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Abstract 

In the face of major global challenging issues of water scarcity, the water industry has 

been undergoing a paradigm shift. The limited availability of nutrients resources, such as 

nitrogen and phosphorus, and their oversupply as fertilizer are projected to risk the global 

demands for food production. Therefore, the global needs of renewable resources have 

driven the wastewater facilities to recycle nutrients. Wastewater has been considered an 

important source of recoverable nutrients and other valuable materials, and thus, resource 

recovery from wastewater has become attractive where technological innovation is being 

used to provide additional social, environmental, and economic benefits.  

Membrane capacitive deionization (MCDI), driven by an electrochemical potential 

between two electrodes across ion-exchange membranes (IEMs), has been shown to be 

an effective system for recovering valuable nutritional resources dispersed in wastewater 

via the enrichment and selective collection of the ions present in small amounts in low 

salinity wastewater resources. In particular, the recovery of nitrogen and phosphorus from 

municipal wastewaters has been noted as one of the most feasible targets to prevent 

environmental issues, such as the eutrophication of water resources and procuring these 

biological nutrients essential for food production. However, the application potential of 

MCDI for the resource recovery has not been verified due to lack of its full investigation 

from practical perspectives.  

In this study, the application potential of MCDI was explored to recover nutrient 

resources present in wastewater, especially converging the ion selectivity and 

performance efficiency during electrosorption and electrode regeneration. Carbon 

electrodes coated with a thin cation- or anion-exchange polymer layer which acted as an 
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IEM in the conventional MCDI have been mainly used as an advanced configuration for 

the electrosorptive process with both inducing lower membrane electrical resistance and 

inhibiting the electrosorption of the counter-ions during regeneration of electrodes.  

The ion transport during resource recovery via MCDI, from feed water to a carbon 

electrode in electrosortpion and then from the carbon electrode into highly enriched brine 

solution in regeneration, was examined. The ion discharge was retarded by a reverse-ionic 

strength gradient induced by the enriched brine solution. The regeneration was further 

hindered when a dilute feed solution concentration was used (<10 mM), attributing to the 

enhanced resistance of the ion-exchange (IX) layer. Energy-efficient regeneration 

methods, such as short-circuiting, were constrained owing to lack of electrochemically 

repulsive force capable of overcoming the reverse gradient. The preferential desorption 

order under a mixture of cations was K+ > Na+ > Mg2+, as mainly determined by their 

physiochemical properties, whereas the permselectivity through the cation-exchange 

membrane (CEM) was insignificant.  

The application potential of MCDI using IX layer coated electrodes was systematically 

explored demonstrating its effective performance in resource recovery from wastewater, 

and the operating conditions were optimized considering the complex nature of the 

characteristics of real municipal wastewater. A higher salt adsorption capacity and charge 

efficiency could be attained owing to the lower resistance induced by the thinly coated 

layer facilitating faster ionic transport. The organic substances had an insignificant impact 

on the electrodes’ performance in a longer operation, as the fairly adsorbed negatively 

charged organic compounds were well released in the consequent desorption stage. The 

fouling-free operation was attributed to the flat morphology of the coated IX layer surface 
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with low roughness offering a smaller chance for the impurities to accumulate on the 

electrode surface. 

The electrosorption selectivity followed the permselectivity through the IX layers, and 

was impacted by the change in their mobility under different applied potential. The 

selective electrosorption of NO3
- can be enhanced by decreasing applied potential to 

increase relative ion mobility and by increasing water flow rate to reach faster electrode 

saturation. The recovery of phosphate has been examined considering the effect of 

phosphate speciation reactions at a typical pH range in wastewater (between 6.5 and 8.5). 

The overall P adsorption capacity was apparently higher in the lower pH, where H2PO4
- 

dominantly presents in wastewater, owing to the smaller hydrated radii monovalent ions 

occupying less space within the electric double layer (EDL) for charge neutralization. 

However, the effect of phosphate speciation on selective phosphorus removal from 

wastewater was insignificant, as in reality it presents in a low amount compared to the 

other anions.  

One of the major disadvantages of MCDI for resource recovery is the inability of 

electrodes to selectively remove target ions. Therefore, a nitrate selective composite 

electrode coated with an anion-exchange polymer with A520E resins was fabricated for 

enhanced recovery of nitrate. The low-contact resistance of the coated IX layer enhanced 

the electrosorption capacity, whereas the granular nitrate—selective resin incorporated in 

the IX layer rather increased the electrical resistivity. The adsorbed mole fraction of NO3
- 

kept increased even after saturation, attributing to the ion exchange between Cl- on the 

resin coating layer and NO3
- contained in the bulk feed solution. However, its desorption 

efficiency for NO3
- was lowered as the NO3

- were temporarily intercepted by being 
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exchanged with Cl- ions in the resin at the IX layer during the ion migration towards the 

bulk brine solution.  

The possible application of MCDI was further tested on the recovery of palladium from 

metal plating wastewater. The highly efficient adsorption of Pd from a single Pd solution, 

higher than 98.38% even at 0.3 V of low applied potential, was driven by both 

electrosorptive and physical adsorption. Its removal was remained to be high even under 

co-existence of different cations present in the metal plating wastewater, since the Pd 

species with high initial concentration and ionic charge valency competitively took place 

within the EDL. High concentration of Pd was obtained after five successive operation 

cycles (925.48 mg/L) from a 100 mg/L Pd catalyst solution. However, an apparent 

decrease in Pd removal and desorption in the successive cycles implied the deterioration 

of electrodes attributing to physisorption or complexation of Pd metal ions within the 

porous structure of electrode, resulting in reduced available surface of area of electrode 

for additional electrosorption. 

This thesis finally concludes with recommendations to provide future insights into 

realizing the practical use of MCDI for the recovery of resources from wastewater. The 

operating conditions of MCDI are important in order to achieve selective and highly 

efficient resource recovery.  Enriching the target resource above a desired amount could 

be limited due to the reverse-ionic strength gradient. Reversing polarity is expected work 

best for discharging ions into brine, but however, its optimized condition has to be 

determined carefully as its energy demand could compensate the feasibility of MCDI. 

Employing lower potential and higher flow rate for selective nitrate removal may rather 

result in poor total removal of ions in the wastewater, whereas selective collection of 

phosphate at the current technological level is likely to be challenging due to its low 
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amount present in wastewater and low permselectivity through the IEM. The carbon 

electrodes can be customized for the enhanced extraction of target species by coating IX 

polymer solution. New coating techniques for a thinner selective layer incorporating 

micro-fine resins will further improve the charge efficiency and ion selectivity.  The 

application of MCDI on recovery of precious metals requires preventive maintenance or 

cleaning strategies to inhibit the physisorption, complexation or crystal formation of the 

metallic species on the IX layer surface.  
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