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Abstract: Detection and localization of regions of images that attract immediate human visual
attention is currently an intensive area of research in computer vision. The capability of automatic
identification and segmentation of such salient image regions has immediate consequences for
applications in the field of computer vision, computer graphics, and multimedia. A large number
of salient object detection (SOD) methods have been devised to effectively mimic the capability of
the human visual system to detect the salient regions in images. These methods can be broadly
categorized into two categories based on their feature engineering mechanism: conventional or
deep learning-based. In this survey, most of the influential advances in image-based SOD from both
conventional as well as deep learning-based categories have been reviewed in detail. Relevant saliency
modeling trends with key issues, core techniques, and the scope for future research work have been
discussed in the context of difficulties often faced in salient object detection. Results are presented
for various challenging cases for some large-scale public datasets. Different metrics considered for
assessment of the performance of state-of-the-art salient object detection models are also covered.
Some future directions for SOD are presented towards end.

Keywords: salient object detection; saliency cues, conventional salient object detection models;
deep learning-based salient object detection models

1. Introduction

Salient object detection (SOD) is an important computer vision task aimed at precise detection and
segmentation of visually distinctive image regions from the perspective of the human visual system
(HVS). The behavior of SOD models is expected to mimic the pre-attentive stage of HVS which guides
human attention to the highly interesting regions in the scene. The identified salient regions in images
can facilitate subsequent high-level vision tasks for improved efficiency and optimal resource usage.
As a preprocessing step, SOD has served many computer vision tasks such as, visual tracking [1,2],
image captioning [3], image/video segmentation [4–6], and so forth.

The challenges and difficulties in SOD come from the very nature of the scenes captured in
free viewing conditions. Several sample images from different SOD datasets can be seen in Figure 1.
The accompanying pixel-wise annotations shown here are used for evaluation but clearly delineate the
basic requirements for a salient object detector. A SOD method should keep the error metric values
to their least by strictly attaining to the salient regions and missing the non-salient ones. It is further
expected that the SOD method should be computationally inexpensive in producing a high resolution
saliency map for accurate salient object localization [7]. Being an active research field over the past
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two decades, a large number of models have been attempted to satisfy the minimum requirements
for image based SOD. Early efforts for saliency detection were focused at fixation prediction [8,9].
Fixation prediction aims to attend the spatial locations where an observer may fixate within few seconds
of free-viewing. SOD is different from fixation prediction as models for the former should detect
and segment the entire extent of salient regions/objects in the scene. A general approach adopted by
conventional SOD models to accomplish this goal is to assign high probability values to salient elements
in a scene while producing a saliency map. Once detected, techniques such as thresholding can be used
to segment out the whole salient object. Conventional SOD models following Itti et al. [8] attempt to
capture the notion of scene rarity or uniqueness mainly by devising center-surround contrast features.
Regional contrast in terms of global and local schemes have been frequently used in conventional SOD.
Various complementary heuristic saliency priors have also been deployed to effectively capture the
most conspicuous object regions in images. These conventional models have been proven to be efficient
and effective in relatively simple scenes with a single object and/or clean background.

(a) (b) (c) (d) (e) (f)
Figure 1. Sample challenging images for salient object detection with corresponding pixel-wise
annotations shown below. (a) Large object, (b) Reflection, (c) Multiple objects, (d) Small object,
(e) Complex scene, and (f) Low contrast.

Many diverse datasets have surfaced in the past ten years to challenge these SOD models.
The presence of multiple salient objects, heterogeneous salient objects with variations in shape,
size and position, low-contrast objects, and much cluttered background in datasets are challenging
issues to address while adhering to high prediction requirements of SOD. However, the recent
rapid development of deep learning-based techniques in the field has been highly successful in
tackling most of the aforementioned issues. Fully convolution neural networks (FCN) lies at the
core of deep learning-based SOD [10]. The powerful hierarchical multi-scale feature representation
of FCN has been utilized in various ways for a coarse saliency prediction and its refinement for
boundary accurate saliency map in a data-driven manner. However, the conventional models
for SOD have the advantage of providing real-time performance and can be applied in the wild.
Meanwhile, several deep models have leveraged saliency priors to improve the representational
ability of multi-layer features and to speed-up the training process. Wang et al. [11] combined saliency
estimate of multiple conventional methods as the prior knowledge informative of salient regions to
guide saliency detection. Chen et al. [12] utilize saliency priors as an initial prediction for saliency
refinement. Zhang et. al. [13] devised a deep unsupervised saliency detection with noisy supervision
from multiple conventional SODs. Simple heuristic operator such as contrast in Reference [14] has been
adopted for contrast modelling of multi-scale features in References [15,16]. These adaptations suggest
that despite tremendous progress and superior performance demonstrated by deep learning based
SOD, the tools of conventional saliency detection can be useful for further raising the performance bar
of deep models.

Inspired by these observations, this survey aims to comprehensively cover both conventional
as well as deep learning based SOD models. Various aspects of SOD are thoroughly discussed.
Large-scale datasets and evaluation metrics have been instrumental in promoting research in SOD.
Therefore, popular SOD datasets and recent metrics used to evaluate several state-of-the-art models
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in SOD are also discussed. The organization of the rest of the survey is summarized as follows.
Section 2 gives the motivation behind this study and contribution made by authors. Section 3 gives
a brief overview of the history of SOD. Section 4 presents a review of the conventional SOD models.
In Section 5, SOD models based on deep learning are discussed. Common datasets, evaluation metrics,
and a discussion on qualitative and quantitative evaluation of some state-of-the-art models are briefly
summarized in Section 6. Section 7 presents the future research direction for SOD. Finally, Section 8
concludes the survey.

2. Motivation and Contribution

The research in SOD is inherently driven by its applicability to a wide-variety of tasks
from fields such as computer vision, multimedia, and robotics. SOD has been utilized in various
research and practical problems including foreground annotation [17], quality assessment [18–20],
action recognition [21,22], video summarization [23,24], image and video compression [25,26],
object discovery [27], image/video segmentation [4–6], visual tracking [1,2,28,29], image/video
retrieval [30,31], content based image retrieval [32], image editing and manipulation [33–35], thumbnail
creation [36], photo collage [37], image retargeting [38–40], object detection and recognition [41–43],
and caption generation [3]. SOD is not a new field of research, but several intriguing directions
culminating from related fields have enabled great progress in this field during the last decade alone.
To be specific, several variations of deep-learning methods have had a great impact on this field
resulting in some state-of-the-art performances.

The motivation behind this survey is to present a comprehensive understanding of the evolution
of SOD methods to the readers in a pragmatic manner. The details of the key-elements in both
conventional and deep-learning methods are provided to capture the essence of motivational ideas
in the field. Although existing surveys covered a large number of methods, but present too few
technical details. Due to focus on the coverage of a larger number of methods, the existing surveys
could not present technical details for each method [7,44,45]. Different from the existing surveys
summarized as in Table 1, this survey strives to strike a balance between the coverage of relevant
methods and technical details of each method.This work covers the most recent and/or impactful
methods from conventional and deep learning-based SOD. Moreover, several state-of-the-art methods
are evaluated with four different metrics most commonly reported by SOD methods. This gives the
reader a complete snapshot of the progress in the field as it stands today. Further, the visual results are
presented with emphasis on challenging cases, where even the most effective methods show a lot of
variation in performance.

With the intent to motivate the reader about the possible future directions in which the research
could be pursued, the contributions of this work can be summarized as follows:

1. This is an attempt to cover most of the influential contributions in the past 20 years for SOD in
images. Data from Google scholar advanced search with the search constraint as salient object
detection from images is collected. The rise of research work as shown in Figure 2 is an indicative
of the importance and usefulness of SOD in the current scenario. The present review includes 41
and 50 publications discussed from conventional and deep learning-based SOD, respectively with
the aim to help readers to make a broad view of the field necessary to explore future directions
for research in SOD.

2. State-of-the-art SOD models have adopted many techniques from the connected fields such
as semantic segmentation. Techniques such as multi-scale contextual extraction and recurrent
connections are crucial for extracting advanced features for SOD and therefore, included in this
survey in a concise manner.

3. deep learning-based SOD models are categorized based on the level of supervision during the
model training. The arrangement of the most recent developments in categories of supervised,
weakly-supervised, and adversarial learning is useful in understanding the key design issues
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of SOD models. Figure 3 presents the classification for conventional and deep learning-based
methods presented in this work.

Figure 2. The trend of publications in salient object detection from still images from 2008–2020 (July).
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Figure 3. Classification of salient object detection methods used in this work.
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Table 1. Existing review publications on SOD from images and related research fields.

# Title Publ. Focused Attentive Task Coverage Span (upto) Short Description

1 State-of-the-Art in Visual TPAMI Fixation prediction (FP) 2012 Reviewed traditional models
Attention Modeling [46] for visual attention.

2 Salient Object Detection: TIP FP and SOD 2014 Qualitatively evaluated selective heuristic
A Benchmark [45] FP and SOD models over seven datasets.

3 Attentive Systems: A Survey [47] IJCV General attention 2017 Application oriented review of
attentive (SOD and FP) techniques.

4 Review of Visual Saliency Detection with TCSVT RGB-D, Co-saliency 2018 Review of traditional, and learning-based
Comprehensive Information [48] and Video saliency models for all 3 SOD tasks.

5 Saliency prediction in the deep learning era: TPAMI FP 2018 Covered of FP models for still images
Successes and limitations [49] and videos.

6 Salient Object Detection: A Survey [7] CVM SOD 2017 Reviewed early deep learning-based models for RGB
images and heuristic models for 2-D, 3-D and 4-D images.

7 Salient Object Detection in the Deep Learning Era: arXiv SOD 2019 Compact coverage and attribute-based analysis of
An In-Depth Survey [44] deep SOD models for RGB-images.

8 RGB-D Salient Object Detection: arXiv RGB-D SOD 2020 Reviewed RGB-D based SOD and light field SOD
A Survey [50] models and benchmark their datasets.
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3. Overview of Salient Object Detection

Saliency detection has been an interdisciplinary field. The fundamental investigations on cognitive
and psychological theories of HVS attention [51–53] were contributed by cognitive psychologists and
neuroscientists. Such theories preliminarily formed the base for development of the early saliency
models. A major milestone in visual saliency was achieved when the complete implementation
of the computational attention architecture [53] was realized by Itti et al. [8]. The feed-forward
model proposed in Reference [8] computes and combines multi-scale color contrast, intensity contrast,
and orientation contrast to direct computational mechanism to highlight the salient locations in a
low-resolution saliency map. Further, a winner-take-all (WTA) neural network is invoked multiple
times to shift the focus of attention to the next most conspicuous location by employing inhibition
of return mechanism after the first WTA invocation. This ability to shift from location to location
in a fixation map is vital for tasks such as image understanding. Nevertheless, the computation of
center-surround contrast using low-level features and their integration for attention guidance provided
great insight for further research in the conventional SOD paradigm.

It is widely accepted that the seminal work of Liu et al. [54] and frequency tuned approach
proposed in Reference [14] brought novel contributions to boost up research in SOD. Liu et al. [54]
introduced the computational methods for extracting local, regional, and global features that capture
different aspects of saliency information. A binary segmentation is achieved using conditional
random fields (CRFs) with all extracted features. In addition to that, the first large-scale dataset
was also presented in Reference [54] with bounding box annotations for training and evaluation of
SOD models. Contributions by Reference [14] include in-depth frequency analysis of sub-sampled
features used for contrast computation and generation of full-resolution saliency maps using a
frequency-tuned approach.

Deep convolutional neural networks (CNNs) have demonstrated exceptional performance
in many vision tasks such as image classification [55,56], semantic segmentation [57–59],
object detection [60,61], and object tracking [62,63]. Deep CNNs have also benefited SOD and
delivered a huge performance gain compared to the conventional SOD models. This data-driven
approach generates a hierarchy of multi-scale feature representation automatically from the input
image. The stacking of convolution and pooling operation in deep CNNs allows the receptive field
of the network to grow gradually with depth. Due to the large receptive field, deep layers in the
network could capture the global semantics and provide a holistic estimation of the salient regions.
The shallow layers retain more spatial details useful for the localization of fine structures and salient
object boundaries. Different deep learning-based SOD models utilize these complementary multi-layer
features in various ways to learn robust saliency representations with a powerful end-to-end
learning [57]. Figure 2 shows a sudden rise in the number of papers published in SOD from images
since 2015 when the first few deep learning-based SOD models were proposed.

Recently, the most advanced models in SOD have been devised from the field of computer vision.
Table 2 compares SOD with some related computer vision tasks such as fixation prediction [64,65],
image segmentation [66,67], semantic segmentation [57–59], object proposals generation [68],
object detection [60,61], and salient object subitizing [69]. Table 2 highlights various research tasks in
the similar fields compare with SOD in terms of objective and approach taken. Although this survey
focuses mainly on single RGB image based SOD models, closely related fields such as co-saliency
detection(CoSOD), RGB-Depth (RGB-D) SOD, video SOD, and SOD on light field have also experienced
a great deal of interest in the recent past. The CoSOD task aims at the automatic detection of the
salient object(s) that are common among multiple related images. Given an image group, a co-salient
object should be salient in each image along with a high chance of repeatability and appearance
similarity among the related images [48]. Classical approaches to CoSOD resort to inter-image
correspondence modelling strategies [70,71] to represent the common attributes among multiple
images. Recent deep learning-based CoSOD models [72] learn co-salient object representations jointly,
and have utilized deep-CNN models to achieve outstanding performance. Typical applications of
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CoSOD include collection-aware crops [73], co-segmentation [74] and video foreground detection [75].
The RGB-D based SOD models utilize important complementary information of depth along with
color measurements for detecting salient objects on RGB-D images. Similar to SOD, traditional RGB-D
models [76,77] rely heavily on hand-crafted features while combining RGB image with depth maps.
Models [78,79] that exploit the implicit shape and contour information in depth maps to refine saliency
results have shown promising performance. Deep learning-based, end-to-end RGB-D models [80,81]
are becoming more and more popular as they can effectively exploit multi-modal correlations,
and multi-layer information hierarchy for robust RGB-D saliency detection [82]. Video SOD models
leverage the sequential, motion, and color appearance information contained in a video sequence to
detect targets that are repeated, dynamic, and salient [48]. Video SOD has many applications viz.,
action recognition [83] and compression [84]. Very similar to other related fields, current state-of-the-art
models in video SOD are deep learning-based which capture and focus on combining the spatial
and temporal saliency information efficiently [74]. Efforts have also been made to deal with data
insufficiency problem in the supervised video-SOD models through novel data augmentation
techniques [74] or introducing new datasets [85]. The detection of saliency on 4-D light field (LF) is
another interesting task related to the RGB-SOD task. A light field is an array of 2-D images which
includes focal stacks, depth maps and all-focus images captured through handheld light field camera
Lytro Illum [86]. In absence of a large-scale LF-SOD dataset, low-level cues have been utilized to tackle
the task. Recently, Reference [87] proposed a new dataset and deep learning based model for the
LF-SOD task. Interested readers may refer to References [48,82,85,87,88] for further information on
these related tasks.

