Data-driven Adaptive Personalized Property Investment Risk Analysis: Frameworks, Methods and System

by Nur Atiqah Rochin Demong

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Professor Jie Lu and Associate Professor Dr. Farookh Khadeer Hussain

University of Technology Sydney
Faculty of Engineering and Information Technology

October 2020

TABLE OF CONTENTS

TABLE OF CONTENTS	
DEDICATION	V
ACKNOWLEDGMENTS	vi
LIST OF FIGURES	Vii
LIST OF TABLES	
Abstract	X
CHAPTER 1	1
1. INTRODUCTION	1
1.1 Background	1
1.2 Research Questions	
1.3 Research Objectives	
1.4 Research Outcomes	
1.5 Significance and Innovations	
1.5.1 Significance	
1.5.2 Innovations	19
1.6 Research Methodology	
1.6.1 Problem Definition	
1.6.2 Research Planning	
1.6.3 Method Development	
1.6.4 Analysis and Validation	
1.6.5 Evaluation and Revision	
1.7 Thesis Structure	
1.8 Publications Related to This Thesis	30
CHAPTER 2	31
2. LITERATURE REVIEW	31
2.1 Property Investment Risk Analysis	31
2.1.1 Dynamic Risk-based Decision-making	32
2.1.2 Types of Risk-based Decision-making Process	
2.1.3 Decision under Uncertainty	
2.1.4 Risk Sources and Risk Factors in the Real Estate Industry	
2.1.5 Existing techniques/models for property investment risk analysis	
2.1.6 Existing real estate analytic systems	
2.2 Data-driven Decision-making Approach	
2.2.1 Knowledge Discovery and Data Mining	
2.2.2 Intelligent Decision Support System (IDSS) for Risk-based Decision	
making	61

		2.2.3	A generalized framework for knowledge discovery in business environments	62
	23	Persona	lization Technique	
	2.3	2.3.1	Adaptive personalization	
	24		riteria Decision-making Techniques	
	∠.+	2.4.1	Technique for Order Preference by Similarity to Ideal Solution (To	
		2.4.1	Approach	
	2.5	Cumma	ry	
	2.3	Sullilla	ıy	/ 1
C]	HAP	TER 3		73
3.	AN	ADAPT	TIVE PERSONALIZED PROPERTY INVESTMENT RISK ANAL	YSIS
	FRA	AMEWO	DRKS	73
	2 1	T., 4.,		72
			etion	
	3.2		lized Multidimensional Process Framework	
			ine Steps of Personalized Multidimensional Process Framework	
	3.3		sed Decision-making Framework	
		3.3.1	Risk-based Decision-making Concepts	
		3.3.2	Risk-based Decision-making Process	
		3.3.3	Risk Sources and Risk Factors in the Real Estate Industry	
		3.3.4	Risk-based Decision-making Techniques for Real Estate Project In	vestment
				85
		3.3.5	Issues and Challenges of Risk-Based Decision-making	
	3.4	Multidi	mensional Analysis and Data Mining Framework for Property Inves	tment
			nalysis	
	3.5	Experin	nent	97
		3.5.1 Da	ataset	98
		3.5.2	Application of Risk-based Decision-Making Framework via Selec	
			Attribute Function.	
		3.5.3	CfsSubsetEval (CSE)	
		3.5.4	Information Gain Attribute Evaluation	
	3.6		ry	
	3.0	Summa	<u></u>	107
C]	HAP	TER 4		108
4.	AN	ADAPT	TIVE PERSONALIZED PROPERTY INVESTMENT RISK ANAL	YSIS
	ME	THOD		108
	4.1	Introduc	etion	108
	4.2	The Ada	aptive Personalized Property Investment Risk Analysis (APPIRA) N 109	Method
		4.2.1	Adaptive personalization module	111
		4.2.2	Risk analysis module	
		4.2.3	Determinant module	
		4.2.4	Knowledge discovery module using a data-driven approach	
	4 3		lized Association Mapping Method	
	т.Э	LUSUHA	11Z-04 / 1050-014HOH 1714DDHIZ 1710HIUU	

