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[1] Recent development of general circulation models involves biogeochemical cycles:
flows of carbon and other chemical species that circulate through the Earth system.
Such models are valuable tools for future projections of climate, but still bear large
uncertainties in the model simulations. One of the regions with especially high uncertainty
is the Amazon forest where large-scale dieback associated with the changing climate is
predicted by several models. In order to better understand the capability and weakness of
global-scale land-biogeochemical models in simulating a tropical ecosystem under the
present day as well as significantly drier climates, we analyzed the off-line simulations for
an east central Amazon forest by the Community Land Model version 3.5 of the National
Center for Atmospheric Research and its three independent biogeochemical submodels
(CASA’, CN, and DGVM). Intense field measurements carried out under Large Scale
Biosphere-Atmosphere Experiment in Amazonia, including forest response to drought
from a throughfall exclusion experiment, are utilized to evaluate the whole spectrum of
biogeophysical and biogeochemical aspects of the models. Our analysis shows reasonable
correspondence in momentum and energy turbulent fluxes, but it highlights three processes
that are not in agreement with observations: (1) inconsistent seasonality in carbon
fluxes, (2) biased biomass size and allocation, and (3) overestimation of vegetation stress
to short-term drought but underestimation of biomass loss from long-term drought.
Without resolving these issues the modeled feedbacks from the biosphere in future
climate projections would be questionable. We suggest possible directions for model
improvements and also emphasize the necessity of more studies using a variety of in
situ data for both driving and evaluating land-biogeochemical models.
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gases in the atmosphere as well. The latter, or so-called
biogeochemical cycles (BGC), until recently have not been

1. Introduction

[2] Facing the impact of the climate change on human

societies and ecosystems, much attention is being paid to
future climate projections. A critical, yet poorly understood
constraint on such projections is the effect that the biosphere
exerts back on the climate system [Meehl! et al., 2007]. Over
the continents, changes in climate will alter the distribution
and composition of vegetation cover, which not only affect
biophysical factors such as surface momentum exchange and
energy balance, but the cycling of carbon and other trace
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part of future climate projections. Coupled BGC—general
circulation models, while still in infancy, represent our best
understanding of such atmosphere-land interactions [e.g.,
Friedlingstein et al., 2006; Thornton et al., 2009], and predict
that even regional alterations in BGC exhibit a significant
effect on the global climate system and demonstrate the
possibility of positive feedback loops. Coupled BGC models
are expected to play a more important role than before, for
example, in the next assessment report by the Intergovern-
mental Panel on Climate Change [Taylor et al., 2009]. How-
ever, recent intercomparison studies of BGC models show that
there is a large disparity on the modeled response of ecosys-
tems to the increasing CO, and associated change in the cli-
mate system [Friedlingstein et al., 2006; Sitch et al., 2008].
[3] A region with particularly high uncertainty is the
Amazon rain forest, the world’s largest contiguous forest
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that stores about 10—15% of total global above ground
biomass [Potter, 1999; Houghton et al., 2001; Malhi et al.,
2006] and changes in vegetation cover can affect the
regional and global climate [Eltahir and Bras, 1994; Malhi
et al., 2008; Betts and Silva Dias, 2010]. Observations and
modeling indicate that this region has higher probability of
drought intensification [Malhi et al., 2008] and is among
the more vulnerable to future climate-induced savanniza-
tion [Hutyra et al., 2005]. A large part of the uncertainty for
the predicted future of the Amazon forest can be attributed
to the representation of the vulnerability of the forest to
large-scale dieback in a class of BGC models called
Dynamic Global Vegetation Models (DGVMs,) which are
developed to simulate spatiotemporal relative abundances
of Plant Functional Types (PFTs) in response to climate
conditions [Oyama and Nobre, 2003; Cox et al., 2004;
Bonan and Levis, 2006; Salazar et al., 2007; Sitch et al.,
2008; Huntingford et al., 2008; Malhi et al., 2009a].
These modeling studies implicate various causes of die-
back, some emphasizing the direct effects of the increased
air temperatures on plant physiology [Galbraith et al.,
2010], while others emphasize a strong role of stomatal
conductance: rising CO, and initial decreases in precipita-
tion and/or increase in evaporative demand prompt sto-
matal closure and reduction in transpiration [Befts et al.,
2004].

[4] The realism of the dieback and its possible causes
simulated in these models are, however, not necessarily
robust. For example, Saleska et al. [2003] showed that
previous generations of land surface and ecological models
were not able to reproduce the vegetation productivity during
dry seasons, presumably supported by deep root systems, in
an east central Amazon site. The effect of the increased CO,
concentration and other environmental drivers on photosyn-
thesis [Lloyd and Farquhar, 2008; Doughty and Goulden,
2008b] and respiration [Wright et al., 2006; Meir et al.,
2008], as well as the mortality mechanism from drought
stress [McDowell et al., 2008] are still active subjects of field-
based studies and a part of the uncertainties in BGC model-
ing. Furthermore, most of the aforementioned DGVMs are
subject to computational constraints associated with captur-
ing dynamic global plant biogeography, thus the usual PFT
approach in which several (5-20) PFTs differ in selected
ecophysiological traits necessitates much simplification of
vegetation dynamics [Smith et al., 2001; Purves and Pacala,
2008]. In the case of the Amazon forest, further complicating
the picture is that recent observations during a short but vast
and intense drought in the Amazon basin in 2005 revealed a
near-instantaneous large-scale vegetation greening in the
short term [Saleska et al., 2007] (but see Samanta et al.
[2010]), but also increased tree mortality resulting in large
losses of carbon when integrated over multiple years [Phillips
et al., 2009].

