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ABSTRACT

Sentiment analysis in social media is critical yet challenging because the source
materials (i.e., reviews posted in social media) are with high complexity, low
quality, and uncertain credibility. For example, words and sentences in a textual

review may couple with each other, and they may have heterogeneous meanings under
different contexts or in different language locales. These couplings and heterogeneities
essentially determine the sentiment polarity of the review but are too complex to be
captured and modeled. Also, social reviews contain a large number of informal words
and typos (a.k.a., noise) but a rare number of vocabularies (a.k.a., sparsity). As a result,
most of the existing natural language processing (NLP) methods may fail to represent
social reviews effectively. Furthermore, a large proportion of social reviews are posted
by fraudsters. These fraud reviews manipulate social opinion, and thus, they disturb
sentiment analysis.

This research focuses on reliable sentiment analysis in social media. It systematically
investigates the sentiment analysis techniques to tackle three major challenges in social
media: high data complexity, low data quality, and uncertain credibility. Specifically, this
research focuses on two research problems: general sentiment analysis in social media
and fraudulent sentiment analysis in social media. The general sentiment analysis
targets on tackling high data complexity and low-quality of social articles that are
credible. The fraudulent sentiment analysis handles the uncertain credibility issue,
which is common and profoundly affects the precise sentiment analysis in social media.
Based on these investigations, this research proposes a serial of methods to achieve
reliable sentiment analysis: It studies the polarity-shift characteristics and non-IID
characteristics in general paragraphs to capture the sentiment more accurately. It
further models multi-granularity noise and sparsity in short text, which is the most
common data in social media, for robust short text sentiment analysis. Finally, it tackles
the uncertain credibility problem in social media by studying fraudulent sentiment
analysis in both supervised and unsupervised scenarios.

This research evaluates the performance and properties of the proposed reliable
sentiment analysis methods by extensive experiments on large real-world data sets.
It demonstrates that the proposed methods are superior and reliable in social media
sentiment analysis.
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1
INTRODUCTION

1.1 Background

Sentiment analysis refers to the use of various techniques (e.g., text analysis,

feature engineering, representation learning, and machine learning) to identify,

extract, and quantify subjective information in source materials. It has brought

great business values to both industries and individuals (Fan & Gordon 2014). For

example, it helps a business to monitor the social opinion of a product and helps a

customer to understand and select a service.

Sentiment analysis in social media is critical yet challenging because the source

materials (i.e., reviews posted in social media) are with high complexity, low quality, and

uncertain credibility. Specifically, words and sentences in a textual review may couple

with each other (Teng et al. 2016, Jia et al. 2018), and they may have heterogeneous

meanings under different contexts or in different language locales (Zhuang et al. 2017).

These couplings and heterogeneities essentially determine the sentiment polarity of the

review but are too complex to be captured and modeled (Ralaivola et al. 2010, Cao 2013).

Also, social reviews contain a large number of informal words and typos (a.k.a., noise) but

rare number of vocabularies (a.k.a., sparsity). As a result, most of the existing natural

language processing (NLP) methods may fail to effectively represent social reviews.

Furthermore, a large proportion of social reviews are posted by fraudsters (Mukherjee,

Venkataraman, Liu & Glance 2013). These fraud reviews manipulate social opinion, and

thus, they disturb sentiment analysis.

1



CHAPTER 1. INTRODUCTION

1.2 Current Work and Gap Analysis

Sentiment analysis methods can be classified into two paradigms: (1) hand-craft-feature-

based methods (Turney 2002, Saif et al. 2016, Bravo-Marquez et al. 2014) and (2)

representation-learning-based methods (Kim 2014, Passalis & Tefas 2017, Peters et al.

2018, Devlin et al. 2018). The former paradigm represents textual information as vectors

by designated features (e.g., n-gram, bag-of-words, sentiment scores). In contrast, the

later paradigm learns a model, such as neural networks and latent Dirichlet analysis,

to automatically extract features from textual data. As shown in recent advance (Tang

et al. 2014, Passalis & Tefas 2018, Vincent & Ogier 2019), representation-learning-based

sentiment analysis methods achieve much higher accuracy compared to that based on

hand-craft features, because the learned representation embeds many sentiment-related

characteristics that cannot be captured by hand-craft features.

Although the existing representation-learning-based sentiment analysis methods

demonstrated superior performance, most of them overlook the non-independent and

non-identically distributed (non-IID) characteristics of complex textual data. Here, the

non-IID characteristics include that (1) words and sentences couple with each other

(non-independent; Teng et al. 2016, Jia et al. 2018), and (2) the same word and sentence

may have different meanings under different contexts or in different language locales

(non-identically distributed; Zhuang et al. 2017). The non-IID characteristics may hierar-

chically exist from word level to paragraph level; they determine the sentiment polarity

of textual data but are hard to be represented. Recently, limited sentiment analysis

methods begin to focus on the non-IID characteristics in their representation learning.

For example, Teng et al. (2016) proposed a method to capture the nearby word couplings,

Tang, Qin & Liu (2015) focused on the sequential relations of words, and Wang, Huang,

Zhu & Zhao (2016) modeled the hierarchical heterogeneous meanings of words and

sentences. However, these methods capture only partial of non-IID characteristics. As a

result, they cannot comprehensively represent textual data with non-IID characteristics

for sentiment analysis.

Furthermore, the current sentiment analysis methods mainly focus on standard

articles but overlook the characteristics of social articles (e.g., social reviews, blogs, and

social messages). In standard articles, texts are formal and follow specific syntaxes.

On the contrary, texts in social articles always contain noise (e.g., typos, incomplete

syntax, and irregular vocabularies) and are sparsity (e.g., the length of an article is short,

and the number of vocabularies in an article is little). As a result, most of the existing

2
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sentiment analysis methods work well on the text in standard articles but may fail on

the text in social articles. Advanced methods either reduce noise or alleviate sparsity

for sentiment analysis on social reviews. Typically, the current noise reduction methods

(Dey et al. 2016, De Boom et al. 2016, Wang, Wang, Zhang & Yan 2017, Arora et al.

2017a, Li, Wang, Zhang, Li, Chi & Ouyang 2018) first recognize noise by looking up

pre-defined noise sets or adopting frequency-based detection models. Then, they reduce

the impact of the recognized noise by re-weighting or ensemble strategies. However,

two problems may arise in their recognition process: (1) pre-defined noise sets may not

fully cover all noise, and (2) frequency-based detection models may fail when facing the

sparsity. Consequently, their unrecognized noises may still damage sentiment analysis

performance, even with re-weighting and ensemble strategies. Meanwhile, the current

sparsity alleviation methods (Zuo et al. 2016, Liang et al. 2016, Lochter et al. 2016, Li,

Li, Chi & Ouyang 2018) assume that a sparse short text is generated from a latent dense

document, and try to insert words into the short text according to the latent document.

However, the inserting quality cannot always be guaranteed because (1) many texts are

independent (i.e., they cannot be generated from the same latent document), and (2)

most of these methods are based on statistics, which may profoundly be affected by the

noise in social reviews.

Moreover, most of the current sentiment analysis methods ignore the fact that the

credibility of a social review is uncertain. They treat all reviews as honest when training

the analysis model. As a result, their accuracy may be profoundly affected by fraud

reviews, which occupies a large proportion of social reviews. Current fraud review

detection methods mainly analyze user behavior and social relations (Ye & Akoglu 2015,

Rayana & Akoglu 2015, Hooi et al. 2017, Liu et al. 2017). They assume a fraud review

is posted by a user who has anomalous behavior (e.g., posting many reviews within a

short period). They also assume collaborative fraudsters manipulate a group of reviews,

which generates abnormal social relations between the fraudsters and their posted items.

Because anomalous behavior and abnormal social relation have a good distinguishing

ability between honest and fraud reviews, the existing methods have shown remarkable

performance in fraud review detection (Rayana & Akoglu 2016). However, most of the

existing fraud review detection methods may fail when facing the cold-start problem

(i.e., a new user posts his/her first review). The new users in the cold-start problem bring

two principal challenges below. (1) A new user does not have historical information for

behavior analysis (You et al. 2018), which is required by most of the existing fraud review

detection methods (Ye & Akoglu 2015, Rayana & Akoglu 2015). (2) A new user does not

3
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show any observed social relation, invalidating the detection of potential collaborative

fraud review manipulation (Liu et al. 2017, Hooi et al. 2016).

In summary, the current sentiment analysis methods achieve significant performance

but overlook the unique data characteristics in social media. Thus, they are not robust

when they are applied on sentiment analysis for social articles which show high data

complexity, low quality, and uncertain credibility. A systematically studying of the above

characteristics is required to form a reliable sentiment analysis in social media, which

expects to yield robust analysis results when facing high complex, low-quality, and

incredible data.

1.3 Research Problems and Objectives

This research focuses on reliable sentiment analysis in social media. It systematically

investigates the sentiment analysis techniques catering to the data characteristics of

social media, which is summarized in Fig. 1.1.

Specifically, this research focuses on two research problems: general sentiment anal-
ysis in social media and fraudulent sentiment analysis in social media. The general

sentiment analysis targets on tackling high data complexity and low-quality of social

articles that are credible. The high data complexity typically exists in long texts (e.g.,

paragraphs), and the low-quality always accompanied by short texts (e.g., social re-

views). Accordingly, this research split the general sentiment analysis problem into

two subproblems: paragraph sentiment analysis and short text sentiment analysis. The

fraudulent sentiment analysis handles the uncertain credibility issue, which is common

and profoundly affects the precise sentiment analysis in social media. However, reliable

labels for fraudulent sentiment analysis require a lot of artificial efforts that are scarce

in most real applications. Therefore, this research first studies the supervised fraudulent
sentiment analysis for effective fraudulent information modeling and then investigates

the unsupervised fraudulent sentiment analysis for broader applications.

Modeling complex textual data for paragraph sentiment analysis is critical yet chal-

lenging. As discussed in Section 1.2, an essential complexity is non-IID characteristics

(consist of couplings and heterogeneity), which cannot be comprehensively captured

by the current methods. To fill this gap, this research objects to model word/sentence

couplings and heterogeneity for better paragraph sentiment analysis. Furthermore, this

research intends to model more effective sentiment-related features and integrates them

with word/sentence couplings and heterogeneity to provide sufficient information for
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Figure 1.1: The research problems and their relations.
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sentiment analysis in complex paragraphs. Accordingly, it has the following objectives

for the paragraph sentiment analysis problem:

• modeling word/sentence couplings;

• modeling word/sentence heterogeneity;

• modeling sentiment-related features;

• integrating and embedding paragraph characteristics.

The challenges of short text sentiment analysis are mainly contributed by noise and

sparsity. As shown in Section 1.2, none of the existing methods can effectively tackle

the problems brought by both noise and sparsity. This research thus objects to model

both noise and sparsity to enhance the quality issues of short text. Also, this research

recognizes that the semantic meaning and the sentiment of a short text are determined by

multi-granularity (e.g., characters, n-gram, and words). Consequently, it tries to enhance

the quality of short text in multi-granularity. Lastly, this research aims to embed the

enhanced short text into a vector representation space for representation-learning-based

sentiment analysis. In summary, this research has the following objectives for the short

text sentiment analysis problem:

• modeling noise;

• modeling sparsity;

• multi-granularity quality enhancing;

• short text representation.

To achieve supervised fraudulent sentiment analysis, this research leverages both

user behavior and social relations. Although the existing methods have studied user

behavior and social relations, most of them cannot effectively combine these two parts for

comprehensive fraudulent sentiment analysis because these two parts reflect different

information with various formats. Therefore, this research objects to model user behavior

and social relations in a novel way and effectively integrated them for fraud detection.

These objectives for the supervised fraudulent sentiment analysis problem are listed as

follows:

• modeling user behavior;
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• modeling social relation;

• integrating information for fraud detection.

Unsupervised fraudulent sentiment analysis requires discovering fraud information

without the supervision of fraud labels. While mining the fraud information from social

relations has been well-studied in unsupervised fashions, it is hard to model fraud-

related user behavior without supervised labels because a method could not distinguish

whether a behavior is related to fraud. This research objects to tackle this challenge by

proposing an unsupervised element representation method to embed fraud-related user

behavior. Furthermore, it aims to propose an unsupervised fraud detection algorithm

based on its proposed unsupervised element representation. Meanwhile, this research

also focuses on the cold-start problem. The fraudulent sentiment brought by the cold-start

problem profoundly manipulates social opinions but hard to be detected, especially in

unsupervised cases. This research thus has the following objectives for the unsupervised

fraudulent sentiment analysis problem:

• unsupervised element representation;

• unsupervised detection algorithm;

• solving the cold-start problem.

1.4 Thesis Contributions

This thesis makes the following contributions:

• Paragraph sentiment analysis: This thesis studies the nature of paragraph polar-

ity shift and proposes a multi-scale and hierarchical paragraph representation

methods for polarity-shift-sensitive sentiment analysis. Furthermore, it studies

the nature of non-IID characteristics and proposes a deep non-independent and

identically distributed paragraph (non-IID) representation for implicit sentiment

analysis. Extensive experiments on five large and two small real-world data sets

demonstrate that the proposed method significantly enhances sentiment analysis in

terms of both classification accuracy and sentiment representation quality through

the comparison with four baseline methods and five state-of-the-art competitors

with their eleven variants.
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• Short text sentiment analysis: This thesis investigates the noise and sparsity prob-

lems in short text sentiment analysis. It proposes a breaking-gathering strategy

and a corresponding neural network structure with an adversarial learning objec-

tive for short text sentiment analysis. Comprehensive experiments on five large

real-world data sets demonstrate the proposed method significantly outperforms

the state-of-the-art competitors.

• Supervised fraudulent sentiment analysis: This thesis studies the user individual

behavior modeling and user social relations for fraudulent sentiment analysis. It

proposes a supervised fraudulent sentiment analysis model by jointly considering

user, item, review, and rating. Extensive experiments show that the proposed

method effectively models user behavior and social relations, and it performs

significantly better in detecting fraud reviews on four real-life social media data

sets.

• Unsupervised fraudulent sentiment analysis: This thesis studies unsupervised

fraudulent sentiment analysis with the cold-start problem. It proposes an unsuper-

vised element representation, a social relation mining method, and an unsupervised

fraud detection method, which suits for cold-start fraud detection. Extensive ex-

periments show that the proposed unsupervised method (i) performs significantly

better in detecting fraud reviews on four real online review data sets, and (ii)

effectively infers new user representation in the cold-start problem with higher

quality, compared to three state-of-the-art and two baseline competitors.

1.5 Thesis Organization

To build a theory system for reliable sentiment analysis in social media, this thesis

explores three major challenges: high data complexity, low data quality, and uncertain

credibility. It is organized by two parts: (1) The first part presents general sentiment

analysis that address high data complexity and low data quality, including Chapter 3, 4

and 5; (2) The second part presents fraudulent sentiment analysis that address uncertain

credibility, as in Chapter 6. The summary of each chapter is as follows:

• Chapter 2: This chapter presents a survey of reliable sentiment analysis. Specif-

ically, it discusses the sentiment analysis paradigms, polarity-shift sentiment

analysis, non-IID sentiment analysis, short text sentiment analysis, and fraudu-

lent sentiment detection.

8



1.5. THESIS ORGANIZATION

• Chapter 3: This chapter studies the polarity shift problem in paragraph senti-

ment analysis. It proposes a MUlti-Scale and Hierarchical representation method,

MUSH, to learn a more accurate representation for polarity-shift-sensitive senti-

ment classification. The MUSH method adopts CNN with filters of different sizes to

reveal multi-scale sentiment atoms and utilizes hierarchical multi-line CNN-RNN

structures to jointlycapture polarity shift in both sentence and paragraph level.

• Chapter 4: This chapter focuses on modeling and capturing the complex couplings

and heterogeneity in paragraph sentiment analysis. It comprehensively models

couplings and heterogeneity by a novel representation framework. The framework

is instantiated as a Multi-scale and hiErarchical DEep neural network with an

Attention mechanism (MEDEA). The MEDEA method captures word/sentence cou-

plings by a multi-scale convolutional-recurrent (CNN-RNN) structure and reveals

the heterogeneous meanings of words/sentences in a paragraph by an attention

mechanism. To regulate the representation and avoid over-fitting, MEDEA further

hierarchically integrates these learned implicit features with explicit features,

which are designed by sentiment priors.

• Chapter 5: This chapter investigates the problems caused by low data quality

in short text sentiment analysis. Specifically, it tackles the noise and sparsity

problems in short text sentiment analysis by learning multi-grain noise-tolerant

patterns and then embedding the most significant patterns in a text as its repre-

sentation. To achieve this goal, this chapter proposes a bi-level multi-scale masked

CNN-RNN network to embed the most significant multi-grain noise-tolerant rela-

tions among words and characters in a text into a dense vector space.

• Chapter 6: This chapter studies fraudulent sentiment analysis in social media. It

presents two novel methods for cold-start fraud review detection in supervised and

unsupervised scenarios, respectively. The proposed methods embed user behavior

and social relations of existing users in an inferable user-item-review-rating vector

representation space. In this space, these methods can efficiently infer the most

probable representation of a new user by a closed-form solution. Accordingly, they

can effectively detect cold-start fraud reviews.

• Chapter 7: This chapter summarizes the thesis’s content and contributions. It

further discusses possible future avenues of research that can build to the work

done in this study.
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2.1 Introduction

Sentiment analysis has a long history and broad applications. Typical sentiment

analysis methods extract artificially designated features (e.g., bag-of-words, n-

gram, and word frequency) from textual data and feed the extracted features into

a classifier (e.g., naive Bayesian, decision tree, and random forest). Advanced sentiment

analysis methods learn sophisticated sentiment-related features by models (e.g., deep

neural networks) to achieve better sentiment analysis performance. However, most of

the existing sentiment analysis methods assume textual data is formal and general.

Accordingly, current methods may not be robust when analyzing sentiment in social

media where textual data are informal with complex relations, and even fraud.

This chapter presents a survey of works that are related to sentiment analysis in

social media. Specifically, it first discusses the general sentiment analysis methods,

including paragraph sentiment analysis methods and short text sentiment analysis

methods. Then, it further reviews the existing fraudulent sentiment analysis methods.

This survey provides in-depth motivations of the research problems to achieve the re-

search objectives and points out possible research avenues of reliable sentiment analysis

in social media.
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2.2 General Sentiment Analysis Methods

2.2.1 Hand-Craft Features for Sentiment Analysis

Typical sentiment analysis methods always explicitly extract or calculate hand-craft

features from textual data to identify sentiment polarity. These hand-craft features are

designed according to experts’ understanding of the critical information for sentiment

analysis. As a result, the sentiment analysis methods that adopt hand-craft features (e.g.,

word frequency, word or term presence, part-of-speech [POS] tagging, and sentiment

lexicon) are effective and efficient.

For instance, the methods proposed by Ku et al. (2006) and Moghaddam & Ester

(2010) involve word-frequency-based features, and the method proposed by Wiebe et al.

(1999) builds features based on word or term presence to reflect paragraph sentiment.

Other works (e.g., that in Liu & Zhang 2012) generate paragraph feature by picking

up certain words (e.g., ‘Goooooood’) that rarely appear in a corpus. These special words

often have a strong relation to sentiment polarity and have shown high effectiveness

for sentiment classification (Liu & Zhang 2012). Another commonly used hand-craft

feature is POS, which, for example, has been adopted by Xia & Zong (2011), Huang

et al. (2017). The POS feature is generated by POS tagging, which marks up a word

to a particular part of speech (e.g., noun, verb, adjective, or adverb) in a sentence. The

POS feature involves a prior that the same word with different POS may have different

meanings. As a result, it helps to recognize the heterogeneous meanings of a word.

Furthermore, the methods proposed by Zhu et al. (2014), Qian et al. (2017) directly apply

sentiment words as features, which assumes that sentiment words contribute mostly to

the sentiment polarity of a paragraph. In addition, the method proposed by Bespalov

et al. (2011) introduces the n-gram feature, which assumes that sentiment polarity also

can be contributed by phrases.

2.2.2 Homogeneous Sentiment Analysis

Most of the current sentiment analysis methods assume a text has homogeneous senti-

ment. Advanced methods first capture and embed some kinds of information in a text into

a vector representation space with the homogeneous sentiment assumption, and do the

sentiment classification in such representation space. Therefore, representation learning

is one of the most critical tasks in advanced sentiment analysis methods. According to the

embedded information, the current representation learning methods for homogeneous
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sentiment analysis can be generally classified into four categories: (1) context-aware rep-

resentation learning, (2) sequence-aware representation learning, (3) sentiment-aware

representation learning, and (4) sentiment-polarity-shift-aware representation learning.

These four categories are explained in detail in the following sections.

2.2.2.1 Context-Aware Representation Learning

Context-aware representation learning methods capture context information in textual

data, where context information is the relationships between nearby words, sentences,

and paragraphs. They embed this context information into a vector space to form context-

aware deep features. As shown in recent evidence (Mikolov et al. 2013, Le & Mikolov

2014), these context-aware deep features reflect the semantic meaning of words, sen-

tences, and paragraphs, and thus, they are effective for sentiment analysis.

To integrate the word-level contextual information, most of the existing methods

build context-aware paragraph features based on context-aware word features (e.g., the

word embedding generated by skip-gram and continue-bag-of-words). For example, the

methods proposed by Chen (2017) and Arora et al. (2017b) represent a paragraph by

summing the context-aware word features in the paragraph. Specifically, the method

proposed by Chen (2017) uses a uniform weight summation based on customized word

representations, and the method proposed by Arora et al. (2017b) learns a weighted

summation for any word representations.

Many methods directly capture sentence- and paragraph-level context. They leverage

different contextual information. For example, the method proposed by Le & Mikolov

(2014) captures the contextual information of a paragraph by considering the interactions

of words in the paragraph. Specifically, it requires the representation vectors of two para-

graphs located closer in the representation space if these two paragraphs contain more

number of similar words. Intrinsically, this method captures the contextual information

that reflects the topic of a paragraph. Recent methods, such as the method proposed

by Ren et al. (2016), explicitly incorporate the word-level context-aware representation

into paragraph-level context-aware representation. These methods perform much better

than other methods which consider only word-level or paragraph-level context. However,

most of them ignore the different functions and meanings of a word at different posi-

tions because a word may have diverse sentiment polarities at different positions. To

address this problem, the method proposed by Zhuang et al. (2017) further introduces

a bag-of-discriminative-words representation, which captures different meanings of a

word through word topic assignment.
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Although context-aware representation learning methods have shown their strengths

in modeling paragraph semantic meaning, they do not well capture the different sen-

timent polarities between words and paragraphs with similar context. For example,

the words ‘good’ and ‘bad’ have different sentiment polarities but may have similar

contexts (e.g., ‘good’ and ‘bad’ in ‘a good boy’ and ‘a bad boy’ share the same context:

‘a’ and ‘boy’), and thus, they may have similar vector representations generated by the

existing context-aware representation learning methods. As a result, it is hard for a

downstream sentiment classifier to distinguish the different sentiment polarities from

the context-aware representation of ‘good’ and ‘bad’. To solve this problem, a method

should carefully select a context to ensure words in the context will have the same

sentiment polarity.

2.2.2.2 Sequence-Aware Representation Learning

Sequence-aware representation learning methods capture sequential relations in a

paragraph to reveal sentiment polarity changes. They embed or integrate the captured

sequential relations into a representation vector to form a sequence-aware representation

for sentiment analysis.

A pioneering method proposed by Tang, Qin & Liu (2015) hierarchically captures

sequential information from sentence-level to paragraph-level. At sentence-level, this

method captures and embeds the sequential information of words in each sentence into

a vector by convolution neural networks or long-short-term memory (LSTM) networks.

At paragraph-level, it further embeds the sequential information of sentences into a

paragraph representation vector. Although this method shows advances in hierarchical

sequential information embedding, it may fail to precisely represent sentiment polarity

when the sentiment polarities between a word and n-gram are inconsistent, because

it splits a sentence as sequences of individual words. For example, ‘not bad’ has a

positive or neutral sentiment polarity, but the split word ‘bad’ has a negative sentiment

polarity. For another example, ‘a great deal of ’ has a neutral sentiment polarity, which

is different from that of the individual word ‘great.’ To address this issue, the method

proposed by Tang, Qin, Wei, Dong, Liu & Zhou (2015) further introduces an end-to-

end paragraph-segmentation framework for paragraph sentiment analysis. Instead

of dividing a paragraph into sequences of individual words, this method segments a

paragraph into several phrases and predicts the sentiment polarity of the paragraph

based on the sentiment polarities of the segmented phrases.

The above methods for sequence-aware representation are all based on recurrent
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neural network (RNN) with different structures. The RNN structure profoundly deter-

mines the sentiment analysis performance. Recently, many efforts have been made on

improving RNN structures to achieve better paragraph representation performance

for sentiment analysis. For example, a method revised the vanilla RNN as a batch-

normalized RNN to fix the vanishing gradient problem in the RNN training process

(Margarit & Subramaniam 2016). This method not only dramatically improves the train-

ing speed of the representation process but also significantly increases the sentiment

classification accuracy. Another method deals with the long-term dependency vanishing

problems caused by RNN (Lin et al. 2017). This method records the output states at each

RNN step and feeds all of the previous outputs to the next RNN step by introducing

a self-attentive mechanism that assigns a weight to each state for a better sentence

representation.

2.2.2.3 Sentiment-Aware Representation Learning

Sentiment-aware representation learning methods directly learn sentiment-related

features in a data-driven fashion. The features learned by sentiment-aware represen-

tation methods are more sensitive to a specific sentiment analysis task compare to

that learned by context-aware and sequence-aware representation learning methods.

Typically, sentiment-aware representation learning methods require to work with other

representation learning methods to enhance the generalization ability of the learned

features.

A preliminary method for sentiment-aware representation learning is proposed by

Maas et al. (2011). This method uses a probabilistic model to capture the contextual and

sentiment information in a paragraph jointly. It learns word representation vectors by

maximizing the posterior probability of the paragraph sentiment polarity, and extensive

experimental results have demonstrated its advances. Following this work, the method

proposed by Tang et al. (2016) jointly embeds paragraph-level sentiment label and word-

level contextual information into a representation vector to capture both sentiment and

contextual information. In contrast, the method proposed by Vo & Zhang (2015) first

embeds the sentiment information of a paragraph into a paragraph representation vector.