		4.3.1	Personalization	115
		4.3.2	Personalization Model	118
		4.3.3	Personalized Property Investment Risk Analysis Model	120
		4.3.4	Personalization Session for Risk Analysis	126
4	4.4	Persona	lized Multidimensional-Sensitivity Analysis Method	127
		4.4.1	Development of Knowledge Using Data Mining Technology	128
		4.4.2	Investment Risk Analysis Knowledge Management Development.	130
		4.4.3	Experiment	
	4.5	APPIR	A Process Flow	136
		4.5.1	Six Steps of APPIRA	137
		4.5.2	TOPSIS method	141
		4.5.3	Example	143
		4.5.3.1	Decision Tree using J48 Machine Learning Model	144
		4.5.3.2	Attribute Selection using Gain Ratio	147
	4.6	Summa	ry	149
CH	[AP	TER 5		151
5.	AN	ADAPT	TVE PERSONALIZED PROPERTY INVESTMENT RISK ANAL	YSIS
	SVS	STEM		151
			etion	
			Specification	
	5.3		eatures	
			Personalization technique	
	- 1		Data-driven approach	
			AS Pseudocode and Algorithm	
			AS Main Interfaces	
	5.6	Summa	ry	166
CH	ΙΔΡ	TFR 6		167
6.	CA	SE STUI	OY	167
(6.1	Introduc	etion	167
(6.2	Data and	alysis	167
		6.2.1	Heuristic Approach	
		6.2.2	Deterministic Approach	168
(6.3	Decision	n table technique	169
(6.4	Data Mi	ining Techniques for Knowledge Discovery	171
		6.4.1	Clustering Technique	171
		6.4.2	Predictive Technique for Rental Rate Forecasting	174
		6.4.3	Predictive Technique for Median House Price Forecasting	
		6.4.4	Association/classification to define patterns of data	186
	6.5	Summa	ry	189
~		TES -		100
CH	lAP	TER 7		190

7. CONCLUSIONS AND FUTURE STUDY	190
7.1 Conclusions	190
7.2 Future Studies	193
References	
Abbreviations	208

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I, Nur Atiqah Rochin Demong declared that this thesis is submitted in fulfillment of the

requirements for the award of Doctor of Philosophy, in the School of Computer Science,

Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition,

I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature: Production Note: Signature removed prior to publication.

Date: 27 October 2020

DEDICATION

I would like to dedicate this thesis to the Allah SWT. Every challenging work needs self-efforts as well as guidance from elders especially those who are very close to my heart. My humble effort I dedicate to my sweet, loving, and amazing husband, Mohd Norhedhir Yaakub, for sharing the pain, sorrow, and depression during the hard time, and above all for the unconditional love, patience, and encouragement. Whose affection, love, encouragement and prays of day and night make me able to get such success and honor.

To my wonderful kids, Athirah, Akram, Aqilah, Amirah and Akmal, for being the best support and encouraging me to complete my thesis and going through this challenging and exciting journey.

Along with all hardworking and respected supervisors, this thesis is dedicated to Prof. Jie Lu and Dr. Farookh Khadeer Hussain, for without their early coaching and enthusiasm none of this would have happened.

ACKNOWLEDGMENTS

One of the great pleasures of writing this thesis is acknowledging the efforts of many peoples who were involved directly or indirectly to complete my PhD study.

I would like to express my sincere gratitude to my principal supervisor, Professor Jie Lu for accepting me as one of her PhD students and guiding me to complete my study. Thank you for your continuous support, guidance, comments, suggestions, patience, encouragement and teaching me to be analytical and help me to improve in my writing skills. Moreover, her commitment in supervising me has shaped me into a good researcher and will be a great benefit to me in my future research work and life. I also would like to address my sincere thanks to my co-supervisor, Associate Professor Dr. Farookh Khadeer Hussain for his ideas, suggestions, and invaluable comments to strengthen my research throughout my study.

I also wish to express my appreciation to all my friends and the members of the Decision System & e-Service Intelligence (DeSI) Lab in Faculty of Engineering and IT (FEIT), University of Technology Sydney, for their help, participation and invaluable comments in every presentation I made during my study. Support and encouragement developed during my study will be good memories in my future research life. I wish all the very best in our future research works.

I also would like to thank Jemima McDonald, Barbara Munday and Sue Felix for being proofreaders of my published papers and thesis. I sincerely appreciate the efforts you have given for my paper to be accepted.

Finally, I would like to thank the Universiti Teknologi MARA for funding and providing support during my PhD study. I am grateful to have been able to study and have experiences in Australia.