[5] On the other hand, the increasing availability and
understanding in eddy flux measurements [Wilson et al.,
2002; Baldocchi, 2003; da Rocha et al., 2009] and its
combined use with biometric observations [Saleska et al.,
2003] can provide strong constraints to model develop-
ments. In order to better evaluate and develop land-BGC
models, it is necessary to exploit the full potential that the
combination of in situ meteorological, flux, and biometric
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measurements have to respectively drive and evaluate them,
which is only now being realized [e.g., Kucharik et al.,
2006; Desai et al., 2007; L. G. de Goncalves et al., The
Large Scale Biosphere-Atmosphere Experiment in Amazonia,
Model Intercomparison Project (LBA-MIP) protocol, ver-
sion 3.0, obtained from http://www.climatemodeling.org/
Iba-mip/on 20 June 2008]. Such a rigorous and integrated
assessment is critical for the study of carbon cycle models
because unlike the surface energy budget, the carbon budget
is not necessarily balanced at the land surface but instead it
requires knowledge of behavior of storage pools. In other
words, small errors from unreasonable assumptions, incor-
rect extrapolation from small to large-scale processes (e.g.,
leaf to canopy), or inconsistent input data can accumulate
over time and change equilibrium states. If, for example, the
scaling of leaf to canopy for flux exchanges are tuned to
erroneous biomass structures, then the critical link between
the biosphere and climate could not be simulated reliably for
the future. Furthermore, most model evaluation has been
carried out under normal climate scenarios. A relatively
unexplored avenue for BGC models and DGVMs in partic-
ular, is to utilize in situ forcing data to mirror large-scale
experimental manipulation and validate the models with rich
data sets available assessing vegetation response to dis-
turbances. Artificial drought experiments conducted in the
eastern Amazon forest can provide such opportunities
[Nepstad et al., 2007; da Costa et al., 2010].

[6] With the wide variety of in situ data sets, we aim to
address a key question for the future projection of the Amazon
Forest: Is the current generation of global land/BGC models
able to reliably simulate the response of the Amazon eco-
system to changing climate, including drought mortality? If
not, then we need to clarify what improvements are necessary.
We approach this question by one of the widely used global
land models, the National Center for Atmospheric Research
(NCAR) Community Land Model 3.5 (CLM3.5) [Oleson et
al., 2008], coupled independently to three BGC submodels
(CASA’,CN, and DGVM, explained in section 2) with in situ
input data and at a corresponding single point scale. CLM3.5
is a test bed model for various new and unique parameteriza-
tions that include explicit aquifer models and improved can-
opy integration for photosynthesis, among many others.
Newly added parameterizations are designed primarily to
remove the dry bias in soil moisture in the previous version,
which was not able to realistically simulate the atmosphere-
land interactions in the Amazon forest [Bonan and Levis,
2006; Dickinson et al., 2006]. Several studies showed better
model performance with these new parameterizations in
energy and water cycles [Lawrence et al., 2007; Stockli et al.,
2008a; Oleson et al., 2008]. The carbon cycle simulated by
CLM3.5 and two of the BGC models (CASA’ and CN) were
studied by Randerson et al. [2009] and found to grossly
overestimate the live above ground biomass (LAGB) in the
Amazon. However, their analysis may have suffered in part
from input data biases coming from the use of global-scale
data, or the scale difference between the model grid and point
measurements.

[7] We first evaluate the model performance under present
climate with the focuses on (1) the simulated flux exchanges
(momentum, energy, water, and carbon) at daily-seasonal
timescales, and (2) the simulated vegetation structure (carbon
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Table 1. List of Symbols and Acronyms Used in the Main Text

Symbol/Acronym Description

ANPP Aboveground net primary production
(MgC ha ' yr'h

BGC Biogeochemical cycles

CASA’ One of the three CLM3.5 BGC
submodels

CLM Community Land Model

CN One of the three CLM3.5 BGC
submodels

CWD Coarse woody debris

dbh Diameter at breast height (cm)

DGVM Dynamic Global Vegetation Model,
also one of the three
CLM3.5 BGC submodels

GPP Gross primary productivity
(pmolCO, m 2 s7")

H Sensible heat flux (W m 2)

LAGB Live aboveground biomass
(MgC ha™)

LAI Leaf area index

LBA Large-Scale Biosphere-Atmosphere

Experiment in Amazonia
LE Latent heat flux (W m?)

LUE Light use efficiency, the initial slope
of GPP—photosynthetically
active radiation relationship

MBE Mean Bias Error

NCAR National Center for Atmospheric
Research

NEE Net ecosystem exchange
(pmolCO, m 2 s

NoBGC The experiment in which CLM3.5
is not coupled to any
BGC models

PFT Plant Functional Type

r Correlation coefficient

Ra Autotrophic respiration
(pmolCO, m 2 s7")

Reco Ecosystem respiration

(umolCO, m 2 571,
Reco = Ra + Rh

Rh Heterotrophic respiration
(pmolCO, m 2 s7")

RMSE Root Mean Square Error

on Normalized standard deviation,
simulated standard deviation divided
by the observed standard deviation

SLA Specific Leaf Area (m” gC ')
SOC Soil organic carbon (MgC ha™")
TEE Throughfall Exclusion Experiment

T Momentum flux (kg m™' s7%)

TWC Total water content (mm) in the top
2 m of the soil column
VWC Volumetric water content (m*> m>)

pool size) and its link to biogeophysical processes. Then we
assess the capability of these models in projecting die-off
events under drier climate by simulating an artificial drought
field experiment and comparing the observed and modeled
ecosystem responses. Success or failure of the new para-
meterizations in CLM3.5 would help further developments
of CLM and other land/BGC models. Our unique model
evaluation under drought conditions provides a quantitative
measure of global-scale BGC model skills under transient
climate. The evaluations are based on the observations in an
east central Amazonian forest under the Large-Scale Bio-
sphere-Atmosphere Experiment in Amazonia (LBA) [Keller
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et al., 2004]. Several symbols and acronyms used in the text
are summarized in Table 1.

2. Methods

2.1.

2.1.1. KMé67 Site and Eddy Covariance Measurements

[s] LBA project has established a network of eddy
covariance towers across a range of biome types and climate
regimes in the Amazon basin, known as Brasilflux [da
Rocha et al., 2009]. The tower used in this study is
KM67, located in the Tapajoés National Forest (2.86°S,
54.96°W) (Figure la). The forest receives ~2000 mm of
annual rainfall on average and experiences ~5 months long
dry season with monthly rainfall < 100 mm (Figure 1b). The
site is surrounded by an evergreen moist tropical forest that
maintains a high leaf area index (LAI) throughout the year.
The tower is situated atop of a flat plateau consisting of a
highly weathered and deep clay-rich oxisol with smaller
coverage of sandy ultisols [Silver et al., 2000]. Further site
characteristics are described by Rice et al. [2004] and
Hutyra et al. [2007].