It then leverages the sentiment lexicon information in the paragraph to provide a direct

relationship between the paragraph and its sentiment polarity.
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2.2.2.4 Sentiment-Polarity-Shift Representation Learning

Polarity-shift refers to that the sentiment polarity is changing among a paragraph.

Polarity-shift significantly affects the sentiment of a paragraph, but it is hard to be

detected. Accordingly, effectively capturing and embedding polarity-shift in a paragraph

is critical for sentiment analysis.

The existing polarity-shift-aware paragraph embedding methods can be generally

classified into three categories. The first category adopts a term-counting approach

(Asghar et al. 2017), which represents a paragraph according to the total number of

positive and negative sentiment terms contained in the paragraph. The methods in this

category cannot accurately detect the sentiment polarity of a word if the word is near a

word that will cause polarity-shift. The second category uses a machine-learning-based

approach to recast a polarity-shift detection problem as a statistical classification task

(Li et al. 2010, Ikeda et al. 2010). The methods in this category first use a polarity-

shift classifier to detect the polarity-shift locations in a paragraph and then splits the

paragraph into non-polarity-shift parts and polarity-shift parts. After that, they train

different sentiment classifiers in different parts to alleviate the polarity-shift affections.

The third category combines term-counting and machine-learning-based methods and

shows superior performance (Kennedy & Inkpen 2006, Xia et al. 2016).

2.2.3 Heterogeneous Sentiment Analysis

Heterogeneous sentiment analysis methods have the hypothesis that the same text or

content may appear different sentiment in different contexts or be posted by different

subjects. They assume that hierarchical heterogeneity of text sentiment exists in social

media. Different methods focus the heterogeneity at different levels. Accordingly, the

existing heterogeneous sentiment analysis methods can be classified into text-level

heterogeneous sentiment analysis, human-level heterogeneous sentiment analysis, and

domain-level heterogeneous sentiment analysis.

2.2.3.1 Text-level Heterogeneous Sentiment Analysis

The text-level sentiment heterogeneity has three-folds of meaning: (1) different parts of a

text may have different sentiment polarities, (2) a word or a sentence may have different

sentiment polarities in different positions in a text, and (3) different words and sentences

have different contribution to the sentiment polarity of text. The text-level heterogeneous

sentiment analysis methods intend to capture these kinds of heterogeneity.
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To reveal the inconsistent sentiment polarities of different parts in text, Tang, Qin,

Wei, Dong, Liu & Zhou (2015) proposed a joint segmentation and classification framework

for paragraph sentiment analysis. In the first stage, this method segments paragraph

into several phrases and analyzes the sentiment polarities of these phrases. In the

second stage, it predicts the paragraph sentiment based on the sentiment polarities of all

phrases. Specifically, several candidate phrases are generated by a beam search based

generation model. The segment quality of these candidate phrases are then evaluated

by a segmentation ranking model. The phrases with top-K ranking values are selected

to make sentiment polarity classification for the paragraph in a voting procedure. The

goodness of this method is that it captures phrase-level sentiment, which is more accurate

than the word-level sentiment in a paragraph and considers the sentiment heterogeneity.

However, the method ignores the sequential information within and between phrases,

which reduces the phrase-level sentiment classification accuracy and limits the ability to

capture the phrase-level sentiment changing.

To capture the heterogeneous sentiment polarities of a word in different positions,

Zhuang et al. (2017) used a topic model to assign different topics for a word and proposed a

bag-of-discriminative-words representation method. This method assumes that different

word has different discriminative power on different topics. In this method, the word-

topic pairs with large discriminative power are selected through a discriminatively

objective-subjective latent Dirichlet allocation in a supervised fashion. The experimental

results demonstrate that this method outperforms its competitors. Intrinsically, the

superiority of this method is contributed by its ability to capture the heterogeneous

meaning of a word through a topic assignment. However, this method is lack of efficiency

when embedding a large number of paragraphs because of using Gibbs sampling, which

is time-consuming, to infer the topic assignment. Moreover, when embedding a new

paragraph, the inference process should be carried out again, which also costs lots of

time.

Similar to the work of Zhuang et al. (2017), Hai et al. (2017) proposed a probability

graphic model to assign the polarity for each word. This method assumes a word may

have different sentiment polarity in different aspects. Thus, it also assigns an aspect label

for each word to capture this heterogeneous sentiment distribution. Since this method

has a more sophisticated design to model the sentiment generation in a paragraph,

it shows significant performance improvement in the experiments. However, it treats

every word equally to make the same contribution to the final sentiment polarity of a

paragraph and disregards the order information of words due to a bag-of-words-based
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input. Another weakness of this method is that the number of aspects and the number of

aspect-level sentiment polarities should be manually assigned, which requires additional

expert knowledge or side information.

To tackle the heterogeneous contribution from different words, Lin et al. (2017)

proposed a novel RNN structure based on the self-attentive mechanism for sentiment

analysis. In this work, the model records the output states in RNN each step, and

feed all of them into the next stage. Meanwhile, the importance of each output state is

learned by considering its relation to text sentiment polarity and its link to other output

states. Intuitively, this method enhances the contribution from words that are highly

related to the sentiment polarity of text. Empirical results demonstrate the effectiveness

of considering such heterogeneous contributions. However, this method overlooks the

text-level heterogeneity that a word may have different sentiment polarities in different

positions in a text.

2.2.3.2 Human-level Heterogeneous Sentiment Analysis

Human-level heterogeneity is caused by the personalized sentiment behavior of users

in social media. The same text posted by several users may involve different sentiment.

Different from text-level heterogeneity, human-level heterogeneity is not reflected by the

text itself. Human-level heterogeneous sentiment analysis methods leverage the social

characteristics of users to enhance the analysis performance.

Jiang et al. (2011) focused on distinguishing the sentiment polarity of short text

posted in social media. For short text, the sentiment polarity is always ambiguous.

Jiang et al. (2011) enhanced the presentation of a short text by introducing (1) the

other text posted by the same user and (2) the replies of the text posted by other

users. Intrinsically, this approach adds additional text information to the short text

guided by social information. The experimental results show this approach dramatically

improves the performance of sentiment analysis. Although this method considers the

social information of a user, it is only used to complement the text. The sentiment analysis

results are still based on text mining, which loses the text-independent sentiment

information.

Different from Jiang et al. (2011), Tan et al. (2011) used social information, i.e.

homophily in social network, as the complement of text information for sentiment

analysis. The basic idea behind this work is that users that are linked may be more likely

to hold a similar sentiment. By forcing the linked user to share a similar sentiment, this

work captures the group sentiment preference of users. Compared with textual feature-
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based methods, this work leads to a statistically significant improvement in terms of

sentiment classification. The strength of this work is using inter-user relationships to

reflect human-level heterogeneity, which inducing performance lift. The weakness of it is

that this work ignores the user’s behavior that involves the text posted by the same user

in the past.

To capture the behavior and social relations of a user simultaneously in sentiment

analysis, Hu et al. (2013) proposed a method to incorporate these two kinds of information

into supervised sentiment analysis. Specifically, it transforms user-message matrix U
and user-user matrix F to sentiment consistency matrix Asc = U>×U and emotional

contagion matrix Aec = U> ×F×U. The sentiment consistency matrix reflects user

behavior. Asci j = 1 indicates that the i-th and j-th messages are posted by the same

user, and sentiments of the two messages are similar. The emotional contagion matrix

reflects the user-user similarity. Aeci j indicates that the author of the i-th message is a

friend of the author who wrote the j-th message, and sentiments of the two messages are

similar. The method combines Asc and Aec to calculate the Laplacian matrix that used in

sentiment learning objective function. Instead of jointly incorporating behavior and social

relations, this work also identified the social theories that exist in microblogging data,

which build a foundation for the following work on this topic. It should be noted that this

method only captures second-order relationships. For the higher-order relationships (e.g.,

the influence from the friends of a friend), this method does not reveal.

For higher-order relations, Tang, Nobata, Dong, Chang & Liu (2015) proposed a

propagation-based sentiment analysis method. This method using the propagation

process for sentiment analysis, which is intrinsically different from previously discussed

classification-based methods. It assumes the sentiment in social media can propagate

from one user to another and finally reflected in the posted text. To do the propagation,

this method first builds a graph/network that consists of three components. The first

is a microblog-microblog network Rtt based on social theories where Rtt
i j = 1 indicates

the sentiment polarity of the i-th and j-th microblog may be correlated. The second

is a word-word network Rww where Rww
i j = 1 indicates the i-th and j-th word may be

correlated. The last is the microblog-word bipartite graph Rtw where Rtw
i j denotes the

frequency of the j-th word in the i-th microblog. After building the network, the method

does the propagation based on the links and weights of the network. Through this

approach, they captured higher-order relations between users and words. In addition,

the method has another advantage that it can handle both labeled and unlabeled data,

which largely reduces the cost of data annotation in the pre-processing stage. Despite
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lots of advantages, this method needs a large amount of data for a robust analysis result.

It does not suit for small data analysis due to its basic assumption about sentiment

propagation.

2.2.4 Domain-level Heterogeneous Sentiment Analysis

The domain-level heterogeneity refers to the differences of sentiment in different domains,

which is widespread in social media. This heterogeneity is caused by some unique biases

and different backgrounds in each domain. Treat the sentiment in different domain

homogeneously will cause obvious inaccurate results. Although the difference exists,

consensus sentiment information is also shared by different domains. Leveraging this

common sentiment information will improve the analysis performance for the domains

with rare studying samples. The domain-level heterogeneous sentiment analysis methods

hold the hypothesis of such heterogeneity and intend to figure out the common and unique

cross-domain sentiment information. Current methods mainly make efforts through

three ways: (1) transforming a domain to another; (2) mapping heterogeneous domains to

a homogeneous space; and (3) distributed using intact information in different domains.

The method proposed by Pan et al. (2010) uses a labeled domain as training data for

sentiment analysis in other domains. The key idea is to adopt a clustering method to

align the words in different domains, which uses domain-independent words as a bridge.

It equals mapping words in an unlabeled domain to the words in the labeled domain.

In this way, only embedding in the labeled domain needs to be trained for sentiment

analysis. The pro of this method is that it links different domains by the word-level

similarity. However, the cons of it include: (1) clustering based on domain-independent

words is too weak to align different domains well; (2) embedding information is only

leveraged from a labeled domain, which causes losing richer information in unlabeled

domains; and (3) the text representation via this method is sentiment independent.

Instead of mapping a domain to another, the Liu et al. (2015) tried to extract common

features from different domains. They propose a semi-supervised method to combine

common and specific features of domains for topic-adaptive sentiment classification.

Similarly, the method proposed by Ganin et al. (2016) embeds different domains into

a common space, in which a sentiment classifier can be learned. In this work, neural

networks are learned as the functions to map different domains to a common space,

and the learning procedure is with an adversarial training strategy. The key point of

this idea is to learn the common space and sentiment classifier jointly. Specifically, two

classifiers with different tasks are trained simultaneously. A classifier is used to classify
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the sentiment polarity, while another classifier is trained to distinguish domains. The

overall objective of this method is to minimize the loss value of the former classifier

and maximize the loss value of the later one. In this way, the representation of text in

the common space is friendly to sentiment analysis, yet it is hard to identify domain

information. However, this method does not capture the sequential information of a

paragraph; thus, it is not sensitive to the polarity shift in text.

The method proposed by Fernández et al. (2016) has a similar idea to the method pro-

posed by Ganin et al. (2016). It also tries to map different domains into a common space.

However, this method does not couple the mapping function learning and sentiment

classifier learning together. Instead, it explicitly learns the mapping function according

to the heterogeneous distributions in different domains, and it pays more attention to

the highly predictive term that behaves similarly in different domains. This method

reveals the consensus information about distributions in different domains. However, it

assumes possible distributions of different domains. If real data does not fit any assumed

distributions, this method cannot leverage the sentiment information.

As can be seen, the above work either maps a domain to another or learns a common

space for all domains. However, both of these two kinds of method lose the intact

information for sentiment analysis. Specifically, the former loses the unique information

in the target domain, and the latter only remains a small piece of common subspace in

all domains. To make full use of information in different domains, some current methods,

such as the work of Wu & Huang (2016) and Wu et al. (2017), attempt to use a distributed

way to represent the cross-domain information. Typically, this kind of method learns

a similarity between the target domain and source domain and selectively applies the

source domain information according to its similarity to the target domain. The key

difference between each method is the way to learn the similarity between domains. Wu

& Huang (2016) constructs sentiment polarity relation graphs for each domain from

syntactic parsing results and learns the domain similarity according to the similarity

of the graphs. Wu et al. (2017) designs textual content-based domain similarity and

sentiment expression-based domain similarity. Both of these methods capture domain

relations in different views and leverage the information in all domains for sentiment

analysis in the target domain. However, how to determine the view that should be used

to measure domain similarity and how to integrate domain similarity from different

views are still open problems.

Another method that comprehensively captured cross-domain information is proposed

by Bollegala et al. (2016). This method constructs three objective functions to leverage (1)

21



CHAPTER 2. LITERATURE REVIEW

distributional properties of the common embedded space; (2) sentiment label constraints

in the source domain paragraph; and (3) geometric properties in the unlabeled paragraph

in all source and target domains. The experimental results demonstrate the superior

performance of this domain-level heterogeneous sentiment analysis method. However,

a shortage of this method is that doing the trade-off of importance is hard for its three

objectives. Bollegala et al. (2016) did not theoretically analyze and give a guide for the

weight setting for these three objectives. The bias for any part may have a significant

impact on the sentiment analysis result.

2.2.5 Short Text Sentiment Analysis

Recently, short text sentiment analysis has been attracting lots of attention because most

of the textual data on social media are short text. Sentiment analysis on short text has

more significant challenges than that on formal text. These challenges are mainly caused

by two characteristics of short text: noise and sparsity, where noise infers to informal

words and typos, and sparsity means the rare number of vocabularies in a text (because

of the short length limitation). On the one hand, noise prevents the word representation.

On the other hand, sparsity reduces text representation quality. Accordingly, sentiment

analysis methods are hard to capture sufficient high-quality information from a short

text to detect its sentiment polarity.

To tackle the noise problem in short text representation, the most widely used

method is filtering noises by looking up pre-defined noise sets. However, pre-defined

noise sets are fixed and cannot comprehensively cover noises. Recently, some advanced

learning methods have been proposed for the noise problem. For example, Dey et al.

(2016) propose a feature selection method to select noise-tolerant features from a set of

designated lexical, syntactic, semantic, and pragmatic features. These features include

character-level gram features, word-level gram features, part-of-speech (POS), named

entity features, word overlap features, phrase overlap features, subjectivity/objectivity

agreement feature, and close attachment of negations. De Boom et al. (2016) propose a

method that weighted sums word embeddings for a short text representation and adopts

a median-based loss function to reduce the effect of noises in the weight learning process.

However, the summation of word embeddings ignores the ordinal of the words, which

may also determine the semantic meaning of the short text. Catering to the topic model,

Li, Wang, Zhang, Li, Chi & Ouyang (2018) model the noises in a short text by a common

distribution to filter out the noise influences. However, this method may equally treat

the noises that have different meanings.
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2.3 Fraudulent Sentiment Analysis Methods

Fraudulent sentiment analysis is a task that intends to distinguish fake or spam opinion.

It is critical in social media sentiment analysis because a large proportion of opinions

in social media is unreliable. The existing methods leverage different information for

fraudulent sentiment analysis in social media. According to the leveraged information,

these methods can be categorized into three groups: (1) text-content-based method,

(2) rating-distribution-based method, and (3) social-relation-based method. Recently,

fraudulent sentiment analysis methods begin to focus on another challenging task that

is to detect fake opinions when facing the cold-start problem (i.e., a new user post his/her

first review). Effectively detecting cold-start fraudulent sentiment prevents opinion

manipulation at the very beginning stage and thus can primarily reduce fraudulent

sentiment in social media.

2.3.1 Text-Content-Based Fraudulent Sentiment Analysis

Text-content-based fraudulent sentiment analysis methods determine fraud opinions

from textual features. These methods either introduce designated fraud-sensitive fea-

tures for fraudulent sentiment detection or propose fraud-oriented sentiment analysis

procedures.

Jindal & Liu (2008) pioneer text-content-based fraudulent sentiment analysis. They

leverage duplicated and nearly duplicated information in social media to identify fraud-

ulent sentiment. Specifically, they identify the following reviews as fraud reviews: (1)

duplicated reviews from different users on the same product, (2) duplicated reviews from

the same user on different products, and (3) duplicated reviews from different users on

different products. Furthermore, they use the identified reviews that contain fraudulent

sentiment as training samples to train a fraudulent sentiment classifier, and then, they

check the other reviews by the trained classifier. Although duplicated reviews are with

high probability to contain fraudulent sentiment, they do not cover all fraud reviews (e.g.,

the review wrote by a user but with spam opinion). As a result, the method proposed by

Jindal & Liu (2008) achieves high precision but low recall.

Benevenuto et al. (2010) intensively analyzed Twitter samples to discover textual

features other than duplicated reviews for fraudulent sentiment analysis. Firstly, they

manually classified a set of users into spammers and non-spammers according to their

observation and understanding, and they assign the reviews posted by the spammers as

fraud reviews that contain fake sentiment opinion. Then, they designed many textual
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features to studied the relations between these features and the assigned fraud reviews.

Meanwhile, they investigated the relations between user attributes (e.g., age, gender,

and occupation) and the assigned fraud reviews. In the above analysis, they found some

patterns that exist in the text content of fraud reviews. For example, fraud reviews

contain a much higher fraction of URLs compared to the other reviews. Lastly, they

transformed the fraud-related patterns to features and demonstrated these features

could enable a better fraudulent sentiment analysis compared to the methods that

only consider duplicated reviews. However, these features are all designed by empirical

observation in a single domain (i.e., Twitter). Consequently, the generalisability of these

features is weak and may not fit fraudulent sentiment analysis in other domains.

Feng et al. (2012) introduced general features to tackle the generalisability problem.

These general features include word features (e.g., bag-of-words), sallow syntax features

(e.g., POS), and deep syntax features generated by probabilistic context-free grammar

(CFG) parse trees. Specifically, the probabilistic CFG parse trees generate deep syntax

features following four rules: (1) unlexicalized production rules, (2) lexicalized production

rules, (3) unlexicalized production rules combined with the grandparent node, and (4)

lexicalized production rules (i.e., all production rules) combined with the grandparent

node. Feng et al. (2012) evaluated the performance of these features on data sets from

different domains. The evaluation results demonstrate that the introduced general

features consistently improve fraudulent sentiment analysis performance in all domains.

Instead of designing fraud-sensitive features, Ott et al. (2011) proposed a novel

learning procedure catering to the fraudulent sentiment analysis. This method divides

a fraudulent sentiment analysis into three subtasks. In the first subtask, this method

categorizes text content as deceptive or truthful by an n-gram-based classifier. In the

second subtask, it detects psycholinguistic deception, assuming deceptive statements

would exemplify the psychological effects of lying (e.g., negative emotion increasing

and psychological distancing). In the last task, this method identifies the genre of text

content. Specifically, it treats deceptive and truthful writing as sub-genres of imaginative

and informative writing, respectively. The above three tasks complement each other

for fraudulent sentiment analysis. By jointly performing these tasks, this method can

comprehensively detect fraudulent sentiment.

Although text-content-based methods capture the fraud information reflected by text

content, they ignore other more abundant information (e.g., user behavior and rating

outliers) for fraudulent sentiment analysis. Furthermore, most of these methods have a

high computational cost to extract textual features and classify fraud texts. As a result,
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they may not be suitable for real-time applications with a large amount of data. The last

but not the least, text-content-based methods cannot distinguish fraudulent sentiment

of the same text content for different products. For example, a positive review of an

excellent product is trustful. However, the same review of an inferior product may be

fake. Consequently, methods based only on text content cannot identify whether the

sentiment of this review is fraud or not. To tackle the above problems, more recent

work focuses on other social media information other than text content for fraudulent

sentiment analysis.

2.3.2 Rating-Distribution-Based Fraudulent Sentiment
Analysis

The existing rating-distribution-based fraudulent sentiment analysis approaches lever-

age the reviewing behavior reflected by rating distributions to identify fraudulent sen-

timent. Compared with the text-content-based method, the rating-distribution-based

method is more efficient and involves more abundant information from user behavior.

The method proposed by Lim et al. (2010) detects spammers according to the following

patterns: (1) a group of spammers usually manipulate the opinions of specific products

collaboratively, and (2) their rating distributions always deviated from honest reviewers.

This method adopts a scoring strategy to evaluate the suspicious degree of each reviewer.

Under the scoring strategy, this method assigns very similar scores to spammers, which

have very different scores from that of honest reviews. Lim et al. (2010) fed the reviews

that have a high suspicious degree into a commercial spammer detection software

to verify the effectiveness of the proposed suspicious spammer scoring strategy. The

experimental results demonstrate that this scoring strategy is precise in identifying

spammers. Furthermore, adopting this scoring strategy avoids a high computational

cost because this strategy does not need to extract features from natural review text.

However, this method overlooks textual information, which may also contribute to

fraudulent sentiment analysis.

The method proposed by Jindal et al. (2010) detects fraudulent sentiment by identi-

fying unusual rating patterns. It defines several expectation rules according to rating

distribution and formulates the unusual rating pattern identification problem as an

unexpected rule detection task. This method is generalizable in all domains because it

depends only on domain-independent rating patterns.

Recent rating-distribution-based fraudulent sentiment analysis approaches assume
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that fraudsters post fake reviews in a short time to increase or damage the popularity of

their target product rapidly. In other words, they assume fraudulent sentiment posting

is always bursty and may only occur in specific time intervals. Under this assumption,

these methods build different models to detect and analyze fraudulent sentiment. For

example, the method proposed by Xie et al. (2012) detects the time windows that contain

fraudulent sentiment posting activities by a hierarchical scanning strategy: it first

identifies a large time window to smooth possible noise changes along with time series,

and it then scales down the window size to quickly locate the suspicious reviews. For

another example, the method proposed by Günnemann et al. (2014) detects the time

intervals where abnormal rating behaviors may occur.

2.3.3 Social-Relation-Based Fraudulent Sentiment Analysis

Social-relation-based fraudulent sentiment analysis methods utilize relational informa-

tion between users and products in social media to identify fraud opinion. Typically,

they create a graph structure to abstract relational information. In the graph structure,

nodes can represent users and products, and links can indicate relations introduced by

reviews and ratings. Compared with text-content-based and rating-distribution-based

methods, social-relation-based methods capture more comprehensive information for a

more accurate fraudulent sentiment analysis.

The method proposed by Jiang et al. (2014) automatically spots fraud users based

on connectivity patterns of nodes in a directed user-product graph. Specifically, it first

extracts five features for each node: (1) out-degree and in-degree, (2) hubness and

authoritativeness score, (3) betweenness centrality, (4) in-weight and out-weight (if the

graph is a weighted graph), and (5) values in the singular vector corresponding to a node.

It then calculates a normality value for each feature and concatenates them to form a

feature space. Lastly, it adopts a distance-based method on the feature space to spot

fraud users.

Hooi et al. (2016) proposed another method to detect fraud opinions based on a

user-product graph. In contrast to the distance (or relative positions) used by Jiang

et al. (2014), this method focuses on the dense subgraph (a subgraph that has a much

higher link density compared with other subgraphs) in a user-product graph by assuming

fraudsters would collaborate to manipulate social opinions. By adopting a designated

density evaluation metric, this method can effectively detect fraud opinions. Hooi et al.

(2016) also demonstrated that their proposed method could effectively and efficiently
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detect fraudulent sentiment even a review is with three types of camouflage: random

camouflage, biased camouflage, and camouflage by hijacked accounts.

The above discussed social-relation-based methods leverage only relational informa-

tion yet ignore other information (e.g., text content and rating) in social media. As a

result, they may have a high detection precision but a low detection coverage rate. To

fill this gap, Rayana & Akoglu (2015) bridged relational information and other meta-

information in social media by a unified framework. This unified framework models

relational information as a user-review-product network, where each review is a link

that connects the nodes of its corresponding user and product. It also embeds other meta-

information into a feature vector for all users, reviews, and products. After the modeling

and embedding, this framework identifies fraudulent sentiment by an unsupervised

learning technique that integrates the network and feature vector.

Wang, Liu, He & Zhao (2016) made a further effort by learning a vector representa-

tion that jointly embeds relational information and text content. Initially, the method

represents relational information in terms of eleven factors, such as time, locations, social

relations, contact information. Meanwhile, it represents text content by the bi-gram

feature. Then, the method collectively learn the final vector representation from the

initial representation of both relational information and text content. Lastly, the method

can precisely detect fraudulent sentiment based on the final vector representation.

2.3.4 Cold-Start Fraudulent Sentiment Analysis

Although recent years have seen significant progress made in fraudulent sentiment

analysis, detecting fraud reviews with the cold-start problem is still a very challenging

task and has rarely been studied. Specifically, the new users in the cold-start problem

pose the two significant challenges below. (i) A new user does not have historical informa-

tion (You et al. 2018). However, most of existing fraudulent sentiment analysis methods

require the historical information to analyze user behavior (Ye & Akoglu 2015, Rayana

& Akoglu 2015). (ii) A new user does not show any clear social relation, which invalids

the detection of potential collaborative fraud review manipulation (Hooi et al. 2016, Liu

et al. 2017).

Limited efforts have been paid on the cold-start problem in fraudulent sentiment

analysis. The primary solutions for cold-start fraudulent sentiment analysis are review

content-based methods, such as (Lim et al. 2010, Li et al. 2011, Ott et al. 2011, Mukherjee,

Venkataraman, Liu & Glance 2013, Xu et al. 2013, Li et al. 2015, Hovy 2016). These

methods identify spam patterns, such as outlier review length and the large percentage
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of capital words, in the review content. Consequently, they avoid the adverse effects

brought by the lack of historical information and social relations in the cold-start case.

However, the above methods focus only on the review content but overlook fraud-related

information, such as rating distribution and social relation.