Table 2. Comparison of salient object detection with other computer vision tasks (GT - Ground truth).

# Task Aim GT Map Vs. SOD

1 Fixation prediction Finds where human Several fixation dots in Pixel-wise GT maps with clear
look in a scene. human fixation map. boundaries are seldom used.

2 Image/Semantic Assigns a label to each Each pixel has an Scope is the entire image,
segmentation pixel in the image. associated category label. not just the salient objects.

3 Object proposals Generates overlapping Rectangular bounding- Objectness prior have been
candidate region proposals. box annotation. utilized in heuristic SOD models.

4 Object detection To locate object(s) from Rectangular bounding- Locates all instances of desired
fixed category list. box annotation. type, not just salient.

5 Salient object Find existence and the Pixel accurate annotation Indexing of individual
subitizing number of salient objects. with a count. objects as salient.

4. Conventional Salient Object Detection

The conventional SOD models elaborated in this section belong to the various advancements
made in SOD before the resurgence of deep-learning techniques. These conventional models mainly
exploit low-level visual features such as intensity, color, and orientation to design hand-crafted features
especially useful for SOD. Most often, a salient region is considered as the part of an image that
is perceptually distinct from its surroundings and thus catches the attention of a human observer.
This distinctiveness, rarity, or uniqueness is widely investigated in SOD by determining the contrast
of image elements to their surroundings. Methods based on contrast priors may apply local scheme,
global scheme, or both to decide upon the saliency of elements in the image. As the saliency of a
region can be defined in various ways, different works made varying assumptions for SOD model
formulation. Priors such as backgroundness, objectness, focusness, and spatial-distribution allow the
utilization of more sophisticated frameworks to attack visual saliency. Different from these low-level
feature based fast approaches for SOD, the conventional supervised approach towards SOD has been
exploited in many recent works [54,89–93]. These models are equipped with the ability to apply
domain knowledge in the form of training data to saliency detection. However, these models are also
dependent on the manually designed regional saliency descriptors and therefore differ from deep
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learning-based SOD in the feature extraction process. In this section, a thorough review of the most
prominent conventional SOD methods is presented.

4.1. Local Contrast Based SOD

Early SOD methods determine the contrast of image elements relative to their surroundings by
using one or more low-level features such as intensity, color, and orientation. The local contrast has
been utilized at different levels of image abstraction such as pixels [94], patch [54], and regions [54,95].
The contrast signifies the difference among the involved elements but its varying interpretations lead
to different feature representations and measures being used for distance computation.

Ma et al. [94] worked with a color-quantized CIELuv image which is sub-divided into pixel
blocks. The local contrast is computed as the Gaussian weighted sum of the difference between a
pixel and its local-surroundings pixels. Finally, a fuzzy-growing method is employed to segment
attended points and regions from the saliency map. A parameter-free approach with simple point-wise
operations such as edge detection, threshold decomposition, and the distance transform is presented
in Reference [96]. Hu et al. [97] devised a linear subspace estimation method to map the 2-D image
into a 1-D linear subspace after a polar transformation. The projection of all the data to the normal of
their corresponding subspace considers both feature contrast as well as the geometry properties of the
region. Based on this projection a new attention measure was defined.

For robustness purpose, Liu et al. [54] adapted the single scale contrast to operate at multiple
scales using a pyramid. Specifically, the multi-scale contrast feature at pixels of an image is computed
as a linear combination of contrasts in the L-layer Gaussian pyramid. Liu et al. [98] combined
the block/pixel-based multi-scale contrast features with region information for object localization.
However, the performance of this method depends heavily on the quality of image segmentation. It is
also observed that pixel-based multi-contrast saliency maps emphasize high contrast edges rather
than the entire salient object [54]. Further, Liu et al. [54] designed a patch-based approach for regional
salient features. The χ2 distance of color histograms for a rectangular patch (with the area, let A)
centred at a pixel x is measured from an enclosing rectangle having the same area (A) to find the most
distinct rectangular pair at x. Candidates for contrast computation at a pixel are generated by varying
the size and aspect ratio of rectangles in a predefined way. Different from these patch/block wise
approach, Jiang et al. [95] utilized image segmentation algorithm to generate multi-scale segmentation
for multi-scale local contrast. The saliency of a region at a specific scale is obtained by comparing its
regional features with those of its spatial neighbors. The output pixel-wise saliency map is obtained by
propagating the regional saliency values across scales to pixels.

Klein et al. [99] defined the saliency of an image region using Kullback-Leibler divergence (KLD).
Specific scalable feature detectors are designed to represent the distributions in feature channels of
intensity, color, and orientations. The amount of divergence in the feature statistics in the center from
those in the surround is measured using KLD to estimate the center-surround contrast.

Li et al. [100] performed local contrast analysis to discover the salient regions through imbalanced
max-margin learning. The local context for a centre rectangular patch includes all spatially surrounding
patches that overlap with it. The inter-class separability of the center positive patch from all the
surrounding negative patches is obtained from the trained cost-sensitive support vector machine (SVM).
To counter the boundary imprecision in SVM saliency maps, another method based on hypergraphs
is discussed in Reference [100]. The hypergraph contains image superpixels and a set of superpixel
cliques as its vertices and hyperedges, respectively. The hyperegdes enforce contextual constraints
on constituting superpixels due to which the problem of saliency detection reduces to reporting the
salient vertices and hyperedges in the hypergraph.
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4.2. Global Contrast Based SOD

As the local contrast operator has a limited spatial neighbourhood, large extent salient objects
can be easily missed out. Further, the issues related to high-saliency at salient boundaries and
low-saliency values at object interiors enable significant research towards global contrast features.
Global considerations treat the similar image regions in a comparable way thereby assigning similar
saliency values to uniformly highlight the entire salient region.

As an outstanding contribution, Achanta et al. [14] analysed methods such as References [8,94,101]
to observe that these methods retain extremely low spatial frequency contents for contrast computation.
To uniformly highlight salient objects with well-defined boundaries in a full-resolution saliency map,
a frequency tuned approach was designed in Reference [14]. The method computes Euclidean distance
between a Gaussian blurred version of the input image Iwh f c and the mean image feature vector Iµ at a
pixel x to define saliency value as sal(x) = ‖Iµ − Iwh f c(x)‖. This center-surround contrast computation
has also inspired some recent deep-learning SOD models such as References [15,16].

Global contrast cues have been exploited in numerous SOD methods to separate a large object from
its surroundings [102–105]. The computation of the global contrast for a region requires considering
every other segmented region in the image. Specifically, in Reference [102] each segmented region r of
an image I is represented by a color histogram. The saliency value for a region rk is then computed as

sal(rj) = ∑
j 6=k

wkDr(rj, rk) (1)

where D(., .) represents the color distance metric between rj and rk. The term wk weights the distance
between the two regions. That is, a large distance from the target region suppresses the contrast
contribution and vice versa. The high global contrast leads to a better saliency value for a pixel. In a
similar spirit, region uniqueness under the global contrast setting is also explored in Reference [106]
using an efficient filtering based technique. With the term ‖cj − ck‖2 equated to D(j, k) in Equation (1),
it is possible to effectively combine global and local contrast estimations to control the influence radius
of the contrast operator, provided wk is a Gaussian. This is in contrast to [101,102] which perform
only global contrast estimations. The parts of the decomposed version of modified Equation (1) are
efficiently evaluated using a Gaussian blurring kernel on the color and squared color of the region
rk (with ck as average color). Fu et al. [107] combined the color contrast and color distribution in a
unified manner. Different from Reference [102], the inclusion of color distribution and distribution
priors along with color contrast characteristics can better highlight the salient object(s) in complex
scenarios such as strong background contrast. A saliency map refinement procedure is also presented
in Reference [107] to preserve salient edge details.

To enable effective estimation of global saliency cues, large scale perceptual segments are
generated in Reference [104]. This soft abstraction approach uses histogram quantization to sample
appearance cues for the Gaussian Mixture Model (GMM) based decomposition. The GMM components
are further clustered to get the image regions with homogenous semantic relations. These two soft
abstractions allow the subsequent cues of global uniqueness and color spatial distribution to uniformly
highlight entire salient object regions. Similar to Reference [104], spatial distribution prior has also
been used as a complementary cue to uniqueness in Reference [54]. The prior signifies that a spatially
wide distribution of a color is less expected to be a part of a salient object.

Margolin et al. [108] integrated the pattern distinctness and color uniqueness to generate the
saliency map. Their patch-based statistical analysis suggested that the distance of a patch from the
average patch, computed along the principal components of the image, is a robust measure of patch
distinctness. Statistically, a longer accumulated such path contributes to high patch distinctness. On the
other hand, global regional color contrast defines the color uniqueness of regions as a complementary
cue to patch distinctness .
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4.3. Diffusion Based SOD

The diffusion-based SOD models construct a graph structure on the image and utilize a
diffusion matrix to propagate seed saliency values to the whole region of interest. Existing SOD
models differ in stages like graph construction, foreground/background seed generation, and/or
regulating the diffusion process. In a patch-based approach, Gopalakrishnan et al. [109] utilized
the equilibrium distribution of the ergodic Markov chains on a complete graph and a k-regular
graph. This generated the most salient seed and several background seeds as partial labelling on the
“pop-out” graph. Finally, the labels of the unlabelled nodes were inferred using a semi-supervised
learning technique. Some SOD models assume that a thin border, made-up of superpixels from the
image truly signifies the background regions. These so-called pseudo-background regions are far
away from the image center and therefore, work as background seeds. The Background prior based
diffusion models such as References [110–112] first organize superpixels in the form of an undirected
weighted graph where spatial smoothness and geodesic distance constraints are explicitly enforced.
In Reference [110], manifold ranking is incorporated as the saliency measure to rank the similarity
of image superpixels in a two-stage scheme. In the first stage, four separate regional saliency maps
are computed, which reflect the relevance of the constituent superpixels to the individual side of
the pseudo-background. These maps are integrated for an initial saliency map. In the second stage,
the foreground nodes obtained from adaptive thresholding of the inverted initial saliency map act as
the salient queries and the manifold ranking is re-applied to compute the final saliency scores for each
superpixel. Filali et al. [113] have extended the formulation single-layer manifold ranking framework
to multi-layer saliency graphs, and utilized texture cues along with color to more accurately detect the
boundaries of salient objects.

Saliency detection via properties of absorbing Markov chains is explored in methods such
as References [111,112,114]. The basic idea is to treat image boundary superpixels as absorbing
nodes and the remaining superpixels as transient nodes. In this configuration, the absorption time of a
transient node reflects its global similarity to pseudo-background nodes and thus, provides an estimate
of saliency scores for transient superpixels [112]. To effectively suppress the long-range background
regions near the image centre, Zhang et al. [111] learned a transition probability matrix. It does so by
computing multiple sparse affinities with different feature layers from a pre-trained FCN-network [10]
and then, infers a full affinity matrix through iterative optimization. Different from Reference [111],
Sun et al. [114] identified the salient regions in an image by computing the Markov absorption
probability, which represents the probability of a transient node being absorbed by an absorbing node.
In a two-stage scheme, the first stage considers the background nodes as absorbing. Whereas the
next stage performs a ranking-based refinement by regarding the adaptively thresholded salient
nodes from the first stage saliency map as absorbing nodes. However, the performance of various
diffusion methods discussed in this subsection is sensitive to specific feature spaces and scales used
for the diffusion matrix definition. Very recently, a super diffusion framework [115] integrated
various diffusion matrices, saliency features, and seed vectors for robust and optimum performance.
Further, a supervised learning strategy is adopted to determine the closed-form solution of the optimal
parameters for the integration.

4.4. Backgroundedness Prior Based Methods

The methods in this section are not based on diffusion but use the pseudo-background as a prior
to perform SOD heuristically. Li et al. [116] built a background template B from pseudo-background to
estimate the dense and sparse reconstruction errors for saliency detection. At one hand, the region-wise
dense reconstruction error is computed based on the principal component analysis (PCA) bases
of B which can accurately handle object segments at scene boundaries. On the other hand,
sparse reconstruction error that is used to better suppress background is computed as the difference
between a region and its sparse representation w.r.t the bases B. Two pixel-wise saliency maps
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are formed by separately integrating dense and sparse reconstruction errors at multiple scales.
Finally, these complimentary maps are fused by Bayesian inference.

Images with salient objects in touch with the image border are some of the hard cases for
background prior based SOD methods. Instead of assuming a pseudo-background region, the method
in References [117,118] declared a patch as background when the region it belongs to is heavily
connected to the image boundary. Zhu et al. [117] computed the similar regions for a superpixel
p among N superpixels using the geodesic distance between p and all other superpixels as follows:

Area(p) =
N

∑
i=1

exp(−
d2

geo(p, pi)

2σ2
clr

) =
N

∑
i=1

S(p, pi), (2)

where S(p, pi) ∈ (0, 1] and σclr is set to 10. The dgeo between any two nodes (superpixels) of an
undirected weighted graph is defined as:

dgeo(pi, pj) = min
p1=pi ,p2,...,pn=pj

n−1

∑
s=1

dapp(ps, ps+1), (3)

where dapp denotes the color distance in the CIE-Lab color space. The boundary connectivity for

a superpixel p is computed as ∑N
i=1 S(p,pi) δ(pi∈B)√

Area(p)
where numerator represents the length of p along

the boundary, B. Based on these quantities, two complementary maps representing background
probabilities and enhanced contrast information are generated which are further fused using an
optimization framework for the final saliency map. This method is motivated by Reference [119] where
Wei et al. utilized only the geodesic distances (Equation (3)) between regions and pseudo-background
to assign saliency values to regions. Gong et al. [120] employed a two-stage framework for propagating
saliency from simple to ambiguous regions in the image. In the first stage, a coarse saliency map
is estimated from a backgroundedness prior based SOD model such as in Reference [119] and a
convex hull computed on the interest points in the image. The refinement process in the second
stage propagates saliency to difficult image regions using teaching-to-learn, and learn-to-teach
frameworks. The real-time saliency detection methods such as in References [121,122] consider
the over-segmentation as a performance bottleneck. Zhang et al. [121] designed an efficient pixel-wise
raster-scanning algorithm to apply a minimum barrier distance [123] for SOD. Tu et al. [122] leveraged
the minimum spanning tree representation to reveal object geometry in the scene and thus, reduced the
search space of the shortest paths for the target seeds. The distance transforms in References [121,122]
are shown to be robust than the distance in Reference [119].

