

SPECIFIC INTEGRATED BIOCHAR – MICROBIAL FUEL CELL BIOREACTOR FOR REMOVING ANTIBIOTICS FROM SWINE WASTEWATER

by Dongle Cheng

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Prof. Huu Hao Ngo

University of Technology Sydney Faculty of Engineering and Information Technology

August 2020

CERTIFICATION OF ORIGINAL AUTHORSHIP

I, Dongle Cheng declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Civil and Environmental Engineering/Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: 03/08/2020

ACKNOWLEDGEMENTS

It is my pleasure to express my deepest gratitude to my principle supervisor Prof. Huu Hao Ngo for his endless support, excellent guidance, constant encouragement and patients throughout my Ph.D. study. I am very proud to be a member of his research group. During my Ph.D. period, his advanced academic knowledge, valuable suggestion and motivation help me to overcome difficulties in my research. I could not finish my Ph.D study within the scheduled time without his help and guidance. His patient and encouragement make me more and more confident, which is a valuable asset in my future study and life. I also would like to thank my co-supervisor Prof. Wenshan Guo. She gives me a lot of guidance and suggestion at the beginning and progress of my experiment. I could not setup my experiment successfully without her help. She also gives me great help and support in my daily life, and helps me get through the tough times during my Ph.D period. I also would like to acknowledge my co-supervisor Dr. Yiwen Liu, whose suggestions and comments are always valuable in my research.

I gratefully acknowledge to the joint University of Technology Sydney–China Scholarship Council (UTS–CSC) Doctor of Philosophy (Ph.D.) Scholarship for the financial support during my study during in UTS.

I would like to thank my groupmates who share their kindness and knowledge to help me during the study. My thanks also go to lab manager Dr. Johir and Dr. Niren for their help in setting up experiments and analysing results.

Apart from this, I would like to acknowledge the help and assistance from academic and administration staff from the Faculty of Engineering and Information Technology (FEIT) and Graduate Research School (GRS).

Finally, I would like to give my gratitude to my families and friends, especially the lovely friends in Centre for Technology in Water and Wastewater (CTWW); all of them give me encourage and help during my Ph.D study. I especially would like to expand my thanks to my husband, who gives me loves and encourages me to pursue the Ph.D degree. He helps me overcome all kinds of difficulties and makes me more confident to complete my Ph.D study. With his support, I became much better than before

TABLE OF CONTENTS

Title page	
Certification of original authorship	i
Acknowledgements	ii
Table of contents	iii
List of tables	vii
List of figures	viii
List of abbreviations	xi
List of symbols	xiii
Abstract	

CHAPTER 1 Introduction

1.1 Research background	1-1
1.2 Research motivations and scope	1-4
1.3. Research significance	1-5
1.4 Organization of the report	1-5

CHAPTER 2 Literature review

2.1 Introduction	2-1
2.2 Removal mechanisms of antibiotics during bioprocessing	2-2
2.2.1 Removal by sorption	2-2
2.2.2 Removal by biodegradation	2-3
2.3 Different bioprocesses for removing antibiotics from swine wastewater	2-4
2.3.1 Activated sludge (AS) processes	2-4
2.3.2 Anaerobic digestion (AD) processes	2-9
2.3.3 Constructed wetlands (CWs)	2-13
2.3.4 Membrane bioreactor (MBR)-based processes	2-18
2.3.5 Bioelectrochemical systems (BESs)	2-22
2.4 Comparison of different bioprocesses	2-25
2.5 Future perspectives	2-29
2.6 Conclusion	2-30

CHAPTER 3 Experimental investigation	
3.1 Introduction	
3.2 Materials	
3.2.1 Synthetic wastewater and anaerobic sludge	
3.2.2 Targeted antibiotics and organic solvents	
3.3 Experimental setup and operating conditions	
3.3.1 Batch experiments	
3.3.2 MFC system	
3.3.3 Biochar-MFC system	
3.4 Analytical methods	
3.4.1 Antibiotics, organics, nutrients, pH, DO, electricity	
3.4.2 Biochar characterization	
3.4.3 Data calculation	