Recently, Wang, Liu & Zhao (2017) embeds the relation between existing users, items,

and reviews into the review representation to capture information in addition to review

content. To achieve that, they assume a user’s behavior will determine the review content

written by the user for an item. Subsequently, they build a learning-objective function

that the representation vector of a user plus the representation vector of an item should

equal to the representation vector of the review written by the user for the item. Then,

they obtain the review representation vector that embeds the relation between existing

users, items, and reviews by solving the learning-objective function. Finally, they feed the

review representation vector into a support vector machine (SVM; Cortes & Vapnik 1995)

to analyze fraudulent sentiment. This process makes significant progress in cold-start

fraudulent sentiment analysis. Following Wang, Liu & Zhao (2017), You et al. (2018)

further leverage domain knowledge and the attribute information of users and items

to achieve a more informative representation. They demonstrate that their proposed

method can achieve state-of-the-art performance when attribute information is available,

especially when items are from different domains.

Although the above method can alleviate the cold-start problem, they are insufficient

when dealing with real-life fraud reviews (Mukherjee, Venkataraman, Liu & Glance

2013). The rationale is that all of them determine fraudulent sentiment based on only

review representation. As a result, they may fail to distinguish fraudulent reviews from

honest reviews when these reviews have the same content, as analyzed in Chapter 2.3.1.
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POLARITY-SHIFT SENTIMENT ANALYSIS

3.1 Introduction

Sentiment analysis aims to determine the polarity of a given text. As discussed

in Section 2.2, one of the most popular and efficient ways for sentiment analysis

is the machine-learning-based approach. This kind of approach not only can

significantly reduce the hand-work cost of building sentiment lexicon but also can

capture more complex representation structures compared with that based on lexicon

rules. A fundamental task of the machine-learning-based analysis is to represent a

paragraph as a vector in a suitable vector space, in which a classifier can effectively

analyze sentiment polarity.

Currently, lots of paragraph representation methods for sentiment analysis have

been proposed to reveal complex information in a paragraph. These relationships are

finally embedded into a vector space to represent the meaning of the paragraph for

sentiment analysis. Although a variety of relationships have been studied, three kinds

of relationships attracted most of the focus. (1) The context information (context refers

to the content surrounded a word, sentence, and paragraph): several context-aware

representation methods have been proposed, such as the methods proposed by Le &

Mikolov (2014), Ren et al. (2016), Chen (2017), Arora et al. (2017b), Zhuang et al. (2017).

(2) The sequential relationship, which contains in the order of word and sentence in a

paragraph: the sequential-aware method, including these proposed by Tang, Qin & Liu
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(2015), Tang, Qin, Wei, Dong, Liu & Zhou (2015), Margarit & Subramaniam (2016), Lin

et al. (2017), reveals the sequential relationships that can capture different meanings

of a word and sentence in different places. (3) The relationship between a paragraph

and sentiment, which is the most direct relationship for the sentiment analysis task: the

representative sentiment-aware methods include these proposed by Maas et al. (2011),

Vo & Zhang (2015), Xia et al. (2015), Tang et al. (2016), Hai et al. (2017).

Although significant progress has been made in paragraph representation, most of the

current methods overlook sentiment-polarity-shift, which means the sentiment polarity is

slightly or extremely changed by some indicator words or expressions. Sentiment-polarity-

shift is very important for sentiment classification, but it is hard to be captured. For

example, negative words, such as not, can change the sentiment polarity of words, such as

happy, from positive to negative. Similarly, the turning words, such as however, will cause

a sentiment polarity turnover. Obviously, a representation method that ignores sentiment-

polarity-shift may deviate the sentiment polarity of a paragraph in its representation.

A typical example of this method is the bag-of-words representation, which presents

a paragraph as the frequency of each word. The bag-of-words representation provides

the proportion and frequency of emotional words for a downstream sentiment classifier.

However, when the negative words (e.g., not) or turning words (e.g., however) exist, the

bag-of-words representation cannot indicate the position of such words. As a result, it

enabled classifier may fail to distinguish different sentiment polarity.

Recently, limited paragraph representation methods have been proposed for polarity-

shift-sensitive sentiment classification. These limited efforts for polarity-shift-sensitive

paragraph representation belong to three paradigms: (1) counting sentiment words with

reversing human-labeled polarity-shifted words, (e.g., the method proposed by Asghar

et al. 2017); (2) splitting a paragraph by machine-learning-determined polarity-shifted

words, and then, embedding the separated paragraph (e.g., the methods proposed by Li

et al. 2010 and Ikeda et al. 2010); (3) the combination of the previous two approaches

(e.g., the methods proposed by Kennedy & Inkpen 2006 and Xia et al. 2016). However,

these methods may fail when facing the following challenges: (1) polarity-shift is with

multiple forms; and (2) polarity-shift exists in both sentence- and paragraph-level with

complex long-term dependence. For the first challenge, polarity-shift may be caused by

multiple forms, including the explicit negative words, explicit turning words, implicit

tone, and implicit context. It is hard for the existing methods to capture these explicit

and implicit polarity-shift factors simultaneously. For the second challenge, the existing

polarity-shift-sensitive paragraph representation methods do not model the hierarchical
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and sequential structure of a paragraph. Consequently, they are difficult to embed

polarity-shift correctly.

To address the above issues, this chapter studies the nature of paragraph polarity-

shift and proposes a multi-scale and hierarchical paragraph representation method

(MUSH) for polarity-shift-sensitive sentiment analysis. The MUSH method learns a

more accurate representation of a paragraph with compared to the existing methods.

In particular, it leverages and embeds sentiment information from sentence-level to

paragraph-level by a hierarchical model. At sentence-level, MUSH adopts convolutional

neural networks (CNN) with multi-size filters to reveal multi-scale sentiment atoms

based on word embedding. Upon these sentiment atoms, a bidirectional gated recurrent

neural network (RNN) is used to capture the inter-atoms interactions. At paragraph-level,

to reveal the polarity-shift among sentences, a similar multi-scale CNN-RNN structure is

utilized. This structure can recognize the multi-scale sentence-level sentiment segment

by CNN and can exploit their dependence by RNN. As a result, the representation

ability of MUSH is largely lifted by simultaneously disentangling the multi-forms and

hierarchical polarity-shift compared with the existing methods. Meanwhile, by adopting

the hierarchical model, MUSH also captures contextual, sequential, and sentiment

information in a paragraph, which is essential for sentiment analysis, as analyzed in

Section 2.2.

The key contributions made of this chapter include the following:

• Learning polarity-shift with multiple forms: The CNN with multi-size filters is

learned to reveal the multi-scale sentiment atoms and sentiment segments. This

learning model leverages multi-scale local information around a word or a sentence;

thus, it comprehensively reveals the polarity-shift with different forms.

• Learning hierarchical polarity-shift with complex dependence: A hierarchical CNN-

RNN structure is proposed to capture the polarity-shift at both sentence-level and

paragraph-level. The local dependence is learned by multi-layer CNN, and the long-

term dependence is captured by bidirectional gated RNN upon the CNN learned

abstractions. The co-working of CNN and RNN in a hierarchical way effectively

disentangles complex polarity-shifts and embeds them into a vector space.

• An end-to-end paragraph-embedding model for polarity-shift-sensitive sentiment
classification: A model is proposed to learn an end-to-end paragraph embedding

that not only considers contextual, sequential, and sentiment information but also

captures polarity-shift, catering to complex real-world sentiment-analysis tasks.
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This chapter compares MUSH with state-of-the-art paragraph-embedding methods

on four large real-world data sets with various data characteristics. The experimental

results demonstrate that MUSH significantly improves the sentiment-classification

performance, especially for the paragraph with polarity-shift.

The rest of this chapter is organized as follows: Section 3.2 systematically analyzes

the sentiment-polarity-shift characteristics. Section 3.3 gives the details of the proposed

model MUSH. Section 3.4 illustrates the performance of MUSH by comparing it with

state-of-the-art sentiment analysis methods in real-world data sets. Section 3.5 concludes

this paper and discusses the further challenges and opportunities.

3.2 Sentiment-Polarity-shift Characteristics

This chapter mainly considers two primary characteristics of sentiment-polarity-shift

that bring significant challenges for paragraph representation: (1) polarity-shift is with

multiple forms, and (2) polarity-shift hierarchically exists in a paragraph. This section

analyzes these two characteristics separately.

3.2.1 The Multiple Forms of Polarity-Shift

Polarity-shift has multiple forms that are caused by different factors, including explicit
indicators and implicit descriptions. The explicit indicators are the words or terms that

can cause a consistent or contrary polarity change. Typical explicit indicators include

negative words and conjugation words. For example, the negative word ‘not’ is an explicit

indicator. The positive sentiment polarity in ‘a good product’ will shift to the negative

sentiment polarity if the explicit indicator ‘not’ is added (i.e., ‘not a good product’). In

contrast to the explicit indicators, implicit descriptions do not involve any indicator in a

paragraph. They change the sentiment polarity by a sequential combination of specific

words or sentences. The following sentence gives an example of polarity-shift caused

by implicit descriptions. ‘Yes, she is so beautiful that even the pockmarks on her face

are shining brightly.’ The sentiment polarity in this sentence changes from positive to

negative by the combination of ‘beautiful’ and ‘pockmarks are shining brightly.’

Although current efforts have tried to capture the explicit indicators, most of them

fail to capture the explicit indicators and implicit descriptions simultaneously. As a

result, they may obtain an incorrect sentiment of a paragraph when the paragraph has

implicit descriptions that cause polarity-shift. This chapter proposes MUSH to solve this
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problem. The MUSH method jointly captures explicit indicators and implicit descriptions

by a CNN-RNN structure. Accordingly, it can recognize multi-form polarity-shifts for

sentiment analysis.

3.2.2 The Hierarchy of Polarity-Shift with Long-Term
Dependence

Polarity-shift hierarchically exits in a paragraph from sentence-level (e.g., a negative

word changes the sentiment polarity of its followed word, as discussed in Section 3.2.1)

to paragraph-level (e.g., a transition sentence may change the sentiment polarity of its

above sentence; ‘Overall, I think this might be a good start for German food, but I prob

wouldnt say its the best. However, if you’re in the area and wanted to give German food a

try, this place is decent.’). This hierarchy brings two significant challenges for sentiment

analysis. The first challenge is that the sentiment polarity of a paragraph is hard to be

recognized. This hardness exits because the sentiment polarity is determined by the

interactions of polarity-shifts within and between sentences. The second challenge is

that the long-term polarity-shift dependence of words or sentences is hard to be captured.

For example, a word at the beginning of a sentence may shift the polarity of another

word at the end of the sentence; however, it is hard to determine which words have this

dependence. The above two challenges caused by hierarchical polarity-shifts prevent a

robust sentiment analysis.

This chapter proposes MUSH to tackle these challenges. The MUSH method disen-

tangles intra-level and inter-level polarity-shifts and their interactions. Consequently, it

provides an in-depth understanding of a paragraph for robust sentiment analysis.

3.3 Multi-Scale and Hierarchical Network for
Polarity-Shift Sentiment Analysis

This chapter proposes a multi-scale and hierarchical embedding method, MUSH, for

polarity-shift sentiment analysis. The structure of MUSH is shown in Figure 3.1. The

primary structure of MUSH is a hierarchical neural network that consists of sentence-

level and paragraph-level embedding modules, each of which is a multi-scale CNN-RNN

structure. The sentence-level embedding module captures the contextual information,

sequential information, and multi-form sentence-level polarity-shifts. The paragraph-

level embedding module reveals the sentiment segments and multi-form paragraph-level
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polarity-shifts. Accordingly, MUSH preserves the distribution properties of a paragraph

with explicit polarity-shift modeling. The MUSH method learns a paragraph representa-

tion through an end-to-end training process guided by a specific sentiment classification

task to further capture the sentiment information. It then feeds the learned paragraph

representation into the well-trained sentiment classifier for robust sentiment analysis.

Paragraph

Sentence

Paragraph-Level 
Embedding Module

Sentiment 
Classifier

Sentiment 
Polarity

Sentence-Level  
Embedding Module

MUSH

Figure 3.1: The MUSH Structure: The primary structure of MUSH is a multi-scale and
hierarchical neural network that consists of two modules (i.e., sentence-level embedding
module and paragraph-level embedding module). The MUSH method learns paragraph
representation for polarity-shift-sensitive classification through an end-to-end training
process guided by a specific task.

3.3.1 Sentence-Level Embedding Module

The sentience-level embedding module learns the word embedding function ew and

sentence embedding function es. The structure of this module is shown in Figure 3.2. The

first layer of this module is a word embedding layer. This word embedding layer should
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be pre-trained by an unsupervised method that captures word contextual information,

such as skip-gram Mikolov et al. (2013), to generate context-based word representation.

Although the context-based word representation may not provide meaningful information

for sentiment polarity discrimination, it reflects the local structures in a paragraph that

contributes to the generalization ability of the final paragraph representation. After

the first layer, MUSH adopts CNN layers with multi-size filters to capture multi-scale

sentiment atoms. The CNN layers reveal multi-scale local patterns in a sentence. These

multi-scale local patterns are similar to the n-gram features used by traditional NLP

methods. However, they have higher utility to the final task compared to n-gram features

because these patterns are driven by a sentiment analysis task while n-gram features are

not all related to sentiment analysis. After each CNN layer, MUSH uses a bidirectional

gated RNN layer to leverage the dependence of the CNN learned sentiment atoms.

Accordingly, different bidirectional gated RNNs capture polarity-shift in different scales.

Finally, MUSH merges the outputs of RNN layers by fully connected layers, which reveal

the relationships among multi-scale polarities.

3.3.2 Paragraph-Level Embedding Module

The paragraph-level embedding module learns the paragraph embedding function ed.

The structure of this module is shown in Fig 3.3. In this module, MUSH adopts a

CNN-RNN network that has the same structure of the CNN-RNN network used in the

sentence-level embedding module. However, these CNN-RNN networks capture different

information. Specifically, in the paragraph-level embedding module, the multi-scale

CNN layers capture sentiment segments in a paragraph, which reflect the multi-scale

local sentence polarity dependencies. Then, MUSH adopts a bidirectional gated RNN to

capture the polarity-shift in the CNN captured sentiment segments. The rationale for the

adoption of the CNN-RNN network is as follows. Since CNN suits for discovering local

patterns with fixed receive filed, MUSH adopts CNN with multi-size filters to capture

information in different receive fields that complement each other. Considering RNN can

capture sequential information but does not suit for capturing long-term dependencies,

MUSH decomposes a paragraph into hierarchical parts to cut down the length of a

long sequence. By this means, MUSH effectively presents the sentiment polarity of a

paragraph by utilizing the language structure of a paragraph and the natural properties

of polarity-shifts.
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Figure 3.2: The Sentence-level Embedding Module Structure: The first layer of this
module is a word embedding layer. This word embedding layer then connects to several
CNN layers with multiple filter sizes. Each of these CNN layers follows a bidirectional
gated RNN layer. The outputs of these bidirectional gated RNN layers are merged by
fully connected layers to form a sentence representation.

3.4 Experiments and Evaluation of Multi-Scale and
Hierarchical Network

The experiments evaluate the sentiment analysis performance of MUSH comparing with

five state-of-the-art methods and eight baseline methods on four large real-world data

sets.
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Figure 3.3: The Paragraph-level Embedding Module Structure: The CNN layers with
multiple filter sizes followed by bidirectional gated RNN layers are used to capture
multi-scale polarity-shift. The fully connected layers merge the outputs of RNN layers to
form a paragraph representation.

3.4.1 Data sets

The data sets used in the experiments include IMDB movie review, Yelp 2013, Yelp 2014,

and Yelp 2015. These data sets are widely used as benchmarks to evaluate sentiment

classification performance.

The first data set, IMDB movie review, was collected by Diao et al. (2014). It involves

348,415 movie reviews with sentiment rating levels ranging from 1 to 10. The Yelp
2013, Yelp 2014, and Yelp 2015 data sets are provided by Yelp challenge in 2013, 2014,

2015, respectively. They contain public hotels and restaurants comments with 335,018,

1,125,457, and 1,569,264 reviews in each year with rating levels ranging from 1 to 5.

The details of these four data sets are shown in Table 3.1.
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Table 3.1: Characteristics of Data Sets in the Experiments: #v refers to the number of
vocabulary, #s and #w refers to the number of sentences and words, respectively.

data set #class #reviews average #s max #s average #w max #w #v

IMDB 10 348,415 14.0 1,484 325.6 2,802 115,831

Yelp 2013 5 335,018 8.9 151 151.6 1,184 211,245

Yelp 2014 5 1,125,457 9.2 151 156.9 1,199 476,191

Yelp 2015 5 1,569,264 9.0 151 151.9 1,199 612,636

3.4.2 Experimental Settings

3.4.2.1 Comparison Methods

The experiments compare MUSH with four baseline methods and three state-of-the-art

methods to evaluate MUSH performance. The baseline methods include bog-of-words

(BOW), bag-of-words with term frequency-inverse document frequency (BOW-TFIDF),

ngram, and ngram with term frequency-inverse document frequency (ngram-TFIDF). The

features generated by these methods are fed into a logistic regression to form sentiment

classifiers. The state-of-the-art embedding methods and their variants include:

• SentCNN (Kim 2014). This method captures neighbourhood relationships among

words by feeding word embedding into CNN. According to the trainability of the

word embedding, sentCNN derives four variants: sentCNN-random, sentCNN-
static, sentCNN-nonstatic and sentCNN-multi. SentCNN-random uses a random

vector to embed each word. SentCNN-static, sentCNN-nonstatic and sentCNN-
multi uses the skip-gram method (Mikolov et al. 2013) for word embedding. While

sentCNN-static fixes the word embedding, sent-nonStatic dynamically adjusts the

word embedding when training CNN. In contrast, sentCNN-multi uses both static

and dynamic word embedding to learn text representation.

• GateRNN (Tang, Qin & Liu 2015). GateRNN learns inter-sentence relationships

based on sentence embedding via the recurrent neural network with gated recur-

rent units. Different sentence embedding models, i.e. CNN and LSTM, induce two

gateRNN variants: gateRNN-CNN and gateRNN-LSTM.

• HNATT (Yang et al. 2016). HNATT integrates word and sentence-level sequential

characteristics through a hierarchical network. Different integrating methods

induce three HNATT variants: HNATT-ATT, HNATT-AVG and HNATT-MAX.

HNATT-ATT uses attention mechanism to weighted sum words and sentences
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embedding. HNATT-AVG and HNATT-MAX adopt the averaged and max value of

words/sentences embedding, respectively.

3.4.2.2 Data Preprocessing

The pre-processing method for a paragraph is following the setting in the work of Yang

et al. (2016). Stanford’s CoreNLP (Manning et al. 2014) is used to split a paragraph into

sentences and tokenize each sentence. The word embedding is initially set according to

the pre-training via the skip-gram model (Mikolov et al. 2013).

3.4.2.3 Neural-Network Implementation

In the experiments, the word embedding dimension is set as 100. Regarding MUSH,

the CNN with 2×100 and 3×100 filter sizes are used to capture the 2-gram and 3-

gram features. In the sentence-level embedding module, the number of filters in CNN

layers, the number of gated recurrent units (GRU), and the number of nodes in the fully-

connected layer is set as 32, 64, and 64, respectively. In the paragraph-level embedding

module, these settings are 64, 128 and 128, respectively. A single layer feed-forward

neural network (SLFN) with softmax is used as the sentiment classifier. In the training

process, the batch normalization is used after every layer, and the dropout with keeping

probability 0.5 is adopted after fully connected layers. We set the batch size as 64 and

use Adam algorithm (Kingma & Ba 2014) to optimize the MUSH.

3.4.3 Evaluation on Sentiment Classification Performance
Enabled by Multi-Scale and Hierarchical Network

This experiment compares the sentiment classification performance enabled by MUSH

with that enabled by baseline and state-of-the-art methods and their variants that are

discussed in Section 3.4.2. The sentiment classification results on different data sets are

shown in Table 3.2 with respect to accuracy (%). In Table 3.2, the best result for each

data set is shown in boldface.

As can be seen in Table 3.2, MUSH achieves the best results in all four data sets.

The performance lift is mainly benefited by (1) hierarchical modeling the paragraph,

and (2) capturing polarity-shift. From the results, MUSH is significantly better than all

competitors instead of HNATT. It is because HNATT is also a hierarchical model that

shares the same strengths as MUSH. Besides, HNATT uses the attention mechanism

to capture critical information in a paragraph. Accordingly, HNATT can also focus
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Table 3.2: Sentiment Classification Accuracy of Different Methods

Methods IMDB Yelp 2013 Yelp 2014 Yelp 2015

BOW 15.5 20.2 29.4 31.8

BOW-TFIDF 21.3 31.6 36.0 38.9

ngram 25.1 36.6 41.3 44.5

ngram-TFIDF 27.3 39.1 43.2 45.7

sentCNN-random 29.4 55.6 57.9 58.9

sentCNN-static 29.2 53.5 58.2 59.2

sentCNN-nonstatic 24.6 47.1 52.6 52.2

sentCNN-multi 29.4 53.3 58.3 58.7

gateRNN-CNN 40.6 61.4 62.7 63.2

gateRNN-LSTM 41.7 63.5 66.9 67.8

HNATT-ATT 42.5 63.2 67.3 68.1

HNATT-AVG 42.2 63.8 66.8 67.7

HNATT-MAX 42.9 63.7 66.8 68.0

MUSH 43.2 64.3 67.5 68.9

on polarity-shift indicators to some extent. However, MUSH adopts a direct way to

model and capture polarity-shift. It provides a better understanding of polarity-shift

complexities. Therefore, MUSH gets a better embedding performance than HNATT.

3.4.4 Evaluation on Polarity-Shift Capturing of Multi-Scale and
Hierarchical Network

This experiment evaluates the polarity-shift-capturing ability of MUSH and whether this

polarity-shift-capturing ability contributes to sentiment classification. It demonstrates

the insight into the superior sentiment classification performance of MUSH. To achieve

this goal, this experiment evaluates the polarity-shift-capturing ability of MUSH from

two aspects: (1) embedding the polarity-shift triggered by explicit indicators; and (2)

embedding the polarity-shift triggered by implicit descriptions. For each aspect, the

experiment first constructs texts that have the corresponding polarity-shift and then

analyzes the sentiment of these texts by MUSH and its competitors1 that trained on the
1This experiment reports only the result of one variant for each sentiment analysis method. Although

variants of a method may have a slight difference, they do not produce significantly different results in
this testing because they share the same foundation and design.
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Yelp 2015 data set.

Table 3.3 shows the constructed texts and the sentiment analysis results. On the Yelp

2015 data set, the ground-truth sentiment polarity is manually assigned by users and

ranges from 1 to 5, where 1 indicates the strongest negative sentiment and 5 indicates

the strongest positive sentiment. Accordingly, the sentiment polarity predicted by each

sentiment analysis method in this experiment also ranges from 1 to 5. A larger sentiment

rating indicates a stronger positive sentiment, and vice versa.

Table 3.3: Polarity-Shift Capturing Effectiveness of Different Methods. The predicted
sentiment ratings are reported. A larger rating indicates a stronger positive sentiment,
and vice versa.

Text ngram_TFIDF SentCNN_static GateRNN_LSTM HNATT MUSH

I feel this restaurant is good 4 4 4 5 3
I feel this restaurant is not good 1 4 1 1 1
I don’t feel this restaurant is good 4 4 4 5 1
I feel this restaurant is so good 5 4 5 5 5

Not sure · · · the bread and the rice2. 2 4 2 1 1

The experimental results indicate that MUSH embeds explicit indicators better

than its competitors. For demonstration, Table 3.3 constructs a text, “I think this hotel
is good.", and its counterparts with the polarity-shift triggered by explicit indicators,

including adverb and disjunctive. The sentiment of “I think this hotel is good." is treated

as positive by all methods except MUSH. Actually, the sentiment polarity of this sentence

is not strongly positive. It can be further emphasized by adding some adverb word, for

example “so", “I think this restaurant is so good." before the adjective “good". Indeed,

when the explicit polarity-shift indicator “so" is added, MUSH certainly assigns positive

sentiment polarity to this sentence, which reflects MUSH is sensitive to this kind of

polarity-shift. This advantage is contributed by the multi-scale CNN to reveal the multi-

forms polarity-shift. MUSH can also well capture the polarity-shift caused by disjunctive

and adjective pairs. When disjunctive “not" is added, all methods except sentCNN assign

negative sentiment to sentence “I think this hotel is not good". However, only MUSH

treats sentence “I don’t think this hotel is good." as negative. This demonstrates that

most competitors only capture the polarity between a nearby disjunctive-adjective pair,

e.g. “not" and “good". However, MUSH can capture the polarity-shift between a distant

disjunctive-adjective pair, which is a kind of long-term dependence captured by the RNN

layer in MUSH.
2Not sure why this was on food network. Chicken was fatty and dark meat in curries. The best parts

of the meal were the bread and the rice.
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The experimental results indicate that MUSH and HNATT can effectively capture

the polarity-shift triggered by implicit descriptions. To show that, we pick up a text, “Not
sure why this was on food network. Chicken was fatty and dark meat in curries. The
best parts of the meal were the bread and the rice.", from the Yelp 2013 data set. The

text contains a negative sentiment that hidden in the interactions of sentences. The

sentiment rating of the text is 1. For this text, MUSH and HNATT accurately predict

its sentiment rating as 1, while other methods fail to predict the right sentiment rating.

Specifically, ngram-TFIDF, sentCNN, and gateRNN predict it as 2, 4, and 2, respectively.

These results are driven by the fundamental prior to these embedding methods. While

ngram-TFIDF, sentCNN, and gateRNN overlook the relationships between sentence,

MUSH and HNATT consider this kind of implicit polarity-shift descriptions. Different

from HNATT, which only captures the global interactions by RNN, MUSH further models

the local multi-forms polarity-shift by multi-scale CNN that enables better performance.

3.5 Summary

This chapter proposes a multi-scale and hierarchical embedding method, MUSH, for

polarity-shift sentiment analysis. The MUSH method uses an end-to-end learning ap-

proach to embed a paragraph into a vector space that recognizes the polarity-shift and

maintains the context information, sequential information, and sentiment information

in paragraph space for sentiment classification. The experimental results support the

performance merits of the MUSH compared with state-of-the-art methods. The MUSH

method captures the sentiment features in an implicit process. In the next chapter,

the explicit sentiment information and features will be considered to combine with the

implicit MUSH features to construct more powerful sentiment representation.
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4
SENTIMENT ANALYSIS ON NON-INDEPENDENT AND

IDENTICAL DISTRIBUTED PARAGRAPH

4.1 Introduction

In real-life textual data, words and sentences are coupled with each other (non-

independent), and they may have heterogeneous meanings under different con-

texts or in different language locales (non-identically distributed). In other words,

real-life textual data has non-IID characteristics. As analyzed in Section 2.2, non-IID

characteristics essentially determine the sentiment of a text yet are hard to be cap-

tured. This chapter focuses on the sentiment analysis on a paragraph with such non-IID

characteristics (a.k.a., non-IID paragraph), considering a non-IID paragraph contains

non-IID sentences. This chapter contributes to the reliable sentiment analysis in terms

of capturing complex interactions in a social media paragraph but does not consider the

sentiment-polarity-shift, which has been studied in Section 3.