4.5. Low Rank Based SOD

Several SOD models [118,124–126] utilize low-rank matrix recovery (LR) theory by modelling an
image as a combination of two parts: a highly redundant non-salient part and a residual salient part.
With a low-rank feature matrix approximating the redundant background part in some feature space,
potions that deviate from the low-rank subspace are noises corresponding to the salient regions in the
input image. Formally, an input image I is first partitioned into N superpixels. A D-dimensional feature
vector fi ∈ RD per region is then extracted and stacked into a feature matrix F = [f1, f2, ..., fN] ∈ RD×N

representing I in the feature space. Various LR based SOD methods mainly differ in modelling the
decomposition of F into a low rank matrix L ∈ RN×D and a sparse matrix S ∈ RN×D. A general
objective function [126] for optimization can be written as:

min
L,S

Ψ(L) + αΩ(s) + βΘ(L, S) s.t. F = L + S, (4)

where the low-rank constraint Φ(.), the sparsity regularizer Ω(.) and interactive regularizer Θ(.)
take on different forms for different LR-based methods as shown in Table 3. The final saliency
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of ith superpixel is computed from the sparse matrix S as either ‖si‖2 or ‖si‖1 with si ∈ RD×1.
The Unified-LR (ULR) model [124] learned a feature transformation to effectively integrate low-level
features with high-level priors. The lack of spatial relation modelling among image patches in ULR
may lead to non-uniformly highlighted salient regions. The segmentation-driven LR(SLR) model [118]
addressed this issue by weighing regions touching the image borders appropriately using a bottom-up
segmentation prior Hc. Low-rank structured sparse matrix decomposition (LSMD) [125] and its
successor structured matrix decomposition (SMD) [126] introduced a tree-structured sparsity inducing
norm to capture spatial contiguity in image structures through hierarchical image segmentations. SMD
further incorporates a Laplacian sparsity regularizer to help wide subspaces induced by L and S.

Table 3. The objective functions of different LR methods.

Model
Objective Function Terms

Short Descriptions
Φ(.) Ω(.) Θ(.) add’l. Constraint

ULR model [124] ‖L‖∗ ‖S‖1 - -
‖.‖∗ is the nuclear norm and ‖.‖1 is
the L1 regularizer.

SLR model [118] ‖L‖∗ ‖S‖1 - F = AHc

A ∈ RD×N is a feature matrix and
Hc is a set of N prior values with
one value each for a superpixel.

LSMD model [125] ‖L‖∗ ∑d
i ∑ni

j vi
j‖SGi

j
‖2,∞ – –

Ω(.) represents a tree-structured
sparsity regularizer. vi

j ≥ 0 weights

the node Gi
j, SGi

j
∈ RD×|Gi

j | where,

d and ni represent # of tree levels and
# of nodes per level, respectively.

SMD model [126] ‖L‖∗ ∑d
i ∑ni

j vi
j‖SGi

j
‖p Tr(SMFST) –

Θ(.) represents a Laplacian sparsity
regularizer. p is set to ∞, MF is the
Laplacian matrix.

4.6. Bayesian Approach Based SOD

Given an input image, the Bayesian inference problem for saliency detection is to estimate the
posterior probability of being salient at each image pixel. Xie et al. [127] estimated a convex hull based
on interest points that is very crucial in estimating saliency priors and likelihood functions. The pixel
specific saliency prior is computed as the fraction of its encompassing cluster that is in the intersection
with the convex hull. Few such encompassing clusters are generated by grouping superpixels into
larger regions using a clustering technique. The likelihood probability computation in Reference [127]
is center-surround based with the convex hull and its complement representing the foreground and
background region, respectively. Sun et al. [128] computed the prior map similar to Reference [127]
but weights convex hull at its superpixel boundaries using probability scores for boundaries [129] and
the color difference between superpixel and the background region. To improve likelihood estimation,
the convex hull estimation is further refined with soft-segmentation techniques like Kernel density
estimation and independent component analysis with reference (ICA-R). Wang et al. [130] utilized
a fully connected CRF to infer more precise initial saliency for better likelihood computation in a
geodesic weighted Bayesian framework. The method utilizes a saliency map of existing methods as
the prior distribution.

4.7. Objectness Prior Based SOD

SOD methods based on objectness leverage the likelihood of an image window containing an
object which is provided by an object proposal algorithm such as Reference [68]. Chang et al. [131]
jointly estimated the objectness of potential object windows and the regional saliency by iteratively
minimizing an energy function. The energy function has one term each under the explicit influence
of objectness and saliency, and a third term modelling their interaction. Jia and Hen [132] utilized
the objectness scores as the saliency before suppress weight values corresponding to pixels that are
less likely to be foreground. This improves the influence of the foreground pixels in propagating
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the saliency information than background pixels in a Gaussian MRF. Li et al. [133] incorporated
foreground labels obtained from the objectness measure with boundary cues in a co-transduction
framework to generate improved saliency maps in complex images. In Reference [92], the priors
for focusness and objectness are explored and non-linearly integrated at pixel-level with uniqueness
cues to improve SOD. Generally, the salient objects in a scene receive high visual attention because
of being photographed in focus. By defining the focusness as an inverse of blurriness, Reference [92]
modelled it as the convolution of a sharp image with a point spread function approximated by a
Gaussian kernel. The edge scales (σ in Gaussian kernel) are estimated using a scale-space analysis for
estimating the pixel-level focusness. The focusness at the boundary and interior edges are propagated
to compute regional focusness values. For pixel-wise objectness prior, object generation methods such
as Reference [68] is utilized. To assign objectness scores at regional-level, Reference [92] computes the
mean value of objectness scores of constituting pixels.

4.8. Classical Supervised SOD

Several supervised models based on classical machine learning (ML) algorithms have also been
proposed for SOD. These methods generally contain three major steps for inference after segmenting
an image into image regions. Firstly, a set of sophisticated features are manually extracted from each
image region (superpixel/patch) to form its regional descriptor. Secondly, a trained linear/non-linear
ML regressor/classifier predicts the saliency score/confidence from the input regional descriptor.
Finally, saliency score of each region is assigned to its contained pixels for an initial saliency map.
Liu et al. [54] designed a set of salient features viz., local multi-scale contrast, regional center–surround
histogram distance, and global color spatial distribution to define a generic salient object. These salient
features are combined through CRF learning with bounding-box annotations of the salient objects.
Compared to saliency specific features in Reference [54], Mehrani and Veksler [89] utilized standard
features such as color, location, size, and texture to form regional descriptors. The initial segmentation
from the trained boosted-decision trees classifier is further refined with binary graph-cut optimization
for accurate boundaries. Lu et al. [134] combined pre-attentive saliency maps and mid-level features for
object perception and learned seeds through a large-margin framework. Kim et al. [90] represented
a saliency map as a linear combination of high-dimensional color space. The high-dimensional
color transform is applied on an initial saliency map estimated via a random forest regressor [135].
Mid-level cues of location, color histogram and contrast, texture, and shapes were used for regional
descriptors. Wang et al. [91] formulated SOD as a multi-instance learning problem (MIL). Four different
MIL classifiers are independently trained with regional feature descriptors comprising of low-level,
mid-level, and boundary cues. Jiang et al. [92] utilized the regional descriptors such as local contrast,
backgroundedness, and generic properties for segments from multi-level image segmentations. A random
forest regressor is learned to map the regional feature vector to a saliency score for the regions. The saliency
maps across multi-level segmentations are fused for the final saliency map. Yang et al. [93] developed a
max-margin approach to jointly learn the CRF and a discriminative dictionary for SOD. The designed
CRF model is layered in which target variables are conditioned on an intermediate layer of sparse codes
of image patches. The intermediate layer assists both the CRF and the dictionary in learning.

The conventional approach to saliency detection is mainly characterized by the use of low-level
feature and being fast in processing. A crucial decision regarding the performance of a method is the
selection of processing abstraction. Saliency computation based on pixels/patches usually highlights
high-contrast edges and misses the interior of salient objects. On the other hand, methods that adopt
regions as processing abstractions are generally efficient with the ability to utilize richer feature
representations for saliency detection. Further, the use of single-scale and multi-scale segmentation is
related to the trade-off between efficiency and robustness.

As discussed in this section, conventional supervised approaches for saliency detection can not
extract the features informative for saliency detection automatically. However, with the availability of
adequate training datasets, classifier/regressor can be trained to automatically integrate a large but
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fixed number of regional features for the most discriminative ones. Although the performance of such
learning based models is superior to their heuristic counterparts, the advances in conventional saliency
detection still fall short in accurately handling saliency detection in challenging scenarios.

5. Deep Learning-Based Salient Object Detection

The success of training a deep convolutional neural network (CNN) [55] on large scale object
recognition dataset [136] has had a huge impact on the entire research community. Researchers from
diverse fields such as natural language processing [3,137], computer networks [138–140], stock market
analysis [141,142], document analysis and recognition [143,144], and of course computer vision [55–63]
have effectively leveraged deep-learning to devise models that achieve appreciable performance compared
to heuristic, and classical machine learning (ML) techniques. Following other related fields in computer
vision, existing pre-trained CNNs [56,145] for image classification task on ImageNet dataset have been
re-purposed to effectively address various challenges present in the SOD task. More specifically, most deep
learning-based SOD models utilize a pre-trained backbone architecture which is then fine-tuned on a
small-scale SOD training dataset. In this way, the saliency detection task is benefited by reusing the
semantic visual knowledge already learned in CNNs. The deeper architecture of CNNs can learn
illustrative and differentiable features at multiple levels of feature hierarchy. Deep learning-based SOD
models utilize this multi-level hierarchy, and introduce architectural novelties in the network to produce
representations that are vital for saliency detection. These advanced multi-layer features allow the
deep learning-based SOD models to capture image regions with high saliency value at coarse scale
automatically. At the same time, the shallow layers in the hierarchy provide detailed information useful
to locate boundaries and fine structures of the salient object(s). The multi-faceted nature of the CNNs
have made them a handy tool for researches to design novel models for the SOD problem.

In this section, an extensive review of deep learning-based SOD models is systematically
presented. The models are broadly categorized based on the level of supervision into fully supervised,
weakly/pseudo-supervised, and adversarial models. Models satisfying these broad criteria are further
grouped together based on the most prominent/resembling properties, common issues addressed,
and/or similar architectural design. Figure 4 shows different levels of supervisions used for SOD.

(a) (b) (c)

(d)

a man and woman 

beside a

 red motorcycle

(e)

(f) (g)
Figure 4. Various supervisions signals for salient object detection (From left to right in all sub-images):
RGB Image and its pixel-accurate annotation followed by (a) boundary/contour map extracted
from object-level ground-truth and used for supervision in the SOD task [146], (b) edge-based
ground-truth used in the Edge Detection (auxiliary) task in Reference [146], (c) bounding-box
annotations from Reference [110], (d) fixation annotation from Reference [110], (e) image caption
generated by Reference [147], (f) example of a body-map and a detail-map obtained from the object-level
saliency ground-truth of the corresponding RGB image in Reference [148] for supervising edge and
interior perception respectively, and (g) scribble annotations are utilized for weakly-supervised SOD in
Reference [149] (red marks foreground and blue marks background).
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5.1. Supervised Models

Fully supervised SOD models are designed with an implicit assumption that sufficient
human-annotated training data are available. The training data includes the original images and their
corresponding pixel-wise human-annotated salient object masks.

5.1.1. Abstraction-Level Supervision Based

Early efforts in deep learning-based SOD models were mainly focused at utilizing deep CNN
based features to predict a saliency score for each processing abstraction. Processing abstractions could
be superpixels/patches [150,151] or object regions [152,153]. For training the networks, thousands of
processing abstractions are extracted from the training datasets. These processing abstractions are
assigned binary labels individually based on the normalized overlap ratio between a target abstraction
and its ground truth saliency map [152,154]. Table 4 summarizes some representative methods in
this category.

Zhao et al. [150] explored multi-context deep features for SOD. Two similar-structure CNNs are
used to independently model the global and local contexts for each image super-pixel. Each CNN
accepts a fixed scale window centered at the queried superpixel to define the scope of context.
The extracted multi-context features for a queried superpixel are combined and regressed for a
final saliency score using a shared multi-layer perceptron(MLP).

Some methods resort to a pre-trained image classification network for extracting deep features for
superpixels [151,154]. Lee at al. [151] created feature descriptors for each superpixel by integrating
an encoded low-level distance map (ELD-Map) with semantically stronger deep-CNN features.
The ELD-Map encodes the similarities/dissimilarities between the queried superpixel and all others.
An initial stack of hand-crafted feature distance maps captures such relationships for a queried
superpixel, which is then processed using a simple CNN to generate the ELD-map.

Li et al. [154] exploited the multi-scale deep features to predict a saliency map. For each queried
segmentation, deep features that are extracted from three different scales are concatenated and fed into
a stack of fully connected layers to infer the saliency score.

In contrast to superpixel/patch, the region proposals reduce the search space by allowing the
model to focus on the interesting regions where objects are likely to appear. Wang et al. [152]
integrated pixel-wise local estimate with the object-aware global search for robust saliency detection.
Firstly, a patch-input based deep CNN is trained to assign a saliency value to each image pixel.
This local saliency estimation is further refined to include only those object proposals [155] which have
high accuracy score and large coverage area w.r.t. the initial saliency map. Finally, each candidate
object region is represented by a vector combining features of global contrast, geometric information,
and local saliency measurements, which is processed using an MLP for a final saliency score.

Zhang et al. [153] filtered a set of scored bounding box proposals into a compact subset of detections
using maximum a posteriori (MAP)-based subset optimization formulation. The method utilizes a
CNN model to generate a fixed number of scored location proposals for the MAP-based optimizer.

Kim et al. [156] leveraged CNN as a multi-label classifier to estimate the closeness of a region
proposal from each of the pre-defined shape classes with fixed binary representation. The final saliency
of an image pixel is derived by averaging the prediction results of all-region proposals containing it.

The models discussed in this sub-section mostly utilize a classification network to assign saliency
scores to image elements. With features extracted from a deep stack of convolution operations,
these methods outperform the various conventional method presented in Section 4. However, these models
perform an element-by-element scanning of the input image for producing a saliency map, which is
computationally expensive and time-consuming. Besides, the fully-connected architecture of MLP-based
regressor can not preserve the spatial information from CNN features. Moreover, direct training with
binary supervision at superpixel level requires handling issues related to weakly-supervised learning.
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Table 4. Abstraction-level supervision based models.

Method Publ. Year Backbone Training Dataset Strategy

Multi-Context Deep CVPR 2015 GoogleNet MSRA10K [54] Superpixel centered deep local
Learning (MCDL) [150] and global context extraction.

Encoded Low Level CVPR 2016 VGGNet MSRA10K [54] Learned local deep features
Distance (ELD) [151] from heuristic ones.

Multi-scale Deep CVPR 2017 VGGNet MSRA-B [54] + HKU-IS [154] Learned deep features at various scales.Features (MDF) [154] + ILSO [157]

Local Estimate-Global CVPR 2015 - MSRA-B [54] + PASCAL-S [158] Refined local estimate within object
Search (LEGS) [152] proposals, search globally for best proposals.

Maximum-a posteriori (MAP) [153] CVPR 2016 VGGNet SOS [69] Optimized a set of bounding-box proposals.

Shape Saliency Detector (SDD) [156] ECCV 2016 AlexNet MSRA-B [54] Utilized pre-defined shapes.

The models presented in subsequent subsections are all based on the seminal work of
Long et al. [10] on fully convolutional networks (FCN). The most revolutionary step was to remove
the fully connected layer in CNN and to make all learnable layers in FCN convolutional. FCN enables
end-to-end learning of networks with full saliency mask based supervision. Further, the saliency
inference also becomes efficient with only a feed-forward path required to generate the entire saliency
map. Table 5 presents some popular classification models that are adopted by the recent SOD models
as a network backbone. Among these architectures, VGGNet [56] and ResNet [145] are tremendously
used in the literature.

