0.82 for SPEI 1
case and 0.84 for SPEI 3 case. The study depicts that the Random Forest model can perform both
regression and classification analysis for drought studies in NSW. The work also suggests that the
performance of any model for drought forecasting should not be limited only through statistical
metrics, but also by examining the variation in terms of drought characteristics.
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1. Introduction

Droughts can be categorized as one of the most devastating natural hazards, as they can affect
regional, or even national, scales [1–3]. The challenges toward drought studies are enormous, primarily
due to the unavailability of a fixed definition. Different researchers in their respective fields have
defined droughts based on their own requirements [4,5]. As an example, the deficiency in rainfall
could alarm a meteorologist; however, for a hydrologist, drought occurrence begins when there is
a reduction in stream flow and similarly is the case for agricultural and socioeconomic fields [4,6].
Moreover, the effect of climate change and anthropogenic activities has led to the occurrence of more
severe and extended drought periods [7]. The analysis of various drought aspects has seen tremendous
progress with the use of different climatic [8], remote sensing dataset [9] and the inclusion of various
variables [10], which could potentially lead to a better understanding of a particular drought type.
However, accurate forecasting of droughts is still a challenge, and researchers are looking into different
aspects which could reflect the ground reality [11].

Since defining a drought is important, indices were developed based on certain variables and
their dependences for the drought type being analyzed [11,12]. These can provide a path toward
understanding drought. Over the years, several drought indices have been developed, using different
variables. Yihdego et al. [13] have provided a list of indices with their pros and cons. Of the several
indices, one that is popular among researchers is the Standard Precipitation Evaporation Index (SPEI),
developed by Vincente-Serrano et al. [14]. The use of SPEI over other used indices is due to its
involvement of both rainfall and temperature as factors, unlike Standard Precipitation Index (SPI),
which only uses precipitation data. The use of SPEI has been tested in various parts of the globe and for
different drought studies [15]. The performance of SPEI over other prominent drought indices like SPI
and Palmer Drought Severity Index (PDSI) has been widely tested for several parts of the world under
different climatic regions, with contrasting results. For instance, Reference [16] recommended using
SPI for humid regions and SPEI for arid regions for a study based in India, whereas Reference [17]
suggested to use SPEI over SPI and PDSI to identify drought conditions based on the study conducted
at a global scale. Moreover, the use of SPEI in identifying the drought regions during the recent
mega-fires in Australia has been tested by Nolan et al. [18] and was found to be an effective indicator.
The calculation of the index could involve either the use of ground-based data, which can suffer from
inhomogeneity due to its sparse location, or satellite-based, data which covers a large area but with
variable bias and gap of data due to cloud or satellite return frequency. Although ground-based
data has its own benefits especially when understanding at local scale, satellite-based data can also
provide similar or even better understanding of the variables when studying at the regional level,
which is the case for droughts. The use of global climatological datasets for drought studies is on
the rise, and among the various available datasets, the Climate Research Unit (CRU) dataset is quite
popular, owing to its longer time scale and finer spatial resolution. Sun et al. [19] tested 30 different
global climatological datasets, and their variation in precipitation values found that reanalysis climatic
datasets have the most discrepancy compared to other models. Therefore, the present study uses the
CRU dataset, and the various associated and derived climatological variables from 1901 to 2018, at a
spatial resolution of 0.5◦ [20], with a temporal resolution of one month for drought index calculation
and forecasting purposes.