LIST OF FIGURES

Figure 1.1 Relationship between Research Objectives and Research Questions	
Figure 1.2 Relationship between Research Questions and Research Outcomes	
Figure 1.3 Four main innovative results in this study	
Figure 1.4: Research methodology for this study.	
Figure 2.1: Risk viewed as a combination of sources and vulnerability (Terje Aven, 2007	
Figure 2.2: Static (simultaneous) decision-making process (Rocha et al., 2007)	38
Figure 2.3: Dynamic (sequential) decision-making process (Rocha et al., 2007)	
Figure 2.4: Knowledge Discovery in Database process (Qi, 2008)	
Figure 2.5: An example of a star schema (dimensional modeling) with three dimension	
tables and a central fact table representing the GoSales data set (Caron & Daniels, 2008).	57
Figure 2.6: OLAP technical operation diagram (Huang et al., 2006).	58
Figure 2.7: Structure of multi-dimensional analysis technique (Huang et al., 2006)	58
Figure 2.8: Models of multi-dimensional analysis for quantitative data (Huang et al., 200	- 1
Figure 2.9: Models of multi-dimensional analysis for qualitative data (Huang et al., 2006)).
Figure 2.10: The essence of the proposed framework. Raw data from one or more business	
database(s) are selected and extracted, which are then subjected to the number of data	62
mining processes (Fong & Hui, 2010).	03
Figure 3.1: The relationships between three different frameworks of an adaptive	71
personalized property investment risk analysis	
Figure 3.2: A personalized multidimensional process (PMP) framework	
Figure 3.3: Three main inputs for the PMP framework.	
Figure 3.4: A personalized multidimensional process (PMP) framework	
Figure 3.6: The structure of the proposed risk-based decision-making framework	
Figure 3.7: Risk-based decision-making main activity for investment in the real estate	80
industry	۷/
Figure 3.8: The multidimensional analysis framework for property investment risk analysis	
rigure 5.6. The mutualmensional analysis framework for property investment risk analysis	95 95
Figure 3.9: Screenshot of recognizes attributes and the list of recognized attributes using))
WEKA application software.	98
Figure 3.10: Relationships between each attribute that contribute to the number of houses	
owned by the respondents (staffs of Ministry of Housing and Local Government in	,
Malaysia in year 2018).	104
Figure 3.11: Ranking of attributes with respect to CfsSubsetEval method	
Figure 3.12: Ranking of attributes with respect to GainRatio Attribute evaluation method	
1 igure 3.12. Ranking of autroutes with respect to Gamiliano Attribute evaluation method	
Figure 4.1: Four main modules in APPIRA method: adaptive personalization, risk analyst	sis
determinants module, and knowledge discovery	
Figure 4.2: The integration between heuristic and deterministic approaches	113
Figure 4.3: The use case diagram of the adaptive personalized property investment risk	
analysis system	115

Figure 4.4: The personalized property investment risk analysis model for the real estate	
industryFigure 4.5: The transfer of explicit knowledge to the user as tacit knowledge	
Figure 4.6: Data flow of the personalization session for property investment risk analys	
the real estate industrythe resolution session for property investment risk analys	
Figure 4.7: Several questions that investors will face when dealing with investment risk	
analysis in the real estate industry	
Figure 4.8: Development of knowledge management by using heuristic through	. 129
deterministic approach for investment risk analysis in the real estate industry	130
Figure 4.9.: Relationships between dimensions toward the class (output) namely total	. 150
numbers of houses owned	133
Figure 4.10 : Ranking of attributes with respect to InformationGain Attribute evaluation	
	134
Figure 4.11: Pattern analysis for the relationship between monthly instalments, househouse	
income towards the total number of houses owned	
Figure 4.12: The process flow of the APPIRA method	
Figure 4.13: Hierarchical structure of Investor A.	
Figure 4.14: Result using J48 pruned tree machine learning model	
Figure 4.15: Decision tree for number of houses owned using J48 machine learning mo	
	146
Figure 4.16: Too populated decision tree using REPTree machine learning model	
Figure 4.17: Decision tree after removing the attributes which are not required	
Figure 4.18: Ranking of attributes with respect to GainRatio Attribute evaluation method	
Figure 4.19: The relationship between both development of knowledge using data mini	
technology and investment risk analysis knowledge management	_
Figure 5.1: APPIRAS use case diagram.	
Figure 5.2: User Registration Form	
Figure 5.3: Screenshot of how the user enters their search criteria as described in Step 1	
Figure 5.4: Decision tree example for dynamic risk analysis for property investment in	
real estate industry	. 164
Figure 5.5: Result showing property details sorted by minimum price as described in St	tep
2	. 165
Figure 6.1: Summary of data selected based on Table 6.2	. 173
Figure 6.2: Clustering technique based on selected Eastlakes property data	. 173
Figure 6.3: Cluster profiles based on Figure 6.2.	. 174
Figure 6.4: Rental rate prediction until 2017, based on data selected in Table 6.2	. 175
Figure 6.5: Median house price in Bellevue Hill, NSW (based on data available from 2	2004
<i>–</i> 2017)	
Figure 6.6: The ARIMA filtering box interpretation.	
Figure 6.7: Screenshot of actual median prices for type of property (Unit and House) in	
Bellevue Hill, NSW	
Figure 6.8: Median house price (predicted for the year 2018 - 2028).	
Figure 6.9: Pattern of Rental at Selected Suburb.	. 188