[¢9] The flux data of momentum (7), sensible heat (H),
latent heat (LE), and net ecosystem exchange (NEE) of CO,
are obtained for the years 2002—-2004. The reader is referred
to Saleska et al. [2003] and Hutyra et al. [2007] and their
supplements for details of instrumentation, flux calculations
and quality control procedures, which are only summarized
here. Flux measurements were made above the canopy at
57.8 m height, and at eight different heights temperature as
well as CO, concentration were measured to estimate the
storage of heat and CO, in the canopy air. NEE is defined as
the sum of the CO, flux at the top of the tower and the
change in canopy CO, storage, and it is corrected for low
turbulent conditions (friction velocity < 0.22 m s™') in order
to estimate the biological contribution to NEE, independent
of the atmospheric stability as much as possible. Ecosystem
respiration (Reco) was calculated from the nighttime mea-
surement of NEE, assuming it is independent of air tem-
perature; gross primary productivity (GPP) was obtained as
the difference between NEE and Reco. Instrumental failures
and other unfavorable conditions (e.g., precipitation) also
caused 15~25% of the data to be missing, which were filled
by similar methods to those employed during low turbu-
lence periods. In all our evaluation exercises we avoid
nighttime or daytime bias by only using the days with full
24 hourly measurements. When there are less than 30% of
daily means available for a given month, we did not use that
month for obtaining a monthly mean. The annual energy
balance closure is, on average, 85% when the canopy air
heat content is considered; incomplete closure is typical
with eddy covariance studies, but not necessarily represents
the bias in the turbulent flux measurements since some of
the imbalance can be attributed, for example, to the scale
and target differences among the eddy flux and other energy
measurements [Wilson et al., 2002; Baldocchi, 2003].

[10] Ground-based measurements on vegetation and soil
carbon stocks have been reported in several studies at the
Tapajos National Forest [e.g., Silver et al., 2000; Rice et al.,
2004; Pyle et al., 2008; Quesada et al., 2009], which pro-
vide valuable information to evaluate the simulated carbon

Site and Data Description
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Figure 1. Study site characteristics. (a) Location of the study site, Tapajos National Forest (red dot) and
climatological (1998-2006) monthly precipitation from Tropical Rainfall Measuring Mission (color shad-
ing) [NASA, 2007], and (b) time series of the monthly precipitation and simulated throughfall for the
natural (nondrought condition) condition, superimposed by monthly mean photosynthetically active

radiation (PAR).

pool sizes. Those biometric measurements were synthesized
by Malhi et al. [2009b], and our model-to-observation com-
parison is mostly made based on their synthesis.
2.1.2. Throughfall Exclusion Experiment

[11] In 1999, a 5 year Throughfall Exclusion Experiment
(TEE) was initiated ~4.5 km south of the KM67 tower
to assess, in situ, the forest response to artificial drought.
Drought effects on the evergreen tropical forest were studied

by comparing a 1 ha control plot with a nearby 1 ha treat-
ment plot where a portion of throughfall was excluded by
clear plastic panels and wooden gutters during the wet
season (January—July) from 2000 to 2004. The plastic panels
and wooden gutters caused only a small increase of the
forest floor temperature by ~0.3°C. Each plot was partially
isolated from the surrounding forest by soil trenches of >1 m
depth to minimize the lateral movement of water and roots.
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Model Name CASA’ CN DGVM
Base model CASA [Potter et al., 1993; BIOME-BGC [Thornton et al., 2002; LPJ and IBIS [Foley et al., 1996;
Friedlingstein et al., 1999] Thornton and Rosenbloom, 2005] Sitch et al., 2003]
C cycle yes yes yes
N cycle no yes no
Plant dynamics no no yes

(change in PFT cover)
Number of C pools

Rq

Ry

Carbon allocation among
plant tissue types

Vertical distribution
of root fraction
Leaf phenology

3 plant tissues, 5 litter pools,
2 microbial communities,

2 SOC
50% of GPP

Depends on C, 6, T (Qy0)

Updated every time step,
maximize resource
acquisition assumption

Exponential decrease

(from base model CLM3.5)

Single phenology scheme

6 plant tissues, 14 plant internal pools,
4 litter pools, 4 SOC.

Ry Depends on N and T (Qq0)
R,: 30% of new growth carbon

Depends on C, N, ¥, and T
[Lloyd and Taylor, 1994]
Updated every time step,
maximize resource acquisition
within allometric constraints
Linear decrease

Four types: evergreen,

4 plant tissues, 2 litter pools, 2 SOC

Ry Depends on C and T
[Lloyd and Taylor, 1994]
Rg: 25% of (GPP-R,,)

Depends on C, 0, and T
[Lloyd and Taylor, 1994]

Updated yearly, maximize resource
acquisition within allometric
constraints

Exponential decrease
(from base model CLM3.5)

Four types: evergreen,

with growing degree
days summation, Based
on Dickinson et al. [1998]

seasonal-deciduous,
warm stress-deciduous,
cold stress-deciduous. Based

seasonal-deciduous,
stress-deciduous, grass.
Based on IBIS and LPJ models

on White et al. [1997]

3SOC, soil organic carbon; C, carbon; N, nitrogen; T, temperature; 6, volumetric soil water content; P, soil water potential; R,, autotrophic respiration;
Ry, heterotrophic respiration; R,,, plant maintenance respiration; Ry, plant growth respiration, with R, = Ry, + R,.

The effect of the exclusion treatment was analyzed by com-
paring a wide range of physical and biological measurements
from the two plots, including, but not limited to, biomass,
LAI [Nepstad and Mountinho, 2008b], Specific Leaf Area
(SLA, m? gC ") [Nepstad and Mountinho, 2009a], litterfall
[Nepstad and Mountinho, 2010], stem mortality, above-
ground net primary production (ANPP), and soil water con-
tent [Nepstad and Mountinho, 2009b]. Through the 5 year
drought experiment, they found significant differences in
the aboveground wood production and mortality between the
control and TEE plots, although it took about 2 years for the
effect of drought to become substantial. The reader is referred
to Nepstad et al. [2002] for further details on site character-
istics, experimental design, and measurements.