CHAPTER 4 Removal process and mechanism of antibiotics during anaerobic treatment of swine wastewater

4.1 Introduction	4-1
4.2 Materials and method	4-2
4.2.1. Materials	4-2
4.2.2. Experimental setup and operating conditions	4-2
4.2.3. Analytical method	4-2
4.3 Results and discussions	4-2
4.3.1 Removal of TCs and SMs in anaerobic sludge reactors	4-2
4.3.2 Adsorption process of TCs onto anaerobic sludge	4-4
4.3.3 Degradation of SMs in anaerobic sludge	4-8
4.4. Conclusion	4-13

CHAPTER 5 Feasibility of microbial fuel cell for removing antibiotics from swine wastewater

5.1 Introduction	
5.2 Materials and methods	
5.2.1 MFC construction and inoculation	
5.2.2 Experimental design and operation	
5.2.3 Data analysis	
·	

5.3 Results and discussion	5-2
5.3.1 Impacts of SMs on power generation of MFC	5-2
5.3.2 Impacts of SMs on COD removal in MFC	5-4
5.3.3 Degradation of SMs in MFC	5-5
5.4 Conclusion	5-7

CHAPTER 6 Performance of a continuous flow microbial fuel cell for antibiotics removal from swine wastewater

6.1 Introduction	
6.2 Materials and methods	
6.2.1 Experimental design and set up	
6.2.2 Experimental operation	
6.2.3 Analytical methods	6-3
6.3 Results and discussion	
6.3.1 SMs removal in continuous flow MFC systems	
6.3.2 Electricity generation	
6.3.3 COD removal	6-10
6.3.4 Nutrients removal	6-12
6.4 Conclusion	

CHAPTER 7 Antibiotics removal from swine wastewater in microbial fuel cell with a new biochar

7.1 Introduction	
7.2 Materials and methods	
7.2.1 Materials	
7.2.2 Biochar preparation and modification	
7.2.3 Experimental setup and operation	
7.2.4 Analytical methods	
7.3. Results and discussion	
7.3.1 Characterization of biochar	
7.3.2 Adsorption behavior of SMs onto biochar	
7.3.3 Economic feasibility of the biochar application in the MFC	7-9
7.3.4 Removal of SMs in the MFC with the biochar dosage	

7.3.5 Performance of the MFC with biochar addition	
7.4 Conclusion	
CHAPTER 8 Conclusions and recommendations	
8.1 Conclusions	
8.2 Recommendations	
References	R-1
Appendix	A-1

LIST OF TABLES

Table 2.1	Key physical-chemical properties of target antibiotics	2-2
Table 2.2	Removal of target antibiotics during conventional aerobic	2-6
	sludge processes	
Table 2.3	Removal of target antibiotics during conventional anaerobic	2-11
	processes	
Table 2.4	Removal of target antibiotics during constructed wetlands	2-14
	processes	
Table 2.5	Removal of target antibiotics during MBR-based processes	2-19
Table 2.6	Comparison of target antibiotics removal from different	2-26
	bioprocesses	
Table 3.1	Components of the synthetic swine wastewater	3-1
Table 3.2	Batch experiment design for behavior of antibiotics in	3-3
	anaerobic sludge	
Table 4.1	Kinetic and isotherm models and parameters for the adsorption	4-6
	of tetracycline antibiotics onto anaerobic sludge	
Table 4.2	Degradation rate constants $(k1)$ and half-lives $(t1/2)$ of the three	4-9
	sulfonamide antibiotics in anaerobic reactor	
Table 5.1	Fitting Results of SMX, SDZ and SMZ degradation in MFC	5-6
	using the first-order kinetic model	
Table 7.1	Physicochemical properties of biochars produced under	7-4
	different conditions	
Table 7.2	Sorption coefficients of SMs onto biochar evaluated by Pseudo	7-8
	second-order and Freundlich models	