Learning non-IID characteristics has attracted increasing attention and enabled

significant performance gain in a variety of applications and learning tasks, such as

classification (Zhu et al. 2018), clustering (Jian et al. 2018), outlier detection (Xu et al.

2018, Meng et al. 2019), and image processing (Shi et al. 2014). However, only limited

effort has been made in non-IID paragraph representation. For example, Teng et al.

(2016) aim to capture the nearby word couplings, Tang, Qin & Liu (2015) focus on
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the sequential relations of words, and Wang, Huang, Zhu & Zhao (2016) model the

hierarchical heterogeneous meanings of words and sentences. Although the existing

non-IID paragraph representation methods significantly improve the performance of

sentiment analysis, they do not comprehensively capture the non-IID characteristics in

an effective way. As a result, they may fail to accurately represent a non-IID paragraph,

even if the paragraph has a clear sentiment polarity. For example, most of the current

sentiment analysis on non-IID paragraph may classify the sentiment polarity of both “I

feel the restaurant is good" and “I don’t feel the restaurant is good" as positive because

these methods may only focus on the sentiment word “good" but ignore the dependence

(non-independent) between “don’t" and “good". Also, they treat the polarity of “The taste

is great" and “Cost a great deal of time" as equal since they may overlook the different

meanings (non-identically distributed) of “great" in different contexts. Comprehensively

capturing the non-IID characteristics requires a complex model, in which, however, the

high model complexity may easily cause over-fitting (Spiegelhalter et al. 2002).

This chapter studies the nature of paragraph non-IID characteristics and proposes

a novel non-IID paragraph-representation framework to comprehensively model the

non-IID characteristics for sentiment analysis. Specifically, the proposed framework

systematically captures the hierarchical non-IID characteristics (i.e., the coupling rela-

tions and heterogeneous meanings of words and sentences) and hierarchically embeds

them into vector representations, termed as implicit features. It further regulates the

implicit features by explicit features, which are designed by sentiment priors, to avoid

over-fitting and capture additional sentiment-related information. This framework is

instantiated by a multi-scale and hierarchical deep neural network with anattention

mechanism (MEDEA). Specifically, MEDEA exploits hierarchical and heterogeneous

coupling relations by adopting a multi-scale CNN-RNN structure and captures the het-

erogeneous meanings of words and sentences with an attention mechanism. Besides, it

hierarchically integrates implicit features and explicit features from the word-level to

the paragraph-level according to semantic matching.

The key contribution made in this chapter include the following:

• A non-IID paragraph-representation framework for sentiment analysis, which mod-

els both the hierarchical coupling relations and the heterogeneous meanings of

words and sentences. These coupling relations and heterogeneous meanings essen-

tially determine the sentiment polarity of a non-IID paragraph. As far as we know,

the proposed framework is the first non-IID paragraph-representation framework

that comprehensively models the non-IID characteristics for sentiment analysis.
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• A novel deep neural network structure for modeling non-IID paragraphs, by a

hierarchical multi-scale CNN-RNN module with an attention mechanism. The

multi-scale CNN-RNN structure learns the hierarchical coupling relations from

the word-level to the paragraph-level to disclose the complex sentiment in a para-

graph. The attention mechanism learns the heterogeneous meanings of words and

sentences to disentangle sentiment ambiguities in text and induce a more precise

paragraph representation.

• Hierarchically integrating explicit features and implicit features to avoid over-fitting.

While the implicit features reveal the sentiment polarity of a non-IID paragraph,

the explicit features reduce the risk of over-fitting in the implicit features’ learning

process and provide additional sentiment information instead of that learned from

sentiment labels.

This chapter conducts comprehensive experiments on five large real-world data sets,

including IMDB Diao et al. (2014), Amazon Jindal & Liu (2008), and three data sets from

Yelp Challenges (i.e., Yelp13, Yelp14, and Yelp15) to show the complex non-IID paragraph

characteristics and evaluate the performance of the proposed method. It also evaluates

the proposed method on two small real-world data sets from Twitter sentiment analysis

tasks (i.e., Twitter and Twitter-air). The experimental results show that (1) the proposed

MEDEA network learns non-IID paragraph characteristics effectively, (2) MEDEA enjoys

performance gain (up to 1.76% in terms of accuracy, 5.26% in terms of RMSE and 5.93%

in terms of RMSE@K) from the learned non-IID characteristics, and (3) MEDEA can be

trained easily and can achieve large accuracy improvement compared with its variants

that only with implicit features (up to 7.86% in terms of accuracy) by hierarchically

integrating explicit features and implicit features, resulting significant performance

enhancement (up to 18.16% in terms of RMSE and 11.19% in terms of RMSE@K).

These results strongly evidence that the proposed non-IID paragraph-representation

framework suits for sentiment analysis, and the deep neural network instantiation of

this framework achieves superior sentiment analysis performance.

In the rest of this chapter is organized as follows: Section 4.2 comprehensively

analyzes the non-IID characteristics in a paragraph and proposes the non-IID paragraph-

representation framework. Section 4.3 gives the details of the technical mechanism and

components of MEDEA. Section 4.4 empirically evaluates MEDEA in different aspects.

Section 4.5 concludes the paper and discusses promising prospects.
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4.2 Non-Independent and Identically Distributed
Paragraph Representation Design

This section first formalizes the learning problem and the learning objective of the

non-IID paragraph representation for sentiment analysis. It then deeply analyzes the

non-IID characteristics of a paragraph. Based on the analyzed non-IID characteristics, it

further proposes a non-IID paragraph representation framework.

4.2.1 Characteristics of Non-Independent and Identically
Distributed Paragraph

A non-IID paragraph has two primary characteristics: coupling and heterogeneity. In a

non-IID paragraph, the coupling means that words or sentences have complex interac-

tions, and the heterogeneity refers to the different meanings of words or sentences in

different language locales. These two characteristics form the so-called non-IIDness (Cao

2013), which essentially determines its sentiment polarity.

For a non-IID paragraph, the non-IID characteristics may hierarchically exist from

word-level to paragraph-level. These non-IID characteristics are demonstrated in Figure

4.1. At word-level, coupling relations exist between a word and its neighbors (i.e., several

words located around a word). For example, “not" and “sure" are coupled. These coupling

relations constitute the basic sentiment elements in a sentence. Such sentiment elements

are further coupled with each other directly (e.g., “not sure" and “why this") or indirectly

(e.g., “best parts" and “bread and the rice") to determine the sentiment polarity of a

sentence. Furthermore, a word may hold heterogeneous meanings in different language

contexts and locales. For example, “dark" has negative sentiment polarity in the example,

but it may have a neutral sentiment polarity if it is used as a color. At sentence-level,

similar non-IID characteristics as that at word-level also exist. A sentence interacts with

its neighbors (e.g., in the example, the first and second sentences are coupled), and these

interactions further couple with each other (e.g., the indirect couplings indicated in the

example) to determine the sentiment polarity of a paragraph. Besides, a sentence may

have different sentiment polarities in different locales. For example, the last sentence in

the example has a negative sentiment polarity considering the first and second sentences,

but it may have a positive sentiment polarity if only this sentence itself is evaluated.
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Not sure why this was on food network.   Chicken was fatty and dark meat in curries.   The best parts of the meal were the bread and the rice.
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Sentence-level 

Not sure why this was on food network. 

why this

Figure 4.1: An Example of the Non-IID Characteristics in a Paragraph.

4.2.2 Objectives of Non-Independent and Identically
Distributed Paragraph Representation

Given a paragraph P ∈ P that consists of a sequence of ns sentences {si|i = 1, · · · ,ns},

the i-th of which consists of a sequence of nwi words {wi, j| j = 1, · · · ,nwi}, a paragraph

representation model is a function E(·) :P→Rn f that transforms the paragraph P to a

vector p ∈Rn f with n f dimensions. Here, P refers to a paragraph space, and R refers to a

real space.

Denoting the sentiment polarity of the j-th word in the i-th sentence of a paragraph P
as oi, j, the polarity of the i-th sentence is denoted as Oi =

H nwi
1 oi, jdwi, j. Here,

H nwi
1 dwi, j

refers to a sequential operation from wi,1 to wi,nwi . Consequently, the polarity O ∈O of a

paragraph P is denoted as O = Ĥ ns
1 Oidsi. The

Ĥ ns
1 dsi is a sequential operation from s1 to

sns , and this operation is different from the one in
H nwi

1 dwi, j. The polarity of a paragraph

is determined by the operation
H

and
Ĥ

from the word level to the sentence level, that isĤ H
:Ons×nwi →O. Here, O refers the sentiment polarity space.

When considering paragraph representation for sentiment analysis, the objective is to

learn a representation function E(·) that can effectively reflect the sentiment polarity of

a paragraph per a sentiment classifier C(·) :Rn f →O. Formally, denoting the distribution

of the polarity of a set of paragraph P as O, the learning objective function of paragraph

representation for sentiment analysis can be written as follows:

(4.1) minimize
E(·),C(·)

Div(O||{C(E(P))|P ∈P}),

where Div(·||·) is a divergence for measuring the difference between two distributions.
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To fit different data characteristics in different tasks, Div(·||·) can be instantiated by dif-

ferent divergence measures or transformed divergence functions, such as KL-divergence,

cross-entropy, and Hellinger distance. The intuition behind this learning objective func-

tion is that the sentiment statistics of paragraphs should be preserved in their represen-

tation space. In other words, the sentiment statistics should be recovered by a classifier

C(·) from the representation space.

In practice, the objective function Equation (4.1) may be accompanied by one of the

following two problems: high generalization error and low model fitness. The generaliza-

tion error refers to the gaps between the sentiment distribution in paragraphs and that

learned by the classifier. High generalization error is mainly caused by lacking training

samples. Although thousands of millions of paragraphs are available for training, the

number of training samples is still not sufficient to reflect the whole paragraph statistics.

The model fitness refers to the ability of representation function E(·) to represent the

sentiment-related information in paragraphs. Low model fitness is often caused by ignor-

ing complex sentiment-related data characteristics of paragraphs when designing the

representation function E(·).
In order to reduce the generalization error, a promising way is to preserve some

distribution properties of a paragraph space P in its representation space E :Rn f . With

this constraint, denoting the distribution of a paragraph in space P as P and in space E

as space E, the learning objective function can be revised as follows:

(4.2) minimize
E(·),C(·)

Div(O||{C(E(P))|P ∈P})+γ ˆDiv(P||E),

where ˆDiv is a divergence measure for two distributions, and γ is a trade-off parameter.

This distribution preservation can be achieved by introducing additional sentiment

information, such as explicit features designed by the prior of sentiment analysis.

In order to enhance the model fitness, one approach is to model the data characteris-

tics that determine the sentiment polarity. This chapter hypothesizes that interactions

between words and sentences essentially determine the sentiment polarity of a para-

graph. These interactions are involved in the operations
H

and
Ĥ

. Here, we denote the

word-representation function as Ew(·) :W→Rnew , sentence-representation function as

Es(·) : Rnwi×new → Rnes , and paragraph-representation function as Ep(·) : Rns×nes → Rn f ,

where W is the word space, the new is the dimension of the word-representation space,

and the nes is the dimension of the sentence representation space. To model such interac-

tions, the representation function E(·) should be decomposed by representation functions

from the word level to the paragraph level with sequential operations. In this way, the
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learning objective function should be reformulated as follows:

(4.3) minimize
Ew(·),Es(·),Ep(·),C(·)

Div(O||{C(Ep(Es(Ew(w))))|w ∈ s, s ∈ P,P ∈P}).

This chapter jointly considers the distribution preservation and the non-IID char-

acteristics for a more accurate paragraph representation for sentiment classification.

Combining Eqs. (4.2) and (4.1), the learning objective of this model is formalized as:

(4.4) minimize
Ew(·),Es(·),Ep(·),C(·)

Div(O||{C(Ep(Es(Ew(w))))|w ∈ s, s ∈ P,P ∈P})+γ ˆDiv(P||E).

4.2.3 Architecture for Representing Non-Independent and
Identically Distributed Paragraph

Following the analysis of the non-IID characteristics and the learning objective function

Equation (4.4), this chapter proposes a non-IID paragraph representation framework for

sentiment analysis. It illustrates this framework in Figure 4.2. The non-IID paragraph

representation framework has a hierarchical structure. It represents a paragraph from

the word-level to the paragraph-level by the word-representation function Ew(·), the

sentence-representation function Es(·), and the paragraph-representation function Ep(·)
in the objective function Equation (4.4).

Specifically, the word-representation function Ew(·) is implemented by an implicit-

word-embedding layer, an explicit-word-feature layer, and fully-connected layers. The

implicit-word-embedding layer captures word contextual information and embeds this

information into a vector space as implicit word features. The explicit-word-feature layer

extracts word features by designated word feature functions, which contain sentiment

priors. Further, the fully-connected layers integrate these implicit and explicit word fea-

tures to form a word-representation vector. The sentence-representation function Es(·) is

implemented by a non-IID-characteristics-learning module. This non-IID-characteristics-

learning module captures the coupling relations and heterogeneous meanings of words

and embeds them to a sentence-representation vector, the structure of which will be

detailed in Chapter 4.3. Finally, the paragraph-representation function Ep(·) is imple-

mented by a non-IID-characteristics-learning module, an explicit-paragraph-feature

layer, and fully-connected layers. Here, the non-IID-characteristics-learning module has

the same structure as that in the sentence-representation function; however, it generates

implicit features of a paragraph by capturing the coupling relations and heterogeneous

meanings of sentences instead of words. The explicit-paragraph-feature layer represents

a paragraph by specific paragraph-feature functions, which are designed by sentiment
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Figure 4.2: The Non-IID Paragraph Representation Framework for Sentiment Analysis.
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priors. In the end, the fully-connected layers combine implicit and explicit paragraph

features to constitute a non-IID paragraph-representation vector.

The non-IID paragraph representation framework implements the first term of

Equation (4.4) by minimizing the divergence between the sentiment distribution of a

paragraph and that predicted by the framework, and it implements the second term

of Equation (4.4) through hierarchically involving prior-driven explicit features to pre-

serve the paragraph distribution. In this way, the non-IID paragraph-representation

framework not only captures the complex non-IID characteristics in a paragraph but

also avoids over-fitting.

The workflow of the non-IID paragraph representation framework is as follows.

For a paragraph, the non-IID paragraph representation framework first transforms

each word in a paragraph to a word-representation vector through a pre-trained word-

embedding method (e.g., skip-gram and CBOW; Mikolov et al. 2013). It then integrates

each word-representation vector with prior-driven explicit sentiment features of the

corresponding word by fully-connected layers. After that, it embeds non-IID character-

istics of words and sentences into an implicit-paragraph-representation vector by two

non-IID-characteristics-learning modules, respectively. Finally, the framework combines

the implicit-paragraph-representation vector with pre-designed explicit paragraph fea-

tures through fully-connected layers to construct a non-IID paragraph-representation

vector. The framework learns non-IID paragraph representation through an end-to-end

training process. Specifically, for a given sentiment analysis task, a sentiment classifier

is built on the non-IID paragraph representation. Then, the sentiment labels of this task

will guide the training of the non-IID paragraph representation framework. In other

words, the learned non-IID paragraph representation will fit this sentiment analysis task

well. Consequently, this non-IID paragraph representation framework incorporates the

non-IID characteristics (i.e., hierarchical coupling relations and heterogeneous meanings

of words and sentences) with explicit sentiment priors. It can be easily instantiated by

designing suitable network structures for non-IID-characteristics-learning modules and

selecting appropriate prior-driven features at both the word and paragraph levels.

4.3 Implement of Non-Independent and Identically
Distributed Paragraph Representation Design

This chapter instantiates the non-IID paragraph representation framework as a multi-

scale and hierarchical deep neural network with an attention mechanism, namely
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MEDEA. Specifically, MEDEA implements the non-IID-characteristics-learning module

as an attentive multi-scale CNN-RNN network and introduces three types of sentiment-

related textual features as the prior-driven features.

4.3.1 Attentive Multi-Scale Convolutional-Recurrent Neural
Network

The architecture of the attentive multi-scale CNN-RNN network is illustrated in Figure

4.3. The input of the attentive multi-scale CNN-RNN network is a set of representation

vectors of words in a sentence or a set of representations vectors of sentences in a

paragraph. The network first adopts an attention mechanism to transform the inputted

representation vectors to attentive representation vectors where the heterogeneous

meanings of a word or a sentence will be revealed according to the other words or

sentences associated with it. Then, the network uses multi-scale CNN layers where

filters are with multiple sizes to extract CNN features of a sentence or a paragraph from

its attentive representations. Upon each CNN layer, the network further introduces a

bidirectional-RNN layer with gated GRU to generate an RNN feature corresponding to

the CNN features of a CNN layer. Finally, the network applies a fully-connected layer to

merge the RNN features as the sentence- or paragraph- representation vectors.

The multi-scale CNN-RNN structure captures the coupling relations. Specifically, it

captures the direct coupling relations between words or sentences by the CNN layers.

The CNN layers model the direct coupling relations that are between a set of words or

sentences with different sizes and different interactions by multiple filters with different

sizes (i.e., the CNN filter 1 to CNN filter K in Figure 4.3). In this way, it obtains CNN

features that are similar to the n-gram feature, which is widely used in traditional

natural language processing methods. Different from the n-gram feature, which pays

equal attention to every word- or sentence-sequence combination, the CNN features are

more sensitive to the coupling relations with a high utility to the final sentiment analysis

task (Bengio et al. 2013). The multi-scale CNN-RNN structure captures the indirect

couplings by the bidirectional-RNN layers, which also reveal the sentiment polarity shift

in a sentence or a paragraph with different scales. Consequently, the fully-connected

layers integrate the direct and indirect coupling relations to reflect the comprehensive

coupling relations in a sentence or a paragraph.

The attention mechanism captures the heterogeneous meanings of a word or a

sentence in different language locales. This mechanism adjusts a representation vector of
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Figure 4.3: The Architecture of the non-IID-Characteristics-Learning Module in MEDEA.
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a word or a sentence according to its context (i.e., the other inputted words or sentences

associated with the word or the sentence). The adjusted representation vector reflects a

specific meaning of the word or the sentence in a given context. As a result, it eliminates

the sentiment ambiguities of the word or the sentence. For a representation vector xi, the

attention mechanism first uses a nonlinear layer to map it as hi = tanh(Wxi +b), where

W and b are the weight and bias of the nonlinear layer, respectively. Then, it calculates

the adjusting factor αi for the representation vector based on its context by a softmax

function. The calculation of αi is formalized in Equation (4.5).

(4.5) αi =
exp(h>

i u)P
j∈c(i) exp(h>

j u)+exp(h>
i u)

,

where {x j| j ∈ c(i)} is the context set of xi, and u is the global memory of the context that

needs to be learned. According to the adjusting factor αi, the attentive representation

vector of xi can be calculated as follows,

(4.6) x∗i =αixi.

The attentive representation vectors of the inputted words or sentences are further fed

into the multi-scale CNN-RNN structure for coupling-relation learning.

The MEDEA method implements the non-IID-characteristics-learning module in both

Es(·) (the sentence-representation function) and Ep(·) (the paragraph-representation

function) as the attentive multi-scale CNN-RNN structure. The rationale is that the non-

IID characteristics at the word-level and the sentence-level have the same components

and hierarchy (i.e., the direct and indirect couplings and heterogeneities) as analyzed

in Chapter 4.2.1. Furthermore, a network with a designated structure can capture

information with specific relations at different levels (e.g., the GoogLeNet hierarchically

stacks the inception module to extract image features at different levels successfully;

Szegedy et al. 2015). Accordingly, MEDEA can effectively capture the hierarchical non-

IID characteristics in a non-IID paragraph through the stacking of the attentive multi-

scale CNN-RNN structure.

4.3.2 Explicit Features used by the Multi-Scale and
Hierarchical Deep Neural Network

To avoid over-fitting, the non-IID paragraph representation framework regulates the

learning process with hierarchical sentiment-related explicit features. In this paper,

MEDEA implements the explicit features at both word-level and paragraph-level.
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4.3.2.1 Word-Level Explicit Features

The MEDEA method uses two word-level explicit features: (1) sentiment lexicon (Bac-

cianella et al. 2010), and (2) POS (Xia & Zong 2011). To generate the sentiment lexicon

feature, MEDEA encodes a word as a two-dimensional vector where the value in each

dimension is an average of the positive or negative sentiment scores of the word. For a

word that is not in the sentiment lexicon, MEDEA encodes it as [0,0], assuming the word

has the neutral sentiment polarity. To generate the POS feature, MEDEA encodes each

word by a one-hot embedding where the value that is in the position corresponding to the

word’s POS is assigned as 1 while values that are in other positions are assigned as 0.

The MEDEA method concatenates the sentiment-lexicon feature and the POS feature as

the word-level explicit features. It then integrates the word-level explicit features with

its implicit word representation by fully-connected layers.

The sentiment lexicon (a.k.a. sentiment dictionary) contains the probable sentiment

polarity of each word. Typically, the sentiment lexicon represents the sentiment polar-

ity of a word by sentiment scores per the positive and negative polarity, respectively.

For example, the sentiment scores of the word “suggestive" in a sentiment dictionary

(Baccianella et al. 2010) are 0.125 and 0.25 for the positive and negative polarities, res-

pectively. Consequently, the MEDEA method uses [0.125,0.25] as the sentiment-lexicon

feature of the word “suggestive". As a result, the sentiment-lexicon feature directly

reveals the potential sentiment polarity of each word, which may contribute to the

paragraph sentiment polarity.

The POS feature reflects the POS of each word. It explicitly points out the words

that need to be paid more attention to sentiment analysis, because words with different

POS may make different contributions to the sentiment polarity of a paragraph. It also

explicitly indicates the heterogeneous meanings of a word because a word with different

POS may have different meanings. For example, the POS of the word “back" in the

sentence “many of his friends backed his plan” is a verb, and the meaning of the “back"

here is support, which has positive sentiment polarity. On the contrary, the POS of the

word “back" in the sentence “she stumbled and fell, scraping her back badly" is a noun,

and “the back" has neutral sentiment polarity.

4.3.2.2 Paragraph-Level Explicit Features

The MEDEA method uses the term-presentation (Wiebe et al. 1999) as the paragraph-

level feature. Specifically, MEDEA first counts the word-appearance frequency in the
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population. It then picks up 10% of the words with the lowest frequency as the rare-word

set. Subsequently, it encodes the rare-word set by a one-hot embedding where the value

that is in the position corresponding to an appeared word in the rare-word set will be set

as 1, and the values that are in other positions will be set as 0.

The term-presentation feature captures rarely-appeared words. As demonstrated by

Pang et al. (2002) and Taboada et al. (2011), some rarely-appeared words can directly

determine the sentiment polarity of a paragraph. For example, the word “Goooooood"

may only appear once or twice in a corpus; however, it likely indicates the positive

sentiment polarity of a paragraph. As a result, the term-presentation feature reveals the

significant words that have a high probability to determine the sentiment polarity for a

paragraph. It should be noted that, when some significant rarely-appeared words exist

in a paragraph, the other parts of the paragraph always make a limited contribution to

the sentiment polarity. Because MEDEA combines the term-presentation feature with

its implicit paragraph representation by fully-connected layers, in the MEDEA learning

process, the backward-propagated errors may be passed to the explicit term-presentation

feature instead of the complex neural networks when such rarely-appeared words exist.

This error passing largely reduces the over-fitting risk of MEDEA.

4.4 Experiments and Evaluation of the Multi-Scale
and Hierarchical Paragraph Representation
Performance

This chapter evaluates the performance of MEDEA from four aspects:

1. The sentiment analysis performance: whether MEDEA can enable a better senti-

ment analysis performance.

2. The sentiment embedding quality: whether MEDEA can well embed the sentiment

information and textual information into a representation space.

3. The effectiveness of non-IID-characteristics learning: whether MEDEA can effec-

tively capture the non-IID characteristics in text.

4. The significance of hierarchically integrating explicit features with implicit features:

whether the performance of MEDEA can be improved via hierarchically integrating

explicit features with implicit features.
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4.4.1 Data Sets for the Performance Evaluation of
Non-Independent and Identically Distributed
Representation Representation

The experiments verify the effectiveness of MEDEA on five large real-world data sets

with sentiment labels, including the IMDB movie review (Diao et al. 2014), Amazon

product review (Jindal & Liu 2008), and three data sets from Yelp Challenges (i.e., Yelp13,

Yelp14, and Yelp15). The experiments also evaluate the MEDEA on two small real-world

data sets from Twitter sentiment analysis task (Twitter) and Twitter airline sentiment

analysis task (Twitter-Air). For IMDB, Yelp13, Yelp14, Yelp15, and Twitter data sets, the

training and testing data sets have already been divided. For Twitter-Air and Amazon

data sets, the experiments randomly split 90% and 10% data as the training and testing

data, respectively.

Table 4.1 illustrates the statistical properties of these data sets. These data sets

belong to several domains and applications, such as twitter: Twitter and Twitter-Air;

movie: IMDB; recommendation platform: Yelp13, Yelp14 and Yelp15; and E-business

website: Amazon. Their statistical properties are highly diversified, as indicated by data

factors: the number of training documents ranges from 5,697 to 5,255,009, the average

number of sentences ranges from 3 to 14, the average number of words ranges from

22 to 325.6, and the number of vocabularies ranges from 16,389 to 3,652,038. The data

sets contain different numbers of sentiment classes with a maximum number of 10

classes. These diversified statistical properties indicate that these data sets may cover

most circumstances in real-world paragraphs, which enables a fair environment for the

evaluation.

Table 4.1: Statistical Properties of Data Sets: #s and #w refer to the number of sentences
and words, respectively.