2.2. Model Descriptions: Biogeophysics
and Biogeochemistry

[12] The NCAR CLM simulates a suite of near-surface
processes, including radiative transfer, snow and soil physics,
and turbulent exchange at subhourly time steps. A model grid
is represented as a combination of subgrid land cover types of
glacier, lake, wetland, urban, and vegetated land. Within the
vegetated land fraction, a PFT approach is used [see Bonan et
al., 2003] to classify vegetation based on climate zones,
height, photosynthetic parameters, and rooting distribution;
PFT relative abundances must be specified for nondynamic
vegetation simulations. Also specified for non-BGC simu-
lations is LAI and canopy height.

[13] CLM3.5 is the transitional model from the earlier
version 3.0 with significant modifications to its soil hydrol-
ogy and other biogeophysical components [Oleson et al.,
2004, 2008]. One of the major changes is the soil bottom
boundary condition from “free drainage” in CLM3.0 to
interactive groundwater schemes [Niu et al., 2007]. Another
improvement in the model’s realism is the computation of

leaf-level photosynthesis and its scaling to the canopy level.
Leaf-level photosynthesis is calculated following Farquhar
et al. [1980] and Collatz et al. [1991] with the distinction of
the sunlit and shaded fraction of leaves, as well as direct and
diffuse radiation [Dai et al., 2004]. It also considers the dif-
ference in SLA over sunlit and shaded leaves as well as across
the vertical canopy gradient [Thornton and Zimmermann,
2007] to integrate photosynthesis from individual leaf to
canopy level. Autotrophic and heterotrophic respiration
(Ra, Rh, respectively) and terrestrial carbon pools are not by
default simulated in CLM3.5; one of the three available BGC
submodels are necessary to be run together for full carbon
cycle simulations. The three BGC models share some for-
mulations and model structures (e.g., all of them use the
photosynthesis model in CLM3.5), but also differ in several
aspects reflecting different assumptions and main target
processes to simulate (see Table 2). Some of the most relevant
equations in these models are provided in Appendices A and
B, while further details are provided in the relevant references
cited. We should note that the improved photosynthesis
model in CLM3.5 by Thornton and Zimmermann [2007]
was designed mainly for CLM3.5-CN combination, thus
the performance in carbon balance could be lower when
either CASA’ or DGVM are coupled.

[14] CASA’ is a modified version of the terrestrial bio-
geochemical model CASA, which was originally developed
to model seasonal and interannual variability of carbon and
nitrogen dynamics in the atmosphere-plant-soil systems at a
global scale [Potter et al., 1993; Friedlingstein et al., 1999].
Its developmental changes and the results from the simu-
lations coupled to NCAR general circulation models are
reported by Fung et al. [2004] and Doney et al. [2006].
CASA’ inherits the representation of carbon pools in vege-
tation, litter, and soil from the original model, but it excludes
the prognostic nitrogen cycle. The litter pools are partitioned
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into surface, soil, and coarse woody debris pools that receive
carbon from dead leaves, roots, and woody tissues, respec-
tively. The surface and soil litter pools are further partitioned
into metabolic and structure pools, in which the organic
materials are decomposed at different rates. The decay
materials from these pools are then assigned to either slow or
passive soil organic carbon pools. The base decomposition
rate for each pool varies with temperature and moisture.
Compared to the complex structures for the litter and soil
carbon pools, its vegetation model and related processes have
rather simple representation: three live carbon pools exist
(leaf, wood, and fine root), with Ra assumed to be 50% of
the photosynthetic assimilation (GPP). CASA’ prognostically
simulates LAI as a function of leaf carbon, SLA, and a phe-
nology scheme based on Dickinson et al. [1998], but canopy
height is not changed prognostically with the growth of
woody carbon. Vegetation dynamics is not simulated by
CASA’; thus the types and cover fractions of existing PFTs do
not change from the initial conditions. All the state and flux
variables in CASA’ are updated with the CLM time step.

[15] CN is based on an ecosystem process model Biome-
BGC version 4.1.2 [Thornton et al., 2002; Oleson et al.,
2010; P. E. Thornton et al., Technical description of the
Carbon and Nitrogen Cycle Model in the Community Land
Model version 4, manuscript in preparation, 2011]. Biome-
BGC was designed to study the terrestrial carbon, nitrogen,
and water cycles under the influence of different climate,
disturbance history, plant characteristics, and/or atmospheric
chemistry. Its integration into CLM enables the model to
simulate the interaction between carbon and nitrogen
cycling, but vegetation dynamics is not included. The inti-
mate relationships between nitrogen and plant ecophysiology
are modeled in photosynthesis, respiration and allocation
algorithms and also by detailed partitioning of vegetation into
20 carbon and 19 nitrogen pools. A model plant is composed
mainly of leaf, fine roots, live stem, dead stem, live coarse
roots, and dead coarse roots, but CN also considers so-called
storage and transfer pools for each tissue. The carbon in the
storage pool is extracted for maintenance respiration when
NPP balance is negative, and the transfer pool provides a
temporary storage of carbon for new tissue growth. Assimi-
lated carbon is transferred first to these temporary storages
and then to new growth, but with the added constraint of
adhering to tissue-specific carbon:nitrogen stoichiometry.
GPP allocation to each tissue follows allometric parameters
(i.e., empirical ratios that describe relative size and growth of
each plant tissue). Canopy height and LAI change as the mass
of leaf and stem carbon changes. Leaf mass is converted to
LAI by SLA, and CN has its unique representation of SLA as
a function of the height of leaves within the canopy and sunlit/
shaded conditions [Thornton and Zimmermann, 2007] in
contrast to a single prescribed value for each PFT as in
CASA’ and DGVM. Other BGC pools include coarse woody
debris, where it is assumed that only physical degradation
occurs (i.e., no respiration flux into the atmosphere), and three
litter pools that have different rates of decomposition. The
decomposed litter products are moved sequentially from the
fastest to the slowest of the three soil organic carbon pools.
Disturbance by fire is included in the model and follows the
approach by Thonicke et al. [2001], in which the probability
of fire is computed as a function of air temperature and soil
water content at each time step.
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[16] The DGVM submodel, based on LPJ [Sitch et al.,
2003] and IBIS [Foley et al., 1996; Kucharik et al.,
2000], focuses on large-scale vegetation dynamics among
grass and tree PFTs [Bonan et al., 2003; Levis et al., 2004].
Shrub PFTs are excluded in CLM3.5-DGVM used in this
study, but they will be included in the next version of CLM
to allow for the shrub-grass-tree competition [Zeng et al.,
2008; Oleson et al., 2010]. DGVM is thus distinguished
from the previous two submodels because carbon cycling
is dependent on the prognostic simulation of relative PFT
abundances. The modeled processes causing population
change are recruitment, natural fire, background and stress
mortalities [Levis et al., 2004]. The parameterization of nat-
ural fire follows the algorithm by Thonicke et al. [2001]. The
mortality formulations depend mainly on temperature, but are
indirectly related to water stress by preferred carbon alloca-
tion to root as well as by the elimination of a whole PFT
population with a negative balance between its annual GPP
and Ra. The number of individual trees is a prognostic vari-
able, however, the carbon pools (leaf, fine root, sapwood, and
heartwood) of each PFT represent an “average” of that PFT
community since the distribution of age or height is not
considered in the model. Those processes for vegetation
dynamics and the update of vegetation biomass are computed
on an annual timescale. Leaf mass is also updated annually,
but leaf phenology is simulated daily by time-varying phe-
nology factor that depends on temperature, photosynthetic
productivity and leaf maintenance respiration. Allocation
of photosynthate to plant tissues is based on allometric
relationships and water stress, and the updated leaf and wood
carbon pools determine LAI and canopy height, respectively.
The representation of the litter and soil organic matter is
not the main focus of DGVM and is simpler compared to
CASA’ and CN.