The studies on drought can be varied, ranging from monitoring, mitigation studies like
vulnerability, risk, time series modeling and forecasting [12]. However, the key aspect of drought
which makes it different from other hazards is it takes time to reflect its effects on any economic
or agricultural sector. Therefore, forecasting becomes an interesting prospect as a reliable model
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could help in mitigating some effects of the drought. For this purpose, various techniques have been
applied, like physical [21], stochastic [22], probabilistic [23] and data-driven [11] ones. However,
among these data-driven models involving machine learning (ML) algorithms are comparatively less
computationally intensive and could provide sufficient understanding without the requirement of
extensive dataset types. Although the forecasting capabilities of physical-based models are accurate for
atmospheric factors like temperature, they are less accurate for essential drought affecting parameters
like rainfall [24]. Moreover, physical models are difficult to implement, as they require various
data types involving complex models and require intensive computation power [25]. ML-based
models have been used for drought forecasting for different drought affected regions of the world.
As an example, Rhee and Im [26] used decision trees, Random Forest and extremely randomized trees
for meteorological drought forecasting for South Korea. Similarly, Park et al. [27] used Random Forest
to forecast severe drought for Western Korea. Of the various ML models, Random Forests (RFs) have
the capability to handle large datasets involving multiple features, as is the case for the present study.
RF has shown significant advantage over other supervised learning methods as it has the ability to
handle highly non-linearly correlated data, robustness to noise and opportunity for efficient parallel
processing [28]. Furthermore, the RF model has other important features, like intrinsic feature selection
step and prior application to classification problem, and it can reduce variable space by providing
an importance value for every feature. The use of RF models has been extensively carried out for
various natural hazard studies for both regression and classification purposes, such as landslide [25],
floods [29], earthquakes [30] and soil erosion [31].

The occurrence of a drought initiates with the deficiency in rainfall and the change in global
climatic variables has had a serious effect on drought severity and longevity. Therefore, researchers
have started to focus on the use of climatic variables, which could provide a better idea about drought
trends both in spatial and temporal context. Deo and Sahin [10] used climatic indices, along with sea
surface temperatures (SSTs), as they trigger rainfall availability, to understand drought occurrences for
the Eastern Australia region. Similarly, Mulualem and Liou [8] used hydro-meteorological, climate,
sea surface temperatures and topographic variables to forecast drought for the Upper Blue Nile region
of Ethiopia. The current work uses precipitation, potential evapotranspiration, vapor pressure, cloud
cover and temperature (maximum, minimum and mean) variables for forecasting purposes. However,
most of the studies in the literature [2,8,32] have not used cloud cover and vapor pressure as a variable
for drought forecasting, even though it is very relevant for hydrological modeling and vegetation
health. It is important to note that most of the studies are conducted based on ground-based data,
and the availability of cloud cover variable can also be of concern. Moreover, the study has shown the
importance of climatic indices and sea surface temperatures; however, the present study did not use
such indices, and future works would involve these variables, which would help to provide a better
understanding of the drought forecasting model and the important variables.

The understanding of the drought is based on classes, which indicate various drought levels
ranging from extremely dry conditions to extremely wet conditions [14], in the case of meteorological
and hydrological drought or extreme vegetation deficit to above-normal vegetation conditions for
agricultural drought [33]. The comprehensive understanding of a data-driven model should be
based on its ability to perform either regression or classification tasks, or both [34]. The classification
capability of the ML-based models for drought classes has seen the use of models like Artificial Neural
Networks [35] and decision trees [26]. Compared to other models, the use of RF-based drought class
classification is comparatively less.

Therefore, the present study aims to fulfill several gaps present in the literature. One of those gaps
is the use of a freely available climatological dataset for determination and forecasting of drought index
at both spatial and temporal scales. Moreover, apart from the use of several key variables, the inclusion
of vapor pressure and cloud cover as variables is important to understand its impact on drought
occurrences and has been explored in the present study. Furthermore, the performance ability of RF
model was also tested. In summary, the work involved forecasting of SPEI index for New South Wales



Appl. Sci. 2020, 10, 4254 4 of 16

region, using the dataset from 1901 to 2018. The data was divided into three time periods, involving
the training period of the input data and the variables used from 1901 to 2010, and the data from 2011
to 2015 was used for testing. The testing period helped us to identify the forecasting capabilities of the
model. Finally, the classification capabilities of the model into different drought classes was tested
during the validation period (2016–2018), using the receiver-operating characteristic curve approach.

