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Abstract—Most SSVEP-based stimuli BCIs are pre-
defined using the white blocks. This kind of scenario lead less 
flexibility in the real life. To represent the flickers with the 
location, types and configurations of the objects in real world, 
this paper proposes an SSVEP-based BCI using real-time 
camera view with object recognition algorithm to provide 
intuitive BCI for users. A deep learning-based object 
recognition algorithm is used to calculate the location of the 
objects on the online camera view from a depth camera. After 
the bounding box of the objects is estimated, the location of 
the SSVEP flickers are designed to overlap on the object 
locations. An overlapping FFT and SVM is used to recognize 
the EEG signals into corresponding classes. In experimental 
results, the classification rate for camera view scenario is 
more than 94.1%. The results show that proposed SSVEP 
stimuli design is available to create an intuitive and reliable 
human machine interaction. The proposed results can be used 
for the users who have motor disabilities to further used to 
interact with assistive devices, such as: robotic arm and 
wheelchairs. 

Keywords—Object recognition, steady state visually evoked 
potential (SSVEP), brain-computer interface (BCI).  

I. INTRODUCTION 
Robotic technologies are widely and important research 

field in recent years. On the other hand, multi-axis robotic 
arm is widely used as an assistive device for the physically 
challenged people. However, learning how to operate a 
robotic arm is big a challenge for an engineer, not to 
mention for the elderly [1]. Therefore, combining with 
robotic arm with an intuitive teach or operate technologies 
are presented to aid human operating a robot in order to 
reduce the difficulty of robot programming [2]. Brain-
computer interface (BCI) systems acquire 
electroencephalography (EEG) signals from human brain 
and translate into digital command can be recognized on a 
computer using advanced algorithm. BCI can provide a new 
interface for users who have motor disabilities to control 
assistive devices [3, 4]. 

The BCIs have already been studied for several decades, 
the most commonly applied brain patterns include event-
related potential, steady state visually evoked potential 

(SSVEP) and motor imagery [5, 6]. The SSVEP has the 
advantage of good signal-to-noise ratio (SNR), high 
information transfer rate (ITR) and the ability of large 
number of classes.  In this research, SSVEP is adopt to 
present the brain patterns. However, the traditional SSVEP 
scenario was usually used white block and black 
background to present the flickers with different frequencies 
to maintain avoid the uncertainties and maintain the SNR 
[7-9]. Most interfaces of SSVEP-based BCIs are pre-
defined. The kind of design lead less flexibility to the 
dynamic changes in real life, such as number, type or 
location of objects. In this research, we present new design 
for combining with the SSVEP scenario with camera view 
and using the object recognition algorithm to estimate the 
object position in the camera view to locate the flickers. The 
proposed scenario can provide a more interactive and 
intuitive human machine interaction. We even plan to test 
the combined scenario to various robotic systems and assess 
the changes of system performance in the following 
research.  

Object recognition is an important topic in machine 
vision field. Since the performance of graphics processing 
units (GPU) grow up faster in resent years, the deep learning 
algorithm can be easily applied on the machine vision. The 
features extractors (e.g. SSD, R-CNN and R-FCN) and 
network architecture (e.g. VGG-16, MobileNet and Resnet) 
were applied and lead the significant improve for object 
recognition [10-13]. Combining with the SSVEP scenario, 
an efficient object recognition algorithm for real-time image 
is required. To approach the goal, was a Convolutional 
Neural Network (CNN)-based real-time object detection 
system, the You only look once (YOLO), proposed by [14] 
is applied in this research. 

Finally, recognizing the EEG signals which is collected 
from the proposed camera view scenario, the methods such 
as power spectral density analysis, canonical correlation 
analysis (CCA), support vector machine (SVM), k-nearest 
neighbor (k-NN) and linear discriminant analysis (LDA)  
are frequently adopt for feature extraction and signal 
recognition in SSVEP signal processing [15, 16]. In this 
paper, a power value derived by overlapping fast Fourier 



 

 

transform (FFT) is used as the feature for SVM to recognize 
the SSVEP events.  

An SSVEP-based BCI using real-time camera view with 
object recognition is proposed in this paper, the system  

Capture frame from 
depth camera

Deep learning-based 
object recognition

Flicker 
1

Object 
1

Flicker 
2

Object 
2

Flicker 
n

Object 
n

...

...

SVM-based SSVEP 
recognizer

SSVEP Scenario

 
Fig. 1 The architecture of the full system. The current works in this paper 
was applied online camera view with object recognition to design the 
SSVEP flickers. After that, an SSVEP recognizer was used to classifier 
the EEG signals into corresponding classes then determine the selected 
object from human. 