Table 5. Popular deep architecture backbone networks for salient object detection.

Architecture Year Publication Key Features Layers Representative Model

VGG [56] 2014 ICLR Small size convolution kernels, More 13, 16, 19 [159,160]discriminative decision function.

ResNet [145] 2016 CVPR
Much deeper network, residual

18, 34, 50, 101, 152 [161,162]modeling eases the training process
of a very deep network structure.

DenseNet [163] 2017 CVPR
Less parameters, more reuse of features,

121,169, 201, 264 [164]better training relives from the vanishing
gradient and model degeneration problems.

ResNext [165] 2017 CVPR Homogeneous, multi-branch architecture, 101 [166]few hyper-parameter setting required.

5.1.2. Side-Feature Fusion Based Models

CNNs are designed to produce multi-level feature maps through repeated pooling and stride
convolutions. These operations gradually form larger receptive fields in deep layers of the feature
hierarchy. Due to which features in deeper layers possess high semantic-awareness but loose most
spatial-details. On the other hand, shallow-level features are rich in spatial details but are short
of global information. A dense-prediction task such as SOD can benefit from multi-level features
by exploring ways to convert them into more advanced representations via feature fusion strategy.
The enhanced side-outputs after feature fusion are connected to the corresponding levels in the decoder
or processed individually. The models discussed in this section are summarized in Table 6.

Hou et al. [167] extended the HED edge detector [168] for SOD via the short-connection strategy.
Specifically, several short connections are introduced from the side-outputs of deeper layers to that of
shallower ones. The enhanced multi-level features are converted into corresponding saliency maps,
all of which are deeply supervised. Such deep-to-shallow messages benefit shallower side-output layers
in both, locating the most salient region and learning-rich low-level features for refinement of irregular
deeper predictions. Lastly, all saliency maps are fused in a weighted-way to produce the final saliency
map. Fu et al. [169] crafted a unified framework called Deepside that is deeply supervised to incorporate
hierarchical CNN features. The framework incorporated deeper side structures with different depths to
imitate the behavior of “skip-layer” [57], “top-down” [157], and “short-connection” [167] architectures
in deep learning. The deeply-supervised advanced side-outputs are further fused using a segmentation
based pooling mechanism to detect salient objects with accurate boundary.
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In Reference [15], Luo et al. harnessed the hierarchical structure of encoder to extract local
multiscale contrast and global context features. The global image context is captured with a stack
of convolutions appended on the top-most layer of the encoder. For local saliency estimation,
contrast features Xc

i are additionally extracted from side-output features Xi using Xc
i = Xi −

AvgPool(Xi) where average pooling kernel size is set to 3× 3. These discriminative features from
the multi-layer hierarchy are gradually fused in a coarse-to-fine manner to generate the required
local saliency features. Recently, Tu et al. [170] incorporate edge guidance in the framework designed
in Reference [15]. Especially, the side features are first transformed into edge-aware features with
parameters learned from coarse edge features, which are produced by a condition network with edge
map as input.

To utilize the multi-scale features, some approaches [171,172] aggregate the features from multiple
layers in a densely-connected manner or follow a heuristic style. Zhang et al. [171] deployed multiple
shrink-and-extend modules to aggregate multi-level features into multiple resolutions. Under a deep
supervision strategy, these multiple resolution predictions are hierarchy and progressively refined
to support the bi-directional message passing. Each aggregated prediction is made boundary-aware
before being fused for a final saliency map. Different from Reference [171], Hu et al. [172] integrated
multi-level features only at a single resolution. The compressed integrated features are again merged
with the features of each layer to generate their refined versions. This process is repeated several times
with the successively refined multi-layer features to suppress noise in shallow-layers and promote
saliency details in deep-layers features.

A computationally efficient approach in Reference [173] utilized partial decoder that fuses only
the deep-layer features to generate a saliency map. After typical fine-scale layers in the encoder,
the architecture forks into two branches. The partial decoder in the first branch integrates its deep
features to generate an initial saliency map. This map is further made robust before being fused with
the features that form the input to the second branch. This feature fusion has shown to refine the
features in the backbone. The final saliency map is produced by the partial decoder of the second
branch. Both branches are supervised by pixel-wise saliency annotations.

Table 6. Summary of Side-feature fusion based models.

Method Publ. Year Backbone Training Dataset Strategy

Deeply Supervised CVPR 2017 VGGNet MSRA-B [54] + Introduced short connections.Saliency (DSS) [167] HKU-IS [154]

Non-Local Deep CVPR 2017 VGGNet MSRA-B [54] Extracted contrast based features.features (NLDF) [15]

Aggregate Multi- ICCV 2017 VGGNet MSRA10K [54] Aggregated multi-level features
level (Amulet) [171] into multiple resolution.

Recurrently Aggregated AAAI 2018 VGGNet MSRA10K [54] Performed aggregation at image
Deep (RADF) [172] resolution and propagate back.

Cascaded Partial CVPR 2019 ResNet50 DUTS [174] Partial decoders for
Decoder (CPD) [173] computational efficiency.

Deepside [169] Neurocomputing 2019 CGG MSRA-B [54]+ A general framework emphasizing
DUTS [174] side structures with different depths

Sub-region Dilated ITCSVT 2020 DenseNet DUTS [174] Introduced parallel-ASPP
Block (SRDBNet) [164] for context extraction.

The atrous convolution [58] shown in Figure 5a have the advantage of enlarging the view
of receptive field to extract large-scale features. This comes at no extra computational cost.
Such convolution operations have been explored in various ways in SOD models for multi-scale
feature extraction, see Figure 5. Recently, Wang et al. [164] fused the local contexts from multiple
subregions of the feature map with its global contextual features for robust feature representation.
To this end, a sub-region dilated block (SRDB) is designed that applies Parallel Atrous Spatial Pyramid
Pooling (PASPP) (Figure 5d) to different sub-regions to extract rich context features which are further
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weighted with the global information of the input feature map. Multiple SRD blocks are utilized to
refine the side-features of the network in a top-down manner. The enhanced side feature maps are
finally fused for a saliency prediction.
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Figure 5. Variants of Atrous Spatial pyramid pooling module (ASPP) for multi-scale feature representation.
(a) Dilated/Atrous convolutions with kernel 3× 3 and different dilation rate of 1, 2, and 3 from left to right;
(b) Multiple parallel dilated convolutions with different dilation rates form ASPP [58], adopted in Reference
[159] for SOD; (c) DenseASPP module [175] connects dilation layers more densely; used in SOD models
such as Reference [176]; (d) Parallel ASPP [164] configuration uses dilation rates of di and di

2 at depth i;
(e) Global perception module in Reference [177] promotes local patterns with global information; and (f)
Fold-ASPP [166] sequentially performs fold, dilated convolution and unfold operations on input feature
maps to address gridding issue in ASPP.

5.1.3. Progressive Feature Enhancement Models

The features in deeper layers of a CNN are supportive for object categorization but are not
conducive to localizing the detected objects. This localization issue is closely related to generate
boundary-aware and spatially consistent saliency maps. To this end, various saliency models adopt
bottom-up/top-down architecture proposed in Feature Pyramid Network [178]. The bottom-up
pathway is a feed-forward network that produces a rather coarse saliency estimate. On the other hand,
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a top-down pathway refines the coarse prediction by progressively and hierarchically absorbing fine
features from lower layers. The refined saliency map at the finest resolution becomes the final saliency
map. Several prominent models from this category are listed in Table 7 and discussed next.

Table 7. Summary of Progressive feature refinement models.

Method Publ. Year Backbone Training Dataset Strategy

Deep Hierarchical CVPR 2016 VGGNet MSRA10K [54]+ Recurrent convolution
Saliency (DHSNet) [179] DUT-OMRON [110] based refinement.

Bi-directional Message CVPR 2018 VGGNet DUTS [174] Enabled bi-directional
Passing (BDMP) [159] message passing.

Progressive Attention Guided CVPR 2018 VGGNet19 DUTS [174] Spatial-/Channel-wise
Recurrence (PAGR) [180] attention mechanism.

Pixel-wise Contextual CVPR 2018 VGGNet/ DUTS [174] Learned local and global pixel-
Attention (PiCANet) [181] ResNet50 wise contextual information.

Detect Globally Refine CVPR 2018 ResNet50 DUTS [174] Recurrence connections
Locally (DGRL) [182] within ResNet50 blocks.

Reverse Attention (RAS) [160] ECCV 2018 VGGNet MSRA-B [54] Residual connections with reverse
attention mechanism.

Pooling-based CVPR 2019 ResNet50 DUTS [174] Pooling intensive approach.Network (PoolNet) [183]

Boundary-Aware CVPR 2019 ResNet-34 DUTS [174] Saliency refinement based on residual
Saliency (BASNet) [184] network. Introduced novel losses.

Attention Feedback (AFNet) [177] CVPR 2019 VGGNet16 DUTS [174] Feedback mechanism in scale
matching encoder-decoder pair.

Iterative Pathways CVPR 2019 ResNet50 MSRA10K [54] Iterative top-down/
Saliency (IPS) [185] bottom-up inference.

Joint Deep features (JDF) [186] ICCV 2019 VGG MSRA-B [54] Modelled interaction between
side-features and predictions.

Gated Network (GateNet) [166] arXiv 2020 ResNet/ DUTS [174] Gates with encoder-decoder inputs
ResNeXt-101 to control message passing.

Spatial Attenuation ITCSVT 2020 ResNet-101 DUTS [174] Used spatial attenuation
Context (SACNet) [187] context for SOD.

Multistage Interactive CVPR 2020 VGG-16/ DUTS [174] Mutual learning based
(MINet) [188] ResNet-50 interaction modules.

The aggregation of side-features in a fully-connected manner [171] ignores the importance of
multi-scale feature in feature hierarchy. Such fusion introduces information redundancy for most
images and degrades the performance due to inaccurate information. For this problem, the use of gates
as a mechanism to control the message passing is investigated in models such as References [159,166].
Zhang et al. [159] introduced a bi-directional structure for controlled message passing among features
of different layers. Firstly, the multi-level features are refined with Atrous Spatial Pyramid Pooling
(ASPP) [58] (Figure 5b) to capture image context at multiple scales. The bi-directional structure allows
complementary information in refined multi-level features to be propagated from fine-to-coarse and
coarse-to-fine layers under the control of gates. The refined multi-layer features are fused in a top-down
manner for a final saliency map. To extract the full context of large salient objects, models such
as Reference [176] have adopted a dense-ASPP module [175] (Figure 5c) for multi-scale feature
extraction. Recently, Zhao et al. [166] utilized multi-level gates to control the message passing between
scale-matching encoder-decoder blocks. The method introduced a fold-ASPP module (Figure 5f) that
processes the deepest features of the backbone to produce a contextually-rich global representation.
The progressive refinement pathway generates a finest saliency map by applying multi-layer gate
units to respective lateral connections. Along with this decoder, another parallel decoder combines
the compressed multi-layer features under the control of another set of multi-level gate units with
the finest prediction produced. The two branches are combined in a residual way for a final saliency
map. Recently, Pang et al. [161] addressed scale issue in SOD by enabling interaction of a layer with
features of its adjacent layers only. Specifically, a mutual learning based interaction module at each
resolution aggregates adjacent multi-scale features to improve feature representation for saliency. In the
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top-down integration pathway, intra-layer features are further exploited to strengthen multi-scale
representation. The foreground-background pixels imbalance problem in saliency detection is tacked
with a consistency-enhanced loss.

In Reference [177], Feng et al. performed two consecutive refinements of saliency features at every
scale using the attentive feedback modules (AFM). Firstly, an initial coarse saliency map is computed
to be fairly rich in spatial details along with semantics (Figure 5e). During scale-by-scale, top-down
refinement, the laterally connected encoder-decoder pair (EDP) refines the input features for the first
saliency map. The map is eroded and dilated to form a ternary attention map (TAM). The generated
saliency features including TAM are fed into the same EDP to produce a second refinement. This dual
enhancement within a scale specific AFM handles upsampling effects along with the deficiencies in
the first saliency map. A boundary enhancement loss is applied at two shallow layers to segment out
the fine boundaries.

Several SOD approaches utilize the recurrence connections in different ways to learn useful
saliency features over time. In this context, Lie et al. [179] utilized recurrent convolution layers (RCL)
for refining the coarse saliency prediction. In particular, the features of a shallow layer are laterally
combined with the saliency map of the previous coarse layer using the RCL. The presence of multiple
recurrent connections in RCL facilitates learning, besides improve the contextual information over
time. Further, all saliency maps in the top-down pathway are deeply supervised. It is noticed that the
hierarchical refinement of a coarse prediction through the top-down pathway gradually dilutes the
high-level features with progressive incorporation of more and more shallow features. To address
this issue, Reference [180] contributed two modifications. Firstly, the multi-path recurrent connections
are established from the deepest layer to all shallow layers, see Figure 6a. This way, the lower layers
become aware of global semantics knowledge over time. Secondly, channel-spatial attention modules
are introduced in the top-down pathway just before lateral-connections are fused. The attention based
guidance allows selective fusion of multilevel contextual information and therefore, reduces false
positives. Wang et al. [182] introduced a recurrent module that treats the inner blocks of the backbone as
its basic recurrent units (Figure 6b). This enables the network to integrate the multi-scale contexts over
time and also, provide semantic cues to lower layers for better feature refinement. The method also
adopts an inception-like weighting module to selectively attend to the informative context in individual
deep layers of the backbone. The resultant side-features are fused for a saliency map that is further
refined for salient boundaries [189]. Recently, a multi-stage refinement model [188] incorporated
recurrent connections at individual layers of the backbone as shown in Figure 6c. This model is further
discussed in Section 5.1.5. In Reference [183], a pooling based model is designed to address the issue
of gradual dilution of semantic features during top-down refinement. Firstly, the global guidance
features (GGFs) are extracted from the deepest layer of the backbone by using the Pyramid Pooling
Module (PPM) [190]. The semantically rich GGFs are appropriately upsampled for aggregation with
the side-features of each layer in the hierarchy. Although good for localization, the large upsampling
rates will produce unwanted aliasing effects in the aggregated feature maps. To this end, pooling-based
feature aggregation modules (FAM) are specially introduced in the top-down pathway while merging
the feature maps at different scales.