2. Study Area

Australia is one of the most drought-affected countries in the world and has seen major drought
events. One of the most prominent drought-affected areas is New South Wales (NSW), which is situated
in the eastern part of the country. The state has seen major drought events, like the Federation Drought
(1895–1902), World War II Drought (1937–1945) and the recent Millennium Drought (2001–2010) and
several other minor droughts. Figure 1 shows the location of NSW in Australia and the mean annual
rainfall based on CRU TS dataset of the study area [20]. Wittwer [36] estimated the economic impact
due to droughts from 2017 to 2019, and found that a total of $8.1 Billion was lost during this period.
The recent bushfires in the region have been found to be further aggravated due to the combination of
drought conditions, dry vegetation and rise in temperature [37].
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Figure 1. Study area in (a) Australia, and (b) mean annual rainfall of New South Wales (NSW)
(1901–2018), based on Climate Research Unit Time Series (CRU-TS) dataset.

In recent times, there has been a rise in the frequency of droughts, and they are expected to increase
in the near future, primarily due to the increase in temperature and the decrease in rainfall [38,39].
Hennessy et al. [38] found that the average temperature of NSW has increased by 1.08 ◦C between
1950 and 2017. In terms of precipitation, Dey et al. [40] analyzed the changes and found that there has
been a decrease in the rainfall since 1950. Such changes emphasize the need to include climatic drivers
as variables for drought study, and the present study attempted to do so. The Bureau of Meteorology
(BOM) of Australia considers a drought to be when precipitation is below the 10th percentile for a
continuous period of three months or more [40]. By this definition, it becomes imperative to understand
the effect of hydro-meteorological variables on drought occurrences.

3. Data Used and Methodology

The data used were from the freely available climatological dataset, CRU, which provides
land-based observations from 1901 to 2018 [20]. The dataset is prepared at a resolution of 0.5◦ × 0.5◦

and covers the entire world, except for Antarctica; the format is netCDF (Network Common Data
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Form). The dataset is prepared by using an angular distance weighting interpolation technique, with no
missing pixels [41]. The use of the CRU gridded dataset has been found to be a good representative of
climatic conditions over dry regions [42]. The CRU dataset has three distinct variable types, which
cumulate to ten variables and have been widely used for several applications for assessing climatic
variability [43]. The present study uses three types of variables, (i) primary (mean temperature and
precipitation); (ii) secondary (vapor pressure and cloud cover); and (iii) derived variables (potential
evapotranspiration, maximum and minimum temperature). The potential evapotranspiration (PET)
has been defined by using the Penman–Monteith technique [44]. Figure 2 depicts the annual variation
of monthly rainfall and monthly mean temperature measures in NSW region for 1901–2018. The bottom
and top of the rectangular boxes represent the 25th and 75th percentiles, respectively, with the horizontal
thick lines in the boxes depicting median values (50th percentiles); the whiskers indicate 1.5 times the
interquartile range with the points reflecting outliers [45]. The annual variation of rainfall and mean
temperature across all the pixels for the NSW region are depicted in Figure 3. The present study uses
the CRU dataset first to determine the SPEI index and thereafter uses all the variables mentioned above
to be used as predictive factors to forecast SPEI index, using Random Forests.
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Figure 2. Box and plot chart of the annual variation of monthly rainfall and mean temperature values
based on CRU TS dataset for the NSW, region from 1901 to 2018.
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Figure 3. Variation of annual rainfall and mean temperature across the entire time duration (1901–2018)
for the NSW region. The orange line represents the moving average of the past 20 years.
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3.1. Standard Precipitation Evaporation Index

The SPEI index is based on the determination of climatic water balance (CWB) approach, which uses
rainfall and potential evapotranspiration (PET) as input values, wherein CWB is defined as follows:

CWBi = Ri − PETi (1)

where R is rainfall, and i is the month counter, which provides a measure of water surplus or deficit
for a given month. The log-logistic probability density function was used to transform the CWB
series to standardized units at different monthly scales (1 and 3 months). Thereafter, the log-logistic
distribution was used to determine SPEI, by using the inverse normal function [15]. The use of PET
methods also has a significant effect on the drought index calculation, and Penman–Monteith (PM)
has been suggested to be performed [15]. In cases of data unavailability, Hargreaves method has
also been suggested to be used for SPEI index calculation [15]. The detailed explanation about the
calculation of SPEI index can be found in References [14,15,46]. This could be crucial, as a calculation
of PET using PM via other climatological, reanalysis or ground-based datasets could prove to be
difficult, and due care needs to be taken when defining drought. This could be achieved by statistically
validating the historical drought events and its variation with the global drought-monitoring tool, like
the SPEI database [15]. The methodology of the present study is depicted in Figure 4. The time series
data for SPEI 1 and SPEI 3 for the two major droughts (World War II Drought (1937–1945) and the
Millennium Drought (2001–2010)) are depicted in Figure 5a,b. As the figure represents, SPEI was able
to successfully capture the historical major droughts and can be considered as a good index, with the
ability to capture droughts. The variation in SPEI values depict various drought classes, as mentioned
in Table 1 [8].Appl. Sci. 2020, 10, x 7 of 16 
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Table 1. Drought classification according to Standard Precipitation Evaporation Index (SPEI) index values.

SPEI Values Drought Classes

≤−2.0 Extremely Dry
−1.99 to −1.5 Severely Dry
−1.49 to −1.0 Moderately Dry
−0.99 to 0.99 Near Normal

1.0 to 1.49 Moderately Wet
1.5 to 1.99 Severely Wet
≥2.0 Extremely Wet

3.2. Random Forests and Performance Analysis

The study of drought forecasting has seen the use of various ML-based models; however,
the present study focusses only on Random Forest (RF), as its performance is similar to other
supervised learning models, such as support vector machine or boosted regression trees [9,47].
However, the RF-model has been comparatively less tested, especially in Australia. Previous studies
have used remote-sensing-based data to forecast drought, using neural networks and RF [48] for wheat
belts in the region. The present study forecasts the drought index, using a climatological dataset for
the entire NSW region, and is the first study of its kind. The RF model was proposed by Reference [49],
an ensemble technique which reduces over-fitting and reduces the uncertainty, proving to be much
better than single-tree-based techniques. The other benefit of using an RF model is its ability to handle
large datasets; it is also highly interpretable, especially involving multiple features. It provides a
reliable global estimate of variable importance and also determines the marginal effect of a predictor
on response variable [50]. The model initiates by initially building a forest of decision trees utilizing
the bootstrap technique, wherein every tree is created independently, based on a randomized subset
of predictor variables [51]. The trees grow to a maximum size, without pruning, and thereby the
output mean from all the multiple decision trees is the final result [52], achieving effective regression
performance [27]. We used the scikit learn library to carry out the RF model [53]. There are two key
things while running the model: first, understanding the right set of hyper parameters (number of
decision trees and number of features under each tree), which would tune the parameters and evaluate
the model for every combination. Although there are several parameter-tuning techniques, we have
focused on the use of two most popular techniques, random search and grid search. As the name
suggests, the random search technique uses random combinations of hyper parameters to find the
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optimal solution, whereas the grid search technique utilizes a grid approach through every combination
of the hyper parameters. We tested both the approaches and found grid search to provide better results.
The concerns regarding over-fitting were addressed by using a cross-validation approach under both
the techniques. Thereafter, analyzing the relative importance of the variables and finding out the
key variables affecting the regression model is the key to develop a reliable and interpretable model.
The default feature importance in scikit-learn has a tendency to depict high importance of continuous
features, and it sometimes can be biased. Therefore, to counter this, we used a drop-column feature
importance technique, using rfpimp Python package (https://pypi.org/project/rfpimp/), which is based
on the permutation importance strategy [54]. Although this package is resource-intensive, it proved to
be most accurate feature importance.

The performance of the RF model was carried out by using Coefficient of Determination (R2) and
Root-Mean-Square-Error (RMSE) method. R2 determines the fitness between the predicted and original
values, whereas RMSE measures the variance of errors between the real and predicted values [55].
The formulae for both the statistical measures are:

R2 =

∑N
i = 1(ŷi − yi )∑N
i = 1(yi − yi)

2 (2)

yi =
1
N

N∑
i=1

yi (3)

where yi is the mean value; yi and ŷi are observed and forecasted values and N is the number of
data points.