 

  
Fig. 2 The specifications of the Intel® RealSense D435i depth camera. 

 

architecture, material, methods and experimental results are 
demonstrated. Furthermore, this research is working toward 
to integrate with robotic system, creating an intuitive human 
machine interaction. 

II. ARCHITECTURE 
The full system architecture of this research is shown in 

Fig. 1. An RGB-D camera was used to capture the color 
image with depth information to generate point cloud data. 
After the frame was captured, a deep learning-based multi 
object detection algorithm was used to calculate the 
bounding box of region of interest (ROI) image on color 
image. With the bounding box, the SSVEP flicker can be 
directly overlapping on the object location on the color 
image, creating an intuitive BCI scenario for the participants. 
Following the EEG signals were captured, an SVM-based 
SSVEP recognition algorithm was used to classify the ROI 
image that participant is in focused. Finally, the point cloud 
data of chosen object was used to estimate the position and 
orientation of the object in Cartesian space than command 
the robotic arm. In this paper, the SSVEP BCI with object 
recognition on online camera view was implemented and 
discussed, this research is still working on further 
integrating with the robotic systems. 

III. OBJECT RECOGNITION ON REAL-TIME CAMERA VIEW 

A. RGB-D camera 
In order to recognize the 6 degree-of-freedom (DOF) 

object information in Cartesian space, an Intel® RealSense  

 
Fig. 3 The relationships between camera coordinate and Cartesian 
coordinate. 

 

D435i RGB-D camera was used to capture the color and 
depth image and the point cloud in this research, shown in 
Fig. 2. To improve the performance of the object 
recognition, this research applied the deep learning-based 
object recognition algorithm on color image to locate 2 DOF 
object position. 

B. Object recognition algorithm on color image 
Real-time object detector operation on conventional 

GPU allows their mass usage and proposed an acceptable 
performance. A YOLOv4 was applied in this research to 
calculate the bounding box of the ROI image [17]. 
Meanwhile, the x-axis and z-axis location of the object in 
Cartesian space can be determined as the relationships 
shown in Fig. 3. 

IV. BRAIN COMPUTER INTERFACE FOR OBJECT SELECTION 
The object locations was estimated in previous section. 

Therefore, the ROIs information are used to determine the 
location of the SSVEP flickers. In order to design a more 
intuitive scenario for SSVEP-based BCI for operators, the 
flickers directly overlaying on the camera view can create a 
scenario for operators easily and determine the object they 
want. 

A. Scenarios configuration 
There are two different SSVEP scenarios were designed 

in the research to collect the EEG datasets. To collect the 
dataset, a simple scenario (Scenario 1) using black 
background with white block flickers located in the four 
corners. Flickers with ROI image (Scenario 2) is used to 
collect and enclose the datasets. Even the background is not 
the camera view in Scenario 1 and 2, considering that the 
affect from the layouts, the layouts of flickers is accorded to 
the real dimension from the detected objects, then displayed 
at the four corners of the display screen. Finally, a camera 
view with flickers, overlapping on the object location 
(Scenario 3), was collected for verifying the SVM-based 
SSVEP recognizer. In each scenario, most four objects are 
detected and displayed with flickering frequencies as 7, 9, 
11 and 13Hz according to the band-pass filter region to 



 

 

make sure the harmonic frequencies can be retained after the 
filtering process. The reason that used relatively prime 
number to design flickers in this research is to avoid the 
overlapping issue for the harmonic frequencies with the 
main frequencies. The configurations in this research is 
shown in Fig. 4. 
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Fig. 4 The three scenario configurations used in this paper: (a) Scenario 1, 
black background and white block flickers with object layout at four 
corners, (b) Scenario 2, black background and ROI image flickers at four 
corners, and (c) Scenario 3, camera view background and overlapping the 
flicker on the objects. 

 

B. Feature extraction 
In this paper, the power spectrum derived by 

overlapping FFT is used as feature for SSVEP recognizer. 
A 5-s trial using a 2-s window with moving shift for 0.5-s 
each iteration, shown in Fig. 5, is used to calculate the 
overlapping FFT power for generating the feature for further 
classifier. Considering that the EEG signals contain 50Hz 
AC noise and segment the suitable frequency region for 
classifier, a four-order Butterworth band-pass filter is 
applied to filter the noise and remain the power bounded in 
3 to 30Hz before FFT. 