2.3. Model Setup and Driver Data

[17] We ran CLM3.5 offline (i.e., not coupled to an atmo-
spheric model, thus without feedback from the land surface to
the atmospheric conditions) and coupled individually to each
of the three BGC models. The four model configurations
are referred to hereafter as NoBGC (CLM3.5 not coupled
to any biogeochemical models), CASA’ (CLM3.5 coupled to
CASA”), CN (CLM3.5 coupled to CN), and DGVM (CLM3.5
coupled to DGVM). The offline model simulation needs
several atmospheric state and flux variables as well as time-
invariant site-specific characteristics and parameters as
summarized in Table 3. The soil texture values used in the
simulations are 52% sand, 42% clay, and 6% silt, taken from
LBA-Model Intercomparison Project (LBA-MIP) protocol
version 3 (L. G. de Goncalves et al., The Large Scale Biosphere-
Atmosphere Experiment in Amazonia, Model Intercompari-
son Project (LBA-MIP) protocol, version 3.0, obtained from
http://www.climatemodeling.org/lba-mip/ on 20 June 2008).
They are in the middle range between the clay- and sand-
dominant end-members found in the work of Silver et al.
[2000] and considered here to represent the “mean” texture
of Tapajos National Forest including both the flux tower and
TEE sites. The same soil texture is used in all the model soil
layers since reported textures in other studies do not vary
substantially for 1 m depth, and hydrologic parameters were
found nearly constant with depth down to 10 m [Bruno et al.,
2006; Belk et al., 2007]. The vegetation types and their frac-
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Table 3. Summary of Model Input Data
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Data Source or Values Used

Atmospheric Variables Spin-Up

2000-2001 2002-2004

Downward solar radiation (W m™?)
Downward longwave radiation (W m?2)
Air temperature (K)

Specific humidity (kg kg™")
Precipitation (mm s ')

Surface pressure (Pa)

Wind speed (m s~ ')

Atmospheric CO, concentration (ppmv)
Nitrogen deposition (gN m2 yr ')

Qian et al. [2006], 1948-1999

Qian et al. [2006], 1948-1999

Qian et al. [2006], 1948-1999

Qian et al. [2006], 1948-1999

Qian et al. [2006], 1948-1999

Qian et al. [2006], 1948-1999
283-355

0.0688-0.4, Randerson et al. [2009]

Stockli et al. [2008a]
Stockli et al. [2008a]
Stockli et al. [2008a]
Stockli et al. [2008a]
Restrepo-Coupe [2007]
Stockli et al. [2008a]
Stockli et al. [2008a]
383
0.4, Markewitz et al. [2004]

Qian et al. [2006]

Qian et al. [2006]
Qian et al. [2006]
Qian et al. [2006]
Qian et al. [2006]
Qian et al. [2006]
383
0.4, Markewitz et al. [2004]

Land Surface Variables® Values

Data Source

Vegetation type and fractional cover® 98% EBTT, 2% bare

LAI (m* m™?)
Goncalves et al.
(The Large Scale Biosphere-
Atmosphere Experiment
in Amazonia, Model
Intercomparison Project
(LBA-MIP) protocol,
version 3.0, obtained from

http://www.climatemodeling.org/

Iba-mip/ on 20 June 2008)

Canopy height (m) 35

Soil texture 52% sand, 42% clay, 6% silt

Stéickli et al. [2008b] and L. G. de

L. G. de Goncalves et al. (The Large
Scale Biosphere-
Atmosphere Experiment
in Amazoénia, Model
Intercomparison Project
(LBA-MIP) protocol,
version 3.0, obtained from
http://www.climatemodeling.org/
Iba-mip/ on 20 June 2008)
Stockli et al. [2008b] and
L. G. de Goncalves et al.
(The Large Scale Biosphere-
Atmosphere Experiment
in Amazodnia, Model
Intercomparison Project
(LBA-MIP) protocol,
version 3.0, obtained from
http://www.climatemodeling.org/
Iba-mip/ on 20 June 2008)
. G. de Goncalves et al. (The Large
Scale Biosphere-
Atmosphere Experiment
in Amazoénia, Model
Intercomparison Project
(LBA-MIP) protocol,
version 3.0, obtained from
http://www.climatemodeling.org/
Iba-mip/ on 20 June 2008)
Silver et al. [2000] and
L. G. de Goncalves et al.
(The Large Scale Biosphere-
Atmosphere Experiment
in Amazonia, Model
Intercomparison Project
(LBA-MIP) protocol,
version 3.0, obtained from
http://www.climatemodeling.org/
Iba-mip/ on 20 June 2008)

Some of the listed land surface variables are prognostically simulated by BGC models and not used; vegetation type and fractional cover are not applied
to DGVM, LAI is applied only to NoBGC, and canopy height is not used by CN and DGVM.