LIST OF FIGURES

Figure 1.1	Pathway of antibiotics from swine farms to the environment	1-2
Figure 1.2	Main structure of this research	1-6
Figure 2.1	Anaerobic digestion process of organic matter	2-10
Figure 2.2	Basic configuration of MFCs: (a) Double chamber; (b) Single	2-23
	chamber.	
Figure 3.1	The schematic of MFC operating under: (a) Self-circulating;	3-4
	(b) Single continual; and (c) Sequential anode-cathode modes	
Figure 4.1	The concentration variation of TCs (a) and SMs (b); and their	4-3
	removal efficiency (c) in the reactor with non-sterile and sterile	
	anaerobic sludge	
Figure 4.2	Adsorption kinetics data and fitted modes of tetracycline (TC)	4-5
	(a), chlortetracycline (CTC) (b) and oxytetracycline (OTC) (c)	
	onto different concentrations of anaerobic sludge	
Figure 4.3	The adsorption isotherms of tetracycline (TC), chlortetracycline	4-7
	(CTC), and oxytetracycline (OTC) onto anaerobic sludge	
Figure 4.4	(a) Removal efficiencies of sulfonamide antibiotics and COD in	4-9
	the anaerobic reactor; (b)First-order biodegradation kinetic	
	model of sulfamethoxazole (SMX), (c) sulfadiazine (SDZ) and	
	(d)sulfamethazine (SMZ).	
Figure 4.5	Removal efficiencies of sulfamethoxazole (SMX), sulfadiazine	4-12
	(SDZ) and sulfamethazine (SMZ) in the anaerobic reactor with	
	different concentrations of COD	
Figure 5.1	The voltage generation under different initial concentrations of	5-3
	SMs in MFC	
Figure 5.2	The removal efficiency of COD in MFC and OC under	5-4
	different SMs concentrations	
Figure 5.3	The concentration change and removal efficiency of SMs in	5-5
	MFC and OC	
Figure 6.1	Removal efficiencies of SMs during the continuous operation	6-5
	of MFC under different scenarios: (a) SMX removal efficiency;	
	(b) SMZ removal efficiency; (c) SDZ removal efficiency	

- Figure 6.2Voltage generation when the MFC is operating under different6-9modes with and without SMs present
- Figure 6.3COD removal from swine wastewater as MFC operates under6-11different modes with and without SMs present
- Figure 6.4Nutrients removal efficiencies as the MFC operated under6-11different modes with and without SMs present: (a) NH_4^+ -Nremoval efficiency; (b) PO_4^{3-} -P removal efficiency
- Figure 7.1 Characteristics of biochar produced at 400 °C (BC-400), 600 °C 7-6 (BC-600) and activated by KOH (BC-KOH): (A) FTIR spectrum; (B) Raman spectrum; (C) BET surface area isotherm;
 (D) SEM-EDS spectrum
- Figure 7.2 The adsorption kinetic (a) and isotherm (b) of SMX, SMZ and 7-8 SDZ onto biochar
- Figure 7.3 (a) the removal efficiency of SMs in MFC with the addition of 7-10 different concentrations of biochar; (b) the average removal efficiency of SMs in the anode and cathode chamber of MFC, respectively (500 mg/L of biochar)
- Figure 7.4(a) the average daily voltage generation and (b) COD and7-12nutrients removal efficiency in MFC with differentconcentrations of biochar

LIST OF ABBREVIATIONS

Symbol	Description
A ² O	Anaerobic-anoxic-oxic process
AD	Anaerobic digestion
AFMBR	Anaerobic fluidized membrane bioreactor
AnMBRs	Anaerobic membrane bioreactors
A/O	Anaerobic/oxic process
AOB	Ammonia-oxidizing bacteria
ARB	Antibiotic resistant bacteria
ARGs	Antibiotic resistant genes
AS	Activated sludge
ASBR	Anaerobic sequencing batch reactor
BAF	Biological aerated filter
BC	Biochar
BES	Bioelectrochemical systems
BET	Brunauer-Emmett-Teller
BF-MBR	Biofilm MBR
CAP	Chloramphenicol
CEM	Cation-exchange membrane
COD	Chemical oxygen demand
CWs	Constructed wetlands
CSTR	Continuously stirred tank reactor
CTC	Chlortetracycline
DC	Doxycycline
DI water	Deionized water
DIF	Difloxacin
FAO	Food and Agriculture Organization
ECDC	European Centre for Disease Prevention and Control
EDS	Energy dispersive spectrometer
ENR	Enrofloxacin
EPS	Extracellular polymeric substances
ESI+	Electrospray positive ion mode

