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Demand-Driven Pointer Analysis with Strong Updates via Value-Flow
Refinement
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We present a new demand-driven flow- and context-sensitive pointer analysis with strong updates for C
programs, called SUPA, that enables computing points-to information via value-flow refinement, in envi-
ronments with small time and memory budgets such as IDEs. We formulate SUPA by solving a graph-
reachability problem on an inter-procedural value-flow graph representing a program’s def-use chains, which
are pre-computed efficiently but over-approximately. To answer a client query (a request for a variable’s
points-to set), SUPA reasons about the flow of values along the pre-computed def-use chains sparsely (rather
than across all program points), by performing only the work necessary for the query (rather than analyz-
ing the whole program). In particular, strong updates are performed to filter out spurious def-use chains
through value-flow refinement as long as the total budget is not exhausted. SUPA facilitates efficiency and
precision tradeoffs by applying different pointer analyses in a hybrid multi-stage analysis framework.

We have implemented SUPA in LLVM (3.5.0) and evaluate it by choosing uninitialized pointer detection
as a major client on 18 open-source C programs. As the analysis budget increases, SUPA achieves improved
precision, with its single-stage flow-sensitive analysis reaching 97.4% of that achieved by whole-program
flow-sensitive analysis by consuming about 0.18 seconds and 65KB of memory per query, on average (with a
budget of at most 10000 value-flow edges per query). With context-sensitivity also considered, SUPA’s two-
stage analysis becomes more precise for some programs but also incurs more analysis times. SUPA is also
amenable to parallelization. A parallel implementation of its single-stage flow-sensitive analysis achieves a
speedup of up to 6.9x with an average of 3.05x a 8-core machine with respect its sequential version.

CCS Concepts: •Software and its engineering Ñ Software verification and validation; Software defect
analysis; •Theory of computation Ñ Program analysis;

Additional Key Words and Phrases: strong updates, value flow, pointer analysis, flow sensitivity

1. INTRODUCTION

Pointer analysis is one of the most fundamental static program analyses, on which
virtually all others are built. The goal of pointer analysis is to compute an approxima-
tion of the set of abstract objects that a pointer can refer to. A pointer analysis is (1)
flow-sensitive if it respects control flow and flow-insensitive otherwise and (2) context-
sensitive if it distinguishes different calling contexts and context-insensitive otherwise.

Strong updates, where stores overwrite, i.e., kill the previous contents of their ab-
stract destination objects with new values, is an important factor in the precision of
pointer analysis [Hardekopf and Lin 2009; Lhoták and Chung 2011]. In the case of
weak updates, these objects are assumed conservatively to also retain their old con-
tents. Strong updates are possible only if flow-sensitivity is maintained. In addition,
a flow-sensitive analysis can strongly update an abstract object written at a store if
and only if that object has exactly one concrete memory address, known as a singleton.
By applying strong updates where needed, a pointer analysis can improve precision,
thereby providing significant benefits to many clients, such as change impact anal-
ysis [Acharya and Robinson 2011], bug detection [Yan et al. 2016; Ye et al. 2014a],
security analysis [Arzt et al. 2014], type state verification [Fink et al. 2008], compiler
optimization [Sui et al. 2016b, 2013, 2014b], and symbolic execution [Blackshear et al.
2013].

In this paper, we introduce a demand-driven pointer analysis for C by investigating
how to perform strong updates effectively in a flow- and context-sensitive framework.
For C programs, flow-sensitivity is important in achieving the precision required by
the afore-mentioned client applications due to strong updates performed. If context-
sensitivity is also considered, some more strong updates are possible for some pro-
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grams at the expense of more analysis times. For object-oriented languages like Java,
context-sensitivity (without strong updates) is widely used in achieving useful preci-
sion [Lhoták and Hendren 2003; Li et al. 2014; Milanova et al. 2002, 2005; Smarag-
dakis et al. 2011; Sun et al. 2011; Xiao and Zhang 2011].

Ideally, strong updates at stores should be performed by analyzing all paths inde-
pendently by solving a meet-over-all-paths (MOP) problem. However, even with branch
conditions being ignored, this problem is intractable due to potentially unbounded
number of paths that must be analyzed [Landi 1992; Ramalingam 1994].

Instead, traditional flow-sensitive pointer analysis (FS) for C [Hind and Pioli 1998;
Kam and Ullman 1977] computes the maximal-fixed-point solution (MFP) as an over-
approximation of MOP by solving an iterative data-flow problem. Thus, the data-flow
facts that reach a confluence point along different paths are merged. Improving on
this, sparse flow-sensitive pointer analysis (SFS) [Hardekopf and Lin 2011; Li et al.
2011; Oh et al. 2012; Ye et al. 2014b; Yu et al. 2010] boosts the performance of FS in
analyzing large C programs while maintaining the same strong updates done by FS.
The basic idea is to first conduct a pre-analysis on the program to over-approximate
its def-use chains and then perform FS by propagating the data-flow facts, i.e., points-
to information sparsely along only the pre-computed def-use chains (aka value-flows)
instead of all program points in the program’s control-flow graph (CFG).

Recently, an approach [Lhoták and Chung 2011] for performing strong updates in C
programs is introduced. It sacrifices the precision of FS to gain efficiency by applying
strong updates at stores where flow-sensitive singleton points-to sets are available but
falls back to the flow-insensitive points-to information otherwise.

By nature, the challenge of pointer analysis is to make judicious tradeoffs between
efficiency and precision. Virtually all of the prior analyses for C that consider some de-
gree of flow-sensitivity are whole-program analyses. Precise ones are unscalable since
they must typically consider both flow- and context-sensitivity (FSCS) in order to max-
imize the number of strong updates performed. In contrast, faster ones like [Lhoták
and Chung 2011] are less precise, due to both missing strong updates and propagating
the points-to information flow-insensitively across the weakly-updated locations.

In practice, a client application of a pointer analysis may require only parts of the
program to be analyzed. In addition, some points-to queries may demand precise an-
swers while others can be answered as precisely as possible with small time and mem-
ory budgets. In all these cases, performing strong updates blindly across the entire
program is cost-ineffective in achieving precision.

For C programs, how do we develop precise and efficient pointer analyses that are
focused and partial, paying closer attention to the parts of the programs relevant
to on-demand queries? Demand-driven analyses for C [Heintze and Tardieu 2001;
Zhang et al. 2014a; Zheng and Rugina 2008] and Java [Lu et al. 2013; Shang et al.
2012; Sridharan and Bodı́k 2006; Su et al. 2016; Yan et al. 2011] are flow-insensitive
and thus cannot perform strong updates to produce the precision needed by some
clients. BOOMERANG [Späth et al. 2016] represents a recent flow- and context-sensitive
demand-driven pointer analysis for Java. However, its access-path-based approach
performs strong updates at a store a.f “ . . . only partially, by updating a.f strongly
and the aliases of a.f.˚ weakly. Elsewhere, advances in whole-program flow-sensitive
analysis for C have exploited some form of sparsity to improve performance [Hardekopf
and Lin 2011; Li et al. 2011; Oh et al. 2012; Ye et al. 2014b; Yu et al. 2010]. However,
how to replicate this success for demand-driven flow-sensitive analysis for C is unclear.
Finally, it remains open as to whether sparse strong update analysis can be performed
both flow- and context-sensitively on-demand to avoid under- or over-analyzing.

In this paper, we introduce SUPA, the first demand-driven pointer analysis with
strong updates for C, designed to support flexible yet effective tradeoffs between effi-
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Fig. 1: Overview of SUPA

ciency and precision in answering client queries, in environments with small time and
memory budgets such as IDEs. As shown in Figure 1, the novelty behind SUPA lies
in performing Strong UPdate Analysis precisely by refining imprecisely pre-computed
value-flows away in a hybrid multi-stage analysis framework. Given a points-to query,
strong updates are performed by solving a graph-reachability problem on an inter-
procedural value-flow graph that captures the def-use chains of the program obtained
conservatively by a pre-analysis. Such over-approximated value-flows can be obtained
by applying Andersen’s analysis [Andersen 1994] (flow- and context-insensitively).
SUPA conducts its reachability analysis on-demand sparsely along only the pre-
computed value-flows rather than control-flows. In addition, SUPA filters out imprecise
value-flows by performing strong updates flow- and context-sensitively where needed
with no loss of precision as long as the total analysis budget is sufficient. The precision
of SUPA depends on the degree of value-flow refinement performed under a budget.
The more spurious value-flows SUPA removes, the more precise the points-to facts are.

SUPA handles large C programs by staging analyses in increasing efficiency but
decreasing precision in a hybrid manner. Currently, SUPA proceeds in two stages by
applying FSCS and FS in that order with a configurable budget for each analysis.
When failing to answer a query in a stage within its alloted budget, SUPA downgrades
itself to a more scalable but less precise analysis in the next stage and will eventually
fall back to the pre-computed flow-insensitive information. At each stage, SUPA will
re-answer the query by reusing the points-to information found from processing the
current and earlier queries. By increasing the budgets used in the earlier stages (e.g.,
FSCS), SUPA will obtain improved precision via improved value-flow refinement.

In summary, this paper makes the following contributions:

— We present the first demand-driven flow- and context-sensitive pointer analysis
with strong updates for C that enables computing precise points-to information by
refining away imprecisely precomputed value-flows, subject to analysis budgets.

— We introduce a hybrid multi-stage analysis framework that facilitates efficiency and
precision tradeoffs by staging different analyses in answering client queries.

— We have produced an implementation of SUPA in LLVM (3.5.0) [SUPA 2016]. We
evaluate SUPA with uninitialized pointer detection as a practical client by using a
total of 18 open-source C programs. As the analysis budget increases, SUPA achieves
improved precision, with its single-stage flow-sensitive analysis reaching 97.4% of
that achieved by whole-program flow-sensitive analysis, by consuming about 0.18
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seconds and 65KB of memory per query, on average (with a per-query budget of at
most 10000 value-flow edges traversed). With context-sensitivity also being consid-
ered, more strong updates are also possible. SUPA’s two-stage analysis then becomes
more precise for some programs at the expense of more analysis times.

— We present four case studies to demonstrate that SUPA is effective in checking
whether variables are initialized or not in real-world applications.

— We show that SUPA is amenable to parallelization. To demonstrate this, we have
developed a parallel implementation of SUPA’s single-stage flow-sensitive analysis
based on Intel Threading Building Blocks (TBB), achieving a speedup of up to 6.9x
with an average of 3.05x a 8-core machine over its sequential version.

The rest of this paper is organized as follows. Section 2 provides the background
information. Section 3 presents a motivating example. Section 4 introduces our for-
malism for SUPA. Section 5 discusses and analyzes our experimental results. Section 6
contains four case studies. Section 7 describes a parallel implementation of SUPA. Sec-
tion 8 describes the related work. Finally, Section 9 concludes the paper.

2. BACKGROUND

We describe how to represent a C program by an interprocedural sparse value-flow
graph to enable demand-driven pointer analysis via value-flow refinement. Section 2.1
introduces the part of LLVM-IR relevant to pointer analysis. Section 2.2 describes how
to put top-level variables in SSA form. Section 2.3 describes how to put address-taken
variables in SSA form. Section 2.4 constructs a sparse value-flow graph that represents
the def-use chains for both top-level and address-taken variables in the program.

2.1. LLVM-IR

We perform pointer analysis in the LLVM-IR of a program, as in [Balatsouras and
Smaragdakis 2016; Hardekopf and Lin 2011; Lhoták and Chung 2011; Li et al. 2011;
Sui et al. 2012; Ye et al. 2014b]. The domains and the LLVM instructions relevant to
pointer analysis are given in Table I. The set of all variables V are separated into two
subsets, O that contains all possible abstract objects, i.e., address-taken variables of a
pointer and P that contains all top-level variables.