Data set #train docs #test docs #class average #s max #s average #w max #w #vocabulary

IMDB 280,593 34,029 10 14.0 148 325.6 2,802 115,831
Yelp13 268,013 33,504 5 9.0 154 143.8 1,176 188,434
Yelp14 900,363 112,549 5 9.2 151 156.9 1,199 476,191
Yelp15 1,255,409 156,928 5 9.0 151 151.9 1,199 612,636
Twitter 5,697 843 3 1.9 8 24.1 67 18,628

Twitter-Air 13,176 1,464 3 2.0 9 22.0 47 16,389
Amazon 5,255,009 583,889 9 9.2 5,424 189.0 7,094 3,652,038
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4.4.2 Experimental Settings

4.4.2.1 Comparison Methods

The experiments compare MEDEA with four artificial features-based methods and eleven

variants of seven state-of-the-art deep representation-based methods.

Most of these competitors are the same as that in Chapter 3.4. Two more advanced

deep representation-based methods are compared in the experiments because these

advanced methods also capture parts of non-IID characteristics. These two methods are

briefly introduced as follows:

• ELMO (Peters et al. 2018): The ELMO method embeds the complex word relations

and polysemy by leveraging the linguistic contexts and represents paragraphs

based on the learned word embeddings through a bi-directional LSTM.

• BERT (Devlin et al. 2018): The BERT method adopts a bi-directional-training

Transformer to capture complex word couplings in a paragraph. It inserts a special

token at the beginning of a sentence and uses the output of its neural model

corresponding to the token as a sentence representation vector.

These deep-representation-based methods act as competitors to evaluate whether MEDEA

can capture non-IID characteristics and enable better sentiment analysis.

4.4.2.2 Data Preprocessing

In the pre-processing stage, MEDEA first splits a paragraph into several sentences and

tokenizes these sentences by Stanford’s CoreNLP toolkit (Manning et al. 2014). Then,

it pre-trains the implicit word representation by the skip-gram model (Mikolov et al.

2013). Further, MEDEA annotates POS tags for each word using Stanford’s CoreNLP

and generates the sentiment lexicon feature based on the SentiWordNet (Baccianella

et al. 2010) sentiment dictionary.

4.4.2.3 Neural-Network Implementation

The experiments set the default values of MEDEA’s hyper-parameters as follows. The

dimension of implicit word representation: 100. The filter size of the CNN in the multi-

scale CNN layers: 2×100 and 3×100. The number of filters in each CNN layer in the

non-IID-characteristics-learning module: 32 (at word-level) and 64 (at sentence-level).

The number of GRU in the non-IID-characteristics-learning module: 64 (word-level)
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and 128 (sentence-level). The number of nodes in every fully-connected layer: 64 (at the

word-level) and 128 (at the sentence-level). The number of layers of the fully-connected

layers: 2. In the training phase, MEDEA uses a batch normalization after each layer

and adopts a dropout strategy with keeping probability 0.5 after each fully-connected

layer. It sets the batch size as 64 and uses the Adam algorithm (Kingma & Ba 2014) to

optimize the learning-objective function.

The experiments set the parameters of the comparison methods as the same setting

used in their original paper and fine-tune the pre-trained ELMO and BERT on Ten-

sorflow Hub for each data set. For each competitor, the experiments feed its learned

representation into a single-layer feed-forward neural network with the softmax function

as the activation function in the output layer to constitute its sentiment classifiers.

4.4.3 Evaluation on Sentiment Classification Performance
Enabled by the Non-Independent and Identically
Distributed Representation Method

4.4.3.1 Evaluation Methods

The experiments test the sentiment classification performance of MEDEA to evaluate

whether its captured non-IID characteristics can contribute to a better sentiment analysis

result.

The performance of the sentiment classification is evaluated by two metrics: accuracy
and rooted-mean-square error (RMSE). Accuracy measures to what extent the enabled

sentiment classification can assign the same rating as the ground truth. The higher accu-

racy refers to a better sentiment classification performance. Unlike typical classification

tasks, in which a label contains nominal values, the labels in the sentiment classification

task refer to sentiment ratings, which are a kind of ordinal value where a value has

ordinal relation to others. For example, rating 4 is more similar to rating 5 than that to

rating 1. In this case, a better sentiment classifier should predict a rating that is more

similar to the rating of the ground truth. However, this property cannot be reflected by

the accuracy metric. To complement the accuracy metric, RMSE is adapted to measure

the similarity between the predicted and ground-truth rating. The smaller RMSE value

indicates the better performance of a sentiment classifier.
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4.4.3.2 Evaluation Results

The MEDEA method gains an accuracy improvement as much as 1.76%, as shown in

Table 4.2. This accuracy improvement mainly benefits from (1) capturing the non-IID

characteristics and (2) integrating explicit features with implicit features, which will be

justified in Chapter 4.4.5. In Twitter and Twitter-Air data sets, MEDEA shows slightly

worse performance compared with BERT but still achieves better performance than

all other methods. The key reasons lie in that both of these data sets are with simple

structures and relations, which are reflected by the small number of sentences and words

in each paragraph as shown in Table 4.1, and they are only with very small data size

(i.e., 5,695 and 13,176, respectively). For data sets with simple structures and relations,

MEDEA does not have significant advantages because the non-IID characteristics in

that data sets may not be significant. For data sets with small size, MEDEA is hard to fit

well because of its large model complexity. Consequently, in these cases, the sentiment

analysis performance enabled by MEDEA may be slightly worse than BERT, which has

been pre-trained on huge data sets.

Table 4.2: Sentiment Classification Accuracy of Different Methods

Methods IMDB Yelp13 Yelp14 Yelp15 Twitter Twitter-Air Amazon

BOW 15.5 20.2 29.4 31.8 33.9 53.1 31.8
BOW-TFIDF 21.3 31.6 36.0 38.9 33.7 58.6 32.1

ngram 25.1 36.6 41.3 44.5 30.7 50.6 31.5
ngram-TFIDF 27.3 39.1 43.2 45.7 27.5 58.9 30.3

sentCNN-random 29.4 55.6 57.9 58.9 59.6 76.0 60.3
sentCNN-static 29.2 53.5 58.2 59.2 58.4 73.6 59.2

sentCNN-nonstatic 24.6 47.1 52.6 52.2 62.8 71.3 64.5
sentCNN-mul 29.4 53.3 58.3 58.7 57.7 75.8 61.3

gateRNN-CNN 40.6 61.4 62.7 63.2 52.8 61.2 56.2
gateRNN-LSTM 41.7 63.5 66.9 67.8 65.4 62.3 67.8

HNATT-ATT 42.5 63.2 67.3 68.1 64.8 78.2 69.8
HNATT-AVG 42.2 63.8 66.8 67.7 61.7 78.6 66.5
HNATT-MAX 42.9 63.7 66.8 68.0 65.4 79.3 68.2

ELMO 30.9 58.2 59.1 60.3 64.2 77.0 70.3
BERT 37.3 35.6 36.1 36.9 74.7 84.0 72.2

MEDEA 43.9 64.6 67.9 69.2 67.97 81.4 73.1

The MEDEA-enabled sentiment analysis also achieves the best performance in terms

of RMSE in most of the data sets, as shown in Table 4.3. It always achieves the smallest

RMSE except on the IMDB data set and improves as much as 5.26%. These results

quantitatively justify that the MEDEA-enabled sentiment analysis performance is signif-
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icantly better than that of its competitors. As can be seen in Table 4.3, the performance of

MEDEA is better than that of the best state-of-the-art method, HNATT-ATT. Comparing

with HNATT-ATT, which also adopts a hierarchical model and attention mechanism,

MEDEA further reveals the non-IID characteristics at each level in a paragraph and

hierarchically involves explicit features to better understand the characteristics of both

the non-IID paragraph and the sentiment analysis task. As a result, MEDEA enables a

better sentiment analysis performance.

Table 4.3: Sentiment Prediction RMSE of Different Methods

Methods IMDB Yelp13 Yelp14 Yelp15 Twitter Twitter-Air Amazon

BOW 3.0793 1.7230 1.5735 2.0959 1.1282 0.9949 2.9761
BOW-TFIDF 3.1717 1.6949 1.5425 1.7427 1.1340 0.9420 3.0152

ngram 2.7543 1.3934 1.2452 1.2567 1.1761 0.9303 2.8786
ngram-TFIDF 2.6471 1.3831 1.2331 1.251 1.2409 0.9599 2.6643

sentCNN-random 2.3654 1.0298 0.9686 0.9619 0.7655 0.6689 2.1246
sentCNN-static 2.5496 0.9894 0.9641 0.9466 0.8070 0.7309 2.0864

sentCNN-nonstatic 3.0942 1.3054 1.057 1.0951 0.7608 0.7615 1.9075
sentCNN-mul 2.5898 1.1216 0.9616 0.9375 0.8288 0.6591 1.9653

gateRNN-CNN 1.8956 0.8045 0.7892 0.7905 0.8801 0.9510 1.8022
gateRNN-LSTM 1.7497 0.7518 0.7108 0.7033 0.6837 0.8970 1.6437

HNATT-ATT 1.7256 0.7556 0.7017 0.688 0.7159 0.6407 1.5243
HNATT-AVG 1.7419 0.7536 0.7091 0.6923 0.7907 0.6135 1.6108
HNATT-MAX 1.7318 0.7553 0.6968 0.6895 0.7042 0.5937 1.5516

ELMO 2.3267 0.7738 0.9244 0.8768 0.7655 0.6533 1.5053
BERT 1.7087 1.7486 1.8118 1.8168 0.5875 0.5240 1.4692

MEDEA 1.7303 0.7267 0.6658 0.6532 0.6492 0.5543 1.4537

4.4.4 Evaluation on Representation Quality of the
Non-Independent and Identically Distributed
Representation Method

4.4.4.1 Evaluation Methods

The experiments further evaluate the sentiment embedding quality of MEDEA. The

embedding quality is quantitatively measured by an information retrieval task and qual-

itatively illustrated by visualizing the representation. Different from the classification

performance, the embedding quality reflects the generalization performance of MEDEA

representation. A good sentiment embedding quality is essential for the success of a wide
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range of sentiment analysis tasks, such as sentiment classification and similar sentiment

paragraph retrieval.

For the information retrieval task, the experiments use the Euclidean distance in

a given paragraph-representation space to calculate the similarity of two paragraphs.

For a given paragraph, the experiments retrieve its K-most-similar paragraphs (a.k.a.,

K-nearest paragraphs) under this similarity measurement. The retrieval performance

is measured by RMSE@K. The RMSE@K metric calculates the RMSE between the

sentiment ratings of a given paragraph and its K-nearest paragraphs. It reflects both

local embedding quality (when K is small) and global embedding quality (when K is large).

A lower RMSE@K indicates a higher sentiment embedding quality. In this experiment,

the K used in RMSE@K is set as 1, 10, 100, and 1000.

4.4.4.2 Evaluation Results

The results of RMSE@K of each method on the Yelp13 data set are reported in Figure

4.4. The results show that MEDEA has the best sentiment embedding quality (improved

up to 5.93% in terms of RMSE@K) in the information retrieval task, evidenced by having

the smallest RMSE@K.
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Figure 4.4: The RMSE@K of Different Methods on Yelp13.
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To visualize the paragraph representation, this experiment transforms each repre-

sentation vector from a high-dimensional representation space to a 2-dimensional vector

space via the t-distributed stochastic neighbor embedding (t-SNE) (Maaten & Hinton

2008). It illustrates the transformed representation of MEDEA and the competitors on

the Yelp13 data set in Figure 4.51. As can be seen in Figure 4.5, the representation of

MEDEA has smaller intra-class variances and larger inter-class variances compared

with that of others. Meanwhile, the locations of paragraphs in the representation space

are consistent with the order of their sentiment ratings. It demonstrates the sentiment

embedding quality of MEDEA is better than others, which enables its superior sentiment

analysis performance, as shown in Chapter 4.4.3.
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Figure 4.5: The Visualization of Different Representations through t-SNE Transforma-
tion on Yelp13.

4.4.5 Evaluation Significance of Hierarchically Integrating
Explicit Features with Implicit Features

4.4.5.1 Evaluation Methods

This experiment evaluates the significance of hierarchically integrating explicit features

with implicit features by comparing MEDEA with its two variants. The first variant is

MEDEA-N, which adopts only the non-IID-characteristics-learning modules at different

1The experiment shows only one figure for one method due to space limitation.
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levels to capture the non-IID characteristics (see Chapter 4.3.1). The second variant

is MEDEA-W, which integrates only one explicit feature (i.e., POS) at word-level (see

Chapter 4.3.2.1). To make a full comparison, this experiment evaluates these methods

by all metrics used above (i.e., accuracy, RMSE, and RMSE@K). It further reports the

accuracy of MEDEA-N and MEDEA on training and validation data set per epoch to

demonstrate the effectiveness of reducing over-fitting by integrating explicit features.

4.4.5.2 Evaluation Results

The accuracy, RMSE, and RMSE@K results are reported in Table 4.4. The results induce

the following conclusions: (1) integrating explicit features indeed increases sentiment

analysis performance, and (2) hierarchically integrating explicit features further im-

proves sentiment analysis performance. The insight of the performance improvement is

that MEDEA involves more sentiment-related information, which preserves the distribu-

tion properties of a paragraph space in its representation space, compared with its two

variants.

Table 4.4: Sentiment Analysis Performance based on MEDEA and Its Variants

Criteria Methods IMDB Yelp13 Yelp14 Yelp15

Accuracy

MEDEA-N 40.7 61 64.4 64.6
MEDEA-W 43.1 64 67.2 68.6
MEDEA 43.9 64.6 67.9 69.2

RMSE

MEDEA-N 1.9602 0.7821 0.8134 0.7797
MEDEA-W 1.7316 0.7427 0.6872 0.6602
MEDEA 1.7303 0.7267 0.6658 0.6532

RMSE@K

MEDEA-N 0.5988 0.8157 0.8532 0.8842
MEDEA-W 0.5433 0.7695 0.8025 0.8401
MEDEA 0.5318 0.7485 0.7882 0.8115

The training and validation accuracy of MEDEA on Yelp13 is illustrated in Figure

4.6. Compared with MEDEA-N, the validation accuracy of MEDEA is much higher and

more stable, while the training accuracy is increasing. On the contrary, the validation

accuracy of MEDEA-N drops rapidly after a few steps. These results demonstrate that

the complex network structure of MEDEA faces over-fitting, and integrating the explicit

features reduces the over-fitting effectively.
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Figure 4.6: The Training and Validation Accuracy of MEDEA on Data Set Yelp13.

4.5 Summary

This chapter proposes a non-IID paragraph representation framework to embed the

complex hierarchical coupling relations and heterogeneous meanings of words and

sentences into a vector space for sentiment analysis. It instantiates this framework

as a multi-scale and hierarchical deep neural network with an attention mechanism,

namely MEDEA. The MEDEA method learns the non-IID characteristics by a multi-

scale CNN-RNN structure and hierarchically combines the learned implicit features

with the artificially extracted explicit features, including the sentiment lexicon feature,

the POS feature, and the term-presentation feature. The comprehensive experimental

results support the effectiveness of non-IID-characteristics learning and demonstrate

the superior sentiment analysis performance enabled by MEDEA.

MEDEA represents a paragraph by comprehensively and hierarchically modeling

its non-IID paragraph characteristics (i.e., couplings and heterogeneities) within and

between words and sentences and by integrating the explicit features with implicit

features. As a result, MEDEA enables significantly better sentiment analysis perfor-

mance for paragraphs with strong non-IID characteristics but slight improvements for

paragraphs with simple structures and relations. Furthermore, MEDEA gains excellent

benefits from integrating explicit features that reflect domain knowledge. However, how

to effectively identify and extract useful explicit features for a specific data set is still an

open problem.
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SENTIMENT ANALYSIS ON SHORT TEXT

5.1 Introduction

Social media data contains a large number of low quality data, which are very short

and always with informal words and typos. Effectively representing short texts

into a vector space that embeds the semantic meaning of the texts is valuable

and required by reliable sentiment analysis. Different from the Chapters 3 and 4, which

focus on formal long text (paragraph) representation, this chapter studies short-text

representation for sentiment analysis on short text.

Short-text representation is very challenging compared with formal long-text repre-

sentation, which studied in Chapters 3 and 4, because of its two essential characteristics:

noise (Dey et al. 2016) and sparsity (Wang, Wang, Zhang & Yan 2017), where noise refers

to informal words and typos, and sparsity means the rare number of vocabularies in a

text (because of the short length limitation). As a result, most of the current text repre-

sentation methods may fail to represent short text. For example, the word2vec-based

methods, such as the methods in (Kim 2014, Tang, Qin & Liu 2015), need to look up

pre-trained word representations, but the informal words and typos may not appear

in the training data. For another example, when facing sparsity, the term-frequency-

inverse-document-frequency (TF-IDF) and the bag-of-words method generate a very

sparse representation for a short text (i.e., most of the entries in a representation vector

are 0), which may be meaningless for downstream learning tasks because distances

between all texts are equal.
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Recently, several methods have been proposed for short text representation. They

achieved advanced performance by either reducing noise or alleviating sparsity. Re-

garding noise reduction, most of the current methods (Dey et al. 2016, De Boom et al.

2016, Wang, Wang, Zhang & Yan 2017, Arora et al. 2017a, Li, Wang, Zhang, Li, Chi

& Ouyang 2018) first recognize noise by looking up pre-defined noise sets or adopt-

ing frequency-based detection models. Then, they reduce the effects of the recognized

noise by re-weighting or ensemble strategies. However, two problems may arise in their

recognition process: (1) pre-defined noise sets may not fully cover all noise; and (2)

frequency-based detection models may fail when facing the sparsity. As a result, their un-

recognized noises may still damage representation performance, even with re-weighting

and ensemble strategies. Regarding sparsity alleviation, most of the current methods

(Zuo et al. 2016, Liang et al. 2016, Lochter et al. 2016, Li, Li, Chi & Ouyang 2018)

assume a sparse short text is generated from a latent dense document, and try to insert

words into the short text according to the latent document, which is also known as the

expansion-based method. However, the quality of the expansion cannot be guaranteed be-

cause (1) many short texts are independent, that is they are not generated from the same

document; and (2) most of these methods are based on statistics which may profoundly

be affected by the noise in a short text.

This chapter tackles the above problems in low-quality data representation by learn-

ing multi-grain noise-tolerant patterns in texts and embedding the most significant

patterns in a text into a dense vector space to represent the low-quality text. Here, the

noise-tolerant pattern means the textual pattern whose meaning is not affected by noise

in a short text. The motivation behind the multi-grain noise-tolerant patterns learning

is that no matter how many noises in texts and how sparse the texts are, there should

have one or more noise-tolerant patterns that exist in different texts with the same

semantic meaning. For example, two sentences “Does anyone know how to repair?:("

and “dz ne1 knw h2 ripair?:(" have the same meaning. Although the second sentence has

many informal words and typos, it has many explicit noise-tolerant patterns, which are

the same as that in the first sentence, such as “knw" and “rpair? at character-level and

“:(" symbol at word-level. These noise-tolerant patterns reflect the semantic meaning of

the short texts. Effectively embedding such patterns into a dense space can avoid the

meaningless sparse representation caused by text sparsity.

This chapter embeds the multi-grain noise-tolerant patterns by a bi-level neural

network to capture the semantic relations among words and also among characters with

different granularities to tackle the sparsity problem. The intuition is that the semantic
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meaning of a short text can be reflected by the relations among words and also among

characters with different granularities, as shown in the above example.

To further tolerant noise, this chapter proposes a breaking-gathering strategy. In

the breaking stage, the strategy breaks a piece of text into all combinations of its

vocabularies but keeps their ordinal information in the text. Then, at the gathering stage,

it discovers the most significant patterns in these combinations as the pattern of the

piece of text. Through this process, the breaking-gathering strategy can adaptively filter

noise with arbitrary form, and thus discover the noise-tolerant patterns. For example,

at the character-level, the word “know" is broken as “know", “kow", “knw", “kw" and so

on in the breaking stage. Considering “knw" in another short text, the noise-tolerant

pattern “knw" can be discovered in the gathering stage.

Based on the above analysis, this chapter proposes a bi-level masked multi-scale

convolutional and recurrent neural network (Bi-MACRO). The Bi-MACRO method

jointly captures multi-gran relations of words and characteristics to discover noise-

tolerant patterns and embeds them as a dense vector representation for a short text.

The key contributions of this chapter include the following:

• A bi-level neural network representation architecture. The bi-level neural network

representation architecture captures the semantic meaning of a text from both

word-level and character-level, and it embeds the captured semantic meaning into

a dense vector space that tackles the sparsity problem.

• A masked CNN layer for adaptively noise filtering. The masked CNN layer filters

noise by a set of masks, and adaptively selects the most significant pattern by

a cross-filter max pooling. Combining with the bi-level architecture, the masked

CNN layer significantly reduces the noises at both word-level and character-level.

• A multi-scale CNN-RNN structure. Bi-MACRO uses a set of CNN with different

filter sizes to capture short-term word and character relations with different

granularities. The different filter sizes also induce masks with different mask

locations, which fit the noise with an arbitrary position. Further, the connected

RNN layer captures the long-term relations between words and characters, and

it reduces the potential model complexity that may be caused by adopting a large

filter size.

This chapter conducts comprehensive experiments on five widely used real-world

data sets, including TREC, Quora, Twitter, News, and AG News, to show the short-text
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characteristics and evaluate the performance of the proposed method. The experimental

results show that the proposed Bi-MACRO method significantly outperforms three state-

of-the-art competitors and two baseline methods in terms of short-text representation.

The rest of this chapter is organized as follows. Section 5.2 introduces the proposed

method. Section 5.3 demonstrates the Bi-MACRO performance by comparing it with the

state-of-the-art short-text representation methods. Lastly, Section 5.3.6 concludes this

chapter.

5.2 Bi-level Masked Multi-Scale
Convolutional-Recurrent Neural Network for
Short Text Sentiment Analysis

5.2.1 The Architectural of Bi-level Masked Multi-Scale
Convolutional-Recurrent Neural Network

The architecture of Bi-MACRO is shown in Figure 5.1. Given a short text, Bi-MACRO

first represents it into a word embedding matrix and a character embedding matrix.

Then, for each matrix, Bi-MACRO adopts a masked multi-scale CNN-RNN network

to learn a vector representation. Finally, Bi-MACRO integrates these two vectors to a

unified vector as the short-text representation.

To tackle the sparsity problem, Bi-MACRO embeds multi-granularity relations among

both words and characters by a bi-level (i.e., character-level and word-level) multi-scale

CNN and RNN structure. In this way, the word-level structure can process formal words,

while the character-level structure can handle informal words. To further tolerant noises

caused by informal words and typos, Bi-MACRO implements the breaking-gathering
strategy by masked CNN layers, which will be introduced in Section 5.2.4.

5.2.2 The Transformation of Short Textual Data

Given a short text T = {t1, t2, · · · , tnw}, Bi-MACRO transforms it into a word embedding

matrix Ew ∈ Rnw×nw
e and a character embedding matrix Ec ∈ Rnc×nc

e by looking up the

transformation matrices Tw ∈ RnW×nw
e and Tc ∈ RnC×nc

e , where nw corresponds to the

maximum number of words in a short text, nc corresponds to the maximum number of

characters in a short text, nW refers to the number of unique vocabularies in the corpus,

nC refers to the number of unique characters in the corpus, nw
e and nc

e refers to the
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Figure 5.1: The Architecture of Bi-MACRO.

dimension of the word and character embedding, respectively. Initially, to leverage the

word semantic meaning, Bi-MACRO adopts a pre-trained word embedding matrix as Tw

(e.g., the embedding matrix pre-trained by GloVe algorithm 1; Pennington et al. 2014)

and randomly generates a matrix as Tc. Then, it optimizes Tw and Tc in its learning

process.

5.2.3 Masked Convolutional Neural Network

The proposed masked convolutional network is shown in Figure 5.2. For a CNN filter,

this thesis denotes its weight matrix as W ∈Rn fh×n fw where n fh and n fw are the height

and width of the filter, respectively. The Bi-MACRO network sets the filter width n fw as

the dimension of word embedding new at the word-level, and it sets n fw as the dimension

of character embedding nec at the character-level, considering the spatial relation of

a text matrix is among words and characters instead of embedding features. The Bi-

MACRO network masks the weight matrix W by entry-wise multiplying the weight

matrix with a mask matrix M ∈ {0,1}n fh×n fw (a position of 0 in M will mask the input

of the corresponding position). Formally, given a word or character embedding matrix

E ∈Rn×ne , Bi-MACRO calculates the output of a masked CNN filter (a CNN filter with a

1The pre-trained word embedding can be downloaded from http://nlp.stanford.edu/data/glove.6B.zip
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masked weight matrix) as

(5.1) omc = [o1, o2, · · · , on−n fh+1]>.

In Eq. (5.1), the k-th entry of omc is

(5.2) ok = g(
n fwX
i=1

neX
j=1

Mi, jWi, jEk+i−1, j +b),

were g(·) :R→R is a non-linear function, and b ∈R is a bias term. This thesis uses ReLU
as the non-linear function g(·) in each masked CNN. As demonstrated in Figure 5.2, a

masked CNN has many filters with the same size to capture different relations among

words or characters with the same granularity. Accordingly, for these filters and a set of

mask matrices with same entry values, a masked CNN calculates a set of output vectors,

and it stacks these vectors as the output matrix:

(5.3) Omc = [omc1 ,omc2 , · · · ,omcn f
]>,

where n f refers to the number of filters. The Omc is also known as the CNN features.
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Figure 5.2: Masked Convolutional Network. The shadow parts refer to masks.

Because the noise may appear at any position between normal words and characters,

masks with different mask locations should be adopted. To tackle arbitrary noise posi-

tions, masked CNN masks every combination of rows between the first and the last rows

for a filter, as shown in Figure 5.2. Specifically, masked CNN generates 2(n fh−2) different

mask matrices for a filter with n fh height. As a result, it will have 2(n fh−2) CNN feature

matrices,

(5.4) Omc = {O(1)
mc,O

(2)
mc, · · · ,O2

(n fh
−2)

mc }.
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Finally, masked CNN adopts a cross-filter max pooling to integrate its CNN feature

matrices as a unified CNN feature matrix. Here, the cross-filter max-pooling compares

the values at the same entry in different CNN feature matrices and assigns the max

value as the value at the same entry in the unified CNN feature matrix. Formally, the

value at the (i, j)-th entry in the unified CNN feature matrix can be calculated as:

(5.5) ouci j =max(o(1)
mci j

, o(2)
mci j

, · · · , o2
(n fh

−2)

mci j
),

where o(k)
mci j is the value at the (i, j)-th entry of the k-th CNN feature matrix in Omc. The

rationale is that each entry corresponding to a specific pattern between words or charac-

ters, and the largest value corresponding to the most significant pattern. By adopting the

cross-filter max pooling, masked CNN can always extract the most significant pattern in

text that is tolerant to noise.