Recent works [181,187] attempt to improve saliency detection performance by exploring different
levels of contexts across all pixels in an image. In Reference [181], an attention mechanism is utilized
to select locations that provide informative context at each pixel-level. The pixel-wise contexts at
the global and locals level are extracted by applying Renet model on the entire image and Conv
layers on a local pixel-neighbourhood, respectively. Weights for softly attending the global and local
contexts, individually are obtained via softmax normalization. In the adopted U-Net architecture for
SOD, global PiCA and local PiCA are specifically used to laterally connect respectively, the deeper
and the shallow level features while performing the top-down fusion. Most recently, Hu et al. [187]
demonstrated promising results by embedded spatial attenuation context (SAC) modules to process
the pyramidal feature maps from a feature pyramid network (FPN). The SAC module adopts two
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cascaded rounds of recurrent translations with varying attenuation factors to disperse the local image
context adaptively over the whole feature maps. With n attenuation factors, a round of recurrent
translation generates 4n aggregated spatial context feature maps which are selectively integrated using
an attention mechanism. For SOD, the optimized context pyramid features are successively refined in
a top-down manner for a saliency map.

t=1

t=2

(a)

t=1

t=2

(b)

t=1

t=2

(c)
Figure 6. Different recurrence schemes for backbone (ResNet) network. (a) Multipath recurrent
connections used in Reference [180]. (b) Blockwise recurrent scheme exploited in Reference [182].
The blue tensor indicates a convolutional block composed of many residual modules with the same
scale. The orange lines represent the convolution and upsampling operations. Orange ball at t = 2
denotes elementwise addition. (c) Layerwise recurrent scheme used in Reference [188]. All the orange
elements represent the scale-matching residual modules in a convolution block.

Inspired by the success of residual learning [145] in fields such as object symmetry detection [191]
and image deraining [192], a side-output residual learning based approach is presented in
Reference [160]. The multi-layer residual learning approach assists in re-learning the boundary
pixels for confident but coarse salient estimations in the top-down fusion pathway. To explore such
fine structures in residuals, a reverse attention mechanism (RA) emphasizes the non-salient regions
in the side-features. The RA output (RAout) is obtained from next deep-layer confident saliency map
RAin using RAout = 1− RAin. A recent extension [12] to this work explored the role of saliency
predictions from hand-crafted SOD methods as coarse saliency estimates. Qin et al. [184] appended a
separate residual refinement network to process the coarse saliency map. Firstly, a deeply supervised
encoder-decoder network is utilized to generate a full resolution coarse saliency map. A second
encoder-decoder network with rather simple design is adopted to refine the residual of the coarse
saliency map. Additional loss functions capturing image structural notion and intersection over union
(IoU) based similarity are further exploited to improve the salient boundaries. Very recently, Qin [193]
introduced ReSidual U-block (RSU) which replaces the plain, single-stream convolution of each stage
of the encoder-decoder architecture with a U-Net like structure. This two-level nested U-structure not
only captures the multi-scale features at intra-stage level but, also aggregates the multi-level features
at inter-stage level efficiently. The RSU based deep network in Reference [193] is trained from scratch
for SOD.

In other notable works, Wang et al. [185] proposed an iterative top-down/bottom-up saliency
inference network. The alternate top-down and bottom-up processes generate successive fine-grained
saliency and improved semantics for the other pathway to continue with. Further, the convolution
layers in inference pathways are realized with RNN units to enable efficient intra-layer information
propagation. Recently, Xu et al. [186] performed a joint refinement of multiscale features and
predictions using conditional random fields(CRFs). The CRF energy function is designed to explicitly
address the interaction between feature-feature, feature-prediction and prediction-prediction at specific
scales. The cascade flow of a series of such CRFs performs the joint refinement in a top-down manner
with the final saliency prediction being generated at highest resolution.
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5.1.4. Multi-Task Learning Based Models

The SOD models compiled in this section learn multiple supervised/unsupervised learning tasks
simultaneously. The learning tasks that are performed simultaneously are assumed to be related to
each other. Moreover, an explicit relationship between the tasks may be defined and enforced in the
model architecture [162,194]. As SOD leverages the knowledge contained in the other tasks and vice
versa, the generalization ability of the network to unseen scenarios gets better. Moreover, multi-task
learning is also beneficial to address data insufficient problem in which the task-specific data is very
limited for training a deep/shallow model. Table 8 enlist methods presented in this subsection.

Table 8. Summary of Multi-task learning models.

Method Publ. Year Backbone Training Dataset Strategy

Delving salient object ICCV 2017 VGGNet SOS [69] Salient object subitization assists SOD
subitizing (DSOS) [195] with the count of salient objects.

Revisiting Saliency CVPR 2018 ResNet101 PASCAL-S [158] Gate based skip connections.Detection (RSDNet-R) [196]

Boundary-Aware (BANet) [194] ICCV 2019 ResNet50 DUTS [174] Build three streams network to
address selectivity-invariance delimma.

Stacked Cross ICCV 2019 ResNet50 DUTS [174] Let multiple tasks benefit each other.refinement (SCRN) [162]

Caption Saliency (CapSal) [147] CVPR 2019 ResNet101 COCO-CapSal [147]/ Utilized image captioning for SOD.DUTS[174]

Saliency Semantic- ICCV 2019 Densenet169 PASCAL VOC Unified framework for weakly supervised
segmentation (SSNet) [197] 2012 [198]/DUTS [174] semantic segmentation and SOD.

Edge Guided (EGNet) [199] ICCV 2019 VGGNet/ DUTS [174] Combined SOD features and Edge
ResNet features at multiple scales.

Mutual Learning CVPR 2019 VGGNet16 DUTS [174] Mutual learning module based.saliency (MLSL) [146]

Pyramid Attention CVPR 2019 VGGNet16 MSRA10K [54] Utilized Hierarchical attention mechanism.Edge (PAGE-Net) [44]

Label Decomposition CVPR 2020 ResNet-50 DUTS [174] Saliency mask decoupled for better
Framework (LDF) [148] edge and interior supervision.

U2-Net [193] PR 2020 RSU DUTS [174] Two-level nested U-structure which
is trained from scratch.

Most of the existing deep learning-based methods suffer from coarse salient object boundaries.
To solve this problem, several approaches explicitly model the boundaries of the salient objects.
Su et al. [194] incorporated three streams in the SOD framework to address the selectivity-invariance
dilemma. Firstly, an integrated successive dilation module is utilized to process the deepest layer
features for learning the feature invariance at object interiors. A second stream exploits hierarchical
multi-scale features for salient edge localization with boundary-GT supervision. Lastly, a third stream
models the tough transition regions between the boundaries and the interior. The features from
the three streams are fused into a feature mosaic map under the guidance of invariance and edge
confidence maps. This map that represents the final prediction is supervised by the saliency GT.
In Reference [162], multi-level features of SOD and edge detection are refined simultaneously through
bidirectional interaction between the two tasks. To this end, individual multi-level features for each task
is first extracted from the shared backbone. The two sets are gradually improved through cross-feature
integration strategy implemented with a stack of cross refinement units (CRUs). Specifically, at nth
CRU, the refined one level feature of one task is obtained by fusing the complementary deeper-level
features of the other task from (n− 1)th CRU. The refined features for the tasks are incorporated into
two separate U-Nets with task-specific supervision.

To exploit the complementary between saliency and edge, Zhao et al. [199] explicitly fused the
edge features with the multi-layer saliency features in the two-stage scheme. In the first stage, a U-Net
architecture with varying kernel-size convolutions and non-linearities at decoders is utilized to extract
saliency features at multiple scales. Further, the edges are modelled by fusing the features of a suitably
selected shallow layer with that of the coarsest one in the architecture. In the next stage, the layer-wise
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saliency features from the decoder are integrated with the image-level edge features to generate the
final set of side-output features. The extracted saliency maps from this set are merged for an overall
saliency map. To leverage the benefits of highly discriminative saliency representation, Wang et al. [44]
build a hierarchical attention mechanism that operates upon the multi-level features of the backbone.
The hierarchical attention mechanism gradually increases the field of view to capture multi-scale
contexts for fusion. These advanced multi-scale features are integrated with scale-matching edge
information for salient object boundary alignment. The resultant features are progressively fused over
a densely connected top-down pathway to generate the final saliency map.

In Reference [146], Wu et al. exploited multiple supervisions to train their framework for salient
detection. Specifically, foreground contour detection (FC), edge detections (ED) and SOD supervision
are utilized. Lateral connections in the top-down pathway are all equipped with the mutual learning
module (MLM) for high-performance gain. MLMs at shallow-layers interact with their corresponding
edge modules to model the correlation between FC and ED under respective deep supervisions.
Further, intertwined deep supervision is adopted to model the interaction between FC and SOD during
the top-down progressive feature enhancement. Very recently, Wei et al. [148] tackled the problem
of imbalance in edge pixel distribution by decomposing saliency masks for improved supervisions.
Specifically, a decoupling procedure decomposes the saliency mask into a body map and a detail map.
Each map supervises an individual decoder branch that fuses the multi-level features extracted from
the shared backbone. On one hand, a detail map that contains more edge points helps in better edge
representation. On the other hand, a body map that lacks pixels near edges provides a distraction
free supervision for interior object regions. Further, a feature interaction subnet enables information
exchange between the two decoders.

Zhang et al. [147] leveraged image captioning as an auxiliary task to encode the semantic
knowledge of salient objects. The two constituent subnets share a common backbone. The image
caption subnet that is further coupled with a textual attention generator to produce the caption
embedding feature vector. This vector is vital for saliency refinement. The caption embedded vector is
therefore incorporated in a local-global multi-context feature extraction subnet for improved visual
representations. The resultant maps contain complementary saliency cues that are fused for final
saliency. The two subnets are jointly trained with a multi-task loss.

In Reference [197], Zeng et al. performed joint learning of weakly supervised semantic
segmentation and SOD. The two subnets of the architecture perform on the deepest features from a
shared backbone and are trained in two stages. In the first stage, the first subnet learns to generate a
semantic segmentation under image-level supervision. Once trained, it is subsequently used to obtain
the pseudo labels for supervising the second stage training for semantic segmentation. The saliency
aggregation subnet computes the weighted sum of the segmentation masks of all classes to define a
saliency map under the supervision of saliency ground-truth labels.

Subitizing is found to be beneficial for SOD as it counts the number of objects in a scene. He et al. [195]
refined the predictions of the SOD subnet by using subitizing as an auxiliary task. The subitizing subnet,
pre-trained for subitizing is connected to the SOD subnet by an adaptive weight layer. The SOD subnet is
based on the U-Net architecture with skipped connections and hierarchical supervision. The adaptive
weight layer lies between the two halves of Unet, whose weights are dynamically determined by the
subitizing subnet. During network training, the two-subnets are fine-tuned in an end-to-end manner.
In Reference [196], a gate mechanism [200] based skip-connection strategy is deployed. Functionally,
the model performs a top-down progressive refinement of the coarsest feature maps generated from
the encoder. These feature maps are supervised by a stack of ground-truth masks designed to perform
the subitizing task. For saliency detection, corresponding saliency predictions are also supervised by
pixel-wise saliency annotations. During top-down refinement, the advanced side-features for a layer
are obtained by gating (point-wise multiplication) its features with the coarse features of the next layer
immediately up in the hierarchy. Lastly, a fusion layer combines multi-scale saliency predictions to
generate the final saliency map.
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5.1.5. Other Models

Models such as References [201,202] have utilized recurrence convolution layers (RCL) for
SOD. The hidden states in RCL can be trained to capture historical information due to which more
reliable and consistent inference can be obtained in the current time step. Further, the recurrent
execution of convolution operation at the hidden state can effectively enlarge the receptive field
of the output neurons over time, which enable long range spatial contextual dependencies to be
captured [201]. Wang et al. [201] incorporated heuristic saliency priors into deep features of a recurrent
fully convolutional network (RFCN). This is achieved by providing an image and its heuristic saliency
map as input to the RFCN at first time step. From second time-step onwards, the fully recurrent
connections enable the network to iteratively refine previous saliency maps by correcting prediction
errors. Moreover, recurrent convolution layers are adopted in the architecture to enforce long range
of spatial-temporal consistency. A pre-training strategy using semantic segmentation data is utilized
for capturing generic representations of salient objects [11]. Kuen et al. [202] performed a sub-region
based progressive refinement on a coarse saliency map generated by a convolution-deconvolution
(CNN-DecNN) network. A spatial transform network iteratively selects an attentive sub-region
for refinement via a shared recurrent neural network based CNN(CNNr)-DecNN. The established
recurrence connections can provide context-aware features from previously attended sub-regions to
enhance saliency refinement of sub-region in subsequent iterations, which is beneficial for SOD.

In rather simple encoder-decoder architecture, Zhang et al. [203] explored a reformulated
dropout (R-dropout) mechanism in the encoder part to learn deep uncertain convolution features
(UCF). Selective introduction of R-dropout after convolution layers acts as an uncertain ensemble of
convolution features which is claimed to be element-wise probabilistic resulting in robust saliency
prediction. In the decoder part, the checker-board artifacts of deconvolution operators are reduced
by integrating restricted filter-size deconvolution with linear inter-convolutions while upsampling.
Hu et al. [204] utilizes a deep network to generate high-semantic features on which strong energy
function for level-set is defined. The initial coarse features from the backbone are processed through a
guided superpixel filtering module to recover the full resolution saliency map. With a level-set defined
on this map, the network is trained to learn saliency maps that minimize an approximated version of
the level-set based loss function.

Several models are characterized by the presence of multiple shared/unshared CNN streams
to get robust saliency features. In Reference [205], wang et al. gradually renovated finer structures
through multi-stage refinement mechanism. A master feed-forward network in the first stage generates
a coarse saliency map S. Subsequent stages perform gradual refinements of S by using a shared
parameter network with the same structure as master but the top-most layer progressively discarded.
Additionally, a context aggregation module extracts the rich contextual information from the deepest
available features in each refinement stage. The detail output features from a stage are finally integrated
into the preceding stage saliency map for a refined one. Recently, Feng et al. [188] extended [205] by
incorporating cross-stage layer-wise recurrent connections (Figure 6c) and cross-stage channel attention
module (CAM) in its design. The former helps refinement nets to learn richer local cues whereas
the later contributes to making salient regions more spatially consistent. In Reference [157], Li et al.
designed a Multiscale Refinement Network (MSRNet). To accurately localize objects of different scales,
MSRnet processes three different scales of an input image with replicas of a refined VGG network
which is repurposed to generate full resolution, two-channel probability map. Finally, an attention
module jointly trained with MSRNet provides a soft weight for each spatial location at each scale to fuse
three probability maps pixel-wise. For saliency detection in high-resolution images, Zeng et al. [206]
refined local high-resolution details under the guidance of a global network. Firstly, a network
generates global semantic guidance using a downsampled input image via bottom-up/top-down
pathway. Under this semantic guidance, a patch sampling method provides uncertain local patches
for local-detail enhancement. A local refinement module with the same structure as the global one
captures local high-resolution detail for the attended region under the guidance of global semantics.
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Both global semantics and locally refined patches are further fused with the input RGB image for final
saliency. A summary of models presented in this sub-section is presented in Table 9.

Table 9. Summary of Other methods.

Method Publ. Year Backbone Training Dataset Strategy

Recurrent FCN ECCV 2016 VGGNet PASCAL VOC 2010 [198] Utilized conventional saliency
(RFCN) [201] + MSRA10K [54] maps and recurrent FCN.