RMSE =

√
SSE
N

(4)

SSE =
N∑

i=1

(ŷi − yi)
2 (5)

where SSE is the sum of squared errors. The higher the value of R2, the better the predictive capability
of the model is, with 1 depicting an exact relationship between observed and predicted values [8].
This provides a basis for whether the model is fit to be used for prediction.

4. Results and Discussions

The SPEI index was computed by using the SPEI ‘R’ package developed by Reference [14], for the
entire period of CRU dataset. The input SPEI files were further divided into training (1901–2010),
testing (2011–2015) and validation (2016–2018) periods.

4.1. Training Period

The use of an RF model involved understanding the relative importance of the variables used for
both time durations. The results reveal that rainfall was most important in both scenarios, followed by
PET and vapor pressure. However, the relative importance could show different results if a different
PET model was used to determine the SPEI index. Vapor pressure is an important parameter and
has proved to be very significant, as compared to other variables, such as temperature [56] and soil
moisture [57], especially toward vegetation health. The relative importance of the input variables
shows cloud cover and vapor pressure were significant factors. Cloud cover is derived from the
sunshine hours as a percentage value. It has been rarely considered as a variable, and few works have
shown its importance in drought. As an example, Jimenez et al. [58], in their study on droughts in the
Amazonia region, analyzed its importance and found it to be a significant factor, owing to the long-term
land use, land-cover change and forest loss in the region. Similarly, vapor pressure has shown a strong
correlation with the water transport process in various vegetation types. The NSW region has low

https://pypi.org/project/rfpimp/
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vegetation cover compared to Amazonia, and hence vapor pressure or soil moisture may have a lower
impact on the drought index prediction capability. Although SPEI is categorized as hydrological or
meteorological drought only, its effect on agricultural drought would be more prominent. However,
the present work shows that, for the NSW region, vapor pressure can also play a key role in drought
occurrence, and therefore future works should also include this variable, irrespective of the drought
type. Figure 6 depicts the relative importance of the variables under SPEI 1 and SPEI 3. The results
show that rainfall is highest among all the variables for both time scales. When considering the various
temperature factors, the minimum and mean temperature variables are higher for SPEI 3 scenarios;
however, the maximum temperature is higher for the SPEI 1 case. This suggests that there have been
several instances of heatwaves or short periods of high temperature which have led to short-term
droughts. This is also evident from the fact that the influences of PET and vapor pressure are higher
for the SPEI 1 case.

Appl. Sci. 2020, 10, x 9 of 16 

The use of an RF model involved understanding the relative importance of the variables used 

for both time durations. The results reveal that rainfall was most important in both scenarios, 

followed by PET and vapor pressure. However, the relative importance could show different results 

if a different PET model was used to determine the SPEI index. Vapor pressure is an important 

parameter and has proved to be very significant, as compared to other variables, such as temperature 

[56] and soil moisture [57], especially toward vegetation health. The relative importance of the input 

variables shows cloud cover and vapor pressure were significant factors. Cloud cover is derived from 

the sunshine hours as a percentage value. It has been rarely considered as a variable, and few works 

have shown its importance in drought. As an example, Jimenez et al. [58], in their study on droughts 

in the Amazonia region, analyzed its importance and found it to be a significant factor, owing to the 

long-term land use, land-cover change and forest loss in the region. Similarly, vapor pressure has 

shown a strong correlation with the water transport process in various vegetation types. The NSW 

region has low vegetation cover compared to Amazonia, and hence vapor pressure or soil moisture 

may have a lower impact on the drought index prediction capability. Although SPEI is categorized 

as hydrological or meteorological drought only, its effect on agricultural drought would be more 

prominent. However, the present work shows that, for the NSW region, vapor pressure can also play 

a key role in drought occurrence, and therefore future works should also include this variable, 

irrespective of the drought type. Figure 6 depicts the relative importance of the variables under SPEI 

1 and SPEI 3. The results show that rainfall is highest among all the variables for both time scales. 