In LLVM-IR, top-level variables in P “ SYG, including stack virtual registers (sym-
bols starting with ”%”) and global variables (symbols starting with ”@”) are explicit, i.e.,
directly accessed. Address-taken variables in O are implicit, i.e., accessed indirectly at
LLVM’s load or store instructions via top-level variables.

Only a subset of the complete LLVM instruction set that is relevant to pointer anal-
ysis are modeled. As in Table I, every function f of a program contains nine types of
instructions (statements), including seven types of instructions used in the function
body of f , and one FUNENTRY instruction fpr1, . . . , rnq with the declarations of the
parameters of f , and one FUNEXIT instruction retf p as the unique return of f . Note
that the LLVM pass UnifyFunctionExitNodes is executed before pointer analysis in order
to ensure that every function has only one FUNEXIT instruction.

Let us go through the seven types of instructions used inside a function. For an
ADDROF instruction p“&o, known as an allocation site, o is one of the following objects:
(1) a stack object, o`, where ` is its allocation site (via an LLVM alloca instruction), (2) a
global object, i.e., a global object o`, where ` is its allocation site or a program function
of , where f is its name, and (3) a dynamically created heap object oh` , where ` is its
heap allocation site (e.g., via a malloc() call). For each object o (except for a function), we
write ofld to represent the sub-object that corresponds to its field fld. For flow-sensitive
pointer analysis, the initializations for global objects take place at the entry of main().
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Table I: Domains and LLVM instructions used by pointer analysis.

Analysis Domains LLVM Instruction Set
` P L instruction labels
fld P C constants (field accesses)
s P S stack virtual registers
g P G global variables
f P F Ď G program functions
p, q, r, x, y P P “ S Y G top-level variables
o, a, b, c, d P O address-taken variables
v P V “ P YO program variables

ADDROF p = &o

COPY p = q

PHI p =φpq, rq
FIELD p = &qÑfld

LOAD p = ˚q
STORE ˚p = q

CALL p = qpr1, . . . , rnq

FUNENTRY fpr1, . . . , rnq

FUNEXIT retf p

COPY denotes a casting instruction (e.g., bitcast) in LLVM. PHI is a standard SSA
instruction introduced at a confluence point in the CFG to select the value of a variable
from different control-flow branches. LOAD (STORE) is a memory accessing instruction
that reads (write) a value from (into) an address-taken object.

Our handling of field-sensitivity is ANSI-compliant. Given a pointer to an aggregate
(e.g., a struct or an array), pointer arithmetic used for accessing anything other than
the aggregate itself has undefined behavior [ISO90 1990; Pearce et al. 2007] and thus
not modeled. To model the field accesses of a struct object, FIELD represents a getele-
mentptr instruction with its field offset fld as a constant value. A getelementptr instruc-
tion that operates on a non-constant field of a struct is modeled as COPY instructions,
one for every field of the struct conservatively. Arrays are treated monolithically.

CALL, p “ qpr1, . . . , rnq, denotes a call instruction, where q can be either a global
variable (for a direct call) or a stack virtual register (for an indirect call).

2.2. SSA Form for Top-Level Variables

LLVM-IR is known as a partial SSA form since only top-level variables are in SSA
form. In LLVM-IR, top-level variables are explicit, i.e., directly accessed and can thus
be put in SSA form by using a standard SSA construction algorithm [Cytron et al.
1991] (with PHI instructions inserted at confluence points).

  p = &a;
  q = &c;

  a = &b;
  c = &d;

 t1 = *p;
 *p = *q;
 *q = t1;

   p = &a;
   q = &c;
    x = &b;
    y = &d;

*p = x;
*q = y;

  t1 = *p;
  t2 = *q;
 *p = t2;
 *q = t1;

(a) C code (b) Partial SSA 

p q

a c

b d

p q

a c

b d

(c) Before swap (d) After swap

swap swap

Points-to relations for p and q
observed at runtime

Fig. 2: A swap example and its partial SSA form.

Let us illustrate LLVM’s partial SSA form by using an example in Figure 2. Fig-
ure 2(a) shows a swap program in C and Figure 2(b) gives its corresponding partial
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SSA form. Figures 2(c) and (d) depict some (runtime) points-to relations before and
after the swap operation. In this example, we have p, q, x, y, t1, t2 P P and a, b, c, d P O.
Note that x, y, t1 and t2 are new temporary registers introduced in order to put the pro-
gram given in Figure 2(a) into the partial SSA form given in Figure 2(b). In particular,
˚p “ ˚q is decomposed into t2 “ ˚q and ˚p “ t2, where t2 is a top-level pointer.

In LLVM-IR, all top-level variables are in SSA form. In this example, all top-level
variables are trivially in SSA form, as each has exactly one definition only. As a result,
the def-use chains for top-level variables are readily available.

However, address-taken variables are accessed indirectly at loads and stores via top-
level variables and thus not in SSA form. For example, the address-taken variable a
is defined implicitly twice, once at ˚p “ x and once at ˚p “ t2, and the address-taken
variable c is also defined implicitly twice, once at ˚q “ y and once at ˚q “ t1. As a
result, the def-use chains for address-taken variables are not immediately available.

2.3. SSA Form for Address-Taken Variables

Starting with LLVM’s partial SSA form, we first perform a pre-analysis by using An-
dersen’s algorithm flow- and context-insensitively [Andersen 1994], implemented in
SVF [Sui and Xue 2016]. We then put address-taken variables in memory SSA form,
by using the SSA construction algorithm [Cytron et al. 1991]. Imprecise points-to in-
formation computed this way will be refined by our demand-driven pointer analysis.

Given a variable v, AnderPtspvq represents its points-to set computed by Andersen’s
algorithm. There are two steps [Sui et al. 2014a], illustrated in Figures 3(a) and (b)
intraprocedurally and in Figures 4(a) and (b) interprocedurally.

Step 1: Computing Modification and Reference Side-Effects. As shown in Figure 3(a),
every load, e.g., t1 “ ˚q is annotated with a µpaq operator for each object a pointed
by q, i.e., a P AnderPtspqq to represent a potential use of a at the load. Similarly,
every store, e.g., ˚p “ x is annotated with a a“χpaq operator for each object a P
AnderPtsppq to represent a potential def and use of a at the store. If a can be strongly
updated, then a receives whatever x points to and the old contents in a are killed.
Otherwise, a must also incorporate its old contents, resulting in a weak update to a.
We compute the side-effects of a function call by applying a lightweight interproce-
dural mod-ref analysis [Sui et al. 2014a, §4.2.1]. For a given callsite `, it is annotated
with µpaq (a“χpaq) if a may be read (modified) inside the callees of ` (discovered by
Andersen’s pointer analysis). In addition, appropriate χ and µ operators are also
added for the FUNENTRY and FUNEXIT instructions of these callees in order to
mimic passing parameters and returning results for address-taken variables.
Figure 4(a) gives an example modified from Figure 3(a) by moving the four swap in-
structions into a function, swap. For read side-effects, µpaq and µpcq are added before
callsite `7 to represent the potential uses of a and c in swap. Correspondingly, swap’s
FUNENTRY instruction `8 is annotated with a“χpaq and c“χpcq to receive the val-
ues of a and c passed from `7. For modification side-effects, a“χpaq and c“χpcq are
added after `7 to receive the potentially modified values of a and c returned from
swap’s FUNEXIT instruction `13, which are annotated with µpaq and µpcq.

Step 2: Memory SSA Renaming. All the address-taken variables are converted into
SSA form as suggested in [Chow et al. 1996]. Every µpaq is treated as a use of a.
Every a“χpaq is treated as both a def and use of a, as a may admit only a weak
update. Then the SSA form for address-taken variables is obtained by applying a
standard SSA construction algorithm [Cytron et al. 1991].
For the program annotated with µ’s and χ’s in Figure 3(a), Figure 3(b) gives its mem-
ory SSA form. Similarly, Figure 4(b) gives the memory SSA form for Figure 4(a).
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   p = &a;
   q = &c;
    x = &b;
    y = &d;

*p = x;
      a = !(a)

*q = y;
      c = !(c)

       "(a)
  t1 = *p;

       "(c)
  t2 = *q;
 *p = t2;

      a = !(a)

 *q = t1;
      c = !(c)

swap

   p = &a;
   q = &c;
    x = &b;
    y = &d;

*p = x;
      a1 = !(a0)

*q = y;
      c1 = !(c0)

       "(a1)
  t1 = *p;

       "(c1)
  t2 = *q;
 *p = t2;

      a2 = !(a1)

 *q = t1;
      c2 = !(c1)

swap

   p = &a;
   q = &c;
    x = &b;
    y = &d;

*p = x;
      a1 = !(a0)

*q = y;
      c1 = !(c0)

       "(a1)
  t1 = *p;

       "(c1)
  t2 = *q;
 *p = t2;

      a2 = !(a1)

 *q = t1;
      c2 = !(c1)

swap

[a]

[a]
[c]

[c]

(a) Step 1: adding "s$and$!s (b) Step 2: renaming (c) Sparse value-flows of a and c

ℓ1:
ℓ2:
ℓ3:
ℓ4:
ℓ5:

ℓ6:

ℓ7:

ℓ8:
ℓ9:

ℓ10:

Fig. 3: Memory SSA form and sparse value-flows constructed intraprocedurally for
Figure 2, obtained with Andersen’s analysis: AnderPtsppq “ tau and AnderPtspqq “ tcu.

foo(){
    p = &a;
    q = &c;
    x = &b;
    y = &d;
   *p = x;
      a = !(a)

   *q = y;
      c = !(c)

        "(a)    
        "(c)
    swap(p,q);
      a = !(a)
      c = !(c)
}

swap(p,q){
      a = !(a)
      c = !(c)

       "(a)
   t1 = *p;
       "(c)
   t2 = *q;
  *p = t2;
      a = !(a)

  *q = t1;
      c = !(c)
      
       "(a)
       "(c)
}

foo(){
    p = &a;
    q = &c;
    x = &b;
    y = &d;
   *p = x;
      a1 = !(a0)

   *q = y;
      c1 = !(c0)

        "(a1)    
        "(c1)
    swap(p,q);
      a2 = !(a1)
      c2 = !(c1)
}

swap(p,q){
      a1 = !(a0)
      c1 = !(c0)

       "(a1)
   t1 = *p;
       "(c1)
   t2 = *q;
  *p = t2;
      a2 = !(a1)

  *q = t1;
      c2 = !(c1)
      
       "(a2)
       "(c2)
}

foo(){
    p = &a;
    q = &c;
    x = &b;
    y = &d;
   *p = x;
      a1 = !(a0)
   *q = y;
      c1 = !(c0)

        "(a1)    
        "(c1)
    swap(p,q);
      a2 = !(a1)
      c2 = !(c1)
}

swap(p,q){
    a1 = !(a0)
    c1 = !(c0)

       "(a1)
   t1 = *p;
       "(c1)
   t2 = *q;
  *p = t2;
      a2 = !(a1)

  *q = t1;
      c2 = !(c1)
      
       "(a2)
       "(c2)
}

[a]

[c]

[a]

[c]

[a] [a]

[c]

[c]

[a]

[c]
[a]
[c]

(a) Step 1: adding "s$and$!s (b) Step 2: renaming (c) Sparse value-flows of a and c

ℓ1:
ℓ2:
ℓ3:
ℓ4:
ℓ5:

ℓ6:

ℓ7:

ℓ9:

ℓ10:
ℓ11:

ℓ12:

ℓ8:

ℓ13:

Fig. 4: Memory SSA form and sparse value-flows constructed interprocedurally for an
example modified from Figure 2 with its four swap instructions moved into a separate
function, called swap. `8 and `13 correspond to the FUNENTRY and FUNEXIT of swap.