PEBTT, Evergreen Broadleaf Tropical Tree; bare, bare ground.

tional covers are specified as 98% of tropical broadleaf ever-
green trees and 2% of bare ground following those specified for
KM67 tower for LBA-MIP, which are also close to 94% of
canopy cover observed in the control plot of TEE site [Nepstad
and Mountinho, 2008a]. The land cover for DGVM is given as
100% bare ground at the initial state, then it is prognostically
simulated throughout the spin-up and evaluation (control and
drought) simulations. The mean canopy height is set as a
constant of 35 m for NoBGC and CASA’. Monthly values of
LAl are given to NoBGC from LAI data assimilation by Stéckli
et al. [2008b] and interpolated to daily values.

[18] Details on initial conditions and spin-up simulations
are as follows. All applicable carbon and nitrogen pools

were initialized to zero, and models were run until the
slowest soil storage pools of water, carbon, and nitrogen
had reached equilibrium, defined as monthly mean of the
applicable state variable deviating less than 0.1% from the
previous year. All three biogeochemical submodels required
a significant spin-up period: 4000 years for CASA’ and CN,
and 1000 years for DGVM. Fifteen simulation years were
enough for soil water to reach equilibrium for NoBGC.
Three-hourly atmospheric forcing for the period 1948—1999
was extracted from a global data based on NCEP-NCAR
reanalysis [Qian et al., 2006] and used to drive the spin-up
simulations by cycling the necessary number of times to
achieve equilibrium. Because significant differences were
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Figure 2. Soil moisture conditions. (a) Volumetric water content (VWC) from monthly in situ measure-
ment at the control plot of the TEE Tapajos site (circles) and the daily means of model simulated values
for 0-30 cm depth mean, (b) same as Figure 2a but for 2 m depth level, (¢c) 0-2 m total column soil water,
and (d) water stress function (equation (A3)), which represents no water stress when its value is one, and
severer water stresses as its value approaches zero. In Figures 2a and 2b, the upper and lower dashed lines
represent the simulated saturated water content and wilting point, respectively.

found between the coarse resolution (grid resolution about
1.875°) global data and site-level eddy covariance mea-
surements in the mean solar radiation, air temperature and
specific humidity, the monthly mean differences in the three
overlapping years (2002-2004) between the two data sets
were applied as an offset to the Qian et al. [2006] data set in
order to bring those data in the range of site-level mea-
surements. For the spin-up simulations of the BGC models,
atmospheric CO, concentration is held at preindustrial level
of 283 ppmv. For CN, a climatological constant value of
atmospheric deposition of nitrogen in the preindustrial con-
dition (0.0688 gN'm 2 yr ') is taken from the global nitrogen
deposition data for Carbon-Land Model Intercomparison
Project (C-LAMP) [Randerson et al., 2009]. Then additional
100 year simulations were run to represent the twentieth
century condition in which CO, concentration was gradually
increased to reach 360 ppmv and nitrogen deposition grad-
ually increased for CN to 0.4 gN'm 2 yr | from Markewitz et
al. [2004].

[19] Following the spin-up simulations, the control and
drought simulations were run using the atmospheric forcing
data from Qian et al. [2006] for the years 2000 and 2001,
and these based on eddy covariance tower measurements
[Stockli et al., 2008a] from the years 2002 to 2004. The
precipitation in both data sets differ substantially from that
reported by Brando et al. [2008], and was scaled by the

monthly mean differences from Brando et al. [2008] (for
2000-2001) or replaced with the merged rain data by
Restrepo-Coupe [2007] (for 2002-2004). The merged
hourly precipitation time series was produced from the data
at KM67, nearby KMS83 flux tower, and Terra Rica rain
gauge [Nepstad et al., 2002]. Downward long wave radia-
tion after Stdckli et al. [2008a] was high in comparison
to nearby observations, and was modified such that the
observed and simulated monthly mean diurnal cycles of net
radiation agree with each other (with the Pearson correlation
coefficient of 0.98 and the difference in standard deviation
within 2% in both hourly and monthly timescales).

[20] In the drought treatment plot at TEE site, approxi-
mately 70% of the throughfall was diverted during the
6 months of the wet season from 2000 to 2004. This is
simulated by modifying the canopy throughfall algorithm in
CLM3.5. The canopy interception and throughfall (mm s ),
Qine and g, respectively, are computed in the model as
follows [Oleson et al., 2008];

Sint = 0.25{1 — exp[—0.5(LAI + SAI)]} (1)
qint :fint (qrain + qsnow) (2)
Gthru = (1 _fint)(‘Irain + ‘hnow) (3)
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Table 4. Summary of the Statistical Comparison Between the Model Simulations and Eddy Covariance Observation®
NEE (pmol GPP (umol Reco (pumol

T(kkgm's? LE (W m?) H (W m?) CO,m?2s™h CO,m?%s™h CO,m?%s™")