Recurrent Attention CVPR 2016 VGGNet
DUT-OMRON [110] Spatial transform network to

(RACDNN) [202] + NJU2000 [207] attend to image sub-regions.+ RGBDSOD [208]

Uncertain Conv ICCV 2017 VGGNet MSRA10K [54] Introduced R-dropouts in encoder.Features (UCF) [203]

Deep Level- CVPR 2017 VGGNet MSRA10K [54] Level-set based loss function.Sets (DLS) [204]

Stagewise Refinement ICCV 2017 ResNet DUTS [174] Multi-stage refinement mechanism.Model (SRM) [205]

Multi-scale CVPR 2017 ResNet DUTS [174] Multi-scale refinement mechanism.Refinement (MSRNet) [157]

High Resolution ICCV 2019 VGGNet DUTS [174] + High resolution SOD utilizing
SOD (HRSOD) [206] HRSOD [206] global cues for local refinement.

5.2. Weakly-Supervised/Pseudo-Supervised

The pixel-level annotations are the prime requirement for the training of fully-supervised models.
Nevertheless, the large-scale pixel-wise annotation process is very time-consuming and labor-intensive.
In this context, research efforts in weakly-supervised models aim at training the network with data
that requires fewer annotations. Weakly-supervised annotations such as image-level tags or scribbles
are easier, fast, and less demanding. However, the performance of these models depends mainly on
how the weak-supervision signals are leveraged to generate acceptable pixel-wise salient masks for
training the SOD branch. In contrast to weak-supervision methods which work with accurate but
limited supervision, pseudo-supervised SOD models usually have access to more information which
is generally not accurate for SOD. The related papers are enlisted in Table 10.

Table 10. Summary of Weakly-supervised/Pseudo-supervised.

Method Publ. Year Backbone Training Dataset Supervision Source

Image Level Supervision (ILS) [174] CVPR 2017 VGGNet ImageNet [55] Image-level tags.

Deep Unsupervised CVPR 2018 ResNet101 MSRA-B [54] Noisy saliency maps from
Saliency (DUS) [13] four heuristic SOD.

Contour2Saliency C2S-Net [209] ECCV 2018 VGGNet MSRA10K [54]+Web Contour information.

Weakly-Supervised Scribble CVPR 2020 VGGNet Scribble-DUTS [149] Scribble annotation based.Annotations (WSSA) [149]

Wang et al. [174] devised a SOD with image-level tags as the main source of supervision. Firstly the
classification network is jointly trained with a foreground feature inference network(FIN) under
image-level supervision. Consequently, FIN can capture salient regions of category-agnostic objects.
In the second stage, the SOD subnet combines the FIN map with backbone deeper side features in
a top-down scheme to generate initial saliency prediction. These saliency maps are refined by an
iterative CRF for the self-training of the SOD branch.

Recently, a scribble annotation-based SOD model is presented in Reference [149]. Image labeling
with scribbles is easier and fast. But boundary localization in SOD may suffer due to lack of fine details
and structures in raw-scribble based supervision. To this end, an edge-detection subnet is utilized
along with the SOD stream. Both subnets receive features from a common backbone. Further, a gated
structure-aware loss is proposed to constrain boundary localization. The edge subnet and SOD stream
are additionally applied with cross-entropy loss and its partial version [210], respectively.
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The pseudo-supervised SOD models have been devised to refine pixel-wise salient masks for
training the SOD branch using information such as contours [209] and noisy saliency maps [13] from
heuristic models. Zhang et al. [13] leveraged the noisy saliency maps generated by unsupervised
saliency models (RBD [117], DSR [116], MC [112] and HS [103]) for SOD. The network contains
a saliency prediction module that adapts DeepLab network [58] with dilated convolutions for
improved resolution with FC layers discarded and an adaptive noise module. The predictor works in
collaboration with the noise module towards fitting the noisy saliency maps.

To utilize contours for SOD, Li et al. [209] grafted a new decoder for SOD onto the original
decoder of a pre-trained contour detector [211]. The decoders for two tasks i.e, contour and
SOD are cross-connected to enable consolidation of contour (C) and saliency(S) knowledge in the
saliency branch. The two branches are trained in an alternate fashion with C2S and S2C procedures
generating saliency masks and saliency-aware contours to train the saliency branch and contour
model respectively.

5.3. Adversarial Training Based Models

The Generative Adversarial Networks (GANs) has gained a lot of attention from researchers in
fields such as image generation [212], image super-resolution [213] and so forth, due to their potential
to generate highly realistic images. A typical GAN trains a pair of networks simultaneously with
first termed as the generative model and second called discriminative model. The training is more
like a contest where the generator attempts to generate realistic images, while the discriminator aims
to discriminate between the images from the true data distribution and those images generated by
the generator. GANs has also been applied to the SOD, especially to obtain sharp boundaries in the
saliency map.

In Reference [214], Cai et al. designed a dynamic matching module to make the boundaries of the
salient objects accurate. Unlike order-based matching of the convolutional layers between a generator
and a discriminator in original GANs, the designed module achieves the best match in the adversarial
training. The model also utilizes a super-pixel based approach to fuse low-level color and texture
features for regional saliency score refinement.

Tang et al. [215] devised a cascaded CNNs based generator to implicitly improve salient
boundaries via adversarial learning. Specifically, the generator consist of two cascade networks,
the first performs global saliency estimation and the next refine it locally. The discriminator follows
the strategy of conditional GANs where the adversarial loss is introduced to enforce sharp boundaries
and spatial consistency. The discriminator in this model gives the judgment for every N × N local
image patch to better learn local structures in salient regions. Similarly, Reference [216] introduced
a correlation layer in the discriminator of the network for local patch-based comparison between
synthetic saliency map and its corresponding saliency mask.

In this section on deep learning-based SOD, various high-performing models based on
different supervision information are thoroughly discussed. Initial deep-learning models such as
References [150,151] utilized abstraction-level supervision to surpass the performance of conventional
SOD models. However, element-by-element scan by such models adds a lot of computational overhead
and fully-connected layers fail to preserve the spatial details from CNN features. Current deep
learning-based models are based on fully convolutional networks [10] which allow for pixel-level
supervision, high model expressivity, and end-to-end training to extract informative object representation
automatically in a data-driven manner. The hierarchical multi-stage structure has separate layers encoding
features for global semantics and local details. To tackle the issue of the requirement of a large dataset
and its pixel-accurate ground truth for training a model, pre-trained FCN based networks [56,145] are
fine-tuned to minimize cost and reuse semantic knowledge. The various models presented within different
sub-categories adopt a general approach while being specific in technical novelties as described in various
subsections. Repeated pooling and stride convolutions are essential operations of CNNs to capture
multi-levels features. Adversely, they contribute to reduce the spatial resolution of input and make it
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hard to recover the detailed information to accurately detect salient boundaries. Various side-feature
fusion-based and progressively refinement based models have been proposed to handle this issue.
Different from other models, several models such as Reference [183] explicitly address the problem
of feature dilution with progressive refinement. Context-extraction models such as Reference [181]
apply computation extensive operations to produce state-of-the-art results in the field. The utilization
of additional but related learning information for SOD such as edge [199], and subitizing [195] can
benefit both the tasks in a multi-tasking based model. Recent weakly-supervised models utilize novel
ways to learn and predict SOD with minimum efforts for dataset annotation. Despite the success of
deep learning-based models in the SOD-task, many complex cases require the special attention of the
community (Section 6). Furthermore, training and inference time for deep-learning is a challenging
issue. Some recent models such as References [160,162,173] have shown a high improvement in
inference time with fair prediction performance. Finally, the issues associated with acquiring huge
training data, its pixel-accurate ground-truth, and more importantly keeping it from biases is a
daunting task for deep learning-based models.

6. Datasets, Evaluation and Discussion

6.1. SOD Datasets

The introduction of new datasets for SOD in the past decade has brought new challenges and
open-up novel directions for research in the field. Table 11 enlist the most popular datasets in the
field of SOD. The seminal work of [54] presented a large-scale image dataset with two parts, Microsoft
Research Asia (MSRA)-A and MSRA-B [54] with bounding boxes based salient object annotations.
Due to issues such as inaccuracies in bounding box annotations, very few images with multiple
salient objects, and dataset biases towards image center, these datasets are now rarely used for
pixel-wise model evaluation. All other datasets provided in Table 11 are annotated with pixel-wise
binary masks. Images in ASD [14] contain only one unambiguous object present in the mostly clean
background which can be effectively highlighted by rather simple saliency detectors. MSRA5k [95] and
MSRA10k [54] are respectively, the fully annotated versions of MSRA-B and 10,000 images sampled
from MSRA-A/B, the later is a superset of ASD. BSD-SOD [217] is a 300 images pixel-wise annotated
dataset obtained from Berkeley segmentation dataset (BSD) [129]. Images with multiple salient
objects, low-contrast of objects to background and objects touching image-boundaries in BSD-SOD
introduce interesting concerns for saliency models. Datasets such as Extended Complec Sceene Saliency
Dataset (CSSD) and extended version (ECSSD) [103] contains respectively, 200 and 1000 semantically
meaningful but structurally complex images which are acquired from BSD dataset [129], PASCAL
VOC [198] and the internet. DUT-OMRON [110] contains 5168 images with multiple objects, high
image content variations and complex backgrounds. The availability of bounding-box and pixel-wise
annotations along with fixation data allows this dataset to be used for tasks such as localization
and fixation prediction in addition to SOD. PASCAL-S [158] dataset contains 850 complex scene
images from PASCAL VOC dataset [198]. As PASCAL VOC is labelled for only 20 object categories,
salient objects other than these classes are not annotated in PASCAL-S. Among 4447 complex images
in HKU-IS1 [154], the majority of images contain multiple disconnected objects distributed over the
image and have low-contrast with the background. DUTS1 [174] is the latest released large-scale
dataset that contains 10,553 and 5019 images in training and test sets respectively. Both training and
test sets contain complicated scenes for SOD which are selected from the ImageNet [136] train/val and
test set, respectively. More recently, DUTS [174] dataset has been utilized to produce prime supervision
signals for SOD viz., scribble-DUTS in Reference [149], and body-/detail- map in Reference [148].
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Table 11. Salient object detection datasets. Annotations (Annt): {BB = Bounding box, PW = pixel-wise
object level, PWIL = pixel-wise instance level}. Property (Object): {ML= multiple, LG = large,
SM = small, MD = moderate, CN = center, SA = similar in appearance among multiple images},
Property (Background(Bkg)): {CL = clean, SE = simple, CM = complex, RE = Repeat, TX = Texture
images}, TR = training set and TE = testing set.

S.No Dataset Year Publication Images Annt Property Resolution

Object Bkg Max(w,h) Min(w,h)

1 MSRA-A [54] 2007 CVPR 20,840 BB 1-2, LG, CN CL, SE 400 165
2 MSRA-B [54] 2007 CVPR 2500 (TR) + 2500 (TE) BB 1-2, LG, CN CL, SE 400 126
3 SED1 [218] 2007 CVPR 100 PW 1 SE 465 125
4 SED2 [218] 2007 CVPR 100 PW 2 CM 300 144
5 ASD [14] 2009 CVPR 1000 PW 1-2, MD, CN CL, SE 400 165
6 SOD [217,219] 2010 CVPR-W 300 PW ML, MD CM 481 321
7 MSRA5K [54,95] 2011 CVPR 5000 PW 1 CL, SE 400 144
8 CSSD [103] 2013 CVPR 200 PW 1 CL, SE 400 139
9 ECSSD [103] 2013 CVPR 1000 PW ML, LG CL, SE 400 139
10 MSRA10K [54] 2013 CVPR 10,000 PW 1 CL, SE 400 144
11 DUT-OMRON [110] 2013 CVPR 5168 PW ML, SM CM 401 89
12 PASCAL-S [158] 2014 CVPR 850 PW ML, MD CM 500 151
13 HKU-IS [154] 2015 CVPR 3000 (TR) +1447 (TE) PW ML, MD CM 401 100
14 DUTS [174] 2017 CVPR 10,553 (TR) + 5019 (TE) PW ML CM 400 126
15 XPIE [220] 2017 CVPR 10,000 PWIL 1, MD CM 500 130
16 ILSO [157] 2017 CVPR 1000 PWIL ML, MD CM 400 142
17 SOC [221] 2018 ECCV 6000 PWIL, OC 0-4+, MD CM, TX 849 161
18 HRSOD [206] 2019 ICCV 1610 (TR) + 400 (TE) PW ML, MD CM 10,240 600
19 DAVIS-S [206,222] 2019 ICCV 92 PW ML, MD, SA CM, RE 3840 720

Recent datasets that promote research in SOD related fields such as instance-level segmentation
and high-resolution SOD are briefly discussed next and are enlisted in Table 11. XPIE [220] (name based
on its subsets) is a 10,000 images dataset which is divided into three subsets i.e, Set-P, Set-I, and Set-E
with 625, 8799, and 576 images respectively. Pixel-wise GT annotations are provided for each image
in the dataset. Furthermore, Set-I, Set-E, and Set-P are annotated with object tags, eye-fixation data,
and geographic information (for places-of-interest) respectively. Instance Level Object segmentation
(ISLO) [157] is a pixelwise salient instance annotated and coarse contour labelled dataset that contains
1000 images. These images are collected from other datasets such as References [110,154] to have
high confidence over the salient object regions. Salient Object in Clutter (SOC) [221] dataset contains
3000 images with the presence of one or more salient object(s), and another 3000 images void of any
salient object. Images with salient objects are annotated to provide instance-level supervision, and
information related to object category and challenging attributes. Zeng et al. [206] have contributed
HRSOD and DAVIS-S datasets, which are two high-resolution(HR) datasets to assist research in the
HR-SOD task. The HRSOD dataset contains 2010 images that are divided into 1610 training images
and 400 test images. For this first HR-SOD dataset, 40 subjects had contributed to annotating the
pixel-level ground truths. DAVIS-S is a rather small scale dataset with a collection of 92 images from a
densely annotated high-resolution video segmentation dataset knows as DAVIS [222]. The object-level
pixel-wise annotations for the selected images are generated by ignoring the categories of objects in
the DAVIS dataset.

From Table 11, it can be noticed that more recent datasets are the collection of images with
emphasis on multiple connected/disconnected objects in natural views with the cluttered background.
The recent trend is to both train and evaluate novel SOD methods on large-scale, challenging datasets
such as References [110,158,174]. Regarding annotations of the salient objects in images, it is generally
performed manually with specific instructions to subjects (generally more than one) on selecting
salient objects in free-viewing conditions. Final annotations for individual images in the datasets
may be obtained through “majority agreement” rule [54] or consistency analysis [217] among varying
annotations provided by different subjects.
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6.2. SOD Evaluation Metrics

Performance evaluation of a salient object detector requires quantifying the degree of agreement
between the saliency prediction results and the ground-truth annotations for different SOD
datasets. Among the various evaluation measures reviewed in this section, overlap-based evaluation
measures like precision-recall (PR) and receiver operator characteristics (ROC) have been used from
some very earlier works on SOD, while others like Enhance-alignment measure (E-measure) and
Structural measure (S-measure) have been introduced only recently to evaluate saliency maps more
comprehensively. A brief description of some standard evaluation metrics for SOD is presented next.