5.2.4 Multi-Scale Convolutional-Recurrent Neural Network
Structural

In order to capture multi-grain patterns, Bi-MACRO adopts CNN with multi-scale filter

sizes. It should be noted that the introduced 2(n fh−2) masks may dramatically increase

the model complexity when n fh is large. Such high model complexity will cause the model

learning intractable. To reduce the model complexity, this thesis only uses the filter with

size 2,3,4, which only increases extra mask matrices by 4
3 times. With these small size

filters, masked CNN can capture local noise-tolerant patterns but fail to capture the long-

term global relations among words or characters. To fill this gap, Bi-MARCO introduces

a recurrent neural network (RNN) after each masked CNN to leverage such long-term

global relations. This thesis adopts the gated recurrent unit (GRU) to implement the

RNN. Specifically, each row in CNN feature matrix Ouc is fed into a GRU sequentially.

For the t-th row in Ouc, the output ht ∈R1×nr
e of the GRU is computed as follows:

(5.6)

zt =σ(OuctU
z +ht−1Vz),

rt =σ(OuctU
r +ht−1Vr),

ĥt = tanh(OuctU
h + (rt ·ht−1)Vh),

ht = (1−zt) ·ht−1 +zt · ĥt,

where nr
e is the dimension of the RNN embedding, σ(·) : R1×nr

e → R1×nr
e is the sigmoid

function, tanh(·) :R1×nr
e →R1×nr

e is the tanh function, r ∈R1×nr
e is a reset gate, z ∈R1×nr

e is

an update gate, and Uz, Ur, Uh, Vz, Vr, and Vh ∈R(n fh−2)2×nr
e are the transform matrices
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in the GRU. The Bi-MACRO network uses the last output h(n fh−2)2 of the GRU as the

RNN output or of a masked CNN.

For masked CNN with filter sizes 2,3,4, Bi-MACRO generates three RNN outputs

o(2)
r , o(3)

r and o(4)
r . Similar to the cross-filter max-pooling in the masked CNN, Bi-MACRO

here adopts a cross-RNN max pooling to integrate these RNN outputs. Formally, the i-th
entry in the unified RNN output our is calculated as:

(5.7) ouri =max(o(2)
r i

, o(3)
r i

, o(4)
r i

).

Finally, Bi-MACRO concatenates the unified RNN outputs at the word-level and

character-level to form the short-text representation:

(5.8) o= [ow>
ur ,oc>

ur ]>.

The short-text representation o is then fed into a downstream text analytic tasks

such as text category classification and sentiment classification. The Bi-MACRO network

is jointly trained with the downstream task to represent short text in an end-to-end

fashion.

5.3 Experiments and Evaluation of Sentiment
Analysis on Short Text

This chapter evaluates the performance of Bi-MACRO from three aspects:

1. The short text classification performance: whether Bi-MACRO can enable a more

accurate sentiment classification on the short text.

2. The short text retrieval performance: whether Bi-MACRO can enable a more precise

short text retrieval, which is another essential task for sentiment analysis (a

customer always confirm the reliability of a review by checking other reviews that

have the same semantic meaning and sentiment polarity as the review).

3. The short text representation quality: whether Bi-MACRO can well embed the

short text information into a representation space. High representation quality is

the foundation for the downstream sentiment analysis tasks, such as sentiment

clustering.
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5.3.1 Data Sets

The experiments are conducted on five widely used real-world short-text data sets. These

data sets include question answering data sets: TREC2, Quora3; social media data sets:

Twitter4; article title data sets: News5, AG News6. For AG News data set, we select five

comparable categories: entertainment, sports, business, sci/tech, and health. For AG

News and Quora data sets, we randomly use 95% and 5% objects in a data set as the

training and testing data, respectively. For other data sets, we use the originally provided

training and testing sets. The characteristics of each data set are shown in Table 5.1. As

shown in the Table 5.1, the noise and sparsity appear in all data sets. Data set with a

larger ratio of unknown words represents more noise, and data set with shorter length

shows a larger degree of sparsity.

Table 5.1: The Data Characteristics of Each Short-Text Data Set.

Data Set TREC Quora Twitter News AG News

#Texts 10,764 537,933 11,394 20,120 471,542
#Class 6 2 3 8 5
#Voc. 8,872 105,929 20,587 24,201 70,592

#Unk Voc. 3,774 48,699 13,782 7,936 51,773
Avg. Len. 6.10 12.97 12.53 9.44 4.53
Avg. Char. 29.09 61.86 59.98 72.39 21.28

5.3.2 Experimental Settings

5.3.2.1 Comparison Methods

The experiments compare Bi-MACRO with three state-of-the-art short-text represen-

tation methods and two baseline methods to evaluate Bi-MACRO’s performance. The

following part briefly summarizes the state-of-the-art competitors:

• CNN (Zhang et al. 2015): CNN has been adopted at the character level to represent

text, which can relieve the effects of ad-hoc symbols in short text.

2http://cogcomp.cs.illinois.edu/Data/QA/QC
3https://www.kaggle.com/c/quora-question-pairs/data
4https://www.cs.york.ac.uk/semeval-2013/task2.html
5http://acube.di.unipi.it/tmn-dataset/
6http://www.di.unipi.it/ gulli/AG_corpus_of_news_articles.html
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• WWE (De Boom et al. 2016): this method learns a weighted aggregation of word

representations to represent short text where the loss function is customized to

reduce the effects of noise.

• SIF (Arora et al. 2017a): this method also adopts word embedding aggregation, but

it holds an assumption that some words occurring out of context, which reduces

the hazards brought by the sparsity.

• SeaNMF (Shi et al. 2018): this method leverages the local word-context relation to

enhancing a non-negative matrix factorization method, catering for the sparsity

challenge of the short-text representation.

The experiments select the TF-IDF and LDA (Blei et al. 2003) as the baseline methods

to demonstrate the effects of the short-text characteristics (i.e., noise and sparsity) to

typical text representation methods.

5.3.2.2 Neural-Network Implementation

For Bi-MACRO, the experiments empirically set the number of filters with the same

size as 100, the number of RNN units as 100, the word-level and character-level text

embedding dimension as 100. The experiments use ReLU function as the activation

function in each hidden unit in Bi-MACRO, and adopt Adam (Kingma & Ba 2014) as

the optimization method to train the Bi-MACRO with batch size 32. For the competitors,

the experiments adopt their default setting reported in their corresponding paper. The

experiments use the pre-trained word embedding by the GloVe algorithm (Pennington

et al. 2014) in Bi-MACRO, WWE, and SIF; the experiments randomly initialize the

embeddings of unknown words.

5.3.3 Evaluation on Bi-level Masked Multi-Scale
Convolutional-Recurrent Neural Network Performance
on Short Text Classification

This experiment adopts different classification mechanisms on the Quora data set and

the other data sets. Because the label of the Quora data set is whether two sentences are

the same question (i.e., with the same meaning), and the label of the other data sets are

the text categories.

For the Quora data set, this experiment first adopts each representation method to

represent the sentences, and then, it concatenates the representations of two sentences as
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the input of a classifier to classify whether they are the same question. This experiment

uses a three-layers fully-connected neural network as the classifier. It sets the number

of hidden units in each hidden layer of the classifier as 100 and uses tanh as the

activation function in each hidden unit. For the other data sets, this experiment feeds

the representation of each text into a three-layers fully-connected neural network with

the same setting as that for the Quora data set.

The accuracy of the short-text classification enabled by different methods is reported

in Table 5.2. As can be seen in Table 5.2, Bi-MACRO enables the best performance in all

data sets. In Table 5.2, the performance improvement ratio (∆) of Bi-MACRO compared

with the other method with the highest accuracy is also reported to demonstrate the

significance of Bi-MACRO. In this experiment, Bi-MACRO improves up to 4.87% on the

AG News data set, which has the most significant noise and sparsity, as shown in Table

5.1. This result not only illustrates Bi-MACRO significantly improves the short-text

classification performance but also demonstrates that Bi-MACRO effectively tackles the

noise and sparsity in short-text representation.

Table 5.2: The Short Text Classification Performance based on Different Representation
Methods.

Data Set TREC Quora Twitter News AG News

TF-IDF 96.80 78.62 59.67 63.90 71.44
LDA 77.20 74.17 49.70 43.86 44.98
WWE 96.80 78.94 44.96 15.44 61.11

SeaNMF 25.40 61.87 48.75 16.84 22.11
SIF 95.80 77.98 60.26 77.89 75.37

Bi-MACRO 98.00 81.61 61.45 79.56 79.04

∆ 1.24% 3.38% 1.97% 2.14% 4.87%

5.3.4 Evaluation on Bi-level Masked Multi-Scale
Convolutional-Recurrent Neural Network Performance
on Short Text Retrieval

This experiment further evaluates the Bi-MACRO representation performance through

short-text retrieval. It uses the short texts in the testing set as queries, and it reports the

precision@k (i.e., the fraction of k-closest short texts selected per the Euclidean distance

in a representation space that are the same-class neighbors) as the metric of the text
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retrieval performance. The value of k is set as 5, 10, and 20 in the experiment. This

experiment conducts short-text retrieval on the AG News data set because it has the

most significant noise and sparsity.

The results of short-text retrieval in terms of precision@k are reported in Table 5.3.

These results demonstrate that Bi-MACRO significantly improves the performance of

short-text retrieval (up to 39.34%) compared with state-of-the-art methods. Furthermore,

with the number of retrieval texts (k) increasing, the precision@k of all methods instead

of Bi-MACRO decreases rapidly. This result reflects that Bi-MACRO captures much more

noise-tolerant patterns in multiple granularities; these captured multiple-granularity

patterns preserve the short-text local distribution.

Table 5.3: The Short Text Retrieval Performance based on Different Representation
Methods.

Metric Precision@5 Precision@10 Precision@20

TF-IDF 42.65 40.50 38.31
LDA 34.23 32.51 31.07
WWE 45.49 44.12 42.70

SeaNMF 44.36 41.95 40.69
SIF 55.04 52.83 50.48

Bi-MACRO 70.76 70.56 70.34

∆ 28.56% 33.56% 39.34%

5.3.5 Evaluation on Short Text Representation Quality of
Bi-level Masked Multi-Scale Convolutional-Recurrent
Neural Network

This experiment visualizes the short-text representation on the AG News testing data

set in a two-dimensional space trough TSNE (Maaten & Hinton 2008). As shown in

Figure 5.3, it plots the category label of each short text in different colors to evaluate

the representation quality; a high-quality short-text representation will clearly separate

texts in different categories in the representation space.

In the Bi-MACRO generated representation space, the short texts in the same cat-

egory are clearly clustered together. In contrast, the representation of other methods

mixes texts with different categories. The rationale is that Bi-MACRO captures the

multi-grain noise-tolerant patterns in short text by the bi-level masked multi-scale
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CNN-RNN structure, which significantly filters the noise and fits the sparse text. As

a result, the semantic meaning of a short text is propriety reflected by Bi-MACRO’s

representation.
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Figure 5.3: Short Text Representation of Different Methods.

5.3.6 Summary

This chapter proposes a bi-level masked multi-scale CNN-RNN networks to tackle the

noise and sparsity problems in short-text representation. The proposed representation

method learns multi-grain noise-tolerant patterns and then embeds the most significant

patterns in a short text as its representation. It can effectively represent short text and

significantly improves the downstream analytic tasks, as demonstrated by comprehensive

experiments.
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6
FRAUDULENT SENTIMENT ANALYSIS

6.1 Introduction

Social media is becoming increasingly significant and profoundly affects our daily

life. Unfortunately, a large proportion of social media reviews are proposed by

fraudsters for strong incentives of profit and reputation. For example, 25% of

reviews on Yelp (a social media-based recommendation website) might be a fraud, as

reported in 20131. This proportion has rapidly increased as observed in 20172. These

fraudulent reviews mislead general sentiment analysis methods (e.g., the method pro-

posed in Chapters 3, 4, and 5) to analyze sentiment correctly. As a result, effectively

detecting such fraudulent sentiment is a critical task that has excellent business val-

ues. To complement the research in the previous chapters, this chapter thus focuses on

fraudulent sentiment analysis.

As discussed in Section 2.3, current efforts on fraudulent sentiment analysis mainly

focus on analyzing statistical information on historical reviewing activities (e.g., the

characteristics a user always displays when this user is writing a review) and link-based
social relations (e.g., user-user relation, user-item relation, and item-item relation in

social media) (Ye & Akoglu 2015, Rayana & Akoglu 2015, Hooi et al. 2017, Liu et al.

1https://www.bbc.com/news/technology-24299742
2https://www.forbes.com/sites/emmawoollacott/2017/09/09/exclusiveamazons-fake-review-problem-is-

now-worse-than-ever

81



CHAPTER 6. FRAUDULENT SENTIMENT ANALYSIS

2017). They assume a fraudulent review may contain inconsistent statistical information

deviating from historical reviewing activities. In other words, they identify fraudulent

reviews by abnormal reviewing statistical information. For example, these methods may

classify the reviews posted by an inactive user within a short period as fraud. Also, they

assume fraudulent reviews may be posted by a group of fraudsters who work together to

manipulates the opinion of products by posting fraudulent reviews. For example, 100

fraudsters may work together to manipulate the opinion of a product by post all good

reviews to this product when it just published in the social media. This co-working will

generate abnormal social relations (e.g., social link with a very high density). Thus, they

detect fraudulent sentiment according to abnormal social relations. The existing methods

have shown remarkable performance in fraudulent sentiment detection because both the

abnormal statistical information and abnormal social relation have a good distinguishing

ability between honest and fraudulent reviews (Rayana & Akoglu 2016).

However, most of the existing fraudulent sentiment analysis methods may face a

cold-start problem when meeting a review that is posted by a new user who has never

posted reviews before. When facing the cold-start problem, the existing methods do not

have sufficient statistical information or social relation to detect fraudulent sentiment.

The cold-start problem is caused by the following reasons. (i) A new user does not have

historical information for statistical analysis (You et al. 2018), which is required by most

of the existing fraudulent sentiment analysis methods (Ye & Akoglu 2015, Rayana &

Akoglu 2015). (ii) A new user does not show any observed social relation, invalidating

to detect the potential fraudulent reviewing activities of groups of fraudsters (Liu et al.

2017, Hooi et al. 2016).

The representative methods that can solve the cold-start problem is text-based meth-

ods (Mukherjee, Venkataraman, Liu & Glance 2013, Lim et al. 2010, Li et al. 2011).

These methods identify a cold-start review (i.e., a review posted by a new user) by only

considering patterns in review text, such as abnormal review length and a large propor-

tion of capital words. Thus, these methods avoid the adverse effects brought by lacking

historical reviewing activities in the cold-start problem. Recent efforts further embed

the co-occurred relations between users, items, and reviews into a vector representation

of review text, resulting in significantly better detection performance (You et al. 2018,

Wang, Liu & Zhao 2017).

However, an “indistinguishable problem" may arise in cold-start fraudulent sentiment

analysis : text-based methods may fail to distinguish fraudulent reviews from honest

ones when these reviews have the same text. For example, text-based methods cannot
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identify whether a review “the product is good" is fraud or honest, because a fraudster

can imitate this review for a terrible product (Hooi et al. 2016). As a result, text-based

methods are ineffective when dealing with fraudulent sentiment analysis in real-life

social media (Mukherjee, Venkataraman, Liu & Glance 2013).

This chapter tackles the cold-start problem by establishing an inferable represen-

tation space through learning a co-occurrence-based user reviewing behavior. This

reviewing behavior is reflected by the co-occurrence of four review elements: user, item,

review text, and review rating. Given a review, regardless of a cold-start review or

non-cold-start review, the representation of one element can be inferred from the other

elements according to their available co-occurrence-based user reviewing behavior. Based

on these inferable space, this chapter further embeds the statistical information and

social relations for fraudulent sentiment analysis. Thus, possible fraud can be detected

through this inferable space.

This chapter proposes two novel inferable representation learning methods: joint

behavior and social relation inferable embedding (JESTER) in the supervised case and

unsupervised reviewing behavior representation learning (URBER) in the unsupervised

case. The proposed methods first embed the user reviewing behavior into a representation

space and then transform this representation space in a fraud-sensitive representation

space (i.e., a representation space that contains some explicit hints, such as fraud labels)

to identify fraudulent sentiment. These two methods share the same user reviewing

behavior embedding procedure to build the inferable representation but have different

fraud-sensitive representation transformation procedures regarding supervised and

unsupervised scenarios. When facing the cold-start problem, they can infer a new user’s

representation from the representations of the co-occurred review item, review text,

and review rating through a closed-form solution. This inferred representation reflects

the most probable statistical information and social relations of the new user. With the

estimated statistical information and social relations, the proposed methods enable an

effective cold-start fraudulent sentiment analysis, which solves the indistinguishable

problem in the existing text-based cold-start fraudulent sentiment analysis methods.

This chapter delivers the following significant contributions to fraudulent sentiment

analysis:

• This chapter proposes two representation learning methods for supervised and

unsupervised cold-start fraudulent sentiment analysis, respectively. The proposed

method effectively infers the representation of a new user to estimate the new

user’s most probable statistical information and social relations, which solves the
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indistinguishable problem in cold-start fraudulent sentiment analysis.

• This chapter proposes a novel user reviewing behavior embedding method. This

method embeds the defined co-occurrence-based user reviewing behavior into a

vector space. The embedded user reviewing behavior enables an efficient closed-

form solution for the inferring of a new user representation.

• This chapter leverages fraud-sensitive information from social relations to enhance

the fraud detection performance of the representation learned from user review-

ing behavior. The leveraged information provides more evidence for fraudulent

sentiment analysis, especially for detecting reviews manipulated by a group of

fraudsters.

This chapter conducts comprehensive experiments on four large real-world data sets.

The experimental results demonstrate the effectiveness of the proposed models compared

with three state-of-the-art and two baseline methods.

The rest of this chapter is organized as follows. Section 6.2 introduces the proposed

inferable representation learning framework. Sections 6.4 and 6.6 give the details of

the proposed supervised and unsupervised fraudulent sentiment analysis methods,

respectively. Section 6.8 evaluates the proposed fraudulent sentiment analysis methods

in terms of different metrics. Lastly, Section 6.9 concludes this chapter and discusses

prospects of future research.

6.2 The Framework of Inferable Representation
Learning for Fraudulent Sentiment Analysis

6.2.1 Preliminaries

A social reviewing data set S contains a set of users U = {u1,u2, · · · ,unu }, a set of items

T = {t1, t2, · · · , tnt}, a set of review text D = {d1,d2 · · · ,dnd }, and a set of review rating

R = {r1, r2, · · · , rnr }. In a social reviewing data set, each user or item is represented as

an unique ID, and each review rating is represented as a discrete value (e.g., “high”,

“medium”, “low”; “1”, “2”, “3”, “4”, “5”). In other words, user, item, and review rating

belong to categorical data. On the contrary, review text belongs to textual data.

A social reviewing data set S can be modeled as a bipartite graph G = (U ,T,E),

where U and T are as the vertices on two sides of G, respectively, and E = {< u, t,d, r >
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| < u, t,d, r >∈ S} defines the edges. Here, each edge e ∈ E represents a reviewing activity

< u, t,d, r >, which is the co-occurrence of four elements, including a user u, an item d, a

review text t, and a review rating r (i.e., a user u writes a review text t for an item d
with a rating r). And the edge eui ,t j in E carries a non-negative weight wui ,t j , reflecting

the social relation strength between user ui and an item t j, and the weight wui ,t j will

be one if the user ui reviewed the item t j and be zero if the user ui does not review the

item t j. Accordingly, the weights in the bipartite graph can be represented by a nu ×nt

matrix W= [wui ,t j ].

6.2.2 Framework

The framework of the proposed inferable representation learning method for cold-

start fraudulent sentiment analysis is shown in Figure 6.1. Given a reviewing activity

< u,d, t, r >, this framework adopts a representation learning module to represent u, t,
d, r to m-dimensional vector representations u, t, d, r ∈Rm, respectively. These repre-

sentations are then fed into a downstream fraud detection module (such as a classifier in

supervised cases and a clustering method in unsupervised cases) for fraudulent review

detection. The representation learning module of this framework consists of two parts:

inferable representation space building and fraud-sensitive information embedding. The

inferable representation space building part constructs an inferable space where the

representation of one review element can be inferred from the other review elements’ rep-

resentations. The fraud-sensitive information embedding part embeds the information

that can be used to identify fraudulent reviews into the elements’ representation. This

embedded fraud-sensitive information provides essential evidence for fraudulent review

detection. By jointly building inferable representation and embedding fraud-sensitive in-

formation, the representation learning module can estimate the most probable evidence

of a new user for cold-start fraudulent sentiment analysis.

The proposed framework representation can be implemented to different methods.

This chapter proposes two methods to implement this framework. These two methods

share the same inferable representation learning part to tackle the cold-start problem

but have different fraud-sensitive information embedding parts and fraud detection

modules catering for supervised and unsupervised cases, respectively. The rest of this

chapter first proposes the inferable representation space building method and introduces

the new user’s representation inferring method in this space. Then, two fraud-sensitive

information embedding methods as well as their corresponding fraud detection methods

are proposed.
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Figure 6.1: The Framework of Inferable Representation Learning for Fraudulent Senti-
ment Analysis

6.3 Inferable Representation Space Building

To build the inferable representation space, a representation learning network is needed

to transform review elements to vector representations, and one element’s represen-

tation can be inferred from the other elements’ representations. The architecture of

the proposed inferable representation space building method is shown in Figure 6.2.

In the following parts, Section 6.3.1 introduces the representation networks, including

user embedding network, item embedding network, rating embedding network, and text

embedding network. Section 6.3.2 proposes the behavior learning objective to build the

inferable representation space. Finally, Section 6.3.3 discusses how to infer a new user’s

representation after building the inferable representation space.

6.3.1 Representation Learning Networks

The networks consist of four parts: user embedding network, item embedding network,

text embedding network, and rating embedding network. The embedding network have a

two-layer structure where the first layer is a fully-connected layer with m nodes and the

second layer is a normalization layer. While the fully-connected layer maps the one-hot

embedding of input (i.e., user ID, item ID, or categorical rating value) to a vector, the

normalization layer normalizes the vector to its unit vector. The text embedding network

is adopted as the convolutional neural network (CNN) used in (Wang, Liu & Zhao 2017).

6.3.2 Co-occurrence-based User Reviewing Behavior Learning

Inspired by (Wang et al. 2018), this thesis builds the inferable representation space by

embedding the co-occurrence-based user reviewing behavior defined below.
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Figure 6.2: Architecture of the proposed Inferable Representation Space Building Method

Definition 6.1. (User Reviewing Behavior) User reviewing behavior is a co-occurrence

pattern of the review elements (u, t, d, and r) in user’s reviewing activities.

User reviewing behavior is displayed by user historical reviewing activities. Given a

social media data set S that consists of a set of reviewing activity, a reviewing activity

< u, t,d, r > follows a user reviewing behavior if this reviewing activity is in the data set

S (i.e., < u, t,d, r >∈ S). In other words, a reviewing activity is behavior succeed, if the

user, item, review text, and review rating co-occur in history. Otherwise, if u, t, d, and

r never co-occurred in history, the reviewing activity < u, t,d, r > does not follow a user

reviewing behavior or the reviewing activity is behavior failed. For example, if a user

“Tony” only reviews an item “iPhone X” with review text “Awesome phone” and rating

“5”, the reviewing activity <Tony, iPhone X, Awesome phone, 5> is behavior succeed, and

<Tony, iPhone X, Awesome phone, 3> or <Tony, Dell computer, Awesome phone, 5> is

behavior failed. By embedding this co-occurrence-based user reviewing behavior, the

absent information of a new user in the cold-start problem could be inferred by from

item, review text and review rating according to their co-occurrence relation.

This thesis here introduces a measure to estimate the behavior success rate of a

reviewing activity < u, t,d, r >. Following (Wang et al. 2018), the behavior displayed by

a reviewing activity is first represented as a sum of the vector representations of user,
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item, review, and rating as follows,

(6.1) b=u+ t+d+r,

where d = fψ(d) is a review embedding calculated by a neural network fψ with the

parameters ψ. Then, the norm of vector b is used to measure the behavior success rate of

the reviewing activity. Specifically, a vector b with larger norm implies a larger behavior

success rate. Consequently, as shown in Figure 6.3, a reviewing activity < u, t,d, r > has

a higher behavior success rate if the vector orientation of u,t,d,r are more similar in the

representation space. Considering a reviewing activity either exists in history or not, a

reviewing activity is either behavior succeed or failed for a given social media data set.

Accordingly, the behavior success rate is mapped to a probability close to 1 or 0 by the

following behavior success probability function,

(6.2) s(< u, t,d, r >)= 2 · 1
1+ e−‖b‖2

−1.

This thesis denotes the observed behavior success probability as ŝ(·), where ŝ(< u, t,d, r >

Figure 6.3: The Inferable Representation Space. In this figure, u,t,d,r refer to the
representations of user, item, review, and rating, respectively.

)= 1 if < u, t,d, r > co-occurred in the given social media data set, and ŝ(< u, t,d, r >)= 0

otherwise. While s(·) describes the behavior success distribution in the representation

space, ŝ(·) reflects the observed behavior success distribution in the social media. To

embed the user reviewing behavior into the element representations, the proposed

method minimizes the KL-divergence between the behavior success distribution in the

representation space and the observed behavior success distribution in the social media
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by the following objective function,

(6.3) min
u,t,ψ,r

X
<u,t,d,r>∈S

ŝ(< u, t,d, r >) log
ŝ(< u, t,d, r >)
s(< u, t,d, r >)

.

Because ŝ(< u, t,d, r >)= 1 if < u, t,d, r >∈ S, the Equation (6.3) equals to the follows,

(6.4) min
u,t,ψ,r

− X
<u,t,d,r>∈S

log s(< u, t,d, r >).