Models Hourly = Monthly ~ Hourly = Monthly = Hourly = Monthly  Hourly = Monthly  Hourly = Monthly  Hourly =~ Monthly
Linear Correlation (r)
NoBGC 0.85 0.79 0.92 0.67 0.74 0.49 - - 0.90 -0.19 - -
CASA’ 0.85 0.79 0.92 0.64 0.75 0.50 0.90 -0.13 0.90 —0.19 0.01 0.19
CN 0.85 0.77 0.92 0.74 0.69 0.05 0.87 -0.38 0.90 -0.28 0.00 0.02
DGVM 0.85 0.77 0.91 0.64 0.75 0.57 0.89 —0.42 0.90 -0.21 —0.01 —0.08
Normalized Standard Deviation (0,1)b
NoBGC 0.87 1.06 1.12 1.07 1.20 1.97 - - 1.45 1.51 - -
CASA’ 0.86 1.12 1.07 1.04 1.20 2.05 0.67 0.48 1.37 1.39 433 1.38
CN 0.88 1.08 1.12 1.54 1.11 1.68 0.91 0.74 1.44 1.34 0.94 0.77
DGVM 0.59 0.56 1.11 0.95 1.18 1.89 1.01 0.94 1.35 1.30 2.04 0.40
Root Mean Square Error (RMSE)
NoBGC 0.08 0.02 57.33 18.53 44.97 12.44 - - 7.92 3.45 - -
CASA’ 0.08 0.02 54.69 16.78 44.57 14.09 5.23 0.97 7.03 2.87 7.72 2.49
CN 0.08 0.02 58.74 21.31 45.50 11.63 5.29 1.16 7.69 3.23 2.40 1.17
DGVM 0.11 0.06 59.36 17.99 43.54 13.04 5.65 3.09 6.86 2.64 3.84 1.00
Mean Bias Error (MBE)

NoBGC —-0.01 —-0.01 17.99 16.90 9.84 9.45 - - 3.06 3.14 - -
CASA’ -0.01 —0.01 15.87 14.86 11.77 11.35 —-0.32 -0.32 2.46 2.53 2.12 2.19
CN 0.00 0.00 20.34 19.12 7.82 7.40 0.21 0.15 2.86 2.92 0.69 0.69
DGVM —-0.06 —0.06 18.14 16.38 10.71 10.81 -2.75 —2.80 2.23 2.29 —-0.55 —0.54

“Here 7, momentum flux; LE, latent heat flux; H, sensible heat flux; NEE, net ecosystem exchange of CO,; GPP, gross primary production; Reco,
ecosystem respiration. The units are for RMSE error and MBE. The numbers in italic are not statistically significant with 95% confidence.
"The o, is obtained by normalizing (dividing) the simulated standard deviation (o,,) by those from the observation (0,), i.¢., o = Om/Co.

where fj,; is the intercepted fraction of the total precipitation,
Qrain (Mm s ) is the rainfall, Jsnow 18 the snowfall (mm s,
LAI and SAI are the leaf and stem area index (m? m?),
respectively. Equation (3) is modified for the drought
experiment simulation as

)

so that 30% is retained in qg,r,. The other 70% of the gy 1S
added to surface runoff and is instantaneously removed from
the system. The actual amount of the water reaching the
ground is slightly higher than 30% due to stemflow, which
remains unmodified. In addition, qg,, varies among different
BGC model simulations due to the difference in prognostic
LAI The above treatment diverts a total of 630—-960 mm of
throughfall each year, similar to 620—890 mm as reported by
Nepstad et al. [2007].

9thru = 03(1 _ﬁm)(sz’n + qsnaw)

3. Results

3.1.

[21] Model performance is first assessed under natural
conditions (utilizing standard, unmodified throughfall com-
putation) in order to elucidate any model deficiencies before
assessing these models’ capability in simulating drought
stress.

3.1.1. Soil Moisture

[22] The simulated volumetric water contents (VWC)
(m® m>) by all the models agree fairly well with observation
for the top 30 cm depth (Figure 2a). However, the modeled
VWC progressively becomes higher than observed with
depth (Figure 2b), leading to the overestimation of the
total water content (TWC) (mm) of the top 2 m soil by 100—

Model Performance Under Natural Conditions

150 mm (Figure 2c). The simulated water table depth is
much too shallow, ranging from ~0.5 m (wet season) to 2.8 m
(dry season) while the typical depth in the Amazon basin is
reported to be 5-15 m [Costa et al., 2002] and it is excep-
tionally deep at ~100 m at the studied site [Belk et al., 2007].

[23] A short-term intense drought in 2002 with consecu-
tive months of less than 20 mm month™' precipitation in
August through October, and again in January 2003 after a
brief recovery, reveals another model inconsistency between
soil water content and vegetation activity. The modeled
TWC agrees well with the observation in this period, but
the simulated vegetation experiences significant water stress
(Figure 2d and equation (A3)) while eddy covariance data
does not show any noticeable water stress in this ecosystem
as shown in sections 3.1.2-3.1.4.

[24] Some of the disagreement in the soil water content
can be accounted for by the uncertainties in the forcing soil
texture and empirical calculations for soil hydraulic para-
meters adopted in CLM3.5 [Clapp and Hornberger, 1978;
Cosby et al., 1984], but most disagreement is likely due to
the modifications to soil hydrology with groundwater model
in CLM3.5, as highlighted by Zeng and Decker [2009] and
Decker and Zeng [2009]. We ran several sensitivity tests
using different soil textures within the range of clay to sand
end-members observed by Silver et al. [2000], but no par-
ticular texture could reproduce the observed soil moisture
content both in dry and wet seasons. We did not further
optimize hydrological parameters or soil textures because
the saturated conductivity and soil porosity computed for the
chosen texture by the empirical formulations (saturated
conductivity = 5.76 x 10> mm s~ ", soil porosity = 0.42) are
within the range estimated at the TEE site by Belk et al.
[2007]. In a separate sensitivity test with a revised imple-
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Figure 3. Observed and simulated fluxes. (a, b) Momentum, (c, d) latent heat, and (e, f) sensible heat.
(left) Diurnal cycle for each month averaged over 3 years (2002—-2004); (right) monthly mean time series
for 2002—-2004. Obs refers to the monthly mean computed from Brasil Flux data. Gray shading represents
95% confidence interval of the observed data, but does not include the uncertainties from the assumptions
involved in the eddy covariance measurement or other systematic errors.

mentation of the Richards equation and bottom boundary
conditions following Decker and Zeng [2009], the wet bias
and the water table depth are significantly improved, how-
ever, the plant water stress is also strengthened. We focus on
the results from the default CLM3.5 soil hydrology model in
sections 3.1.2-3.1.4 because other model parameters rele-
vant to this study have been calibrated for the default model.
3.1.2. Turbulent Fluxes: Momentum and Energy

[25] Model performance is evaluated by common statis-
tical measures against the eddy covariance measurements;
Pearson correlation coefficient (r), standard deviation nor-
malized (divided) by the observed standard deviation (o),
Root Mean Square Error (RMSE), and Mean Bias Error
(MBE) (Table 4). Overall, CLM3.5 well reproduces the
diurnal and seasonal cycles of momentum exchange and
energy balance, as well as the relative partitioning between
LE and H components. All BGC submodels preserve this
fidelity under natural conditions, with some exceptions
analyzed below.