1. Precision-Recall (PR) computation demands the conversion of an input saliency map S into a
binary map B for comparison with ground-truth annotation G:

Precision =
|B ∪ G|
|B| , Recall =

|B ∪ G|
|G| (5)

The most popular method to binarize saliency prediction S into binary map B is to threshold S
using a fixated range varying from 0 to 255. Based on the thresholded binary maps, 256 pairs
of precision-recall values are then plotted into a precision-recall (PR) curve which serves as a
situational model performance descriptor. Contrary to this, precision-recall pair can also be
reported at an image-dependent adaptive threshold [14], computed as :

Thadaptive =
2

W × H

W

∑
x=1

H

∑
y=1

S(x, y), (6)

which is the double of the mean saliency computed over S with W and H representing the width
and the height of S, respectively.

2. F-measure [14] is computed as a weighted harmonic mean of Precision and Recall :

Fβ =
(1 + β2)Precision× Recall

β2Precision + Recall
, (7)

where β2 is often set to 0.3 for weighing precision more than recall. Due to the comprehensive
nature of F-measure curves, they are preferred over PR-curves to compare the performance of
different methods. Alternatively, the maximal Fβ values from the F-measure curve or the Fβ value
at an adaptive threshold such as Equation (6) have also been reported.

3. Receiver Operator Characteristics (ROC) curve plotting requires computation of True positive
rate (TPR) and False positive rate at all fixed threshold values in the range [0–255]. With B and G
representing maps as in Equation (5), TPR and FPR can be defined as:

TPR =
|B ∪ G|
|G| , FPR =

|B ∩ G|
|B ∩ G|+ |B̄ ∩ Ḡ|

, (8)

where B̄ = 1− B and Ḡ = 1− G. Methods having the ROC curve closer to the upper right
achieve better performance.

4. Area under ROC curve (AUC) is a scalar quantity calculated as the area under the plotted ROC
curve. An AUC score of 1 indicates to a perfect SOD model, while a score around 0.5 indicates
random saliency prediction and therefore, a high score is better.

5. Mean Absolute Error (MAE) [106] penalizes those SOD methods that do well in salient object
regions but additionally switch-on pixels in non-salient regions. MAE computes the mean
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pixel-wise absolute difference between normalized continuous prediction map S and the binary
ground truth G as

MAE =
1

W × H

W

∑
i=1

H

∑
j=1
|G(i, j)− S(i, j)|. (9)

A smaller MAE score relates to the better performance as it reflects the high similarity between
the saliency map S and the ground truth G considering all pixels in the image.

6. Weighted Fβ measure [223] resolves the flaws caused by dependency between false-negative
pixels and the spatial location of false-positive pixels in computation of Fβ with non-binary
saliency masks. The error re-weighted versions (ω) of four basic quantities TP, TN, FP, and FN
are defined by incorporating foreground pixel location affinities and background pixels locations
w.r.t. foreground into weighing terms. The Fω

β is defined as:

Fω
β =

(1 + β2)Precisionω × Recallω

β2Precisionω + Recallω
. (10)

7. Structural measure (S-measure) [224] addresses the shortfall of pixel-wise error based evaluation
measures in capturing the structural information by favouring foreground structures in the
continuous saliency map. S-measure combines structural similarities computed at region-aware
(Sr) and object-aware (So) levels as:

S = α× So + (1− α)× Sr (11)

where α is set to 0.5.
8. E-measure. [225] Enhance-alignment measure is another recently proposed measure which

captures the image-level statistics and local pixel matching information of a binary map in a
single term named enhanced alignment matrix φS using which the measure is defined as follows:

Qs =
1

W × H

W

∑
i=1

H

∑
j=1

φS(i, j). (12)

6.3. Comparison and Analysis

In this subsection, visual and quantitative performance of some leading deep learning-based
models are compared, and the related results on five most popular datasets are shown in Table 12
and Figures 7–11. The results are obtained by implementing/executing the source code/algorithms
provided in the respective paper.

Recent deep-learning SOD models (MINet[161], SACNet[187], GateNet [166], U2 − Net [193],
LDF [148], DSRNet [164], EGNet [199], PoolNet [183], AFNet [177], MLMS [146], PAGE [44], CPD [173],
BDPM [159], JDF [186], RAS [160], PAGR [180], C2S-Net [209], PiCANet [181], DSS [167], UCF [203],
MSRNet [157], ILS [174], NLDF [15], AMULet [171], SCRN [162], BANet [194], BASNet [184],
CapSal [147], DGRL [182], SRM [205]) are quantitatively evaluated using four evaluation metrics
on five SOD datasets (DUTS-TE [174], DUT-OMRON [110], HKU-IS [154], ECSSD [103], Pascal-S [158]).
The evaluation metrics used are maximum F-measure (maxFβ) [14], S-measure [224], E-measure [225],
and mean average error (MAE) [106]. The image-dependent adaptive thresholding method [14]
is adopted to threshold the non-binary maps to compute the E-measure values. As can be seen
from Table 12 that the more recent models such as SACNet [187], MINet [161], GateNet [166] and
EGNet [199] are performing much better across various evaluation metrics for all five datasets.
Particularly, SACNet [187] improves the MAE by 20%, 20.6%, and 8% compared to GateNet [166]
on ECSSD, HKU-IS, and DUTS-TE datasets, respectively. For VGG backbone, MINet [161] gains a
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performance improvement by 12.1%, 14.2%, 11.3%, and 15.5% on MAE against EGNet [199] for ECSSD,
HKU-IS, DUTS-TE and PASCAL-S datasets, respectively. These MAE values indicate that the recently
proposed methods are able to suppress the background better while focusing on the salient regions.

The models that are included for qualitative comparison are edge/contour based SOD models
(BANet [194], EGNet [199], C2SNet [209]), progressive feature enhancement models (AFNet [177],
BDPM [159]), PAGR [180]), contextual attention based model (PiCANet [181]), pooling intensive
model (PoolNet [183]), reverse attention based residual model (RAS [160]), and stage-wisely model
(SRM [205]). Five challenging cases for SOD belonging to large objects (Figure 7), reflection (Figure 8),
multiple objects (Figure 9), small objects (Figure 10), and complex objects (Figure 11) are discussed.

Figure 7 shows the qualitative performance of some recent deep SOD models on images with
one large object. The detection of a large object in a scene requires additional multi-scale contextual
information to cover the full extent of such salient objects. As can be seen, the RAS model that relies
directly on backbone features and does not compute contextual information has suppressed many
salient areas for most images. Edge-based models such as BANet [194], AFNet [177], EGNet [199],
C2S [209], and PoolNet [183] are able to generate the boundary-aware saliency maps but the presence
of strong edges within the large object may deteriorate their performance (rows 1, 3 and 6 in Figure 7).
Additionally, a false positive similar in semantics to the salient object (rows 2 and 9 in Figure 7) is hard
to suppress case during salient object refinement. Some images with salient-object and their reflections
are considered in Figure 8. For this one challenging case and considered images, the performance
of edge methods such as BANet [194] and EGNet [199] is better than the other models. This may be
partially possible due to photographic bias which blurs the various features in the regions of reflection
and the background. Another complex case is the presence of multiple objects in a scene is presented in
Figure 9. The presence of multiple objects with similar semantics is a challenging issue as the number
of objects and their shape, size, locations, and illumination in the scene may all be varying. Failure in
the detection of significant edges and suppressing the background edges may result in missed true
positives and highlighting the true negatives in edge-based models. The RAS model [160] can refine
the object boundaries to highlight multiple objects (See Figure 9, row 6 ) provided it remains successful
in capturing the entire semantics information properly. For small objects in scenes (see, Figure 10),
issues such as appropriate detection at coarse level and feature aggregation strategies so as to avoid
dis-tractors during progressive fusion are crucial. In this context, the BANet [194] applies a mosaic
feature fusion strategy to learn salient pixels in the transition regions between a coarse detection
and its edges. On the other hand, PoolNet [183] directly integrates the global guidance information
(by upsampling) in the top-down pathway to avoid feature distraction caused by progressive feature
fusion. Despite these attempts relatively large non-salient objects in contrast with the background may
generate false positives, see (Figure 10, row 2). For the last two images in Figure 10, various compared
models can locate the small object present in the scene but fail to capture the boundary of these small
objects accurately. The fine structures such as the legs of the bird in the second last image are hardly
highlighted except by AFNet [177], EGNet [199], and BDPM [159]. Moreover, some other contrast
regions are wrongly highlighted by these models. The presence of humans in the boat (the last image)
has not been captured by most of the compared saliency maps.The complex scenes in Figure 11 contain
exactly one salient object in a cluttered background. The per-pixel local/global contextual information
utilized by PiCANet [181] is useful in this scenario. Further, the prominent edges in the background
may highlight distractors in edge-based models. The visual comparison among different SOD methods
highlights the fact that no single model can fully handle the variety of challenges present in SOD.
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Table 12. Quantitative Performance of recent state-of-the-art deep learning-based SOD methods on 5 popular datasets. Performance metrics of maximum F-measure,
S-measure, E-measure, and Mean Absolute Error (MAE) is represented by maxFβ, Sm, Em, and MAE, respectively. Superscript in the first column: “X”, “S”, “D”
represent ResNeXt-101, ResNet-101 and DenseNet backbone. ↑ and ↓ indicate that the larger and smaller scores are better respectively.

Model ECSSD [103] HKU-IS [154] DUT-OMRON [110] DUTS-TE [174] Pascal-S [158]

maxFβ ↑ Sm ↑ Em ↑ MAE ↓ maxFβ ↑ Sm ↑ Em ↑ MAE ↓ maxFβ ↑ Sm ↑ Em ↑ MAE ↓ maxFβ ↑ Sm ↑ Em ↑ MAE ↓ maxFβ ↑ Sm ↑ Em ↑ MAE ↓

VGG

ILS [174] 0.855 0.811 0.868 0.103 0.859 0.822 0.897 0.078 0.689 0.730 0.766 0.110 0.737 0.737 0.793 0.100 0.771 0.743 0.791 0.139
MSRNet [157] 0.911 0.895 0.918 0.054 0.914 0.903 0.940 0.040 0.782 0.808 0.827 0.073 0.829 0.839 0.848 0.061 0.858 0.841 0.854 0.081
NLDF [15] 0.905 0.875 0.912 0.063 0.902 0.878 0.929 0.048 0.753 0.817 0.770 0.080 0.812 0.816 0.855 0.065 0.833 0.804 0.842 0.099
Amulet [171] 0.915 0.894 0.912 0.059 0.899 0.886 0.915 0.050 0.743 0.781 0.784 0.098 0.778 0.804 0.803 0.085 0.841 0.821 0.831 0.098
UCF [203] 0.903 0.884 0.896 0.069 0.888 0.874 0.904 0.061 0.730 0.760 0.768 0.120 0.773 0.783 0.770 0.112 0.825 0.807 0.809 0.115
DSS [167] 0.899 0.873 0.907 0.068 0.916 0.878 0.935 0.040 0.781 0.790 0.844 0.063 0.825 0.824 0.885 0.056 0.843 0.795 0.848 0.096
PiCANet [181] 0.931 0.914 0.926 0.046 0.922 0.905 0.938 0.042 0.794 0.826 0.842 0.068 0.851 0.861 0.865 0.054 0.871 0.851 0.862 0.077
RAS [160] 0.921 0.893 0.922 0.056 0.913 0.887 0.931 0.045 0.787 0.814 0.849 0.062 0.831 0.839 0.864 0.059 0.838 0.795 0.837 0.104
C2S− Net [209] 0.910 0.893 0.914 0.054 0.895 0.882 0.927 0.048 0.757 0.7981 0.828 0.072 0.806 0.874 0.816 0.063 0.842 0.836 0.845 0.081
PAGR [180] 0.927 0.889 0.917 0.061 0.919 0.889 0.941 0.047 0.771 0.775 0.843 0.071 0.854 0.838 0.883 0.055 0.858 0.817 0.854 0.093
JDF [186] 0.927 0.906 0.931 0.049 0.920 0.903 0.943 0.039 0.801 0.821 0.862 0.057 0.832 0.825 0.860 0.058 0.856 0.841 0.853 0.082
BDMP [159] 0.929 0.910 0.915 0.044 0.927 0.906 0.938 0.039 0.792 0.809 0.839 0.064 0.854 0.850 0.862 0.048 0.854 0.845 0.845 0.073
CPD [173] 0.936 0.910 0.943 0.040 0.924 0.904 0.952 0.033 0.794 0.818 0.868 0.057 0.864 0.867 0.908 0.043 0.873 0.843 0.884 0.074
MLMS [146] 0.928 0.911 0.916 0.045 0.920 0.907 0.938 0.039 0.774 0.809 0.839 0.064 0.852 0.862 0.863 0.049 0.864 0.845 0.847 0.075
PAGE [44] 0.931 0.912 0.943 0.042 0.920 0.904 0.948 0.036 0.792 0.825 0.860 0.062 0.838 0.854 0.886 0.052 0.859 0.840 0.879 0.078
AFNet [177] 0.935 0.912 0.940 0.042 0.925 0.905 0.948 0.036 0.797 0.826 0.859 0.057 0.863 0.855 0.892 0.046 0.871 0.849 0.885 0.071
PoolNet− Edge[183] 0.941 0.917 0.942 0.041 0.931 0.911 0.951 0.033 0.820 0.832 0.863 0.056 0.879 0.866 0.894 0.041 0.868 0.851 0.873 0.071
EGNet [199] 0.942 0.918 0.941 0.041 0.926 0.911 0.940 0.035 0.808 0.836 0.864 0.056 0.877 0.877 0.894 0.044 0.870 0.847 0.872 0.077
MINet [161] 0.943 0.919 0.947 0.036 0.932 0.914 0.955 0.030 0.794 0.822 0.864 0.057 0.877 0.875 0.912 0.039 0.882 0.855 0.898 0.065

ResNet-50/ResNet-101/DenseNet/ResNeXt-101/RSU

SRM [205] 0.917 0.895 0.928 0.054 0.906 0.887 0.939 0.046 0.769 0.798 0.843 0.069 0.826 0.836 0.867 0.059 0.850 0.833 0.861 0.085
DGRL [182] 0.925 0.906 0.943 0.043 0.914 0.896 0.947 0.038 0.779 0.810 0.850 0.063 0.828 0.842 0.899 0.050 0.860 0.839 0.881 0.075
BASNet [184] 0.942 0.916 0.921 0.037 0.93 0.908 0.947 0.033 0.805 0.836 0.869 0.056 0.859 0.866 0.884 0.048 0.863 0.837 0.853 0.077
CapSalS [147] 0.862 0.826 0.866 0.074 0.884 0.850 0.907 0.058 0.639 0.674 0.703 0.096 0.823 0.815 0.866 0.062 0.869 0.837 0.878 0.074
PoolNet− Edge [183] 0.949 0.926 0.948 0.035 0.936 0.918 0.958 0.029 0.830 0.831 0.873 0.053 0.893 0.874 0.909 0.036 0.884 0.864 0.887 0.064
BANet [194] 0.945 0.924 0.953 0.035 0.930 0.913 0.955 0.032 0.803 0.832 0.865 0.059 0.872 0.879 0.907 0.040 0.879 0.853 0.889 0.070
SCRN [162] 0.950 0.927 0.942 0.037 0.935 0.917 0.954 0.033 0.811 0.837 0.869 0.056 0.888 0.885 0.901 0.040 0.890 0.867 0.888 0.065
DSRNetD [164] 0.950 0.922 0.953 0.031 0.939 0.915 0.954 0.027 0.822 0.829 0.933 0.053 0.891 0.863 0.918 0.036 0.888 0.798 0.85 0.068
LDF [148] 0.950 0.923 0.950 0.034 0.940 0.920 0.961 0.027 0.821 0.839 0.881 0.051 0.896 0.879 0.923 0.034 0.875 0.862 0.904 0.059
U2 − NetRSU [193] 0.951 0.928 0.925 0.032 0.934 0.913 0.945 0.031 0.822 0.846 0.871 0.054 0.872 0.860 0.883 0.045 0.861 0.844 0.850 0.074
MINet [161] 0.947 0.925 0.953 0.033 0.935 0.920 0.961 0.028 0.810 0.833 0.873 0.055 0.884 0.884 0.917 0.037 0.882 0.857 0.899 0.064
GateNetX [166] 0.952 0.929 - 0.035 0.943 0.925 - 0.029 0.829 0.848 - 0.051 0.898 0.895 - 0.035 0.888 0.865 - 0.065
SACNetS [187] 0.954 0.930 0.958 0.028 0.945 0.925 0.969 0.023 0.832 0.846 0.883 0.050 0.898 0.878 0.920 0.032 0.876 0.801 0.902 0.070
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Image GT BANet AFNet EGNet C2S BDMP PAGR PiCANet PoolNet RAS SRM
Figure 7. Visual comparisons of state-of-the-art on one challenging case: larger objects. Compared
models are: BANet [194], AFNet [177], EGNet [199], C2S [209], BDMP [159], PAGR [180], PiCANet [181],
PoolNet [183], RAS [160], SRM [205].