2.4. Sparse Value-Flow Graph

Once both top-level and address-taken variables are in SSA form, their def-use chains
are immediately available, as shown in Table II. We discussed top-level variables ear-
lier. For the two address-taken variables a and c in Figure 2, Figure 3(c) depicts their
def-use chains, i.e., sparse value-flows for the memory SSA form in Figure 3(b). Simi-
larly, Figure 4(c) gives their sparse value-flows for the memory SSA form in Figure 4(b).

Given a program, a sparse value-flow graph (SVFG), Gvfg “ pN,Eq, is a multi-edged
directed graph that captures its def-use chains for both top-level and address-taken
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Table II: Def-use information of both top-level and address-taken variables. Defv
(Usev) denotes the set of definition (use) instructions for a variable v P V.

Instruction ` Defs and Uses of Variables in Memory SSA Form
p “ &o t`u “ Defp
p “ q t`u “ Defp ` P Useq
p “ φpq, rq t`u “ Defp ` P Useq ` P User
p “ &qÑfld t`u “ Defp ` P Useq
p “ ˚q µpaiq t`u “ Defp ` P Useq ` P Useai
˚p “ q ai`1“χpaiq ` P Usep ` P Useq ` P Defai`1 ` P Useai
p “ qpr1, . . . , rnq t`u “ Defp ` P Useq @ i P 1, . . . , n : ` P Useri

µpaiq aj`1“χpajq ` P Useai ` P Defaj`1 ` P Useaj
fpr1, . . . , rnq ai`1“χpaiq @ i P 1, . . . , n : ` P Defri ` P Defai`1

` P Useai
retf p µpaiq ` P Usep ` P Useai

[INTRA-TOP]
` P Defp `1 P Usep

`
p
ÝÑ `1

[INTRA-ADDR]
` P Defai `1 P Useai

`
a
ÝÑ `1

[INTER-CALL-TOP]
` : p “ qpr1, . . . , rnq of P AnderPtspqq `1 : fpr11, . . . , r

1
nq

@i P 1, . . . , n : `
ri
ÝÑ `1

[INTER-RET-TOP]
` : p “ qp. . . q af P AnderPtspqq `1 : retf p

1

`1
p
ÝÑ `

[INTER-CALL-ADDR]
` : p “ qp. . . q µpaiq af P AnderPtspqq `1 : fp. . . q aj`1“χpajq

`
a
ÝÑ `1

[INTER-RET-ADDR]
` : “ qp. . . q aj`1“χpajq af P AnderPtspqq `1 : retf µpaiq

`1
a
ÝÑ `

Fig. 5: Value-flow construction in Memory SSA form.

variables. N is the set of nodes representing all instructions and E is the set of edges
representing all potential def-use chains. In particular, an edge `1

v
ÝÑ `2, where v P V,

from statement `1 to statement `2 signifies a potential def-use chain for v with its def at
`1 and use at `2. We refer to `1

v
ÝÑ `2 a direct value-flow if v P P and an indirect value-

flow if v P O. This representation is sparse since the intermediate program points
between `1 and `2 are omitted, thereby enabling the underlying points-to information
to be gradually refined by applying a sparse demand-driven pointer analysis.

Figure 5 gives the rules for connecting value-flows between two instructions
based on the defs and uses computed in Table II. For intraprocedural value-flows,
[INTRA-TOP] and [INTRA-ADDR] handle top-level and address-taken variables, respec-
tively. In SSA form, every use of a variable only has a unique definition. For a use of a
identified as ai (with its i-th version) at `1 annotated with µpaiq, its unique definition
in SSA form is ai at an ` annotated with ai“χpai´1q. Then, ` a

ÝÑ `1 is generated to rep-
resent potentially the value-flow of a from ` to `1. Thus, the PHI functions introduced
for address-taken variables will be ignored, as the value a in `

a
ÝÑ `1 is not versioned.

Let us consider interprocedural value-flows. The def-use information in Table II
is only intraprocedural. According to Figure 5, interprocedural value-flows are con-
structed to represent parameter passing for top-level variables ([INTER-CALL-TOP]
and [INTER-RET-TOP]), and the µ{χ operators annotated at FUNENTRY, FUNEXIT
and CALL for address-taken variables ([INTER-CALL-ADDR] and [INTER-RET-ADDR]).
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[INTER-CALL-TOP] connects the value-flow from an actual argument ri at a call in-
struction ` to its corresponding formal parameter r1i at the FUNENTRY `1 of every callee
f invoked at the call. Conversely, [INTER-RET-TOP] models the value-flow from the
FUNEXIT instruction of f to every callsite where f is invoked. Just like for top-level
variables, [INTER-CALL-ADDR] and [INTER-RET-ADDR] build the value-flows of address-
taken variables across the functions according to the annotated µ’s and χ’s. Note that
the versions i and j of an SSA variable a in different functions may be different. For
example, Figure 4(c) illustrates the four inter-procedural value-flows `7

a
ÝÑ `8, `7

c
ÝÑ `8,

`13
a
ÝÑ `7 and `13

c
ÝÑ `7 obtained by applying the two rules to Figure 4(b).

The SVFG obtained this way may contain spurious def-use chains, such as `5
a
ÝÑ `9

in Figure 3, as Andersen’s flow- and context-insensitive pointer analysis is fast but
imprecise. However, this representation allows imprecise points-to information to be
refined by performing sparse whole-program flow-sensitive pointer analysis as in prior
work [Hardekopf and Lin 2011; Nagaraj and Govindarajan 2013; Sui et al. 2016a; Ye
et al. 2014b]. In this paper, we introduce a demand-driven flow- and context-sensitive
pointer analysis with strong updates that can answer points-to queries efficiently and
precisely on-demand, by removing spurious def-use chains in the SVFG iteratively.

3. A MOTIVATING EXAMPLE

Our demand-driven pointer analysis, SUPA, operates on the SVFG of a program. It
computes points-to queries flow- and context-sensitively on-demand by performing
strong updates, whenever possible, to refine away imprecise value-flows in the SVFG.

Our example program, shown in Figure 6(a), is simple (even with 16 lines). The
program consists of a straight-line sequence of code, with `1 – `10 taken directly from
Figure 2(b) and the six new statements `11 – `16 added to enable us to highlight some
key properties of SUPA. We assume that u at `11 is uninitialized but i at `12 is initial-
ized. The SVFG embedded in Figure 6(a) will be referred to shortly below. We describe
how SUPA can be used to prove that z at `16 points only to the initialized object i, by
computing flow-sensitively on-demand the points-to query ptpx`16, zyq, i.e., the points-to
set of z at the program point after `16, which is defined in (1) in Section 4.

Figure 6(b) depicts the points-to relations for the six address-taken variables and
some top-level ones found at the end of the code sequence by a whole-program flow-
sensitive analysis (with strong updates) like SFS [Hardekopf and Lin 2011]. Due to
flow-sensitivity, multiple solutions for a pointer are maintained. In this example, these
are the true relations observed at the end of program execution. Note that SFS gives
rise to Figure 2(c) by analyzing `1 – `6, Figure 2(d) by analyzing also `7 – `10, and
finally, Figure 6(b) by analyzing `11 – `16 further. As z points to i but not u, no warning
is issued for z, implying that z is regarded as being properly initialized.

Figure 6(c) shows how the points-to relations in Figure 6(b) are over-approximated
flow-insensitively by applying Andersen’s analysis [Andersen 1994]. In this case, a
single solution is computed conservatively for the entire program. Due to the lack of
strong updates in analyzing the two stores performed by swap, the points-to relations
in Figures 2(c) and 2(d) are merged, causing ˚a and ˚c to become spurious aliases.
When `11 – `16 are analyzed, the seven spurious points-to relations (shown in dashed
arrows in Figure 6(c)) are introduced. Since z points to i (correctly) and u (spuriously), a
false alarm for z will be issued. Failing to consider flow-sensitivity, Andersen’s analysis
is not precise for this uninitialization pointer detection client.

Let us now explain how SUPA, shown in Figure 1, works. SUPA will first perform
a pre-analysis to the example program to build the SVFG given in Figure 6(a), as
discussed in Section 2. For its top-level variables, their direct value-flows, i.e., def-
use chains are explicit and thus omitted to avoid cluttering. For example, q has three
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    z = *t3;

(a) A program and its SVFG (with
only indirect value-flows shown) 

(d) The SUPA analysis for resolving  pt(⟨ℓ16 ,z⟩) = {i} by
traversing from ⟨ℓ16 ,z⟩ backwards against the value-flows

1

[a]

[a]
[c]

[c]

[b]

[b]

[d]

[d]ℓ16:

 *q = y;   

 p = &a;   

  t2 = *q;

  t3 = *p;

      z = *t3;

 y = &d;   

 v = &i;   

  *p = t2;

  *t3 = v;

 *t3 = w;

[b] [d]

[d][b]

 q = &c;   

[q]

[q]

[p]

[p]

[t2]

[y]

[t3]

[v]

[t3]

2
3 [a]

4

5 6[c]

7

8

9

SU for d

SU for a

SU for c

ℓ1:
ℓ2:

ℓ4:

ℓ6:

ℓ8:

ℓ9:

ℓ12:

ℓ13:

ℓ14:

ℓ15:

ℓ16:

p

a

q

c

b d

i u

t3

z

(b) Flow-sensitive points-to relations found 
to hold at the end of the program 

(with some for top-level pointers omitted) 

Direct Value-flow Indirect Value-flow Points-to Spurious Points-to

p

a

q

c

b d

i u

t3

z

swap

*t3 = v;

*t3 = w;

 t3 = *p;

  v = &i;

  w = &u;

*q = t1;

 *p = t2;

  t2 = *q;

  t1 = *p;

*q = y;

*p = x;

    y = &d;

    x = &b;

    q = &c;

    p = &a;ℓ1:
ℓ2:
ℓ3:

ℓ5:
ℓ6:
ℓ7:
ℓ8:

ℓ4:

ℓ10:
ℓ9:

ℓ14:

ℓ15:

ℓ13:

ℓ11:

ℓ12:

(c) Flow-insensitive points-to relations
(with some for top-level pointers omitted) 

Spurious Value-Flows

x x

x

*p = x;

[a]

[a]

x

ℓ5:

.

Query
pt(⟨ℓ16 ,z⟩) =?

Fig. 6: A motivating example for illustrating SUPA (SU stands for “Strong Update”).

def-use chains `2
q
ÝÑ `6, `2

q
ÝÑ `8 and `2

q
ÝÑ `10. For its address-taken variables, there

are nine indirect value-flows, i.e., def-use chains depicted in Figure 6(a). Let us see
how the two def-use chains for b are created. As t3 points to b, `14, `15 and `16 will be
annotated with b “ χpbq, b “ χpbq and µpbq, respectively. By putting b in SSA form,
these three functions become b2 “ χpb1q, b3 “ χpb2q and µpb3q. Hence, we have `14

b
ÝÑ`15

and `15
b
ÝÑ `16, indicating b at `16 has two potential definitions, with the one at `15

overwriting the one at `14. The def-use chains for d and a are built similarly.
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Let us consider a single-stage analysis with Stage[N-1] “ Stage[0] “ FS in Fig-
ure 1. Figure 6(d) shows how SUPA computes ptpx`16, zyq on-demand, starting from `16,
by performing a backward reachability analysis on the SVFG, with the visiting order
of def-use chains marked as 1 – 9 . Formally, this is done as illustrated in Figure 8.
The def-use chains for only the relevant top-level variables are shown. By filtering out
the four spurious value-flows (marked by ), SUPA finds that only i at `12 is backward
reachable from z at `16. Thus, ptpx`16, zyq “ tiu. So no warning for z will be issued.