 

C. SVM-based recognizer for SSVEP BCI with error 
detection 
In order to recognize the EEG signal via SSVEP, a 

SVM-based recognizer is used in this paper. The SVM was 
supervised learning model with associated learning 
algorithms that analyzed data used for classification and 
regression analysis [18]. In this paper, the SVM classifier 
was used to recognize the EEG signals into different classes 
of SSVEP event. During a human operating the BCI robotic 
arm system with camera view, many reasons may cause that 

the expected object may not be displayed or detected in the 
SSVEP scenario. Also, if the human is not focused on the 
flicker during the data recording period, the recorded EEG 
signals will not be able to classify into correct classes. 
However, in the previous research, the input EEG signal is 
classified forcibly into one most similar defined class, even  

 
Fig. 5 The overlapping FFT schematic diagram. A 2 seconds window with 
0.5 seconds moving shift for t seconds data. 

 

 
Fig. 6 The system setup for the SSVEP BCI experiment. 
 

the data is not belong to any class of them. Therefore, the 
paper proposed a SVM-based recognizer with radial basis 
function (RBF) kernel function to solve the above problems. 
Here, the MATLAB Optimization toolbox is used to 
calculate the optimized results of the corresponding 
parameters. 

V. EXPERIMENTS RESULTS 

A. Experimental Setup 
In this paper, the EEG signals were acquired using 

Compumedics NeuroScan SynAmps RT 64-channel 
amplifier via Curry 8 software. For BCI experiment, a high 
level stimulating monitor with 144Hz refresh rate, BenQ 
XL2430T, was used to present stimuli. The subject was 
requested to focus on the specified object follow the 
instructions displayed on the screen to collect the data for 
7Hz, 9Hz, 11Hz and 13Hz frequencies of the flickers. After 
the data acquisition, the recorded EEG data from scenario 
1and 2 are randomly separated into training and testing 
dataset by 53% and 47%. The number of collected EEG 
dataset, including three configurations(scattered, without 
occluded and occluded) shown in Fig. 7, for training and 
verifying the SSVEP recognizer is shown in TABLE I. 
Considering that the Scenario 1 and Scenario 2 are both 
designed to the black background, the differences between 
these two scenarios are the flickers use the white block or 
the ROI image. The EEG data which was collected via 
Scenario 1 and 2 were used to train and verify the SSVEP 
recognizer. The EEG data which is collected via Scenario 3 
was used to verify proposed recognizer and analyze the 



 

 

effect in this paper. During the training process, 600 
iterations were set to train the SVM and minimize the errors. 

To simulate and test the recognition performance for the 
SVM-based SSVEP recognizer in the real scene, there are 
three configurations, scattered, normal placed without 
occluded and occluded, are used in Scenario 3.  

  
(a) (b) 

 
(c) 

Fig. 7 The three configuration in Scenario 3 to simulate the real scene effect 
for SSVEP recognizer: (a) objects are scattered on the table, (b) objects are 
configured with normal placed without occluded between each other on the 
table and (c) some objects are occluded on the table. 

 

   
(a) (b) (c) 

Fig. 8 The captured image: (a) mapped color frame with depth frame and 
bounding box for objects, (b) cropped ROI color image of bottle and (c) 
cropped ROI depth image of bottle. 

 

B. Object Recognition and position estimation results 
In this paper, a laptop configured with an Intel i7-9750H 

CPU, 32GB RAM and RTX 2060 6GB GPU was used for 
real-time object recognition from Intel® RealSense D435i 
RGB-D camera. A result for the captured image from RGB-
D camera is shown in Fig. 8. The captured image for color 
frame, which is mapped with depth frame, and the bounding 
box for objects is shown in Fig. 8(a). The cropped ROI color 
and depth image of bottle using the information from 
YOLOv4 are shown in Fig. 8(b) and Fig. 8(c).  

C. SSVEP experimental results 
The acquired EEG data from the amplifier were 64 

channels. In this paper, the O1 and O2 channels are adopted 
to be the input data in feature extraction, introduced in 
section IV.B.  After that, the features from O1 and O2 
channels are fed into the SVM-based SSVEP recognizer.  

The of confusion matrix of the SSVEP recognition 
results for black background test (Scenario 1 and 2) and 
camera view scenario (Scenario 3)  are shown in TABLE II 
and TABLE III, respectively. There are four terms in the 
confusion matrix, true positive (TP), false positive (FP), true 
negative (TN) and false negative (FN). Two factors are used  

TABLE I The number of EEG data for training and testing in three 
scenarios. 