FTIR	Fourier transform infrared spectrometer
GAC	Granular activated carbon
HRT	Hydraulic retention time
HSF	Horizontal subsurface flow
HSSF-CWs	Horizontal subsurface flow constructed wetlands
MBRs	Membrane bioreactors
MLSS	Mixed liquor suspended solids
MRM	Multiple reaction monitoring
OC	Open-circuit mode
OTC	Oxytetracycline
PAC	Powder activated carbon
PFO	Pseudo-first-order
PSO	Pseudo-second-order
SBR	Sequencing batch reactor
SDZ	Sulfadiazine
SEM	Scanning electron microscopy
SF	Free water surface
SRT	Solids retention time
SF-CWs	Free water surface constructed wetlands
SMs	Sulfonamide antibiotics
SMX	Sulfamethoxazole
SMZ	Sulfamethazine
TC	Tetracycline
TCs	Tetracycline antibiotics
UASB	Up-flow anaerobic sludge blanket
UF	Ultrafiltration
US CDC	United State Centre for Disease Control and Prevention
VFAs	Volatile fatty acids
VSSF-CWs	Vertical subsurface flow constructed wetlands

LIST OF SYMBOLS

Symbol	Description
$C_6H_{12}O_6$	Glucose
$CaCl_2 \cdot 2H_2O$	Calcium chloride
CO ₂	Carbon dioxide
СО	Carbon monoxide
$CuSO_4 \cdot 5H_2O$	Cupric sulphate
e	Electron
FeCl ₃	Ferric chloride anhydrous
H^{+}	Proton
H_2	Hydrogen
H_2O	Water
H_2SO_4	Sulphuric acid
H ₃ PO ₄	Phosphoric acid
Κ	Potassium
K ₂ CO ₃	Potassium carbonate
K ₂ O	Potassium oxide
КОН	Potassium hydroxide
KH ₂ PO ₄	Potassium dihydrogen phosphate
MgSO ₄ ·7H ₂ O	Magnesium sulphate
N_2	Nitrogen gas
NaN ₃	Sodium azide
NaHCO ₃	Sodium bicarbonate
NaOH	Sodium hydroxide
NH ₃	Free ammonia
NH ₃ -N	Ammonia nitrogen
$\mathrm{NH_4}^+$	Ionized ammonia
NH4 ⁺ -N	Ammonium nitrogen
NH ₄ Cl	Ammonium chloride
NO ²⁻	Nitrite
NO ³⁻	Nitrate
O ₂	Oxygen gas

OH-	Hydroxyl
PO ₄ ³⁻ -P	Hydrogen phosphate phosphorus
R	Resistor
ZnSO ₄ ·7H ₂ O	Zinc sulphate

Ph.D. DISSERTATION ABSTRACT

Author:	Dongle Cheng
Date:	20 August 2020
Thesis title:	Specific integrated biochar - microbial fuel cell bioreactor for removing antibiotics from swine wastewater
Faculty:	Faculty of Environmental and Information Technology
School:	Civil and Environmental Engineering
Supervisors:	Prof. Huu Hao Ngo (Principal supervisor)
	Prof. Wenshan Guo (Co-supervisor)
	Dr. Yiwen Liu (Co-supervisor)