SUPA differs from prior work in the following three major aspects:

— On-Demand Strong Updates
A whole-program flow-sensitive analysis like SFS [Hardekopf and Lin 2011] can
answer ptpx`16, zyq precisely but must accomplish this task by analyzing all the 16
statements, resulting in a total of six strong updates performed at the six stores,
with some strong updates performed unnecessarily for this query. Unfortunately,
existing whole-program FSCS or even just FS algorithms do not scale well for large
C programs [Acharya and Robinson 2011].
In contrast, SUPA computes ptpx`16, zyq precisely by performing only three strong
updates at `6, `9 and `15. The earlier a strong update is performed by SUPA during
its reachability analysis, the fewer the number of statements traversed. After 1 –
8 have been performed, SUPA finds that t3 points to d only. With a strong update
performed at `15 : ˚t3 “ v ( 9 ), SUPA concludes that ptpx`16, zyq“tiu.

— Value-Flow Refinement
Demand-driven pointer analyses [Shang et al. 2012; Sridharan and Bodı́k 2006;
Yan et al. 2011; Zhang et al. 2014a; Zheng and Rugina 2008] are flow-insensitive
and thus suffer from the same imprecision as their flow-insensitive whole-program
counterparts. In the absence of strong updates, many spurious aliases (such as ˚a
and ˚c) result, causing z to point to both i and u. As a result, a false alarm for z is
issued, as discussed earlier.
However, SUPA performs strong updates flow-sensitively by filtering out the four
spurious pre-computed value-flows marked by . As t3 points to d only, `15

b
ÝÑ `16 is

spurious and not traversed. In addition, a strong update is enabled at `15 : ˚t3 “ v,
rendering `14

b
ÝÑ `15 and `14

d
ÝÑ `15 spurious. Finally, `5

a
ÝÑ `9 is refined away due

to another strong update performed at `9. Thus, SUPA has avoided many spurious
aliases (e.g., ˚a and ˚c) introduced flow-insensitively by pre-analysis, resulting in
ptpx`16, zyq“tiu precisely. Thus, no warning for z is issued.

— Query-based Precision Control
To balance efficiency and precision, SUPA operates in a hybrid multi-stage analy-
sis framework. When asked to answer the query ptpx`16, zyq under a budget, say, a
maximum sequence of three steps traversed, SUPA will stop its traversal from `9
to `8 (at 4 ) in Figure 6(d) and fall back to the pre-computed results by returning
ptpx`16, zyq “ tu, iu. In this case, a false positive for z will end up being reported.

4. DEMAND-DRIVEN STRONG UPDATES

We introduce our demand-driven pointer analysis with strong updates, as illustrated
in Figure 1. We first describe our inference rules in a flow-sensitive setting (Sec-
tion 4.1). We then discuss our context-sensitive extension (Section 4.2). Finally, we
present our hybrid multi-stage analysis framework (Section 4.3). All our analyses are
field-sensitive, thereby enabling more strong updates to be performed to struct objects.
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[ADDR]
` : p “ &o
x`, py Ðâ po [COPY]

` : p “ q `1
q
ÝÑ `

x`, py Ðâ x`1, qy

[PHI]
` : p “ φpq, rq `1

q
ÝÑ ` `2

r
ÝÑ `

x`, py Ðâ x`1, qy x`, py Ðâ x`2, ry

[FIELD]
` : p “ &qÑfld `1

q
ÝÑ ` x`1, qy Ðâ po

x`, py Ðâ yofld

[LOAD]
` : p “ ˚q `2

q
ÝÑ ` x`2, qy Ðâ po `1

o
ÝÑ `

x`, py Ðâ x`1, oy

[STORE]
` : ˚p “ q `2

p
ÝÑ ` x`2, py Ðâ po `1

q
ÝÑ `

x`, oy Ðâ x`1, qy

[SU/WU]
` : ˚p “ `1

o
ÝÑ ` o P Azkillp`, pq

x`, oy Ðâ x`1, oy

[CALL]

` : “ qp. . . , r, . . . q µpojq `1 : fp. . . , r1, . . . q oi`1“χpoiq

`2
q
ÝÑ ` x`2, qy Ðâ xof `

r
ÝÑ `1 `

o
ÝÑ `1

x`1, r1y Ðâ x`, ry x`1, oy Ðâ x`, oy

[RET]

` : p “ qp. . . q oj`1“χpojq `1 : retf p
1 µpoiq

`2
q
ÝÑ ` x`2, qy Ðâ xof `1

p1

ÝÑ ` `1
o
ÝÑ `

x`, py Ðâ xp1, `1y x`, oy Ðâ x`1, oy

[COMPO]
lv Ðâ lv1 lv1 Ðâ lv2

lv Ðâ lv2

killp`, pq “

$

&

%

to1u if ptpx`, pyq“to1u ^ o1 P singletons
A else if ptpx`, pyq“∅
∅ otherwise

Fig. 7: Single-stage flow-sensitive SUPA analysis with demand-driven strong updates.

4.1. Formalism: Flow-Sensitivity

We present a formalization of a single-stage SUPA consisting of only a flow-sensitive
(FS) analysis. Given a program, SUPA will operate on its SVFG representation Gvfg

constructed by applying Andersen’s analysis [Andersen 1994] as a pre-analysis, as
discussed in Section 2.4 and illustrated in Section 3.

Let V “ L ˆ V be the set of labeled variables lv, where L is the set of statement
labels and V “ P Y O as defined in Table I. SUPA conducts a backward reachability
analysis flow-sensitively on Gvfg by computing a reachability relation, Ðâ Ď V ˆ V. In
our formalism, x`, vy Ðâ x`1, v1y signifies a value-flow from a def of v1 at `1 to a use of v at `
through one or multiple value-flow paths inGvfg. For an object o created at an ADDROF
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statement, i.e., an allocation site at `1, identified as x`1, oy, we must distinguish it from
x`, oy accessed elsewhere at ` in our inference rules. Our abbreviation for x`1, oy is po.

Given a points-to query x`, vy, SUPA computes ptpx`, vyq, i.e., the points-to set of x`, vy
by finding all reachable target objects po, defined as follows:

ptpx`, vyq “ to | x`, vy Ðâ pou (1)

Despite flow-sensitivity, our formalization in Figure 7 makes no explicit references
to program points. As SUPA operates on the def-use chains in Gvfg, each variable x`, vy
mentioned in a rule appears at the point just after `, where v is defined.

Let us examine our rules in detail. By [ADDR], an object po created at an allocation site
` is backward reachable from p at ` (or precisely at the point after `). The pre-computed
direct value-flows across the top-level variables in Gvfg are always precise ([COPY] and
[PHI]). In partial SSA form, [PHI] exists only for top-level variables (Section 2.4).

However, the indirect value-flows across the address-taken variables in Gvfg can
be imprecise; they need to be refined on the fly to remove the spurious aliases thus
introduced. When handling a load p “ ˚q in [LOAD], we can traverse backwards from
p at ` to the def of o at `1 only if o is actually used by, i.e., aliased with ˚q at `, which
requires the reachability relation x`2, qy Ðâ po to be computed recursively. A store ˚p “ q
is handled similarly ([STORE]): q defined at `1 can be reached backwards by o at ` only
if o is aliased with ˚p at `.

If ˚q in a load ¨ ¨ ¨ “ ˚q is aliased with ˚p in a store ˚p “ ¨ ¨ ¨ executed earlier, then
p and q must be both backward reachable from po. Otherwise, any alias relation estab-
lished between ˚p and ˚q in Gvfg by pre-analysis must be spurious and will thus be
filtered out by value-flow refinement.
[SU/WU] models strong and weak updates at a store ` : p “ . Defining its kill

set killp`, pq involves three cases. In Case (1), p points to one singleton object o1 in
singletons, which contains all objects in A except the local variables in recursion, ar-
rays (treated monolithically) or heap objects [Lhoták and Chung 2011]. In Section 4.2,
we discuss how to apply strong updates to heap objects context-sensitively. A strong
update is then possible to o. By killing its old contents at `1, no further backward traver-
sal along the def-use chain `1

o
ÝÑ ` is needed. Thus, x`, oy Ðâ x`1, oy is falsified. In Case

(2), the points-to set of p is empty. Again, further traversal to x`1, oy must be prevented
to avoid dereferencing a null pointer as is standard [Hardekopf and Lin 2009, 2011;
Lhoták and Chung 2011]. In Case (3), a weak update is performed to o so that its old
contents at `1 are preserved. Thus, x`, oy Ðâ x`1, oy is established, which implies that the
backward traversal along `1 oÝÑ ` must continue.
[FIELD] handles field-sensitivity. For a field access (e.g., p “ &q Ñ fld), pointer p

points to the field object ofld of object o pointed to by q.
[CALL] and [RET] handle the reachability traversal interprocedurally by computing

the call graph for the program on the fly instead of relying on the imprecisely pre-
computed call graph built by the pre-analysis as in [Hardekopf and Lin 2011]. In the
SVFG, the interprocedural value-flows sinking into a callee function f may come from
a spurious indirect callsite `. To avoid this, both rules ensure that the function pointer
q at ` actually points to f ([CALL] and [RET]). Essentially, given a points-to query z
at an indirect callsite ` : z “ p˚fpqpq. Instead of analyzing all the callees found by the
pre-analysis, SUPA recursively computes the points-to set of fp to discover new callees
at the callsite and then continues refining ptpx`, zyq using the new callees.

Finally, Ðâ is transitive, stated by [COMPO].
Let us try all our rules, by first revisiting our motivating example where strong up-

dates are performed (Example 4.1) and then examining weak updates (Example 4.2).
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Example 4.1. Figure 8 shows how we apply the rules of SUPA to answer ptpx`16, zyq
illustrated in Figure 6(d). [SU/WU] (implicit in these derivations) is applied to `6, `9
and `15 to cause a strong update at each store. At `6, ptpx`6, qyq “ tcu, the old contents
in c are killed. At `9, `5

a
ÝÑ `9 becomes spurious since x`9, ayÐâ x`5, ay is falsified. At `15,

`14
b
ÝÑ `15 and `14

d
ÝÑ `15 are filtered out since x`15, byÐâx`14, by and x`15, dyÐâ x`14, dy are

falsified. Finally, `15
b
ÝÑ `16 is ignored since t3 points to d only ([LOAD]). l

SUPA improves performance by caching points-to results to reduce redundant traver-
sal, with reuse happening in the marked boxes in Figure 8. For example, in Figure 8(c),
ptpx`13, t3yq “ tpdu computed in [LOAD] is reused in [STORE].

            p1 = &a;
              x = &b;
              y = &c;
              r = &d;
           *p1 = x; 
           *p1 = y;
              q = p1

      if(*) p2 = &e;
            p3 = !(p1,p2); 

           *p3 = r;

              z = *q;

ℓ1:

ℓ8:
ℓ9:
ℓ10:

ℓ2:
ℓ3:

ℓ5:
ℓ6:
ℓ7:

ℓ11:

[a]

[a]

WU for a
[a]

Andersen's 
Points-to:

 pt(p1) = {a}
 pt(p2) = {e}

    pt(p3) = {a,e}
  pt(q) = {a}
  pt(x) = {b}
  pt(y) = {c}
   pt(r) = {d}

        pt(a) = {b,c,d}
        pt(z) = {b,c,d}

SU for a

Query
pt(⟨ℓ11 ,z⟩) =?

ℓ4:

Direct value-flow Indirect value-flow 

Fig. 9: Resolving ptpx`11, zyq “ tc, du with a weak update.