However, Equation (6.4) only captures the distribution of reviewing activities that follow

user reviewing behavior (i.e., < u, t,d, r >∈ S) but ignores the reviewing activities that do

not follow user reviewing behavior (i.e., < u, t,d, r >6∈ S). In practice, it is impossible to

enumerate all reviewing activities because the combination of u, t, d, and r constitutes

a huge behavior space. Inspired by the negative sampling used in word2vec (Mikolov

et al. 2013), the proposed method randomly samples a set of reviewing activities that

do not follow user reviewing behavior (denoted as S−) and measure the probability of a

review activity that does not follow user reviewing behavior in the representation space

as follows,

(6.5) s∗(< u, t,d, r >)= 2 · 1
1+ e‖b‖2

.

In Equation (6.5), s∗(< u, t,d, r >) will be large (i.e., the review activity < u, t,d, r >
is likely to violate user reviewing behavior) if the vector orientations of u, t, d, and

r are diverse in the representation space. To capture the distribution of reviewing

activities that do not follow user reviewing behavior, the proposed method minimizes

the KL-divergence between the distribution of behavior failed reviewing activities in the

representation space and the sampled behavior failed reviewing activities as follows,

(6.6) min
u,t,ψ,r

− X
<u,t,d,r>∈S−

log s∗(< u, t,d, r >).

Accordingly, the user reviewing behavior learning objective is defined as follows,

(6.7) L1 =− X
<u,t,d,r>∈S

log s(< u, t,d, r >)− X
<u,t,d,r>∈S−

log s∗(< u, t,d, r >).

By minimizing this objective, the co-occurrence-based user reviewing behavior can be

embedded into the element representation to build the inferable representation space.

6.3.3 User Representation Inferring in Cold-Start Problem

When facing the cold-start problem, a new user can not be represented by the user

representation network because the new user’s ID has never been trained. In this case,
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the proposed method infers the new user’s representation in the inferable representation

space according to its co-occurrence relation with the item, review text, and review rating,

as shown in Figure 6.4. Firstly, the item, review text, and review rating that in the new

user’s reviewing activity are represented to their representations t, d, and r. Secondly,

the user representation is inferred by optimizing the following objective function:

(6.8) max
u

2 · 1
1+ e−‖u+t+d+r‖2

−1,

which aims to maximize the behavior success rate (Equation (6.2)) according to the item,

review and rating representations.

User Representation Item Representation Rating Representation

Item Embedding 
Network

Rating Embedding 
NetworkBehavior Success Rate 

Maximization

Text Representation

Text Embedding 
Network

Figure 6.4: User Representation Inferring Process in Cold-Start Problem

Maximizing Equation (6.8) equals to maximizing the ‖u+ t+d+r‖2. Given t,d, and

r, as shown in Figure 6.5, the u that can maximize ‖u+ t+d+r‖2 must direct to the

direction of t+d+r. Because u is a unit vector, u equals to the normalization of t+d+r
that can be calculated as follows,

(6.9) u= t+d+r
‖t+d+r‖2

.

Accordingly, the representation of a new user can be inferred efficiently by the closed-form

solution, Equation 6.9.

6.4 Supervised Fraud-Sensitive Information
Embedding

In the supervised case, this thesis considers both social relation and statistical informa-

tion leveraged by fraud labels as fraud-sensitive information. While the social relation
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Figure 6.5: The New User Representation Inferring.

reflects the possible fraud reviews manipulated by a group of fraudsters, the statistical

information provides fraud evidence directly related to fraud labels. This thesis proposes

the JESTER method, which jointly embeds the user reviewing behavior (in Section 6.3.2),

social relation (in Section 6.4.1), and statistical information (in Section 6.4.2) for fraud

review detection, as shown in Figure 6.6. The JESTER method wraps the statistical

information embedding into an end-to-end learning process of fraud review detection. By

optimizing a fraud detection objective, the fraud-sensitive statistical information will be

discovered and embedded by the representation learning network. Accordingly, JESTER

first represents the elements of a reviewing activity to their vector representations. It

then feeds these representations into a neural network for fraud review detection.

In the representation learning process, JESTER simultaneously considers three

tasks: user reviewing behavior learning, social relation preservation, and fraud review
detection, corresponding to three jointly optimized learning objective functions: behavior
learning objective, social relation preservation objective, and fraud detection objective. The

intuition is that user reviewing behavior learning establishes the inferable ability, the

social relation preservation captures the social relations, and the fraud review detection

leverages the fraud-related statistical information. By jointly optimizing these three loss

functions, JESTER learns elements’ inferable representations for fraud review detection.

6.4.1 Social Relation Embedding

The JESTER method first discoveries social relations and then embeds them into ele-

ments’ representations, as illustrated in Figure 6.7. Specifically, JESTER discoveries

both explicit and implicit social relations on the bipartite graph G of a social media data

set S. Here, explicit relation refers to the relation directly shown by an edge between a
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Figure 6.6: Architecture of the Proposed JESTER Method

user and an item, which reflects user-item relation; implicit relations refer to user-user

relation and item-item relation that is not directly shown by an edge but are hidden in a

path consists of a sequence of edges with shared vertices.

Figure 6.7: The Users/Items Social Relation Embedding Workflow.

Explicit Relations Embedding Explicit relation reflects a user’s preference for

items. To embed this preference, JESTER assumes a user’s representations and an item’s

representation should be similar if the user prefers the item. In this way, the preference
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of a user to an item can be measured by the vector similarity in the representation space.

Considering user representation u and item representation t are all unit vectors, their

similarity can be measured by the norm of their sum, ‖u+t‖. The larger the norm is, the

more similar u and t are. Accordingly, the explicit relation embedding process maximizes

‖u+ t‖ if u and t co-occurred in a reviewing activity and minimizes ‖u+ t‖ if u and t
never co-occurred.

Following the above embedding objective, the explicit relations embedding has already

been wrapped in the user reviewing behavior learning objective in Equation (6.7). Specif-

ically, if a user u and an item t co-occurred in a reviewing activity (i.e., < u, t,d, r >∈ S),

the reviewing activity is behavior succeed. By optimizing the loss function Equation (6.7),

u and t will have similar vector orientations in the representation space and ‖u+ t‖ will

be large, as shown in Figure 6.3. Therefore, explicit relation has been embedded in the

representation space.

Implicit Relations Embedding Implicit relation reveals the potential similarity

between users and items. Similar to (Gao et al. 2018), JESTER reconstructs the bipartite

graph G into two graphs G(u) and G(t) to discover the implicit relations, where G(u)

contains only user vertices U , and G(t) contains only item vertices T. In G(u), ui and u j

will have an edge eui ,u j if existing an item vertex tk that eui ,tk ∈ E and eu j ,tk ∈ E, where

E is the edge set of G. In G(t), ti and t j will have an edge e ti ,t j if existing a user vertex uk

that euk,ti ∈ E and euk,t j ∈ E, where E is the edge set of G. Similar to (Deng et al. 2009),

JESTER calculates the weights of eui ,u j and e ti ,t j as follows,

(6.10) wui ,u j =
X

eui ,tk ,eu j ,tk∈E
wui ,tk ·wu j ,tk ,

or

(6.11) wti ,t j =
X

euk ,ti ,euk ,t j∈E
wuk,ti ·wuk,t j .

To embed the implicit relation, JESTER needs to discover the paths in the graph

G(u) and G(t). However, counting all paths in G(u) and G(t) has a great high complexity,

which is impracticable for social media data. Inspired by DeepWalk (Perozzi et al. 2014),

JESTER performs a truncated random walks on a graph from each node, where the

weight of an edge is proportional to the walking probability on the edge. Subsequently,

JESTER adopts the walked edges as the paths to reveal implicit relations. In other words,

two vertices are treated having an implicit relation if they are in a random walk path.

The path generation procedure generates a set of random walk paths W (u) of U and a set

of random walk paths W (t) of T.
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The JESTER method assumes two users or items always on the same path have an

implicit relation and they will have or be affected by a similar user reviewing behavior.

It has this assumption because the users or items that always on the same path either

have a similar preference (or characteristics) or have a collaboration, which may cause

their similar user reviewing behavior. To seamlessly integrate implicit relations with

user reviewing behavior, JESTER maximizes the similarity of the orientations of vector

of users and items in the representation space if they are in the same path. In this way,

these users and items will have similar user reviewing behavior success probability

according to Equation (6.2). The similarity of the orientations of vectors can be measured

by the cosine similarity. Since all representations are unit vector, the cosine similarity

can be reduced to an inner dot of two vectors. Accordingly, JESTER can calculate the

probability of two vertices (can either be user or item) in a path from their vector

representations as follows,

(6.12) p(vi,v j)= 2 · 1

1+ e−v>
i v j

−1,

where v is the vector representation of v. For the vertices that are not in a path, JESTER

calculates their probability as

(6.13) p∗(vi,v j)= 2 · 1

1+ ev>
i v j

.

Similar to Equation (6.7), JESTER minimizes the KL-divergence between the distribu-

tion of vertices in a path in the representation space and the observed distribution of

vertices in a path in social media data. Consequently, JESTER formalizes the social

relation embedding objective function as follows,

(6.14)

L2 =− X
ui∈P∧P∈W (u)

X
u j∈CP (ui)

log p(ui,u j)

− X
ui∈P∧P∈W (u)

X
u j∈C−(ui)

log p(ui,u j)

− X
ti∈P∧P∈W (t)

X
t j∈CP (ti)

log p∗(ti, t j)

− X
ti∈P∧P∈W (t)

X
t j∈C−(ti)

log p∗(ti, t j),

where P refers to a path in W (·), CP (·i) refers to the other vertices of in the path P instead

of ui or ti, and C−(·i) refers to the negative sampled vertices that do not in any path that

contains ui or ti.
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6.4.2 Statistical Information Embedding

The JESTER method leverages statistical information from review elements through an

end-to-end learning process supervised by annotated fraud label. Specifically, JESTER

fed the elements’ representations to a fraud detector network to predict fraud labels. It

jointly trains the representation learning network and fraud detector network to discover

and embed fraud-sensitive statistical information into elements’ representations.

Denoting the fraud detector network in JESTER as fω, the predicted fraud label l for

a reviewing activity < u, t, ,d, r > is obtained by:

(6.15) l(< u, t, ,d, r >)= fω(u,t,d,r),

where ω refers to the parameters of the fraud detector network. In the learning process,

JESTER adopts cross-entropy to evaluate the loss of the fraud detector network. Denoting

the supervised fraud review label of < u, t, ,d, r > as l̂(< u, t, ,d, r >), the objective function

of the fraud detector network can be formalized as follows,

(6.16)
L3 =

X
<u,t,,d,r>∈S

−l̂(b) log l(< u, t, ,d, r >)

− (1− l̂(< u, t, ,d, r >)) log(1− l(< u, t, ,d, r >)).

The JESTER method jointly optimizes the user reviewing behavior learning objective,

the social relation embedding objective, and the fraud detector network objective to learn

the inferable elements’ representations. The joint objective function is as follows,

(6.17) LJ =α1L1 +α2L2 +α3L3

where α1, α2, and α3 are hyper-parameters that control the affects of three objectives:

L1, L2, and L3.

6.5 Supervised Fraud Detection Method

The JESTER detects fraud reviews by a neural network fω based on the inferable

elements’ representation. In this thesis, fω is implemented by a fully-connected neural

network with the concatenate of elements’ representation vectors as the input and the

fraud label as the output. In the fully-connected neural network, JESTER uses the

rectified linear unit (ReLU) as the activation function of all hidden layers and use the

sigmoid as the activation function in the output layer. The number of hidden layers and

the number of nodes in each hidden layer are two hyper-parameters that can be adjusted
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according to different data. As discussed in Section 6.4.2, fω is jointly learned with the

representation network in an end-to-end learning process.

Given a reviewing activity < u, t,d, r >, in the detecting process, JESTER first rep-

resents the review elements to their representation u, t, d, and r through the learned

representation learning network. It should be noted that the representation learning

network cannot directly generate the representation of a new user when facing the

cold-start problem because the representation learning network never trains on the new

user’s unique ID. In this case, JESTER infers u from t, d, and r according to Equation

(6.9). After that, JESTER fed these elements’ representations into the learned fraud

detector network fω to predict the fraud label of the reviewing activity.

6.6 Unsupervised Fraud-Sensitive Information
Embedding

In the unsupervised case, this thesis discovers fraud-sensitive information only from

social relations. Accordingly, this thesis proposes the URBER method for unsupervised

cold-start fraud review detection. The URBER method mines fraud-sensitive information

from social relations to learn fraud-sensitive representation, which tackles the label-

absent problem in unsupervised scenarios. The principle is that abnormal social relations

can be used to precisely detect fraud reviews by the existing fraud review detection

methods (e.g., dense sub-graph mining) (Hooi et al. 2016); the mined fraud-sensitive

information can then be integrated with the embedded reviewing behavior to form

fraud-sensitive inferable element representations.

Accordingly, URBER has three principal components as shown in Figure 6.8: inferable
representation space building, social relation mining, and fraud-sensitive information
embedding. The inferable representation space building component is already introduced

in Section 6.3. The social relation mining component adopts a dense sub-graph mining

method to generate pseudo fraud labels. The pseudo fraud labels then are used to

transform the inferable element representation to fraud-sensitive inferable element

representation in the fraud-sensitive information embedding component.

In the transformation process, URBER preserves the information contained in the

original inputs (i.e., user, item, review, and rating) by maximizing the mutual informa-

tion between the original inputs and the transformed fraud-sensitive representations.

After the transformation process, URBER further enhances the dense graph mining by

adjusting the graph weight according to the density in the transformed representation
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Figure 6.8: Architecture of the Proposed URBER Method

space. It then repeats these processes to re-generate the pseudo-labels and re-transform

the element representations iteratively.

6.6.1 Social Relation Mining

Motivated by (Liu et al. 2017, Hooi et al. 2016), URBER leverages social relations to

integrate fraud-sensitive information to inferable representation. This social relation

mining process is shown in Algorithm 1. To achieve this goal, URBER greedily removes

vertexes in the bipartite graph G of a social media data set S to maximize the sub-graph

density per a given density evaluation (Algorithm 1 line 2 - 5). The final remained sub-

graph (Algorithm 1 line 6) will be the part that has the largest density in the bipartite

graph (as shown in Figure 6.9), thus it can reflect the users who may work together to

manipulate reviews.

In Algorithm 1, the density metric g(·) is defined as follows,

(6.18) g(S)= f (S)
|S| ,

where

(6.19) f (S)= X
<u,t,d,r>∈E

wu,t,

and wu,t ∈ R+ refers to the link weight between user u to item t. Initially, URBER

assigns all link weights as 1. In the learning process, it adopts a dynamic re-weighting

strategy to iteratively update the link weights.
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Figure 6.9: Density in a User-Item Bipartite Graph

Algorithm 1 Social Relation Mining of URBER.
Input: Bipartite graph G = (U ,T,E);
Output: The pseudo-labels set Y ;
1: X0 ←U ∪T
2: for t = 1, · · · , (nu +nt) do
3: i∗ ← argmaxi∈X t−1 g(X t−1\{i})
4: X t ← X t−1\{i∗}
5: end for
6: X∗ ← argmaxX i∈{X0,··· ,Xnu+nt } g(X i);
7: for u = u1, · · · ,unu do
8: if u ∈ X∗ then
9: yi = c f

10: else
11: yi = cn
12: end if
13: end for
14: return Y = {y1, · · · , ynu }

The URBER method generates pseudo-labels for a reviewing activity according to

the dense sub-graph mining results. Specifically, it gives a pseudo fraud label (c f ) to

each reviewing activity in the detected dense sub-graph (i.e., the user and item of an

reviewing activity are both in the dense sub-graph), and assigns pseudo normal labels

(cn) to others (Algorithm 1 line 7 - 14). These pseudo-labels inherit the social relations

and will be used in the following fraud-sensitive information embedding component and

fraud detection.
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6.6.2 Fraud-Sensitive Information Embedding

The URBER method adopts its generated pseudo label to embed fraud-sensitive infor-

mation into element representation. Specifically, it uses fraud-information embedding

network fpu (·), fpt(·), fpd (·), and fpr (·) to transform inferable element representations

u, t, d, and r to fraud-sensitive inferable element representation u∗, t∗, d∗, and r∗

by minimizing a pseudo-labels prediction objective. Here, the pseudo-labels prediction

objective is defined as the cross-entropy between pseudo-labels and labels predicted by a

classifier based on u∗, t∗, d∗, and r∗.

The fraud-sensitive information embedding network is implemented by four fully-

connected neural networks, each of which maps an element representation to its fraud-

sensitive embedding. In these networks, URBER adopts the ReLU as the activation

function in each hidden node. The number of hidden layers and the number of nodes in

each hidden layer are hyper-parameters that can be adjusted according to different data.

Directly conducting this embedding procedure has a risk of causing an overfitting

hazard. The transformed fraud-sensitive inferable element representation may be domi-

nated by the pseudo labels; thus, it may lose original information contained in reviewing

activities. To avoid this overfitting hazard, URBER further maximizes the mutual infor-

mation between the original reviewing activity and the fraud-sensitive inferable element

representation.

Accordingly, the objective function of URBER’s fraud-sensitive information embedding

can be formalized as follows,

min
P,w,b

nsX
i=1

X
y={c f ,cn}

1[yi = y] log qi + I(S∗;S)

s.t. qi = softmax(w · [u∗
i ,t∗i ,d∗

i ,r∗i ]+b),

u∗
i = fpu (ui),

t∗i = fpt(ti),

d∗
i = fpd (di),

r∗i = fpr (ri),

(6.20)

where yi is the pseudo-label of the i-th user assigned by Algorithm 1, where ns is the

number of the existing reviewing activities, where P = {pu,pt,pd,pr}, w, and b are the

parameters of a softmax function, and where I(·; ·) is a mutual information measurement.

This thesis adopts the mutual information neural estimator (Belghazi et al. 2018) as

I(·; ·) for the computational convenience.

99



CHAPTER 6. FRAUDULENT SENTIMENT ANALYSIS

6.6.3 Dynamic Re-Weighting Strategy

The discriminative ability of the fraud-sensitive representation should be strong, because

the representation will be used to detect fraud reviews. In URBER, this discriminative

ability is mainly obtained from the pseudo-labels generated by the dense sub-graph

mining in the social relation mining component. However, social relation may not com-

prehensively indicate all kinds of fraud reviews (Rayana & Akoglu 2016). As a result,

the discriminative ability of fraud-sensitive representation may not be good if learning

only from the social relation.

To enhance the discriminative ability, URBER reinforces the focusing of the dense

sub-graph mining on the suspicious users discovered in the fraud-sensitive inferable

element representation space, which reflects both the reviewing behavior and the social

relation. Specifically, URBER clusters a set of users into two categories according to their

fraud-sensitive inferable representations. It then re-weights the link of each user by the

reciprocal of the number of its assigned categories. Formally, the link weight of a user u
is assigned as,

(6.21) wu,· = 1
|Cu|

,

where Cu refers to a set of users with the same category as user u, and | · | returns

the size of the set. The assumption behind this re-weighting is that a user with less

similar users is more suspicious as a fraudster. After re-weighting the links, URBER

conducts the dense sub-graph mining again to generates new pseudo-labels, which are

further integrated with the embedded reviewing behavior to form the element fraud-

sensitive representation. The URBER method repeats this dynamic re-weighting strategy

until convergence. With the dynamic link re-weighting strategy, the fraud-sensitive

information embedding procedure of URBER is summarized in Algorithm 2.

6.7 Unsupervised Fraud Detection Method

The URBER method adopts different approaches to detect fraud reviews for the review

posted by the existing users and new users, respectively. For a review posted by an

existing user, URBER assigns the label by conducting Algorithm 1. For a review posted

by a new user, URBER first finds the k-nearest neighbors of the new user in the fraud-

sensitive inferable user representation space, and it then assigns the label that appears

mostly in the k-nearest neighbors as the predicted label of the new user.
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Algorithm 2 Fraud-Sensitive Information Embedding of URBER with Dynamic Re-
Weighting Strategy.
Input: Online review set S, convergence threshold ε;
Output: Element fraud-sensitive representation {u∗,t∗,d∗,r∗};
1: Embedding reviewing behavior by optimizing Equation (6.7)
2: Generating pseudo-label set Y by Algorithm 1
3: Generating element fraud-sensitive representation {u∗,t∗,d∗,r∗} by Equation (6.20)
4: Initializing ∆=+∞
5: while ∆> ε do
6: Y ′ ←Y
7: Clustering u∗ into two categories
8: Re-weighting user-item graph links by Equation (6.21)
9: Generating pseudo-label set Y by Algorithm 1

10: Generating element fraud-sensitive representation {u∗,t∗,d∗,r∗} by Equation
(6.20)

11: ∆= 1−
P

yi∈Y ,y′i∈Y ′
1[yi=y′i]

|Y |
12: end while
13: return {u∗,t∗,d∗,r∗}

6.8 Experiments and Evaluation of Fraudulent
Sentiment Analysis

6.8.1 Data Sets

Following the literature (You et al. 2018, Wang, Liu & Zhao 2017) about cold-start fraud

detection, the experiments are carried on four real-life data sets, including Yelp-Hotel,

Yelp-Restaurant, Yelp-NYC, and Yelp-Zip, which are also commonly used in previous

fraud detection researches (Mukherjee, Venkataraman, Liu & Glance 2013, Rayana &

Akoglu 2015, Mukherjee, Kumar, Liu, Wang, Hsu, Castellanos & Ghosh 2013).

6.8.1.1 Supervised Fraudulent Sentiment Analysis

In the supervised case, the experiments split the original Yelp-Zip and Yelp-NYC data

sets into several subsets according to the time to evaluate the fraudulent sentiment

analysis performance stably. The experiments further split each subset into two parts.

The first part includes the reviews posted before a time point, while the second part

contains the rest reviews. From the second part, the experiments pick up the reviews that

are posted by new users for the first time as cold-start reviews. The experiments train
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each fraud detection method on the first part and evaluate these methods on the second

part. Table 6.1 displays the statistics of the data sets for the evaluation of supervised

fraudulent sentiment analysis.

Table 6.1: Statistics of Data Sets for Supervised Fraudulent Sentiment Analysis

Name
Training Data Testing Data

Time Period #R Time Period #F #FC #N #NC
Zip_1 24/10/08 – 24/03/09 10530 25/03/09 – 25/06/10 6267 4848 43744 15952

Zip_2 24/03/09 – 24/08/09 13252 25/08/09 – 25/12/09 1396 1075 10220 3820

NYC_1 24/10/08 – 24/03/09 6780 25/03/09 – 25/06/10 3183 2539 27974 11313

NYC_2 24/03/09 – 24/08/09 8243 25/08/09 – 25/12/09 748 594 6664 2754

In this table, #R refers to the number of reviews; #F and #FC refer to the number of fraudulent reviews
and cold-start fraudulent reviews, respectively; and #N and #NC refer to the number of honest reviews
and cold-start honest reviews, respectively.

6.8.1.2 Unsupervised Fraudulent Sentiment Analysis

In unsupervised cases, the experiments split original Yelp-Hotel and Yelp-Restaurant

data sets into two parts for fraudulent sentiment analysis performance evaluation. The

first part includes 90% earliest posted reviews. The users who posted these reviews are

treated as existing users. The second part is the 10% latest posted reviews. Similar to

the settings in supervised fraudulent sentiment analysis evaluation, the experiments

pick up the reviews which wrote by new users for the first time in the second part as

cold-start reviews. Furthermore, the experiments use the whole data sets to evaluate

the general fraudulent sentiment analysis performance and do the ablation study. The

statistics of these data sets are shown in Table 6.4 and Table 6.5 for the unsupervised

cold-start fraudulent sentiment analysis and general fraudulent sentiment analysis,

respectively.

6.8.2 Evaluation Metrics

The experiments evaluate the fraudulent sentiment analysis performance of each method

by three metrics, including precision, recall, and F-score. Here, the precision evaluates

the ratio of the number of correct analysis results to the number of all analysis results,

recall reflects the ratio of the number of undetected reviews to the number of all reviews

that should be detected, and the F-score indicates an average of precision and recall. The

experiments use all of them because the fraudulent sentiment analysis is an imbalanced
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classification problem (i.e., the number of fraudulent reviews are much less than honest

reviews; Luca & Zervas 2016 ) that cannot be considered from only precision or recall

perspective. The experiments report these three metrics per ground-truth honest and

fraudulent classes to illustrate the performance for different categories, and the experi-

ments further average them to show the overall performance. Higher precision, recall,

and F-score indicate better performance.

The experiments follow the work of Rayana & Akoglu (2015) and Wang, Liu & Zhao

(2017) to use the results of the Yelp commercial fake review filter as the ground-truth

for performance evaluation. Although the reviews (fraudulent reviews) filtered by this

filter and the unfiltered reviews (honest reviews) are likely to be the closest to real

fraudulent and honest reviews (Mukherjee, Venkataraman, Liu & Glance 2013), they are

not absolutely accurate (Li et al. 2014). The inaccuracy exists because it is hard for the

commercial filter to have the same psychological state of mind as that of the fraudsters

who have real businesses to promote or to demote, especially in the cold-start problem.

6.8.3 Parameters Settings

The experiments use a CNN network to embed reviews following Wang, Liu & Zhao

(2017). The CNN network adopts 100 filters with the size of 3×100 on the pre-trained

100-dimensional word embedding by the GloVe algorithm (Pennington et al. 2014) 3.

The experiments embed the user, item, and rating into a 100-dimension representation

vector. The experiments implement the fraud detector network and fraud-sensitive

information embedding network by a 3-layer fully-connected neural network with 100

nodes in each hidden layer and use ReLU as the activation function for each hidden

node. The JESTER and URBER models are trained by the Adam optimization algorithm

(Kingma & Ba 2014) with a batch size of 32. The k-means algorithm is selected as the

clustering method in URBER, while the Euclidean distance is used as the distance metric

to get 5-nearest neighbors of a new user in the user fraud-sensitive representation space.

For the parameters in the compared methods, the experiments take the recommended

settings reported in their corresponding papers.