Abstract

Swine wastewater is an important source of antibiotics in the environment due to their large-scale application in swine industry. High levels of antibiotics in swine wastewater have become an increasing global concern considering their potential risks to the environment, human and animal health. The integration of biochar and microbial fuel cell (MFC) is a promising technology for the treatment of swine wastewater containing antibiotics and producing electricity simultaneously. The aim of this study is to investigate the potential of a specific integrated biochar-MFC system to treat swine wastewater containing antibiotics. In this scenario, it is necessary to identify the removal process and mechanism of antibiotics in the anaerobic sludge that used in the anode chamber of MFC. Through a series of batch experiments, the results indicated that the removal of tetracycline antibiotics (TCs) in the anaerobic sludge contributed to the biosorption of sludge, while biodegradation was responsible for the removal of sulfonamide antibiotics (SMs). The adsorption data of TCs in anaerobic sludge fitted well with the pseudo-second order kinetic and the Freundlich isotherm modes, which suggested a heterogeneous chemisorption process. Cometabolism was the main mechanism for the biodegradation of SMs and the process fitted well with the first-order kinetic model. Microbial activity in the anaerobic sludge might be curtailed due to the presence of high concentrations of SMs.

The performance of a double-chamber MFC for treating swine wastewater with the addition of different concentrations of SMs was investigated under the anode selfcirculation operating condition of MFC. It is observed that chemical oxygen demand (COD) could be effectively removed (>95%) and almost not affected by the presence of SMs in MFC. A stable output of voltage was also observed. The removal efficiency of sulfamethoxazole (SMX), sulfadiazine (SDZ), and sulfamethazine (SMZ) in the MFC was in the range of 99.46% to 99.53%, 13.39% to 66. 91% and 32.84% to 67.21%, respectively, which were higher than those in a traditional anaerobic reactor with 97.45% - 98.89% for SMX, 11.96% -31.24% for SDZ and 23.85% - 33.49% for SMZ. The biodegradation process of SMs in MFC was fitted to the first-order kinetic model. Hence, MFC revealed strong resistance to antibiotic toxicity and high potential for the treatment of swine wastewater containing antibiotics.

For industrial application of the MFC in the treatment of swine wastewater containing antibiotics, the MFC was conducted in continuous operating modes under different conditions. Voltage can also be successfully generated during the continual operation with the maximum value of ~550 mv. Effective removal of COD can be achieved in both single continuous (>80%) and sequential anode-cathode (> 90%) operating modes. Nutrients can also be removed in the cathode chamber of the MFC with the maximum removal efficiency of 66.62% for NH₄⁺-N and 32.1% for PO₄³⁻-P. The removal efficiency of SMs under the sequential anode-cathode operating mode of MFC was around 49.35% - 59.37% for SMX, 16.75% - 19.45% for SMZ and 13.98% - 16.31% for SDZ, respectively. The inhibition of SMs to pollutants' remove in both chambers of MFC was observed after SMs exposure, suggesting that SMs exert toxic effects on the microorganisms. Moreover, a positive correlation was found between the higher NH₄⁺-N concentration used in this study and the removal efficiency of SMs in the cathode chamber. Results suggest that it is feasible to use the continuous anode-cathode MFC to treat swine wastewater with antibiotics, while the removal efficiency of antibiotics required to be

further improved.

The addition of biochar into the MFC is a promising method for enhancing the removal of antibiotics in continuous flow MFC. Biochar adsorption is an effective method for the removal of antibiotics from wastewater with advantages of low cost, easy production and environmentally friendly. A new pomelo peel derived biochar was developed in this study. The biochar activated by KOH displayed a large surface area (2457.37 m²/g) and total pore volume (1.14 cm³/g). SMs are favorable absorbed onto the heterogeneous surfaces of biochar thorough pore-filling and π - π electron donor–acceptor (EDA) interaction. The biochar's addition to a certain concentration (500 mg/L) could enhance the removal efficiency of SMX, SDZ and SMZ to 82.44% - 88.15%, 53.40% - 77.53% and 61.12% - 80.68%, respectively. Moreover, the electricity production and COD removal were increased by increasing the concentration of biochar. The improved performance of MFC could be due to the role of porous biochar as an adsorbent and biocarrier of the growth of microorganisms.

Keywords: Swine wastewater; Antibiotics; Adsorption; Biodegradation; Microbial fuel cell; Electricity generation, Organic removal; Nutrients removal.