Example 4.2. Let us consider a weak update example in Figure 9 by computing
ptpx`11, zyq on-demand. At the confluence point `9, p3 receives the points-to information
from both p1 and p2 in its two branches: x`9, p3y Ðâ pa and x`9, p3y Ðâ pe. Thus, a weak up-
date is performed to the two locations a and e at `10. Let us focus on pa only. By applying
[STORE], x`10, ay Ðâ x`4, ry Ðâ pd. By applying [SU/WU], x`10, ay Ðâ x`6, ay Ðâ x`3, yy Ðâ pc.
Thus, ptpx`11, ayq “ tc, du, which excludes b due to a strong update performed at `6. As
ptpx`7, qyq “ tau, we obtain ptpx`11, zyq “ tc, du. l

Unlike [Lhoták and Chung 2011], which falls back to the flow-insensitive points-to
information for all weakly updated objects, SUPA handles them as precisely as (whole-
program) flow-sensitive analysis subject to a sufficient budget. In Figure 9, due to
a weak update performed to a at `10, ptpx`10, ayq “ tc, du is obtained, forcing their
approach to adopt ptpx`10, ayq “ tb, c, du thereafter, causing ptpx`11, zyq “ tb, c, du. By
maintaining flow-sensitivity with a strong update applied to `6 to kill b, SUPA obtains
ptpx`11, zyq “ tc, du precisely.

4.1.1. Handling Value-Flow Cycles. To compute soundly and precisely the points-to infor-
mation in a value-flow cycle in the SVFG, SUPA retraverses it whenever new points-to
information is found until a fix point is reached.

Example 4.3. Figure 10 shows a value-flow cycle formed by `5
x
ÝÑ `6 and `6

z
ÝÑ `5. To

compute ptpx`6, zyq, we must compute ptpx`5, xyq, which requires the aliases of ˚z at the
load `5 : x “ ˚z to be found by using ptpx`6, zyq. SUPA computes ptpx`6, zyq by analyzing
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               p = &a;
               q = &b;
              *q = p;

               y = &b;
               x = *z; 

               z = !(x,y);

ℓ2:
ℓ3:
ℓ4:
ℓ5:

ℓ6:

[b]

[z]
[x]

.

Query
pt(⟨ℓ5 ,z⟩) =?

Direct Value-flow Indirect Value-flow 

ℓ1:

Fig. 10: Resolving ptpx`5, zyq“ta, bu in a value-flow cycle.

this value-flow cycle in two iterations. In the first iteration, a pointed-to target pb is
found since x`6, zy Ðâ x`4, yy Ðâ pb. Due to x`2, qy Ðâ pb, ˚z and ˚q are found to be aliases.
In the second iteration, another target pa is found since x`6, zy Ðâ x`5, xy Ðâ x`3, by Ðâ

x`1, py Ðâ pa. Thus, ptpx`6, zyq “ ta, bu is obtained. l

4.1.2. Field-Sensitivity. Field-insensitive pointer analysis does not distinguish different
fields of a struct object, and consequently, gives up opportunities for performing strong
updates to a struct object, as a struct object may actually represent its distinct fields.
In contrast, SUPA is truly field-sensitive, by avoiding the two limitations altogether.

bar() {
      x = &a;
      y = &b;
      z = &c;
      p = &(x->f);
      q = &(x->g);
     *p = y;

     *q = z;

     
     foo(x);
}

foo(v) {

        ....
  w = &(v->g);

   r = *w;
}

      a1 = !(a0)

       "(a1)

      "(a2)

      a2 = !(a1)

[a]

[a]

[a]

ℓ1:
ℓ2:
ℓ3:
ℓ4:
ℓ5:

ℓ9:

ℓ10:

ℓ11:

Indirect Value-flow 

ℓ6:

ℓ7:

ℓ8:

bar() {
      x = &a;
      y = &b;
      z = &c;
      p = &(x->f);
      q = &(x->g);
     *p = y;

     *q = z;

     
     foo(x);
}

foo(v) {

        ....
  w = &(v->g);

   r = *w;
}

      a.g1 = !(a.g0)

       "(a.g1)

      "(a.g1)

      a.g1 = !(a.g0)

[a.g]

[a.g]

[a.g]

ℓ1:
ℓ2:
ℓ3:
ℓ4:
ℓ5:

ℓ9:

ℓ10:

ℓ11:

Indirect Value-flow 

ℓ6:

ℓ7:

ℓ8:

      a.f1 = !(a.f0)      a1 = !(a0)
[a]

(a) Field-insensitive value-flows (pt(<ℓ11 ,r>) = {b,c}) (b) Field-sensitive value-flows (pt(<ℓ11 ,r>) = {c})  

Query
pt(⟨ℓ11 ,r⟩) =?

Query
pt(⟨ℓ11 ,r⟩) =?

Fig. 11: Resolving ptpx`11, ryq“tcu with field-sensitivity.

Example 4.4. Figure 11 illustrates the effects of field-sensitivity on computing
the points-to information for r at `11. Without field-sensitivity, as illustrated in Fig-
ure 11(a), the two statements at `4 and `5 are analyzed as if they were `4 : p “ &x
and `5 : q “ &x. As a result, no strong update is possible at `6 and `7, since x, which
represents possibly multiple fields, is not a singleton. Thus, ptpx`11, ryq “ tb, cu.

SUPA is field-sensitive. To answer the points-to query for r at `11, we compute first
x`11, ry Ðâ x`10, wy and then x`10, vy Ðâ x`9, vy Ðâ x`8, xy Ðâ x`1, xy Ðâ pa. By applying
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[FIELD] at `10 and [LOAD] at `11, we obtain x`11, ry Ðâ x`11, a.gy. By traversing the
three indirect def-use chains for a.g, `7

b.g
ÝÝÑ `8, `8

a.g
ÝÝÑ `9 and `9

a.g
ÝÝÑ `11, backwards

from `11, we obtain ptpx`11, ryq Ðâ x`9, a.gy Ðâ x`8, a.gy Ðâ x`7, a.gy Ðâ x`3, zy Ðâ pc. l

4.1.3. Properties

THEOREM 4.5 pSOUNDNESSq. SUPA is sound in analyzing a program as long as its
pre-analysis (for computing the SVFG of the program) is sound.

PROOF. When building the SVFG for a program, the def-use chains for its top-level
variables are identified explicitly in its partial SSA form. If the pre-analysis (for com-
puting the sparse value-flow graph of the program) is sound, then the def-use chains
built for all the address-taken variables are over-approximate. According to its inference
rules in Figure 4, SUPA performs essentially a flow-sensitive analysis on-demand, by re-
stricting the propagation of points-to information along the precomputed def-use chains,
and falls back to the sound points-to information computed by the pre-analysis when
running out of its given budgets. Thus, SUPA is sound if the pre-analysis is sound.

THEOREM 4.6 pPRECISIONq. Given a points-to query x`, vy, ptpx`, vyq computed by
SUPA is the same as that computed by (whole-program) FS if SUPA can successfully
resolve the points-to query within a given budget.

PROOF. Let ptSUPApx`, vyq and ptFSpx`, vyq be the points-to sets computed by SUPA and
FS, respectively. By Theorem 1, ptSUPApx`, vyq Ě ptFSpx`, vyq, since SUPA is a demand-
driven version of FS and thus cannot be more precise. To show that ptSUPApx`, vyq Ď
ptFSpx`, vyq, we note that SUPA operates on the SVFG of the program to improve its ef-
ficiency, by also filtering out value-flows imprecisely pre-computed by the pre-analysis.
For the top-level variables, their direct value-flows are precise. So SUPA proceeds ex-
actly the same as FS ([ADDR], [COPY], [PHI], [FIELD], [CALL], [RET] and [COMPO]).
For the address-taken variables, SUPA establishes the same indirect value-flows flow-
sensitively as FS does but in a demand-driven manner, by refining away imprecisely
pre-computed value-flows ([LOAD], [STORE], [SU/WU], [CALL], [RET] and [COMPO]). If
SUPA can complete its query within the given budget, then ptSUPApx`, vyq Ď ptFSpx`, vyq.
Thus, ptSUPApx`, vyq “ ptFSpx`, vyq.

4.2. Formalism: Flow- and Context-Sensitivity

We extend our flow-sensitive formalization by considering also context-sensitivity to
enable more strong updates (especially now for heap objects). We solve a balanced-
parentheses problem by matching calls and returns to filter out unrealizable inter-
procedural paths [Lu et al. 2013; Reps et al. 1995; Shang et al. 2012; Sridharan and
Bodı́k 2006; Yan et al. 2011]. A context stack c is encoded as a sequence of callsites,
[κ1 . . . κm], where κi is a call instruction `. c ‘ κ denotes an operation for pushing a
callsite κ into c. c a κ pops κ from c if c contains κ as its top value or is empty since a
realizable path may start and end in different functions.

With context-sensitivity, a statement is parameterized additionally by a context c,
e.g., c, ` : p “ &o, to represent its instance when its containing function is analyzed
under c. A labeled variable lv has the form xc, `, vy, representing variable v accessed
at statement ` under context c. An object po that is created at an ADDROF statement
under context c is also context-sensitive, identified as pc, poq.

Given a points-to query xc, `, vy, SUPA computes its points-to set both flow- and
context-sensitively by applying the rules given in Figure 12:

ptpxc, `, vyq “ tpc1, oq | xc, `, vy Ðâ pc1, poqu (2)
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[C-ADDR]
c, ` : p “ &o

xc, `, py Ðâ pc, poq [C-COPY]
c, ` : p “ q `1

q
ÝÑ `

xc, `, py Ðâ xc, `1, qy

[C-PHI]
c, ` : p “ φpq, rq `1

q
ÝÑ ` `2

r
ÝÑ `

xc, `, py Ðâ xc, `1, qy xc, `, py Ðâ xc, `2, ry

[C-FIELD]
c, ` : p “ &qÑfld `1

q
ÝÑ ` xc, `1, qy Ðâ pc1, poq

xc, `, py Ðâ pc1, zo.fldq

[C-LOAD]
c, ` : p “ ˚q `2

q
ÝÑ ` xc, `2, qy Ðâ pc1, poq `1

o
ÝÑ `

xc, `, py Ðâ xc1, `1, oy

[C-STORE]
c, ` : ˚p “ q `2

p
ÝÑ ` xc, `2, py Ðâ pc1, poq `1

q
ÝÑ `

xc1, `, oy Ðâ xc, `1, qy

[C-SU/WU]
c, ` : ˚p “ `1

o
ÝÑ ` pc1, oq P Azkillpc, `, pq

xc1, `, oy Ðâ xc1, `1, oy

[C-COMPO]
lv Ðâ lv1 lv1 Ðâ lv2

lv Ðâ lv2

[C-CALL]

c, ` : “ qp. . . , r, . . . q µpojq `2
q
ÝÑ ` xc, `2, qy Ðâ p ,xof q `

r
ÝÑ `1 `

o
ÝÑ `1

c1, `1 : fp. . . , r1, . . . q oi`1“χpoiq c “ c1 a `
xc1, `1, r1y Ðâ xc, `, ry xc1, `1, oy Ðâ xc, `, oy

[C-RET]

c, ` : p “ qp. . . q oj`1“χpojq `2
q
ÝÑ ` xc, `2, qy Ðâ p ,xof q `

1 p
1

ÝÑ ` `1
o
ÝÑ `

c1, `1 : retf p
1 µpoiq c1 “ c‘ `

xc, `, py Ðâ xc1, p1, `1y xc, `, oy Ðâ xc1, `1, oy

killpc, `, pq “

$

&

%

tpc1, o1qu if ptpxc, `, pyq“tpc1, o1qu ^ pc1, o1q P cxtSingletons
A else if ptpxc, `, pyq“∅
∅ otherwise

Fig. 12: Single-stage flow- and context-sensitive SUPA analysis with demand-driven
strong updates.

where the reachability relation Ðâ is now also context-sensitive.
Passing parameters to and returning results from a callee invoked at a callsite are

handled by [C-CALL] and [C-RET]. [C-CALL] deals with the direct and indirect value-
flows backwards from the entry instruction of a callee function to each of its callsites
based on the call graph computed on the fly similarly as [CALL] in Figure 7, except that
[C-CALL] is context-sensitive. Likewise, [C-RET] deals with the direct and indirect
value-flows backwards from a callsite to the return instruction of every callee function.