3The pre-trained word embedding can be downloaded from http://nlp.stanford.edu/data/glove.6B.zip
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6.8.4 Effectiveness on Supervised Cold-start Fraudulent
Detection

Experimental Settings. This experiment compares JESTER with state-of-the-art

method JETB (Wang, Liu & Zhao 2017). The JETB method handles the cold-start

problem by capturing relations among entities (user, item, and review) and embedding

these relations into review representation vectors. When a new user posts a new review,

JETB can represent this new review by its trained network and classify this new review

by its classifier according to the new review’s representation vector. In the original

literature (Wang, Liu & Zhao 2017), JETB uses SVM as the fraud classifier based on

the JETB-generated review representation vectors. However, SVM has a large time

complexity, O(n3), where n is the number of training samples. Accordingly, the vanilla

JETB does not suit the problem with a large amount of data. To make JETB practicable,

this experiment uses a 3-layer fully-connected neural network instead of SVM as the

fraud classifier in JETB.

This experiment further compares JESTER with two review-text-based fraudulent

sentiment analysis methods, which are also selected as the compared method by Wang,

Liu & Zhao (2017), as baseline competitors. These two methods extract features from

review text and feed these features into a classifier for fraudulent sentiment analysis.

Specifically, the first method (denoted as Bigram) uses the bigram feature. The second

method (denoted as Behavior) uses (i) the bigram feature, (ii) the length of review, (iii)

the absolute rating diversity of a review compared with other reviews of the same item,

and (iv) the similarity of a review to its most similar reviews of the same item under the

cosine similarity. This experiment also uses a 3-layer fully-connected neural network as

the fraud classifier in these two methods.

Findings - JESTER Significantly Outperforming that State-of-the-art Cold-
start Fraudulent Sentiment Analysis Method. Table 6.2 illustrates the cold-start

fraudulent sentiment analysis performance of JESTER compared with JETB, Behavior,

and Bigram on four subsets of Yelp-Zip and Yelp-NYC data sets with different periods.

The JESTER method gains improvement significantly for cold-start fraud review de-

tection (i.e., 0.11, 0.08, 0.13, and 0.10 F-score increase on Zip_1, Zip_2, NYC_1, and

NYC_2, respectively). This averaged performance improvement is mainly contributed

by the increased recall of the fraudulent sentiment analysis (corresponding recall in-

crease values are 0.11, 0.13, 0.18, and 0.11). As shown in the results, JESTER slightly

“decreases" the performance of honest sentiment analysis. This performance decreasing
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may be caused by some labels that incorrectly annotated by the Yelp commercial filter.

The Yelp commercial filter may overlook some cold-start fraud reviews. In other words,

some reviews that labeled as honest in these data sets should be fraud. Because JESTER

correctly classified these reviews to fraud, the recall of honest review detection seems

decreased.

Table 6.2: Supervised Cold-start Fraud Detection Performance of Different Methods

Data Info. JESTER JETB Behavior Bigram Improvement

Name Category P R F P R F P R F P R F P R F

Zip_1
Normal 0.81 0.90 0.85 0.77 1.00 0.87 0.77 0.99 0.87 0.78 0.96 0.86 0.03 -0.10 -0.02

Fraud 0.37 0.21 0.27 0.24 0.00 0.00 0.54 0.05 0.09 0.42 0.10 0.16 -0.17 0.11 0.11

Zip_2
Normal 0.82 0.84 0.83 0.78 1.00 0.88 0.79 0.99 0.88 0.80 0.92 0.85 0.02 -0.16 -0.05

Fraud 0.33 0.30 0.31 0.45 0.01 0.02 0.54 0.06 0.11 0.37 0.17 0.23 -0.21 0.13 0.08

NYC_1
Normal 0.84 0.84 0.84 0.82 1.00 0.90 0.82 1.00 0.90 0.82 0.96 0.89 0.02 -0.16 -0.06

Fraud 0.26 0.26 0.26 0.00 0.00 0.00 0.38 0.00 0.00 0.31 0.08 0.13 -0.12 0.18 0.13

NYC_2
Normal 0.85 0.90 0.87 0.82 1.00 0.90 0.82 1.00 0.90 0.83 0.94 0.88 0.02 -0.10 -0.03

Fraud 0.31 0.23 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.12 0.17 0.02 0.11 0.10

Precision (P), Recall (R) and F-score (F) are reported per normal and fraud reviews. The best results are highlighted in bold.

In addition to review text, JESTER further leverages information from users, items,

and ratings. This comprehensive information enables JESTER to capture more fraud

evidence from multiple views effectively, and JESTER can use this information even

when facing the cold-start problem because of the learned inferable representation.

As a result, JESTER can achieve significant performance improvement in cold-start

fraudulent sentiment analysis.

6.8.5 Effectiveness on Supervised General Fraudulent
Sentiment Analysis

Experimental Settings. This experiment compares JESTER with JETB and two state-

of-the-art competitors, including FRAUDER (Hooi et al. 2016) and HoloScope (Liu et al.

2017), in detecting general fraudulent sentiment (i.e., the sentiment of all the reviews

contained in the testing data set). Different from JETB, which is a review-text-based

method, FRAUDER and HoloScopre are two social-relation-based fraudulent sentiment

analysis methods. Specifically, the FRAUDER method models the social relation as a

graph and detects fraudulent sentiments by dense sub-graph mining. The HoloScope

method also adopts a graph to model social relations but detects fraudulent sentiments

by jointly considering the graph topology and review temporal spikes.
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Findings - JESTER Significantly Improving General Fraudulent Sentiment
Analysis Performance. Table 6.3 reports the precision, recall, and F-score of JESTER,

JETB, FRAUDER, and HoloScope. Overall, JESTER significantly outperforms the com-

petitors in fraud review detection. It improves 0.16, 0.21, 0.20, and 0.20 compared with

the best-performing method in terms of F-score on four data sets for fraudulent sentiment

analysis.

Table 6.3: Supervised General Fraud Detection Performance of Different Methods

Data Info. JESTER JETB FRAUDER HoloScope Improvement

Name Category P R F P R F P R F P R F P R F

Zip_1
Normal 0.89 0.92 0.91 0.87 1.00 0.93 0.87 0.95 0.91 0.86 0.86 0.86 0.02 -0.08 -0.02

Fraud 0.23 0.17 0.19 0.18 0.00 0.01 0.01 0.00 0.00 0.03 0.03 0.03 0.05 0.14 0.16

Zip_2
Normal 0.90 0.87 0.88 0.78 1.00 0.88 0.88 0.95 0.91 0.87 0.88 0.88 0.02 -0.13 -0.03

Fraud 0.22 0.29 0.25 0.45 0.01 0.02 0.04 0.02 0.02 0.04 0.04 0.04 -0.23 0.25 0.21

NYC_1
Normal 0.91 0.88 0.90 0.90 1.00 0.95 0.88 0.86 0.87 0.88 0.86 0.87 0.01 -0.12 -0.05

Fraud 0.18 0.25 0.21 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.17 0.24 0.02

NYC_2
Normal 0.92 0.92 0.92 0.90 1.00 0.95 0.88 0.82 0.85 0.87 0.69 0.77 0.02 -0.08 -0.03

Fraud 0.24 0.22 0.23 0.00 0.00 0.00 0.01 0.02 0.02 0.02 0.06 0.03 0.22 0.16 0.20

Precision (P), Recall (R) and F-score (F) are reported per normal and fraud reviews. The best results are highlighted in bold.

The dramatic performance improvement of JESTER is mainly contributed by jointly

embedding user reviewing behavior and social relations of user and item in its element

representations. Compared to FRAUDER and HoloScope that capture social relations,

JESTER further considers the user-reviewing behavior to detect personalized fraud

effectively. Compared to JETB, JESTER seamlessly integrates social relations of user

and item to avoid camouflage. Consequently, JESTER obtains recall improvement up to

0.24 compared with the competitors.

6.8.6 Effectiveness on Unsupervised Cold-start Fraudulent
Sentiment Analysis

Experimental Settings. This experiment compares UEBER with the state-of-the-art

unsupervised cold-start fraud review detection method SUPER-COLD (Li et al. 2019).

The SUPER-COLD and URBER methods have similar unsupervised cold-start fraudulent

sentiment analysis mechanism. Their differences are that (1) URBER adopts an inferable

representation learning when embedding user reviewing behavior, and (2) URBER

further introduces mutual information maximization regularization in fraud-sensitive

information embedding to avoid the over-fitting problem.
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Findings - URBER Outperforming the State-of-the-art Cold-start Fraud De-
tection Method. Table 6.4 demonstrates the fraudulent sentiment analysis performance

of URBER. The URBER method improves the averaged fraudulent sentiment analysis

performance (0.02 and 0.03 F-score increase on Yelp-Hotel and Yelp-Restaurant data

sets) compared to SUPER-COLD. These results demonstrate that the inferable repre-

sentation learning and mutual information maximization regularization introduced by

URBER are effective.

Table 6.4: Unsupervised Cold-start Fraud Detection of Different Methods

Data Info. URBER SUPER-COLD Improvement

Name Category #Existing #Cold-start P R F P R F P R F

Hotel

Normal 376,671 60 0.48 0.15 0.23 0.45 0.15 0.23 0.03 0.00 0.00

Fraud 242,825 122 0.73 0.92 0.81 0.69 0.91 0.78 0.04 0.01 0.03
Overall 619,496 182 0.65 0.67 0.62 0.61 0.66 0.60 0.04 0.01 0.02

Restaurant

Normal 412,435 1,654 0.68 0.86 0.76 0.64 0.84 0.73 0.04 0.02 0.03
Fraud 297,188 873 0.65 0.70 0.67 0.62 0.68 0.65 0.03 0.02 0.02

Overall 709,623 2,527 0.67 0.80 0.73 0.63 0.78 0.70 0.04 0.02 0.03

Precision (P), Recall (R) and F-score (F) are reported per normal and fraud reviews. The best results are highlighted in bold.

6.8.7 Effectiveness on Unsupervised General Fraudulent
Sentiment Analysis

Experimental Settings. This experiment compares URBER with three state-of-the-

art competitors, including Frauder (Hooi et al. 2016), HoloScope (Liu et al. 2017), and

SPEAGLE (Rayana & Akoglu 2016), in detecting general fraudulent sentiment. These

three competitors have different but relevant mechanisms compared to URBER.

• Fixed weighting dense sub-graph mining-based method - FRAUDER (Hooi et al.

2016). The FRAUDER method detects fraudulent sentiment by dense sub-graph

mining. To detect camouflage and hijacked accounts, it adopts a fixed weighting

strategy. Different from FRAUDER, the dense sub-graph mining method used in

URBER is with a dynamic link weighting strategy to further fuse the element

relation with the social relation.

• Dynamic weighting dense sub-graph-mining-based method - HoloScope (Liu et al.

2017). The HoloScope method uses graph topology and temporal spikes to detect

fraudsters groups and employs a dynamic weighting approach to enable a more

accurate fraudulent sentiment analysis. However, the dynamic weighting is only
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Table 6.5: Unsupervised General Fraud Detection of Different Methods

Data Info. URBER HoloScope FRAUDER SPEAGLE Improvement

Name Category #Review P R F P R F P R F P R F P R F

Hotel

Normal 420,785 0.69 0.95 0.8 0.64 0.6 0.62 0.64 0.98 0.77 0.53 - - 0.05 -0.03 0.18
Fraud 267,544 0.82 0.33 0.47 0.42 0.46 0.44 0.82 0.11 0.31 0.72 - - 0.00 -0.13 0.03

Overall 888,329 0.74 0.71 0.67 0.55 0.55 0.55 0.71 0.65 0.55 0.60 - - 0.03 0.06 0.12

Restaurant

Normal 461,190 0.68 0.88 0.77 0.51 0.95 0.66 0.63 0.95 0.76 0.42 - - 0.05 -0.07 0.01
Fraud 326,981 0.72 0.42 0.53 0.74 0.12 0.21 0.74 0.21 0.33 0.58 - - -0.02 0.21 0.20

Overall 788,741 0.70 0.69 0.67 0.63 0.52 0.43 0.68 0.64 0.58 0.49 - - 0.02 0.05 0.09

Precision (P), Recall (R) and F-score (F) are reported per normal and fraud reviews. The best results are highlighted in bold.

conducted once according to the user temporal spikes. In contrast, URBER in-

teractively updates the dynamic weighting along the user behavior embedding

process.

• Metadata and social relation integration-based method - SPEAGLE (Rayana &

Akoglu 2016). The SPEAGLE method proposes a unified framework to utilize

metadata and the social relation in a Markov random field for fraudulent sentiment

analysis. While SPEAGLE needs fraud labels, URBER is a completely unsupervised

method that jointly considers element relation and social relation for user behavior

representation.

While FRAUDER and HoloScope directly predict fraudulent sentiment, SPEAGLE

gives a probability of a sentiment that may be fake. To make a fair comparison, this

experiment reports only the averaged precision of SPEAGLE but ignores its the recall

and F-score.

Findings - URBER Significantly Improving General Fraudulent Sentiment
Analysis Performance, Especially in terms of Recall. Table 6.5 reports the preci-

sion, recall, and F-score of URBER, Frauder, HoloScope, and SPEAGLE. Overall, URBER

significantly outperforms its competitors. It improves 0.12 and 0.09 compared with the

best-performing method in terms of F-score on two data sets, respectively.

Unlike FRAUDER and HoloScope that ignore the element relation when they perform

dense sub-graph mining based on social relation, URBER couples these two independent

relations to iteratively refine their performance by the dynamic link weighting. This

mechanism enables URBER to avoid camouflage by considering social relations and

to effectively detect personalized fraud by considering element relations. As a result,

URBER obtains recall improvement up to 0.21 compared with the competitors.
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6.8.8 Evaluating the Effectiveness of User Reviewing Behavior
and User/Item Social Relations for Fraudulent Sentiment
Analysis

Experimental Settings. The experiment visualizes the user representation in a two-

dimensional space trough TSNE (Maaten & Hinton 2008), and it plots the ground-truth

labels of each user at their positions in the representation space. The user representation

learned according to the user reviewing behavior learning loss function, Equation (6.7),

is compared with that learned according to the social relation preservation loss function,

Equation (6.14), on Yelp-Hotel and Yelp-Restaurant data sets.

Findings - Behavior-embedded Representation contributing to Personal-
ized Fraud Review Detection and Social Relation-embedded Representation
Contributes to Collaborative Fraud Review Detection. The behavior-embedded

and social relation-embedded user representations are visualized in Figure 6.10. As

shown in Figure 6.10, users have more diverse representations in the behavior-embedded

representation space compared with social relation-embedded representation space. This

diversity indicates that more personalized information is captured by the behavior-

embedded representation, which is important to identify personalized fraudulent senti-

ment. However, in the behavior-embedded representation space, the users with large

density are not consistent with the ground-truth fraudster label. In contrast, the density

of social relation-embedded representation is consistent with the ground-truth fraud-

sters distribution. As evidenced by Hooi et al. (2016), the collaborative manipulation

of sentiment will generate density connections between users. Accordingly, the results

demonstrate that the embedded social relation by the proposed methods is essential

for collaborative fraudulent sentiment analysis. A high-quality user representation will

enable a dense distribution for fraudsters because of the collaborative manipulation

(Hooi et al. 2016). This result qualitatively illustrates that the social relation of users is

essential for collaborative fraudulent sentiment analysis.

6.9 Summary

This chapter introduces two novel inferable representation learning methods for fraudu-

lent sentiment analysis with the cold-start problem in supervised and unsupervised cases,

respectively. These two methods jointly embed user reviewing behavior and user/item

social relations into the inferable representation vectors of users, items, reviews, and
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Figure 6.10: User Representation with Density of Different Methods on Yelp-Hotel
and Yelp-Restaurant. The sub-figures (a), (b), (c), (d) contain the user representation
information with the ground-truth labels, and the sub-figures (e), (f), (g), (h) show the
density in the representation space. S refers to the social relation embedding-based
method, and B refers to the behavior embedding-based method.

ratings. This embedding provides more comprehensive information for fraudulent sen-

timent analysis. For the cold-start problem, they efficiently infer the most probable

representation of a new user in a closed-form solution according to the embedded user

reviewing behavior. Four large real-word social media data sets demonstrate that the

performance of the proposed methods is substantially better than the performance of

state-of-the-art competitors.
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7
CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Conclusions

This thesis systematically investigates reliable sentiment analysis in social media,

including paragraph sentiment analysis (in Chapters 3 and 4) and short text

sentiment analysis (in Chapter 5), and fraudulent sentiment analysis, including

supervised and unsupervised fraudulent sentiment analysis (in Chapter 6). Based on

these investigations, this thesis proposes a serial of methods to achieve reliable sentiment

analysis. Specifically, it studies the polarity-shift characteristics and non-IID character-

istics in general paragraphs to capture the sentiment more accurately. It further models

multi-granularity noise and sparsity in short text, which is the most common data in

social media, for robust short text sentiment analysis. Finally, it tackles the uncertain

credibility problem in social media by studying fraudulent sentiment analysis in both

supervised and unsupervised scenarios. This thesis evaluates the performance and prop-

erties of the proposed reliable sentiment analysis methods by extensive experiments on

large real-world data sets and demonstrates that the proposed methods are superior and

reliable in social media sentiment analysis.
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7.1.1 Paragraph Sentiment Analysis

This thesis first studies the reliable sentiment analysis for a paragraph in social media.

Specifically, it investigates the polarity-shift factors and the non-IID characteristics,

which dramatically increase the sentiment analysis complexity yet are hard to be cap-

tured. To tackle the polarity-shift problem, it proposes a multi-scale and hierarchical

representation method to learn a more robust representation of textual data. To model

the non-IID characteristics, it proposes a framework as well as an instantiation method,

multi-scale and hierarchical deep neural network with an attention mechanism, to model

and capture non-IID characteristics (i.e., couplings and heterogeneity). These studies

build a foundation and provide useful tools for reliable sentiment analysis in social

media.

7.1.2 Short Text Sentiment Analysis

This thesis further studies the short text sentiment analysis catering to the characteris-

tics of textual data in social media. Specifically, it investigates multi-grain noise-tolerant

patterns for sentiment analysis to tackle the noise and sparsity problem caused by

a short text, which widely exists in reviews posted on social media. To capture these

patterns, it proposes a breaking-gathering strategy with a bi-level multi-scale masked

CNN-RNN network implementation, which embeds the most significant multi-grain

noise-tolerant patterns in a text as the text’s representation for reliable short sentiment

analysis. This study provides specific tools for sentiment analysis of the most common

textual data in social media. It complements the paragraph sentiment analysis to form

the essential part of general reliable sentiment analysis in social media.

7.1.3 Supervised Fraudulent Sentiment Analysis

This thesis then studies the supervised fraudulent sentiment analysis method to detect

fraudulent sentiment in social media. Specifically, it models user reviewing behavior

by the co-occurrence relations between a user, an item, a review, and a rating. It then

embeds this user reviewing behavior into a user-item-review-rating representation space,

in which the representations of a user, an item, a review, and a rating will be similar if the

user would like to write the review and give the score to the item. Furthermore, it further

considers collaborative sentiment manipulation reflected by the co-reviewing relations

between users and items. It embeds these co-reviewing relations and integrates these

embeddings with the user-item-review-rating representation. Accordingly, this study
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generates a representation that comprehensively considers both individual and group

factors for fraudulent sentiment analysis. It extends the horizon of reliable sentiment

analysis in social media from handling high complexity and low quality to identify

uncertain credibility.

7.1.4 Unsupervised Fraudulent Sentiment Analysis

The unsupervised fraudulent sentiment analysis studies how to detect fraudulent senti-

ment without the guide of human annotation, which is a common scenario in social media.

It explores a self-supervision method to generate pseudo-labels from social media data.

Specifically, it first adopts a dense-graph-mining technique to discover the collaborative

fraudsters who are highly like to post fraudulent sentiment. It then treats the reviews

posted by the discovered collaborative fraudsters contains pseudo-fraudulent sentiment,

and the reviews posted by the others are honest to guide the adjusting of the learned

user-item-review-rating representation. It also proposes a dynamic re-weighting strategy

to increase dense-graph-mining precision based on the adjusted user-item-review-rating

representation. By this means, it can achieve a practical unsupervised fraudulent analy-

sis. To further tackle the cold-start problem in fraudulent sentiment analysis, this study

constrains the user-item-review-rating representation to be an inferable representation

where the representation of a new user can be inferred from the representation of its

corresponding item, review, and rating. Overall, this study extends the fraudulent senti-

ment analysis from supervised learning to unsupervised learning, which significantly

increases the practicality of the reliable sentiment analysis in social media.

7.2 Future Directions

The research in this thesis has many open problems and future opportunities. They

include but not limited to: (1) exploiting more powerful support techniques for reliable

sentiment analysis, (2) studying multi-granular reliable sentiment analysis, and (3)

exploring the interpretability of reliable sentiment analysis.

7.2.1 Exploiting Other Support Techniques for Reliable
Sentiment Analysis

This thesis builds a general framework for reliable sentiment analysis in social media.

It also provides several instantiations, including analyzing paragraph sentiment with
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complex sentiment-polarity-shift and the non-IID characteristics, analyzing short-text

sentiment with sparsity and noise, and analyzing fraudulent sentiment in both super-

vised and unsupervised fashion with the cold-start problem. However, it studies only a

glance of support techniques for reliable sentiment analysis. For example, it analyzes the

sentiment for paragraphs and short text relying only on deep neural networks. Although

deep neural networks are promising for complex text representation, this technique

requires a vast number of training data, which may not be available in a new social

media community. This technique also needs a large computing capacity and has a large

energy consumption, which does not suit for mobile platforms. Accordingly, the other

techniques, such as shallow yet robust learning methods, should be further studied

to support reliable sentiment analysis to be employed in a wide range of applications.

For another example, this thesis builds the individual and group behavior model for

fraudulent sentiment analysis based on co-occurrence embedding, in which, however, the

temporal information is overlooked. Other support techniques are required to capture

the temporal information for modeling behavior more precisely.

7.2.2 Studying Multi-Granular Reliable Sentiment Analysis

This thesis provides reliable sentiment analysis of the entire text. Although this study is

valuable, different businesses may concern sentiment with different granularities, such

as sentiment at aspect-level. For example, if a customer wants to buy a computer and

reads a review for this computer, usually, she/he would like to know the sentiment to the

computer performance instead of the sentiment to the shopping experience. As a result,

the reliable sentiment analysis provided by this thesis cannot satisfy this customer’s

demand. To satisfy the demand for sentiment analysis at different granularities, the

multi-granular reliable sentiment analysis should be further studied. The multi-granular

reliable sentiment in social media has the following challenges: (1) the sentiment analysis

granularity should match customer’s intention, (2) the sentiment polarity of an aspect

should be distilled from the entire text with complex interactions, and (3) the multi-

granular reliable sentiment analysis lacks sufficient supervised labels. How to tackle

these challenges is still an open problem.
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7.2. FUTURE DIRECTIONS

7.2.3 Exploring the Interpretability of Reliable Sentiment
Analysis

This thesis demonstrates the effectiveness and values of reliable sentiment analysis in

social media. The provided reliable sentiment analysis methods can identify social media

sentiment more precisely. To further extend the reliable sentiment analysis and widely

apply it in real business, the interpretability of reliable sentiment analysis should be

further studied. The interpretability will also provide more insight into reliable sentiment

analysis. In real business, people not only requires a precise sentiment analysis result

but also needs to know how to generate the result. For example, a customer may want to

confirm whether she/he can trust the reliable sentiment analysis result by checking the

interpretable model. For another example, a seller may desire the interpretable relations

between different factors and sentiment polarity to her/his products for improving

products to achieve positive sentiment. Accordingly, exploring the interpretability of

reliable sentiment analysis is a promising opportunity.
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A.1 List of Notations

U user-message matrix (pp. 19)

F user-user matrix (pp. 19)

Asc sentiment consistency matrix (pp. 19)

Aec emotional contagion matrix (pp. 19)

Rtt microblog-microblog network (pp. 19)

Rww word-word network (pp. 19)

Rtw microblog-word bipartite graph (pp. 19)

P paragraph (pp. 47)

P paragraph space (pp. 47)

E paragraph embedding space (pp. 48)

ns the number of sentence (pp. 47)

si the i-th sentence (pp. 47)

nwi the number of words in the i-th sentence (pp. 47)

wi, j the j-th word in the i-th sentence (pp. 47)
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E(·) paragraph representation model (pp. 47)

R the real space (pp. 47)

p a paragraph vector (pp. 47)

n f the number of paragraph vector dimensions (pp. 47)

oi, j the sentiment polarity of the j-th word in the i-th sentence (pp. 47)

Oi the sentiment polarity of the i-th sentence

O the polarity space (pp. 47)

C(·) sentiment classifier (pp. 47)

O the distribution of the polarity of a set of paragraph (pp. 47)

Div(·||·) distribution divergence measurement (pp. 47)

Ew(·) the word-representation function (pp. 48)

Es(·) the sentence-representation function (pp. 48)

Ep(·) the paragraph-representation function (pp. 48)

W the word space (pp. 48)

new the number of dimensions of word-representation space (pp. 48)

nes the number of dimensions of sentence-representation space (pp. 48)

nec the number of dimensions of character-representation space

P the distribution of a paragraph in space P (pp. 48)

E the distribution of a paragraph in space E (pp. 48)

W the weight of a nonlinear layer in a neural network (pp. 54)

b the bias of a nonlinear layer in a neural network (pp. 54)

hi the output of a nonlinear layer in a neural network for the i-th sample

(pp. 54)

xi the representation vector of the i-th sample (pp. 54)

u the global memory of a context in the attention mechanism (pp. 54)

exp(·) the exponential function (pp. 54)
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A.1. LIST OF NOTATIONS

c(i) the context set of the i-th sample (pp. 54)

αi the attention factor of the i-th sample (pp. 54)

x∗i the attentive representation of the i-th sample (pp. 54)

Ew the word embedding matrix (pp. 71)

Ec the character embedding matrix (pp. 71)

Tw the word transformation matrix (pp. 71)

Tc the character transformation matrix (pp. 71)

nW the number of unique vocabularies in a corpus (pp. 71)

nC the number of unique characters in a corpus (pp. 71)

nw the maximum number of words in a text (pp. 71)

nc the maximum number of characters in a text (pp. 71)

M the mask matrix (pp. 71)

u a user (pp. 84)

t a review (pp. 84)

d an item (pp. 84)

r a rating (pp. 84)

u a user representation (pp. 85)

t a review representation (pp. 85)

d an item represnetation (pp. 85)

r a rating representation (pp. 85)

b a reviewing behavior representation (pp. 85)

s(·) success rate of a behavior (pp. 88)
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