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Abstract

Nowadays, people tend to seek help from professional financial advisers to

manage investment and prepare for retirement. People in different financial

situations usually have different financial objectives and needs when choos-

ing the advisers they want to see. Therefore, understanding and satisfying

customer needs are critical to financial planning services and financial busi-

nesses, due to the huge impact on people’s financial wellness and retirement

readiness.

Traditionally, several tools such as questionnaires, surveys, and statistical

analysis, etc., have been employed in practice to manually collect feedback

and reviews from a group of customers to understand their needs. However,

with a growing number of customers and the emergence of big data, those

tools are prohibitively time-consuming or even infeasible, especially when

people are overwhelmed with complex customer data. To address this big

data challenge, data mining techniques that could learn underlying patterns

from big data effectively have been investigated and applied extensively in

various fields. Inspired by that, this thesis focus on applying existing or

designing new data mining methods to address challenges in inferring and

satisfying customers’ needs and expectations for financial advisers. Specifi-

cally, the main contributions of this thesis are listed as follows.

(1) An automatic end-to-end framework that follows the typical data

mining process is designed and implemented to learn the multiple needs of

every individual customer.at scale. To begin with, three possible needs are

defined using domain knowledge and extracted from data for a selective group

xi



ABSTRACT

of customers. Based on the labeled dataset, multi-label learning is then

applied to build predictive models that could predictive multiple needs of

other customers. The advantage of this framework is that it could exploit

heterogeneous data sources and predict the personalized needs of individual

customers without involving any manual work. Experimental results also

verify its effectiveness in learning customer needs.

(2) A novel learning method is proposed for early detection of customers

who are likely to stop engaging their current advisers, i.e., the customer churn

prediction problem. Specifically, this problem is dealt with as a bipartite

ranking problem, and a model is trained which can rank possible churners

before those who are less likely to churners. Furthermore, to address the

issue of extremely imbalanced data, i.e., there are few churners during a

particular time, an instance-based transfer learning strategy is adopted to

take advantage of auxiliary data that might of different distribution. In

this way, only weights of those data that could improve model performance

are increased iteratively, so they could be fully exploited to alleviate the

issue of imbalanced data. Furthermore, a novel ranking-based measure is

incorporated into the learning process to guide the process towards learning

good rankings. Experimental results validate our method’s effectiveness in

improving model performance by utilizing only useful auxiliary data.

(3) Research on recommending financial advisers to customers is also

investigated. To our knowledge, they are little research on this topic. To

cope with the issue of a lack of explicit customers’ preferences over advisers,

a graph-based method is applied to organize customers and advisers in a

heterogeneous network. Specifically, their connections are determined by

similarities between them in terms of demographic and behavioral features.

Furthermore, a random walk with restart process is run to identify advisers

who are more preferable for a particular customer.

The effectiveness of these proposed methods has been validated through

extensive experiments. In doing so, this research advances the understanding

of customer needs for financial advisers, thus provide financial businesses

xii



ABSTRACT

better chances to satisfy and retain their customers. In summary, this thesis

has proposed several effective methods that learn and satisfy customer needs

for financial advisers from different perspectives, and their effectiveness has

been validated by experiments. These achievements lay a good foundation

for further research and applications.
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