With context-sensitivity, SUPA will filter out more spurious value-flows generated
by Andersen’s analysis, thereby producing more precise points-to information to en-
able more strong updates ([C-SU/WU]). At a store c, ` : ˚p “ , its kill set is context-
sensitive. A strong update is applied if p points to a context-sensitive singleton pc1, o1q P
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bar() {
       p = malloc(...);  // a
       q = malloc(...);  // b
            !(a0)

         foo(p)
            a1 = "(a0)

             !(b1)
         foo(q);
          b2 = "(b1)

          !(b2)
         z = *q;
}

foo(x) {

      

   *x  = y;

}

       !(a2)

ℓ1:
ℓ2:

ℓ3:

ℓ4:

ℓ5:

ℓ6:

ℓ8:

      a1 = "(a0)
      b1 = "(b0)

      a2 = "(a1)
      b2 = "(b1)

       !(b2)

[a]
[b]

[a]

[b]
[a] [b]

Indirect Value-flow 

Query
pt(⟨ℓ5 ,z⟩) =?

SU for heap 
object b under 

context [ℓ4]

 

y = malloc(..); // c

ℓ9:

ℓ7:[b]

[a]

[b]

Fig. 13: Resolving ptpr s, `5, zq “ tr`4s, cu) with context-sensitive strong updates.

cxtSingletons, where o1 is a (non-heap) singleton defined in Section 4.1 or a heap object
with c1 being a concrete context, i.e., one not involved in recursion or loops.

Example 4.7. Let us use an example given in Figure 13 to illustrate the effects
of context-sensitive strong updates on computing the points-to information for z at
`5. This example is adapted from a real application, milc-v6, given in Figure 17(c).
Without context-sensitivity, SUPA will only perform a weak update at `8 : ˚x “ y, since
x points to both a and b passed into foo() from the two callsites at `3 and `4. As a
result, z at `5 is found to point to not only what y points to, i.e., c but also what b points
to previously (not shown to avoid cluttering). With context-sensitivity, SUPA finds that
xr s, `5, zy Ðâ xr s, `5, by Ðâ xr s, `4, by Ðâ xr`4s, `9, by Ðâ xr`4s, `8, by Ðâ xr`4s, `7, yy Ðâ pr`4s,pcq.
Since xr`4s, `8, xy points to a context-sensitive singleton p`4, bq at `8, a strong update is
performed to b at `8, causing the old contents in b to be killed. l

Given a program, the SCCs (strongly connected components) in its call graph are
constructed on the fly. SUPA handles the SCCs in the program context-sensitively but
the function calls inside a SCC context-insensitively as in [Sridharan and Bodı́k 2006].

4.3. SUPA: Hybrid Multi-Stage Analysis

To facilitate efficiency and precision tradeoffs in answering on-demand queries, SUPA,
as illustrated in Figure 1, organizes its analyses in multiple stages sorted in increasing
efficiency but decreasing precision. Let there be M queries issued successively. Let the
N stages of SUPA, Stage[0], ¨ ¨ ¨ ,Stage[N-1], be configured with budgets η0, ¨ ¨ ¨ , ηN´1,
respectively. In our current implementation, each budget is specified as the maximum
number of def-use chains traversed in the SVFG of the program.

SUPA answers a query on-demand by applying its N analyses successively, starting
from Stage[0]. If the query is not answered after budget ηi has been exhausted at
stage i, SUPA re-issues the query at stage i`1, and eventually falls back to the results
that are pre-computed by pre-analysis.

SUPA caches fully computed points-to information in a query and reuses it in subse-
quent queries, as illustrated in Figure 8. Let Q be the set of queried variables issued
from a program. Let I Ě Q be the set of variables reached from Q during the analysis.
Let p`, vq P Q be a queried variable. We write ptiηipx∆i, `, vyq to represent the points-to
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set of a variable x`, vy computed at stage i under budget ηi, where ∆i is a contextual
qualifier at stage i (e.g., c in FSCS). By convention, ptNηN px∆N , `, vyq denotes the points-
to set obtained by pre-analysis, at Stage[N] (conceptually).

When resolving ptiηipx∆i, `, vyq at stage i, suppose SUPA has reached a variable
x`1, v1y P I and needs to compute pti˚px∆i, `

1, v1yq, where ˚pď ηi) represents an unknown
budget remaining, with p`1, v1q being p`, vq possibly (in a cycle).

Presently, SUPA exploits two types of reuse to improve efficiency with no loss of
precision in a hybrid manner:

Backward Reuse: p`1, v1q P I . If ptj˚px∆j , `
1, v1yq, where j ď i, was previously cached,

then pti˚px∆i, `
1, v1yq “ ptj˚px∆j , `

1, v1yq, provided that ptj˚px∆j , `
1, v1yq is a sound rep-

resentation of pti˚px∆i, `
1, v1yq. For example, if Stage[i] “ FS and Stage[j] “ FSCS,

then ptFSCS˚ pxc1, `1, v1yq can be reused for ptFS˚ px`1, v1yq if c1 is true, representing a
context-free points-to set.

Forward Reuse: p`1, v1q P Q . If ptjηj px∆j , `
1, v1yq, where j ą i, was previously computed

and cached but ptkηkpx∆k, `
1, v1yq was not, where 0 ď k ă j, then SUPA will also fail

for ptk˚px∆k, `
1, v1yq, where i ď k ă j, since ˚ ď ηk. Therefore, SUPA will exploit the

second type of reuse by setting pti˚px∆i, `
1, v1yq “ ptjηj px∆j , `

1, v1yq.

Of course, many other schemes are possible with or without precision loss.

5. EVALUATION

We evaluate SUPA by choosing detection of uninitialized pointers as a major client.
The objective is to show that SUPA is effective in answering client queries, in environ-
ments with small time and memory budgets such as IDEs, by facilitating efficiency and
precision tradeoffs in a hybrid multi-stage analysis framework. We provide evidence
to demonstrate a good correlation between the number of strong updates performed
on-demand and the degree of precision achieved during the analysis.

5.1. Implementation

We have implemented SUPA in LLVM (3.5.0). The source files of a program are com-
piled under “-O0” (to facilitate detection of undefined values [Zhao et al. 2012]) into
bit-code by clang and then merged using the LLVM Gold Plugin at link time to
produce a whole program bc file. The compiler option mem2reg is applied to promote
memory into registers. Otherwise, SUPA will perform more strong updates on memory
locations that would otherwise be promoted to registers, favoring SUPA undesirably.

All the analyses evaluated are field-sensitive.
Positive weight cycles that arise from processing fields of struct objects are col-

lapsed [Pearce et al. 2007]. Arrays are considered monolithic so that the elements in
an array are not distinguished. Distinct allocation sites (i.e., ADDROF statements) are
modeled by distinct abstract objects.

We build the SVFG for a program based on our open-source software, SVF [Sui
and Xue 2016]. The def-use chains are pre-computed by Andersen’s algorithm flow
and context-insensitively. In order to compute soundly and precisely the points-to in-
formation in a value-flow cycle, SUPA retraverses the cycle whenever new points-to
information is discovered until a fix point is reached.

To compare SUPA with whole-program analysis, we have implemented a sparse flow-
sensitive (SFS) analysis described in [Hardekopf and Lin 2011] also in LLVM, as SFS
is a recent solution yielding exactly the flow-sensitive precision with good scalability.
However, there are some differences. In [Hardekopf and Lin 2011], SFS was imple-
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mented in LLVM (2.5.0), by using imprecisely pre-computed call graphs and repre-
senting points-to sets with binary decision diagrams (BDDs). In this paper, just like
SUPA, SFS is implemented in LLVM (3.5.0), by building a program’s call graph on the
fly (Section 4.1) and representing points-to sets with sparse bit vectors.

We have not implemented a whole-program FSCS pointer analysis in LLVM. There
is no open-source implementation either in LLVM. According to [Acharya and Robin-
son 2011], existing FSCS algorithms for C “do not scale even for an order of magnitude
smaller size programs than those analyzed” by Andersen’s algorithm. As shown here,
SFS can already spend hours on analyzing some programs under 500 KLOC.

5.2. Methodology

We choose uninitialized pointer detection as a major client, named Uninit, which re-
quires strong update analysis to be effective. As a common type of bugs in C programs,
uninitialized pointers are dangerous, as dereferencing them can cause system crashes
and security vulnerabilities. For Uninit, flow-sensitivity is crucial. Otherwise, strong
updates are impossible, making Uninit checks futile.

We will show that SUPA can answer Uninit’s on-demand queries efficiently while
achieving nearly the same precision as SFS. For C, global and static variables are
default initialized, but local variables are not. In order to mimic the default uninitial-
ization at a stack or heap allocation site ` :p“&a for an uninitialized pointer a, we add
a special store ˚p“u immediately after `, where u points to an unknown abstract object
(UAO), ua. Given a load x“˚y, we can issue a points-to query for x to detect its poten-
tial uninitialization. If x points to a ua (for some a), then x may be uninitialized. By
performing strong updates more often, a flow-sensitive analysis can find more UAO’s
that do not reach any pointer and thus prove more pointers to be initialized. Note that
SFS can yield false positives since, for example, path correlations are not modeled.

We do not introduce UAO’s for the local variables involved in recursion and array
objects since they cannot be strongly updated. We also ignore all the default-initialized
stack or heap objects (e.g., those created by calloc()).

We generate meaningful points-to queries, one query for the top-level variable x at
each load x“˚y. However, we ignore this query if x is found not to point to any UAO by
pre-analysis. This happens only when x points to either default-initialized objects or
unmodeled local variables in recursion cycles or arrays. The number of queries issued
in each program is listed in the last column in Table III.

5.3. Experimental Setup

We use a machine with a 3.7GHz Intel Xeon 8-core CPU and 64 GB memory. As
shown in Table III, we have selected a total of 18 open-source programs from a va-
riety of domains: spell-1.1 (a spelling checker), bc-1.06 (a numeric processing lan-
guage), milc-v6 (quantum chromodynamics), less-451 (a terminal pager), sed-4.2
(a stream editor), milc-v6 (quantum chromodynamics), hmmer-2.3 (sequence simi-
larity searching), make-4.1 (a build automation tool), a2ps-4.14 (a postScript filter),
bison-3.04 (a parser), grep-2.2.1 (string searching), tar-1.28 (tar archiving),
wget-1.16 (a file downloading tool), bash-4.3 (a unix shell and command language),
gnugo-3.4 (a Go game), sendmail-8.15.1 (an email server and client), vim74 (a
text editor), and emacs-24.4 (a text editor).

For each program, Table III lists its number of lines of code, statements which
are LLVM instructions relevant to our pointer analysis, pointers, allocation sites (or
AddrOf statements), and queries issued (as discussed in Section 5.2).
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Table III: Program characteristics.

Program KLOC Statements Pointers Allocation Sites Queries
spell-1.1 0.8 1011 1274 42 17
bc-1.06 14.4 17018 15212 654 689
milc-v6 15 11713 29584 865 3
less-451 27.1 6766 22835 1135 100
sed-4.2 38.6 25835 34226 395 1191
hmmer-2.3 36 27924 74689 1472 2043
make-4.1 40.4 14926 36707 1563 1133
gzip-1.6 64.4 22028 25646 1180 551
a2ps-4.14 64.6 49172 116129 3625 5065
bison-3.0.4 113.3 36815 90049 1976 4408
grep-2.21 118.4 10199 33931 1108 562
tar-1.28 132 30504 85727 3350 909
wget-1.16 140.0 51556 63199 726 1142
bash-4.3 155.9 59442 191413 6359 5103
gnugo-3.4 197.2 369741 286986 27511 1970
sendmail-8.15 259.9 86653 256074 7549 2715
vim-7.4 413.1 147550 466493 8960 6753
emacs-24.4 431.9 189097 754746 12037 4438
Total 2263.0 1157950 2584920 80507 38792

5.4. Results and Analysis

We evaluate SUPA with two configurations, SUPA-FS and SUPA-FSCS. SUPA-FS is a
one-stage FS analysis by considering flow-sensitivity only. SUPA-FSCS is a two-stage
analysis consisting of FSCS and FS applied in that order.