When considering the various temperature factors, the minimum and mean temperature variables 

are higher for SPEI 3 scenarios; however, the maximum temperature is higher for the SPEI 1 case. 

This suggests that there have been several instances of heatwaves or short periods of high 

temperature which have led to short-term droughts. This is also evident from the fact that the 

influences of PET and vapor pressure are higher for the SPEI 1 case. 

 

Figure 6. Relative importance of the variables for predicting SPEI 1 and SPEI 3 during training period. 

4.2. Testing Period 

Further, the model was validated for the testing period, using statistical metrics. For this, we 

calculated the mean index value of all the pixels and examined the variation in terms of drought 

categories. The reason why we are using drought classes is that there are not enough drought periods 

0

0.05

0.1

0.15

0.2

0.25

0.3

R
ai

n
fa

ll

M
in

 T
em

p

M
ax

 T
em

p

M
ea

n
 T

em
p

P
E

T

V
ap

o
u
r 

P
re

ss
u

re

C
lo

u
d
 C

o
v

er

R
el

at
iv

e 
Im

p
o

rt
an

ce

SPEI 1

SPEI 3

Figure 6. Relative importance of the variables for predicting SPEI 1 and SPEI 3 during training period.

4.2. Testing Period

Further, the model was validated for the testing period, using statistical metrics. For this,
we calculated the mean index value of all the pixels and examined the variation in terms of drought
categories. The reason why we are using drought classes is that there are not enough drought periods
during the testing period in order to understand the variation in other drought perspectives (like
duration and intensity). This is crucial, as the variation provides confidence to further inspect the
model at a spatial scale and also along different drought characteristics. The results (Figure 7a,b)
show that the prediction capability of the model under both time periods is quite similar, with SPEI
3 being predicted slightly better than SPEI 1, with the values of R2 being 0.76 and 0.73, respectively.
During this period, we evaluated the variation as per the drought class. For example, if the predicted
SPEI value was found to be in the same drought class (Table 1), the results were considered to be
satisfactory for that particular month. The results show that the observed SPEI 1 value had the most
months under near-normal conditions (73%), i.e., values ranging from −0.99 to 0.99, followed by
moderately dry (10%) and moderately wet (6.67%). In the case of predicted values, 43 of the 60 months
depicted same drought class between the observed and predicted SPEI 1 values, while the remaining
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varied. Similarly, for SPEI 3, the near-normal conditions were observed for 78%, followed by severely
wet (10%) and moderately dry (8.33%). However, when analyzing the variations between the classes,
45 months depicted the same drought classes between predicted and observed values. The results
show that statistical metrics may not always prove to be a useful quantification approach, and therefore
it is important to analyze in terms of drought characteristics. For instance, in the present study, we used
drought classes, but others can use drought duration and similar classes, provided they have sufficient
data to analyze the variation.
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4.3. Validation Period

The analysis between the observed and predicted values during the validation period was
conducted in two ways. First, we analyzed the spatial variation between the observed and predicted
SPEI values during January–March (Figure 8a,b), and thereafter we examined the variation in terms of
drought classes. For classification purposes, we undertook a binary classification technique, by dividing
the pixels into either drought or no drought. For this, all the pixels having an SPEI value less than −1
were considered as drought pixels, and the remaining as non-drought pixels. The spatial variation
between the observed and predicted SPEI 1 values shows that the variation in drought intensity is
not significant; however, there are periods where the SPEI values depict different drought classes.
Moreover, the predicted images generally show a greater number of drought pixels and a lower number
of non-drought pixels compared to observed images. However, the more important thing here to
note is that the clusters among them certainly remain in the same spatial domain. As an example, the
observed SPEI 1 and 3 values for January 2017 have negative values toward the southeast part of the
region, and the same can be seen in the case of predicted values, but the number of pixels is certainly
high in the latter case. Such an observation can be made for other months, as well, for both SPEI 1
and 3 time scales. This can be considered as a good indicator of the model, but concerns regarding
variation in drought class are certainly pertinent. For instance, the minimum observed SPEI 1 value
during March 2018 falls under moderately dry conditions, whereas the predicted image shows the
minimum value falling under severely dry conditions. Similar conditions can be found across other
months, under both of the SPEI time scales.
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same, with the number of predicted pixels under negative SPEI values being more than the observed
pixels. (ii) There were pixels which predicted different drought classes than the observed ones,
thus making it imperative to understand how many pixels were correctly predicted under each drought
class. Therefore, for this purpose, Receiver Operating Characteristic (ROC) analysis [59] was used.
The accuracy of the model depends on the number of correctly predicted cells for a definite drought
class. The ROC curve is drawn with sensitivity on the ordinate and specificity on the abscissa [60].
The sensitivity represents the true positive ratio (TPR), and specificity represents the true negative
ratio (TNR), which can be determined as follows:

Sensitivity = TP/(TP + FN) (6)

Specificity = TN/(FP + TN) (7)

where TP is true positive, TN is true negative, FP is false positive and FN is false negative. TP and
TN are the numbers of pixels that are correctly classified, whereas FP and FN are the numbers of
pixels which were incorrectly classified. The area under the ROC curve (AUC) determines the model’s
ability for classification purposes, with values less than or equal to 0.5 indicating no better than
random chance [35]. The classification was based on the seven different drought classes. During the
validation period, the pixels were mostly composed of near-normal conditions, with few periods of
moderately dry and severely dry conditions under both time durations. In total, out of the 36 months
of the validation period, almost 70% were near normal condition, 7% each for severely dry and wet
conditions, 11% and 5% for moderately dry and wet conditions, respectively. The number of pixels
in each drought class was calculated for every month and categorized as drought (SPEI < −1) or
non-drought (SPEI > −1), based on SPEI values. The AUC value of SPEI 1 classification was found to be
0.82, whereas SPEI 3 was found to be 0.84, which can be considered as a good performance (Figure 9).
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Figure 9. Receiver Operating Characteristic–Area under the Curve (ROC–AUC) curves of drought
classification: (a) SPEI 1 and (b) SPEI 3 for the study region.

The variation suggests that there are several pixels which are just at the borderline of a certain
drought class, so any overestimation leads the representation to a different class. As an example, the
minimum observed SPEI 1 value for February 2017 was −1.99, which reflects severe drought conditions;
however, the predicted SPEI 1 value for the same period was −2.14, which reflects extreme drought
conditions. Similar observation can be found for January 2017, 2018 and also in March 2018, wherein
some pixels with values between 0.96 and 0.99 were overestimated to more than 1, thereby depicting
moderately wet conditions instead of near normal.
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For SPEI 3, such an observation can be seen in the month of January 2016, in which the observed
minimum index value was −0.95, meaning near-normal condition, but the predicted was found to
be −1.09, which represents moderately dry conditions. Similar observation can be made in January
2018 and February 2018. However, in March 2018, the minimum index value was underestimated,
as the observed minimum value was −2.06, whereas the predicted minimum value was −1.92, thereby
representing extremely dry and severely dry conditions, respectively. Therefore, it can be said that,
when analyzing at a pixel level, there are situations wherein the observed values are in proximity to
the threshold of drought class and the predicted values can overestimate or underestimate it.

5. Conclusions

The present study was conducted with the aim of forecasting droughts and understanding the
climatic variables affecting it for the NSW region of Australia. The work involved determination
of the SPEI index and forecasting the index, using a machine learning approach, namely, Random
Forests to one- and three-month lead times. The index was calculated by using rainfall and PET
values collected from CRU dataset from 1901 to 2018, and the climatic variables included rainfall, PET,
vapor pressure, cloud cover, mean, maximum and minimum temperature, also gathered from CRU.
The understanding of the forecasting ability of RF was analyzed by dividing the input data into three:
first used for training (1901–2010), then testing (2011–2015) and finally validation (2016–2018). For the
testing period, mean SPEI values of all the observed and forecasted pixels were analyzed, using R2

and RMSE statistical metric. For the validation period, the aim was to understand the classification
accuracy of the model as per the drought classes, which were analyzed by using ROC-based AUC
curves. The results from the study could be used for other drought-based applications, like urban heat,
agriculture and fire emergency preparedness. The conclusions from the study are as follows:

• The relative importance of the hydro-meteorological variables used to forecast drought index
shows that, apart from rainfall, PET is the most significant factor, followed by vapor pressure and
mean temperature.