Frequency(Hz) 
Train Test 

Scenario 1&2 Scenario 1&2 Scenario 3 

7 150 129 90 

9 155 134 90 

11 102 87 60 

13 51 44 30 

Total 458 394 270 

 
TABLE II The confusion matrix of the SSVEP recognition results for 

black background test (Scenario 1 and 2). 
 Predicted Class 

ACC 
(%) 7Hz 9Hz 11Hz 13Hz Unknown 

T
ru

e 
C

la
ss

 7Hz 119 1 1 2 6 92.2 

9Hz 2 124   8 92.5 

11Hz 4 2 75 1 5 86.2 

13Hz 4  1 38 1 86.4 

Precision(%) 92.2 97.6 97.4 92.7 NA  

 
TABLE III The confusion matrix of the SSVEP recognition results for 

camera view test (Scenario 3)  
 Predicted Class 

ACC 
(%) 7Hz 9Hz 11Hz 13Hz Unknown 

T
ru

e 
C

la
ss

 7Hz 87    3 96.7 

9Hz 1 87   2 96.7 

11Hz   55 1 4 91.7 

13Hz 1 1  25 3 83.3 

Precision(%) 97.8 98.9 100 96.2 NA  

 
to analysis the recognition results for different scenarios, 
accuracy (ACC) and precision as: 

 ACC(%)= TP TN
TP TN FP FN

+
+ + +

 (1) 

 Precision(%)= TP
TP FP+

  (2) 

In TABLE II, the ACC of the proposed SVM-based 
SSVEP recognizer for Scenario 1 and 2 in 7Hz, 9Hz, 11Hz 
and 13Hz are 92.2%, 92.5%, 86.2% and 86.4%, respectively. 
The average ACC for all frequencies is 90.4%. The 
precision of the proposed recognizer for Scenario 1 and 2 in 
7Hz, 9Hz, 11Hz and 13Hz are 92.2%, 97.6%, 97.4% and 
92.7%, respectively. As a result, the proposed SSVEP 
recognizer can effectively classify the EEG signals. The 
precisions of the proposed recognizer are higher than 92%, 
the results show that even the quality of the EEG data is not 
enough to classify into correct classes, the proposed 
recognizer still can detect the input and classify it into 
unknown class to avoid the false positive detection. 



 

 

In TABLE III, the ACC of the proposed SVM-based 
SSVEP recognizer for camera view scenario in 7Hz, 9Hz, 
11Hz and 13Hz are 96.7%, 96.7%, 91.% and 83.3%, 
respectively. The average ACC for all frequencies is 94.1%. 
The precision of the proposed recognizer for Scenario 1 and 
2 in 7Hz, 9Hz, 11Hz and 13Hz are 97.8%, 98.9%, 100% and  

 
Fig. 9 The accuracy for four classes SSVEP flickers on black background 
scenario for different input length of EEG data. 

 

 
Fig. 10 The accuracy for four classes SSVEP flickers on camera view 
scenario for different input length of EEG data. 
 

96.2%, respectively. As a result, the proposed SSVEP 
recognizer can effectively classify the EEG signals. The 
precisions of the proposed recognizer are higher than 97%, 
the results show that the proposed recognizer still can detect 
the input and classify it into unknown class in the camera 
view scenario, maintaining the performance and avoiding 
the damage for further combining with the robotic arm. 

To discuss about the effect from the length of the EEG 
data sequence, there are seven different sequence lengths 
were tested in this paper. The accuracy for four classes of 
SSVEP flickers on black background scenarios and camera 
view scenario are shown in Fig. 9 and Fig. 10, respectively. 
The results show that the accuracy and the length of the 
EEG data are positive correlation in all scenarios in this 
paper. However, the participants will feel uncomfortable 
undergoing the long EEG data acquisition. A balance must 
be taken a count in the data collection stage for the 
participants. Therefore, a five second length for each flicker 
of the data acquisition period was used in this paper. 

VI. CONCLUSIONS 
In this paper, an SSVEP-based BCI with camera view 

flicker design is implemented. First, a deep learning-based 
object recognition algorithm YOLOv4 is used to calculate 

ROI on the color image from Intel® RealSense D435i RGB-
D camera. Finally, the object location is used to design the 
SSVEP flicker in this paper. There are three objects 
configurations are used in this paper to evaluate real scene 
effect for SSVEP recognizer. In the experimental results, the 
moving window is used to calculate the overlapping FFT in 
feature extraction stage. The average recognition accuracy 
for camera view scenarios is 94.1%. The results show that 
the proposed SVM-based SSVEP can effectively recognize 
the EEG signals into corresponding class. In conclusions, 
the proposed SSVEP-based BCI can be used in real world 
application, combing with the flickers and actual objects, 
based on the upon the scenarios presented. This works is 
continuous toward to integrate with robotic arm to provide 
a novel intuitive operation interface.  
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