5.4.1. Evaluating SUPA-FS. When assessing SUPA-FS, we consider two different crite-
ria: efficiency (its analysis time and memory usage per query) and precision (its com-
petitiveness against SFS). For each query, its analysis budget, denoted B, represents
the maximum number of def-use chains that can be traversed. We consider a wide
range of budgets with B falling into r10, 200000s.

SUPA-FS is highly effectively. With B “ 10000, SUPA-FS is nearly as precise as SFS,
by consuming about 0.18 seconds and 65KB of memory per query, on average.

Efficiency. Figure 14(a) shows the average analysis time per query for all the pro-
grams under a given budget, with about 0.18 seconds when B“ 10000 and about 2.76
seconds when B “ 200000. Both axes are logarithmic. The longest-running queries
can take an order of magnitude as long as the average cases. However, most queries
(around 80% across the programs) take much less than the average cases. Take emacs
for example. SFS takes over two hours (8047.55 seconds) to finish. In contrast, SUPA-
FS spends less than ten minutes (502.10 seconds) when B “ 2000, with an average
per-query time (memory usage) of 0.18 seconds (0.12KB), and produces the same an-
swers for all the queries as SFS (shown in Figure 15 and explained below).

For SUPA, its pre-analysis is lightweight, as shown in Table IV, with vim taking the
longest at 531.57 seconds. The same pre-analysis is also shared by SFS in order to
enable its own sparse whole-program analysis. The additional time taken by SFS for
analyzing each program entirely is given in the last column.

Figure 14(b) shows the average memory usage per query under different bud-
gets. Following the common practice, we measure the real-time memory usage
by reading the virtual memory information (VmSize) from the linux kernel file
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Fig. 14: Average analysis time and memory usage per query consumed by SUPA-FS
under different analysis budgets (with both axes being logarithmic).

(/proc/self/status). The memory monitor starts after the pre-analysis to measure
the memory usage for answering queries only. The average amount of memory con-
sumed per query is small, with about 65KB when B “ 10000 and about 436KB when
B“200000. Even under the largest budget B “ 200000 evaluated, SUPA-FS never uses
more than 3MB for any single query processed.

sp
el
l

bc
m
ilc le
ss

hm
m
er se
d

m
ak
e

gz
ip

a2
ps

bi
so
n

gr
ep ta
r

w
ge
t

ba
sh

gn
ug
o

se
nd
m
ai
l

vi
m

em
ac
s0%

20%

40%

60%

80%

100% B=200k

B=100k

B=40k

B=20k

B=10k

B=4k

B=2k

B=1k

B=400

B=200

B=100

B=40

B=20

B=10

Fig. 15: Percentage of queried variables proved to be initialized by SUPA-FS over SFS
under different budgets.



39:24 Yulei Sui and Jingling Xue

Table IV: Pre-processing times taken by pre-analysis shared by SUPA and SFS and
analysis times of SFS (in seconds).

Program
Pre-Analysis Times

Analysis Time of SFSShared by SUPA and SFS
Andersen’s Analysis SVFG Total

spell 0.01 0.01 0.01 0.01
bc 0.35 0.21 0.56 0.98

milc 0.42 0.1 0.52 0.16
less 0.42 0.37 0.79 1.94
sed 1.38 0.34 1.73 5.46

hmmer 1.57 0.46 2.03 1.07
make 1.74 1.17 2.91 13.94
gzip 0.27 0.10 0.37 0.20
a2ps 7.34 1.31 8.65 60.61
bison 8.18 3.66 11.84 44.16
grep 1.44 0.17 1.61 2.39
tar 2.73 1.71 4.44 12.27

wget 1.86 0.90 2.76 3.47
bash 53.48 44.07 97.55 2590.69

gnugo 5.68 2.75 8.44 9.86
sendmail 24.05 23.43 47.48 348.63

vim 445.88 85.69 531.57 13823
emacs 135.93 146.94 282.87 8047.55

Precision. Given a query ptpx`, py), p is initialized if no UAO is pointed by p and po-
tentially uninitialized otherwise. We measure the precision of SUPA-FS in terms of the
percentage of queried variables proved to be initialized by comparing with SFS, which
yields the best precision achievable as a whole-program flow-sensitive analysis.

Figure 15 reports our results. As B increases, the precision of SUPA-FS generally
improves. With B “ 10000, SUPA-FS can answer correctly 97.4% of all the queries
from the 18 programs. These results indicate that our analysis is highly accurate,
even under tight budgets. For the 18 programs except a2ps, bison and bash, SUPA-
FS produces the same answers for all the queries when B “ 100000 as SFS. When
B “ 200000 for these three programs, SUPA becomes as precise as SFS, by taking an
average of 0.02 seconds (88.5KB) for a2ps, 0.25 seconds (194.7KB) for bison, and 3.18
seconds (1139.3KB) for bash, per query.

Understanding On-Demand Strong Updates. Let us examine the benefits achieved
by SUPA-FS in answering client queries by applying on-demand strong updates. For
each program, Figure 16 shows a good correlation between the number of strong up-
dates performed (#SU on the left y-axis) in a blue curve and the number of UAO’s
reaching some uninitialized pointers (#UAO on the right y-axis) in a red curve under
varying budgets (on the logarithmic x-axis). The number of such UAO’s reported by
SFS is shown as the lower bound for SUPA-FS in a dashed line.

In most programs, SUPA-FS performs increasingly more strong updates to block
increasingly more UAO’s to reach the queried variables as the analysis budget B in-
creases, because SUPA-FS falls back increasingly less frequently from FS to the pre-
computed points-to information. When B increases, SUPA-FS can filter out more spu-
rious value-flows in the SVFG to obtain more precise points-to information, thereby
enabling more strong updates to kill the UAO’s.
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Fig. 16: Correlating the number of strong updates with the number of UAO’s under
SUPA-FS with different analysis budgets.

When B “ 200000, SUPA-FS gives the same answers as SFS in all the 18 programs
except bison and vim, which causes SUPA-FS to report 16 and 35 more, respectively.
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For some programs such as spell, bc, milc, hmmer and grep, most of their strong
updates happen under small budgets (e.g., B “ 1000). In hmmer, for example, 192
strong updates are performed when B “ 10000. Of the 5126 queries issued, SUPA-FS
runs out-of-budget for only three queries, which are all fully resolved whenB “ 200000,
but with no further strong updates being observed.

For programs like bison, bash, gnugo and emacs, quite a few strong updates take
place when B ą 1000. There are two main reasons. First, these programs have many
indirect call edges (with 8709 in bison, 1286 in bash, 23150 in gnugo and 4708 in
emacs), making their on-the-fly call graph construction costly (Section 4.1.2). Second,
there are many value-flow cycles (with over 50% def-use chains occurring in cycles
in bison), making their constraint resolution costly (to reach a fixed point). Therefore,
relatively large budgets are needed to enable more strong updates to be performed.

Interestingly, in programs such as a2ps, gnugo and vim, fewer strong updates are
observed when larger budgets are used. In vim, the number of strong updates per-
formed is 1492 when B “ 2000 but drops to 1204 when B “ 4000. This is due to the
forward reuse described in Section 4.3. When answering a query ptpx`, vyq under two
budgets B1 and B2, where B1 ă B2, SUPA-FS has reached x`1, v1y and needs to compute
ptpx`1, v1yq in each case. SUPA-FS may fall back to the flow-insensitive points-to set of
v1 under B1 but not B2, resulting in more strong updates performed under B1 in the
part of the program that is not explored under B2.

5.4.2. Evaluating SUPA-FSCS. For C programs, flow-sensitivity is regarded as being im-
portant for achieving useful high precision. However, context-sensitivity can be impor-
tant for some C programs, in terms of both obtaining more precise points-to informa-
tion and enabling more strong updates. Unfortunately, whole-program analysis does
not scale well to large programs when both are considered (Section 5.1).

Table V: Average analysis times consumed and UAO’s reported by SUPA-FSCS (with a
budget of 10000 in each stage) and SUPA-FS (with a budget of 10000 in total).

Program SUPA-FS SUPA-FSCS
Time (ms) #UAO Time (ms) #UAO

spell 0.01 0 0.01 0
bc 18.35 69 287.23 69
milc 0.02 3 14.52 0
less 15.15 37 92.41 37
sed 355.60 32 4725.42 32
hmmer 11.41 86 135.05 71
make 124.40 26 229.44 26
gzip 0.64 5 4.28 5
a2ps 126.01 34 448.26 32
bison 465.54 94 529.20 86
grep 124.46 14 197.66 14
tar 26.31 70 83.10 68
wget 24.51 104 84.90 104
bash 188.69 17 327.16 17
gnugo 72.73 28 80.08 27
sendmail 200.32 94 250.19 85
vim 168.67 218 473.25 218
emacs 159.22 45 222.65 45



Demand-Driven Flow-Sensitive Pointer Analysis 39:27

In this section, we demonstrate that SUPA can exploit both flow- and context-
sensitivity effectively on-demand in a hybrid multi-stage analysis framework, provid-
ing improved precision needed by some programs. Table V compares SUPA-FSCS (with
a budget of 20000 divided evenly in its FSCS and FS stages) with SUPA-FS (with a
budget of 10000 in its single FS stage). The maximal depth of a context stack allowed
is 3. By allocating the budgets this way, we can investigate some additional precision
benefits achieved by considering both flow- and context-sensitivity.

In general, SUPA-FSCS has longer query response times than SUPA-FS due to the
larger budgets used in our setting and the times taken in handling context-sensitivity.
In milc, hmmer, a2ps, bison, tar , gnugo and sendmail, SUPA-FSCS reports fewer
UAO’s than SUPA-FS, for two reasons. First, SUPA-FSCS can perform strong updates
context-sensitively for stack and global objects, resulting in 0 UAO’s reported by SUPA-
FSCS for milc. Second, SUPA-FSCS can perform strong updates to context-sensitive
singleton heap objects defined in Section 4.2, by eliminating 8 UAO’s in bison, 1 in
tar and 1 in sendmail, which have been reported by SUPA-FS.

6. CASE STUDIES

// symtab.c

114 static

115 void symbols_sort(symbol **first, symbol **second) {

...

119 symbol* tmp = *first;

120 *first = *second;

121 *second = tmp;

...

123 }

623 static void

624 user_token_number_redeclaration(...) {

...

627 symbols_sort (&st, &nd);

...

628 complain_indent (&nd->location, ...);

635 }

// mark.c

68 static struct mark* getmark(int c){

72 register struct mark *m; static struct mark sm;

75 switch (c) {

77 case ’^’:

81 m = &sm;

...

84 m->m_ifile = curr_ifile;

85 break;

108 case ’\’’:

112 m = &marks[LASTMARK];

113 break;

127 }

128 return (m);

129 }

179 public void gomark(int c) {

186 m = getmark(c);

208 if (m->m_ifile){ ...}

218 }
(a) Code snippet from bison-3.0.4 (b) Code snippet from less-4.5.1

//io_lat4.c

93 int qcdhdr_get_str(char *s, QCDheader *hdr, char **q) {

98 *q = (*hdr).value[i];

104 }

113 int qcdhdr_get_int(char *s,QCDheader *hdr,int *q) {

114 char *p;

115 qcdhdr_get_str(s,hdr,&p);

117 sscanf(p,"%d",...);

119 }

120 int qcdhdr_get_int32x(char *s,QCDheader *hdr,...) {

121 char *p;

123 qcdhdr_get_str(s,hdr,&p);

125 sscanf(p,"%x",...);

128 }

129 int qcdhdr_get_double(char *s, QCDheader *hdr, ...) {

130 char *p;

131 qcdhdr_get_str(s,hdr,&p);

133 sscanf(p,"%lf",...);

135 }

//argp-help.c

434 static struct hol * make_hol (...) {

442 struct hol *hol = malloc (sizeof (struct hol)); // Obj

501 return hol;

502 }

849 static void hol_append (struct hol *hol, ...) {

934 hol->short_options = short_options;

939 }

1386 static struct hol * argp_hol (...) {

1390 struct hol *hol = make_hol (argp, cluster);

1401 hol_append(hol, ... );

1405 }

1588 static void _help (...)