• The model shows good forecasting capability, with R2 value being 0.73 and 0.76, respectively,
for SPEI 1 and SPEI 3 scenarios. However, when analyzing the variation as per drought classes,
SPEI 3 depicted a greater number of similar classes in accordance to SPEI 1, thus providing slightly
better predicative capability of the model for the former case.

• The classification aspect of the model into different drought classes was analyzed during the
validation period. The results show that the model was able to correctly classify 82% and 84% for
SPEI 1 and SPEI 3 time periods, respectively.

The present study shows that the use of the Random Forest model has the ability to perform well
for both regression and classification problems concerning drought at short-term time scales for the
NSW region. However, a future study should test out other models, either single or hybrid, for both
aspects at longer time scales and understanding the variation for different drought characteristics.

Author Contributions: Conceptualization, A.D. and B.P.; methodology and formal analysis, A.D.; data curation,
A.D.; writing—original draft preparation, A.D.; writing—review and editing, B.P.; supervision, B.P.; funding—B.P.
and A.M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Centre for Advanced Modelling and Geospatial Information Systems
(CAMGIS), Faculty of Engineering and Information Technology, in the University of Technology Sydney (UTS).
This research was also supported by Researchers Supporting Project number RSP-2020/14, King Saud University,
Riyadh, Saudi Arabia.

Acknowledgments: The authors are thankful to the reviewers for reviewing and suggesting valuable modifications,
which has helped in improving the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2020, 10, 4254 14 of 16

References

1. Christian-Smith, J.; Levy, M.C.; Gleick, P.H. Maladaptation to drought: A case report from California, USA.
Sustain. Sci. 2015, 10, 491–501. [CrossRef]

2. Mishra, A.K.; Singh, V.P. Drought modeling–A review. J. Hydrol. 2011, 403, 157–175. [CrossRef]
3. Rajsekhar, D.; Singh, V.P.; Mishra, A.K. Integrated drought causality, hazard, and vulnerability assessment

for future socioeconomic scenarios: An information theory perspective. J. Geophys. Res.-Atmos. 2015,
120, 6346–6378. [CrossRef]

4. Van Loon, A.F. Hydrological drought explained. Wiley Interdiscip. Rev.: Water 2015, 2, 359–392. [CrossRef]
5. Van Lanen, H.A.J.; Wanders, N.; Tallaksen, L.M.; Van Loon, A.F. Hydrological drought across the world:

Impact of climate and physical catchment structure. Hydrol. Earth Syst. Sci. 2013, 17, 1715–1732. [CrossRef]
6. Sohrabi, M.M.; Ryu, J.H.; Abatzoglou, J.; Tracy, J. Development of soil moisture drought index to characterize

droughts. J. Hydrol. Eng. 2015, 20, 04015025. [CrossRef]
7. Van Loon, A.F.; Gleeson, T.; Clark, J.; Van Dijk, A.I.; Stahl, K.; Hannaford, J.; Di Baldassarre, G.; Teuling, A.J.;

Tallaksen, L.M.; Uijlenhoet, R. Drought in the Anthropocene. Nat. Geosci. 2016, 9, 89. [CrossRef]
8. Mulualem, G.M.; Liou, Y.-A. Application of Artificial Neural Networks in Forecasting a Standardized

Precipitation Evapotranspiration Index for the Upper Blue Nile Basin. Water 2020, 12, 643. [CrossRef]
9. Park, S.; Im, J.; Jang, E.; Rhee, J. Drought assessment and monitoring through blending of multi-sensor

indices using machine learning approaches for different climate regions. Agric. Meteorol. 2016, 216, 157–169.
[CrossRef]
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