Image GT BANet AFNet EGNet C2S BDMP PAGR PiCANet PoolNet RAS SRM
Figure 8. Visual comparisons of state-of-the-art on one challenging case: reflection. Compared models
are: BANet [194], AFNet [177], EGNet [199], C2S [209], BDMP [159], PAGR [180], PiCANet [181],
PoolNet [183], RAS [160], SRM [205].

Image GT BANet AFNet EGNet C2S BDMP PAGR PiCANet PoolNet RAS SRM

Figure 9. Visual comparisons of state-of-the-art on one challenging case: multiple objects. Compared
models are: BANet [194], AFNet [177], EGNet [199], C2S [209], BDMP [159], PAGR [180], PiCANet [181],
PoolNet [183], RAS [160], SRM [205].
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Image GT BANet AFNet EGNet C2S BDMP PAGR PiCANet PoolNet RAS SRM

Figure 10. Visual comparisons of state-of-the-art on one challenging case: small objects. Compared
models are: BANet [194], AFNet [177], EGNet [199], C2S [209], BDMP [159], PAGR [180], PiCANet [181],
PoolNet [183], RAS [160], SRM [205].

Image GT BANet AFNet EGNet C2S BDMP PAGR PiCANet PoolNet RAS SRM

Figure 11. Visual comparisons of state-of-the-art on one challenging case: complex scenes. Compared
models are: BANet [194], AFNet [177], EGNet [199], C2S [209], BDMP [159], PAGR [180], PiCANet [181],
PoolNet [183], RAS [160], SRM [205].

Run-time performance: For evaluating the running time, representative methods are selected
from conventional (Saliency Filters (SF) [106], Manifold Ranking MR) [110], Robust Background
Detection (RBD) [117]), classical-ML-based (Discriminative Region Feature Integration (DRFI) [92]),
and deep learning-based SOD models. Among these conventional SOD models, SF utilizes the low-level
cues whereas MR and RBD leverage background prior in different ways for the SOD task. DRFI [92]
is a high-performance heuristic model that resort to classical-ML approach to integrate a large of
heuristic regional descriptors. deep learning-based SOD models belonging to different sub-categories
such as abstraction-level supervision (MCDL [150]), side-feature fusion (AMULet [171], EGNet [199],
CPD [173]), simple encoder-decoder enhancement (UCF [203]), context-extraction (PiCANet [181]),
progressive feature refinement (RAS [160], PoolNet [183], AFNet [177], BASNet [184]), multi-tasking
(SCRN [162]) and weakly-supervised SOD (C2S-Net [209]) are considered for execution-time
comparison. The average run-time evaluation is conducted on a workstation with Intel Xeon(R)
Bronze 3104 CPU@1.70 GHz × 12, and an Nvidia Quadro-P5000 GPU with 17 GB RAM. As shown
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in Table 13, the run-time of conventional SOD models is fairly high in absence of any accelerator.
However, these models only exploit the low-level features and/or saliency priors which hardly capture
the high-level contextual information necessary for accurate saliency detection. Therefore, even these
popular conventional models score low on various saliency metrics (MAE: above 0.163 and maxFβ:
below 0.685), and produce inferior saliency maps for complex scenarios. The classical-ML-based
DRFI [92] scores lowest in the ranking as it consumes most of its time in extracting features on the
multi-level segmentation in absence of an automatic feature extraction capability. Most existing
deep-learning models have focused on improving the prediction performance for SOD but several
models [160,173] have explicitly included techniques to address the low run-time issue. The inference
time of MDCL, PiCaNet, and high performing EGNet is more as compared to other deep learning-based
models in Table 13. While MDL is a super-pixel level supervised deep-learning model, the high
run-time of PiCANet and EGNet is contributed by their context-extraction strategies. The PiCANet
utilizes LSTM model where as EGNet deploys a set of high rate convolution kernels at multiple scales
to extract useful contextual information. Models working with reduced channel dimensions such
as RAS [160], SCRN [162], and BASNet [184] show high performance. The RAS model considers
integrating the reversed prediction maps into the learned features for efficiency. The CPD [173] model,
on the other hand, cuts-off the skip-connections of low-level features to the decoder to improve the
execution time, and devised a cascaded structure to keep the detection performance high. The key to
improve the efficiency of a model lies in introducing technical novelties (as in RAS [160], AFNet [177])
in the model which allow it to work with fewer channel dimensions or to discard high-resolution
information (PoolNet [183]) while providing a fair prediction performance.

Table 13. Average running time of several salient object detection (SOD) models.

Models SF [106] MR [110] RBD [117] DRFI [92] MCDL [150] AMULet [171] UCF [203] C2S-Net [209]

Time(s) 0.16 0.25 0.25 9 2.41 0.07 0.046 0.034
GPU Support No No No No Yes Yes Yes Yes
Learning No No No CML DL DL DL DL
Code C++ Matlab Matlab Matlab Caffe Caffe caffe caffe

Models PiCANet [181] RAS [160] PoolNet [183] AFNet [177] EGNet [199] SCRN [162] CPD [173] BASNet [184]

Time(s) 0.19 0.0291 0.033 0.023 0.11 0.032 0.016 0.014
GPU Support Yes Yes Yes Yes Yes Yes Yes Yes
Learning DL DL DL DL DL DL DL DL
Code caffe caffe caffe pytorch pytorch pytorch prtorch pytorch

Cross-dataset analysis: The training of a deep learning-based model with different large-scale
training datasets can influence the inference results i.e, the prediction performance of the model.
In this context, Wu et al. [173] retrained some existing models such as NLDF [15], AMULet [171]
(originally trained on MSRA10k [54]) on DUTS dataset, and observed the improvement in the
performance of these models on complex scenes. The effectiveness of a dataset in generalization can
be judged using the cross-dataset analysis [226]. In our survey paper, a simple network, PoolNet [183]
is chosen for cross-dataset analysis in which the network is trained on two different datasets,
and each trained network is tested on other evaluation datasets (DUTS-TE [174], DUT-OMRON [110],
HKU-IS [154], ECSSD [103], Pascal-S [158], MSRA10k [54]). Two large-scale datasets DUTS-TR [174]
and MSRA10k [54] (randomly selected 8000 images for training) are selected for training the ResNet
version of PoolNet [183]. When trained with DUTS-TR dataset, the maxFβ (maximum F-measure)
for DUTS-TE [174] dataset and average maxFβ for other datasets are 0.885 and 0.901 respectively.
The MSRA10k dataset-based trained model has 0.91 as the maxFβ for its training set whereas the
average maxFβ over other datasets is computed to be 0.85. A percentage change of −6.5%, and 1.7%
is recorded from mean maxFβ to the testing set of self maxFβ of MSRA10k, and DUTS-TR datasets
respectively. The low percentage drop of DUTS-TR dataset indicates that its generalization ability is
better than the MSRA10k dataset. This result is indicative of why most recent SOD works have trained
their models using DUTS-TR dataset [174].
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7. Future Recommendations

Despite being a very active research area for the last two decades, the frequent introduction of
new network architectures, better aggregation strategies and additional loss functions partially imply
that future SOD networks should be able to fulfill the basic aim of SOD in most complicated scenarios.
In this section, some future directions for SOD are discussed.

Contextual information: Context plays a significant role in detecting the full-extent of large
salient objects in a scene. To extract pixel-wise local and/or global contextual information, modules
such as Long- Short Term Memory (LSTM) [227] is utilized in Reference [181]. Different variants of
Atrous Spatial Pyramid Pooling (ASPP) [58] and Pyramid Pooling Module (PPM) [228] are adopted
in SOD models [159,183,194,205] to compute multi-scale context-aware features. Accommodation of
the local neighborhood while computing global context [177] can extract a more useful per-pixel
context compared to the direct application of ASPP. Although, non-local networks [229,230] can
effectively model pixel-wise contextual similarities in SOD [231] but their use is limited due to huge
computational cost. Recently, attenuation context based method [187] has achieved the state-of-the-art
in SOD. Existing SOD methods compute local and/or global information at all image pixels in a
uniform manner. However, the context demand of each pixel does vary depending on the factors
including input image and its feature abstraction in the CNN hierarchy. Therefore, an adaptive
procedure for context extraction may be useful in constructing an optimal context for each image pixel
by identifying those image regions with high relevance to the target pixel. Such an adaptive context is
expected to benefit deep SOD methods by learning the correct local/global context for each image pixel.
It may also contribute towards reducing the feature interference while performing feature aggregation.

Feature aggregation: Many deep learning models have confronted with the issue of how to
extract the effective features and aggregate them given the multi-scale and multi-level features of a
pre-trained CNN network. For feature aggregation, a coarse approach which combines all-level feature
into the transport layer [171] may introduce information redundancy and noisy feature interference
in the model. On the other hand, exercising excessive control of information exchange between
stages [159] may severely hamper the learning ability of the network. Similarly, top-down feature
aggregation also requires explicit handling of aliasing effects due to large upsampling operations
as done in Reference [183]. These prominent issues with the feature aggregation suggest that while
merging features from different layers one should keep focus on reducing aliasing effects and noise
interference to generate useful features for saliency detection.

Loss functions: Binary cross-entropy loss (BCEL) function is widely accepted loss criteria in deep
SOD models. However, BCEL ignores the inter-pixel relationship while accumulating the per-pixel loss
for a fixed batch-size. The obvious presence of multi-scale objects in SOD datasets also requires careful
modelling at the loss function level to tackle the inherent fore-background imbalance problem in
images. A similar imbalance problem between positive/negative classes for edges has been addressed
in Reference [168] using a per-pixel weighing mechanism. Loss incorporated in Reference [11] also
combines weighted cross-entropy loss with evaluation metrics to handle fore/background imbalance.
Losses in References [15,177] have utilized additional loss terms such as Intersection over union (IoU)
to improve boundaries of the salient object(s). Very recently, a consistency enhanced loss (CEL) for
spatial coherence is proposed in Reference [161]. These efforts toward loss function design justify that
a loss function targeted at general and/or specific model design issue with accompanying gradient
analysis can be decisive in improving model performance.

Inspiration from conventional models: Few deep learning-based SOD models have incorporated
saliency maps from conventional SOD models as a saliency prior to guide saliency process [160,201].
In Reference [201], saliency priors are utilized to initialize a recurrent framework, whereas a prior
saliency map can replace the coarse saliency map for the reverse attention based refinement in
Reference [160]. The method in Reference [15] applies average pooling to capture center-surround
based contrast features as an intermediate layer inspired by a heuristic contrast operator in
Reference [14]. On a different note, Reference [177] implemented the operators of dilation and erosion
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through max-pooling to create a turnery attention map. Exploiting different ways to integrate heuristic
saliency priors or tools in a deep SOD is expected to improve both its training as well as inference.

Dataset related issues: The availability of large datasets with less bias is crucial for developing
SOD models. The existence of bias in the training dataset hampers the generalization ability of the
model to attend salient objects in complex scenarios. Existing SOD datasets can be quickly browsed
to observe the presence of center bias and data selection bias. Images that are too general for salient
object detectors are generally removed while collecting images for the datasets. Examples include
images void of salient regions, full of cluttered background and salient object away from image
borders. While keeping the scale large, it is very much essential to come up with datasets having
more realistic scenarios with less bias. Another interesting trend in SOD is to show that a proposed
model outperforms the ground truth on some selected images. This issue is related to annotation
inconsistency at intra/inter-dataset level. To improve upon this situation more rigorous annotation
procedure should be formulated and emphasis should be on fine labelling.

Real time performance: Very recently, DNN models [12,193] have been proposed to target
the needs of mobile and embedded applications. The residual learning model in Reference [12]
only learns the residual in each side-output of FCN to refine the global prediction step by step.
Realizing this through a convolution layer with fewer channels results in a compact model and high
efficiency. Qin et al. [193] designed a two-level nested U-structure, light-weight network which is
trained from scratch for SOD. Recently, a knowledge distillation based pixel-wise saliency prediction
is also proposed in Reference [232] to tackle large memory footprint issue. In computation and
memory-constrained environments, it is challenging to keep the detection accuracy high with the
reduction in model capacity.

8. Conclusions

In this work, a survey on salient object detection (SOD) from images is conducted. Among the
hundreds of models presented in the last two decades from the conventional SOD and deep
learning-based SOD, the most influential models and the recent advances in the field have
been reviewed. Conventional models that employ low-level hand-crafted features or heuristic
priors are generally efficient and effective for scenes with a single object and simple background.
The insufficiency of hand-crafted features and priors to extract accurate semantic information
leads to their unsatisfactory predictions in complex scenarios. The recent trend in SOD, deep
learning-based models have delivered exceptional performance even in the presence of challenging
issues such as multiple objects, scale variations, reflections and background clutter. The qualitative
evaluation shows that even the most effective models demonstrated a lot of variations in performance
on different varieties of challenging scenes. However, recent SOD models incorporating edge
information, contextual information and/or combining discriminative saliency features perform
better on quantitative measures. Moreover, multiple deep learning-based SOD approaches targeted at
high processing efficiency are also discussed and compared with other representative SOD approaches.
Several weakly-supervised models which discard the requirement of costly-to-construct pixel-accurate
ground truth data for training the corresponding SOD models are also covered in detail. Easier and
fast image labels, such as scribbles can be helpful for researchers to create larger-scale datasets with
more focus on data selection issues rather than annotation-related issues. In the end, some future
directions to enhance the current state-of-the-art in SOD are also discussed.
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