LIST OF TABLES

Table 2-1: A summary of risk factors that will affect the dynamic risk analysis for	
investment in the real estate industry.	
Table 2-2: Applications of existing techniques/models in property investment risk analysis	ysis
	47
Table 2-3: Comparison of quantitative and qualitative multi-dimensional analysis	59
Table 2-4: Comparisons of static vs dynamic multi-dimensional analysis	60
Table 3-1: Dataset attributes metadata.	
Table 3-2: Dataset instances descriptive statistic	101
Table 4-1: Ranking of attributes with respect to InformationGain Attribute evaluation	
method	
Table 4-2: Crosstab analysis based on total number of monthly instalment and monthly	
household income towards total number of houses owned	135
Table 5-1: Decision matrix of investor A.	
Table 5-2: List of decision matrices with weight.	158
Table 6-1: A decision table showing a scenario of recommendations for a property	
investment based on a user's constraints and requirements.	170
Table 6-2: Sample data used for the analysis collected from the Australian Property	
Monitor domain database.	
Table 6-3: Parameters of the testing data	
Table 6-4: Sample of training data for analysis	
Table 6-5: Algorithm Parameters	178
Table 6-6: Crystal ball report	
Table 6-7: Forecast range of median house prices for Bellevue Hill, NSW, collected from	
Australian Property Monitor database	
Table 6-8: Parameters of the testing data and the prototype	
Table 6-9: Summarized the pattern of data for property rental in different suburbs	
Table 7-1: Comparison between AHP, ANP and the proposed APPIRA method	192

Abstract

The risk analysis for real estate property investment which incurred a high cost and high risk has been qualitatively and quantitatively assessed by various techniques. These techniques consider the heuristic risk factors mainly based on the expert survey, weigh and rank the factors using algorithms and mathematical formulas and decide the best investment based on the performance index of alternatives given. Currently, identifying, weighing, and ranking of the risk factors in investment decisions largely depend on expert judgment using traditional approaches. Additionally, current research is lacking in considering investors' different preferences and requirements. The motivation of this study is how to identify, weigh and rank the risk analysis factors when experts have a different point of view or judgments' and expert subjective justifications.

This thesis describes a new personalized multidimensional process (PMP) framework based on knowledge discovery to overcome the weaknesses of existing risk identification and measurement techniques. This framework comprises two new methods namely personalized association mapping (PAM) method and personalized multidimensional sensitivity analysis (PM-SA) method. This thesis also proposes an adaptive personalized property investment risk analysis (APPIRA) method to identify the property investment determinants. This APPIRA method adopts a data-driven and personalization technique to weigh risk factors and ranking using a multi-criteria decision-making model by applying the TOPSIS method for optimal solutions. The existing real estate analytic systems, which only serve as search tools and do not benefit homebuyers in terms of search time, flexibility, and intuitive results. Thus, a prototype of adaptive personalized property investment risk analysis system (APPIRAS) developed to validate the framework and methods proposed to overcome the limitations.

The innovations of this research were the justification of risk factor identification as the determinant for different objectives; weighing which is based on historical data-driven to decision support using the knowledge discovery approach (analytical decision-making) and the investor's adaptive personalization of the risk factors which fulfil their requirements; and

ranking using multi-criteria decision-making model. The methodology in this research incorporated literature review, frameworks development, methods development, prototype software system development and evaluation. A case study has been developed to show the applicability of the developed framework, methods, and system. The outcomes of this study have a significant impact in helping investors to achieve their objectives and APPIRAS as the decision support tools to achieve optimal decisions. These methods can be applied to practice and benefit the property industry directly.