1617 hol = argp_hol (argp, 0);

1664 hol_usage (hol, fs);

1727 }

1346 static void hol_usage (struct hol *hol, ...) {

1353 strlen(hol->short_options);

1382 }
(c) Code snippet from milc-v6 (d) Code snippet from tar-1.28

SU for sm.m_ifileSU for nd

SU for q
SU for Obj.short_options

Query
pt(⟨ℓ628 ,nd->location⟩)

Query
pt(⟨ℓ117 ,p⟩)

Query
pt(⟨ℓ1353 ,hol->short_options⟩)

Query
pt(⟨ℓ208 ,m->m_ifile⟩)

Fig. 17: Selected code snippets.

We examine some real code to see how client queries are answered precisely with
on-demand strong updates under four different scenarios.

Figure 17(a). There is a swap from bison. In line 121, second points to a singleton
stack object nd passed from line 627. So a strong update is applied. When querying
nd->location in line 628, SUPA knows that nd points to what st pointed to before.
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Fig. 18: Speedups of SUPA-FS when parallelized over its sequential version with two,
four and eight threads (B “ 10000q.

Figure 17(b). In the code fragment from less, m->m ifile is initialized in two dif-
ferent branches, one recognized due to a strong update performed at the store in
line 84 and one due to the default initialization in line 112. According to SUPA,
m->m ifile in line 208 is initialized.

Figure 17(c). In the code fragment from milc, q in line 98 can point to several stack
variables that are all named p in lines 115, 123 and 131. With context-sensitivity,
SUPA finds that q points to one singleton under each context. Thus, a strong update
is performed so that each stack variable becomes properly initialized when queried
at each call to sscanf().

Figure 17(d). In the code fragment from tar, hol in line 1390 points to a heap object
o allocated in line 442. With o treated as a context-sensitive singleton (requiring a
context stack of at least depth 1), a strong update can be performed in line 934 to
initialize its field short options properly.

7. PARALLELIZING SUPA

To demonstrate that SUPA is amenable to parallelization as a demand-driven analy-
sis, we have parallelized SUPA-FS by using Intel Threading Building Blocks (TBB).
A concurrent queue is used to store all the queries issued from a program. We use a
task group to allocate tasks for computing the queries from concurrent queue in paral-
lel. The cached points-to information is shared with a concurrent hash map.

Figure 18 shows the speedups achieved by parallelization over the sequential set-
ting with B “ 10000. With eight threads, the average speedup for the 18 programs
is 3.05x and the maximum speedup observed is 6.9x at a2ps. The time for each set-
ting excludes the pre-analysis time. Some programs enjoy better speedups than others.
There are three main reasons. First, some programs, such as spell, less and milc,
have relatively few queries issued. Therefore, the performance benefits achieved from
query parallelization can be small. Second, different queries take different times to
answer, resulting in different degrees of workload imbalance in different programs.
Third, different programs suffer from different synchronization overheads in access-
ing the cached points-to information in concurrent hash map.

8. RELATED WORK

Demand-driven and whole-program approaches represent two important solutions
to long-standing pointer analysis problems. While a whole-program pointer analysis
aims to resolve all the pointers in the program, a demand-driven pointer analysis is
designed to resolve only a (typically small) subset of the set of these pointers in a
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client-specific manner. This work is not concerned with developing an ultra-fast whole-
program pointer analysis. Rather, our objective is to design a staged demand-driven
strong update analysis framework that facilitates efficiency and precision tradeoffs
flow- and context-sensitively according to the needs of a client (e.g., user-specified bud-
gets). Below we limit our discussion to the work that is most relevant to SUPA.

8.1. Flow-Sensitive Pointer Analysis

Strong updates require pointers to be analyzed flow-sensitively with respect to pro-
gram execution order. Whole-program flow-sensitive pointer analysis has been stud-
ied extensively in the literature. Choi et al. [1993] and Emami and Hendren [1994]
gave some formulations in an iterative data-flow framework [Kam and Ullman 1977].
Wilson and Lam [1995] considered both flow- and context-sensitivity by representing
procedure summaries with partial transfer functions, but restricted strong updates to
top-level variables only. To eliminate unnecessary propagation of points-to information
during the iterative data-flow analysis [Hardekopf and Lin 2009, 2011; Oh et al. 2012;
Yu et al. 2010], some form of sparsity has been exploited. The sparse value-flows, i.e.,
def-use chains in a program are captured by sparse evaluation graphs (SEG) [Choi
et al. 1991; Ramalingam 2002] as in [Hind and Pioli 1998] and various SSA repre-
sentations such as HSSA [Chow et al. 1996], partial SSA [Lattner and Adve 2004]
and SSI [Ananian 1999; Tavares et al. 2014]. The def-use chains for top-level point-
ers, once put in SSA, can be explicitly and precisely identified, giving rise to a so-called
semi-sparse flow-sensitive analysis [Hardekopf and Lin 2009]. Later, the idea of staged
analysis [Fink et al. 2008] has been leveraged to make pointer analysis full-sparse for
both top-level and address-taken variables by using fast Andersen’s analysis as pre-
cise analysis [Hardekopf and Lin 2011; Sui et al. 2016a; Ye et al. 2014b]. This paper is
the first to exploit sparsity to improve the performance of a flow- and context-sensitive
demand-driven analysis with strong updates being performed for C programs.

Recently, Balatsouras and Smaragdakis [Balatsouras and Smaragdakis 2016] pro-
pose a fine-grained field-sensitive modeling technique for performing Andersen’s anal-
ysis by inferring lazily the types of heap objects in order to filter out redundant field
derivations. This technique can be exploited to obtain a more precise pre-analysis to
improve the precision and/or efficiency of sparse flow-sensitive analysis.

8.2. Demand-Driven Pointer Analysis

Demand-driven pointer analyses for C [Heintze and Tardieu 2001; Zhang et al. 2014a;
Zheng and Rugina 2008] and Java [Lu et al. 2013; Shang et al. 2012; Sridharan
and Bodı́k 2006; Su et al. 2016; Yan et al. 2011] are flow-insensitive, formulated
in terms of CFL (Context-Free-Language) reachability [Reps et al. 1995]. Heintze
and Tardieu [2001] introduced the first on-demand Andersen-style pointer analy-
sis for C. Later, Zheng and Rugina [2008] performed alias analysis for C in terms
of CFL-reachability flow- and context-insensitively with indirect function calls han-
dled conservatively. Sridharan et al. gave two CFL-reachability-based formulations
for Java, initially without considering context-sensitivity [Sridharan et al. 2005] and
later with context-sensitivity [Sridharan and Bodı́k 2006]. Shang et al. [2012] and
Yan et al. [2011] investigated how to summarize points-to information discovered
during the CFL-reachability analysis to improve performance for Java programs.
Lu et al. [2013] introduced an incremental pointer analysis with a CFL-reachability
formulation for Java. Su et al. [2014] demonstrated that the CFL-reachability for-
mulation is highly amenable to parallelization on multi-core CPUs. Recently, Feng
et al. [2015] focused on answering demand queries for Java programs in a context-
sensitive analysis framework (without performing strong updates). Unlike these flow-
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insensitive analyses, which are not effective for many clients like Uninit, SUPA can
perform strong updates on-demand flow and context-sensitively.

BOOMERANG [Späth et al. 2016] represents a recent flow- and context-sensitive
demand-driven pointer analysis for Java. However, its access-path-based analysis per-
forms only strong updates partially at a store a.f “ . . . , by updating a.f strongly but
the aliases of a.f.˚ weakly, where a and b are different top-level variables. Let us ex-
plain this by using the following straight-line Java code and its corresponding C code.

Java Code
`1: q = new A() // o1
`2: p = q
`3: p.f = new A() // o2
`4: q.f = new A() // o3
`5: x = p.f

C Code
`1: q = malloc() // o1
`2: p = q
`3: *p = malloc() // o2
`4: *q = malloc() // o3
`5: x = *p

Let us consider BOOMERANG first. At `3, a strong update is performed to p.f to make
it point to o2 only. At `4, a strong update is performed to q.f to make it point to o3 but
a weak update is performed to all its aliases so that p.f now points to not only o2 as
before but also o3, As a result, x points-to both o2 and o3 at `5. Let us consider now
SUPA. With both flow- and context-sensitivity enforced, a strong update is performed
to o1 pointed p and q at both `3 and `4, respectively. Thus, x points to o3 only at `5.

8.3. Hybrid Pointer Analysis

The basic idea is to find a right balance between efficiency and precision. For C pro-
grams, the one-level approach [Das 2000] achieves a precision between Steensgaard’s
and Andersen’s analyses by applying a unification process to address-taken variables
only. In the case of Java programs, context-sensitivity can be made more effective
by considering both call-site-sensitivity and object-sensitivity together than either
alone [Kastrinis and Smaragdakis 2013]. In [Guyer and Lin 2003], how to adjust the
analysis precision according to a client’s needs is discussed. Zhang et al. [2014b] focus
on finding effective abstractions for whole-program analyses written in Datalog via
abstraction refinement. Lhoták and Chung [Lhoták and Chung 2011] trades precision
for efficiency by performing strong updates only on flow-sensitive singleton objects but
falls back to the flow-insensitive points-to information otherwise. In this paper, we
propose to carry out our on-demand strong update analysis in a hybrid multi-stage
analysis framework. Unlike [Lhoták and Chung 2011], SUPA can achieve the same
precision as whole-program flow-sensitive analysis, subject to a given budget.

8.4. Parallel Pointer Analysis

Méndez-Lojo et al. [2010] introduced a parallel implementation of Andersen’s analysis
for C based on graph rewriting. Their parallel analysis is flow- and context-insensitive,
achieving a speedup of up to 3X on an 8-core CPU. Su et al. [2016] introduces an
improvement of this parallel implementation on GPUs. The whole-program sparse
flow-sensitive pointer analysis [Hardekopf and Lin 2009] has also been parallelized
on multi-core CPUs [Nagaraj and Govindarajan 2013] and GPUs [Nasre 2013]. The
speedups are up to 2.6X on a 8-core CPU. This paper presents the first parallel im-
plementation of demand-driven pointer analysis with strong updates for C programs,
achieving an average speedup of 3.05X on a 8-core CPU.

9. CONCLUSION

We have introduced, SUPA, a demand-driven pointer analysis that enables computing
precise points-to information for C programs flow- and context-sensitively with strong
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updates by refining away imprecisely pre-computed value-flows, subject to some anal-
ysis budgets. SUPA handles large C programs effectively by allowing pointer analyses
with different efficiency and precision tradeoffs to be applied in a hybrid multi-stage
analysis framework. SUPA is particularly suitable for environments with small time
and memory budgets such as IDEs. We have evaluated SUPA by choosing uninitialized
pointer detection as a major client on 18 C programs. SUPA can achieve nearly the
same precision as whole-program flow-sensitive analysis under small budgets.

One interesting future work is to investigate how to allocate budgets in SUPA to its
stages to improve the precision achieved in answering some time-consuming queries
for a particular client. Another direction is to add more stages to its analysis, by con-
sidering, for example, path correlations.
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