[26] In the diurnal cycle and monthly mean momentum
flux, DGVM stands out as it underestimates the flux by 20—
60% throughout the diurnal cycle, and by 40-70% of
the monthly mean (Figures 3a and 3b, also discussed in
section 3.1.4). The diurnal cycle of LE is reasonable in all
simulations (good r and o,,) but overestimation of the mid-
day peak results in a positive monthly bias of 10-40 W m >
(Figures 3c and 3d; see MBE, Table 4). H in this ecosystem
is small and only 1/4-1/3 of LE, but MBE and RMSE are
comparable to those for LE (Figures 3e and 3f). Well sim-
ulated seasonality in energy fluxes is disrupted by the short-
term drought period from August 2002 to January 2003
when the simulated transpiration drops sharply because
of the high water stress for vegetation, except for CN
(section 3.1.1). The decrease in LE is balanced by the
unrealistic positive peak in H. CN is the only model that
can reproduce the observed energy flux tendency (albeit
overestimating the magnitude of LE), because of its larger
root mass distribution at deeper soil levels (Table 2 and
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Figure 4. Same as Figure 3 except for observed and simulated carbon fluxes. (a, b) Gross primary
production (GPP), (c, d) ecosystem respiration (Reco), and (e, f) net ecosystem exchange (NEE).

equations (A5) and (A6)). A caveat for the above analyses
is that the uncertainty in the energy budget from the net
radiation and eddy covariance measurements makes it less
confident to assess models’ systematic bias in LE and H
(MBE and RMSE). However, the energy closure itself
does not significantly depend on seasons, thus the eddy
covariance data should be able to provide reliable evalu-
ation of seasonality (r).
3.1.3. Carbon Fluxes

[27] Simulated hourly GPP shows high correlation (r=0.9)
with the eddy covariance measurements in all the model
simulations, but o, suggests that its diurnal cycle is exag-
gerated by ~40% (Table 4). It clearly results from over-
estimating the midday GPP peak, which sometimes reaches
a factor of two (Figure 4a). This overestimation of GPP is
linked to that of LE because the stomatal resistance for water
vapor transfer is inversely proportional to GPP in the model
(equation (A1)), which emphasizes the importance of having
realistic photosynthesis for energy and water cycles. Inter-
model variation is small except for CN whose peaks of GPP in
September and October are higher due to the smaller water
stress than other models. In the monthly mean, simulated GPP
stays well above the eddy covariance estimation by ~3 pmol
CO, m % s throughout the observed period (Figure 4b).

There is also a mismatch between the modeled and observed
seasonality. The modeled GPP increases throughout the wet
season (January—July), reaches a maximum in the early dry
season and drops in the later dry season, while the observed
GPP decreases to its minimum early in the dry season and
then gradually increases to the peak within the following wet
season. The simulated seasonal cycle is much more respon-
sive to the amount of rain, which also produces higher
interannual variation than that observed.

[28] The temporal behavior of Reco is simulated poorly
by all the models with statistically insignificant correlations
and large RMSE and MBE (Table 4). For the monthly
averaged diurnal cycle, the three BGC models simulate
much higher diurnal peak values of Reco (Figure 4c) than
that observed, partly due to the different assumptions about
the temperature dependence of Reco between BGC models
and the estimation based on eddy covariance data. We
should also note that the estimation of Reco from NEE
measured by eddy covariance method includes several other
assumptions and associated uncertainties [Baldocchi, 2003;
Malhi et al., 2009b], which also affects GPP presented
above. At the seasonal timescale, Reco is slightly higher in
the wet season [Hutyra et al., 2007] but this seasonal cycle
of Reco is not captured by any of the models (Figure 4d).
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Intermodel difference is large reflecting the differences in
respiration algorithms (Appendix B).

[29] The combination of the exaggerated diurnal variation
in GPP and Reco partly cancel each other, producing a high
correlation with observed NEE diurnal cycles (r = 0.87—
0.89; Figure 4¢). However, the correlation with observations
at the seasonal timescale is poor. The models tend to sim-
ulate either no seasonality or carbon uptake during the wet
season and carbon loss in the dry season, which is opposite
to the observed trend. DGVM simulations yield a too strong
carbon sink during wet season, well outside the 95% con-
fidence interval of the observed monthly mean NEE. A
significant portion of this error comes from the overesti-
mation of GPP by the new photosynthesis and soil hydrol-
ogy models in CLM3.5, and the reasonable (dry season)
and underestimated (wet season) Reco by DGVM does not
cancel the GPP error as other models.

3.1.4. Vegetation Structure and Carbon Dynamics

[30] The growth of vegetation is determined by the balance
between GPP and Ra, which are in turn affected by the size of
the vegetation. The carbon captured in the plants is then
transferred to dead carbon pools, another important system
for carbon cycle. Those interactions make it important to
evaluate the models on both the fluxes and storage sizes of
carbon. For BGC models with dynamic vegetation, the types,
number (stem) densities, and fractional coverage of PFTs are
additional fundamental quantities to be evaluated.

[31] DGVM simulates the PFT competition as 95%
broadleaf evergreen tropical tree and 5% C4 grass. It is
reasonably close to the observed canopy cover, and while
direct, quantitative comparison of PFT composition is not
possible, year-round high (>5) values of LAI in this forest
site indicate a dominance of the evergreen tree functional
type. The stem density simulated by DGVM (629 stems
ha ') is also difficult to compare to observations since the
model represents the total number of trees with no size or
age class distribution. The reported total stem density for
trees and lianas with diameter at breast height (dbh) > 10 cm
and > 5 cm, respectively, is 182—498 stems ha ' [Nepstad et
al., 2002; Rice et al., 2004], and we interpret that the sim-
ulation is probably in a reasonable range when the entire
size distribution is accounted for.

[32] Aboveground Net Primary Production (ANPP,
MgC ha ' yr ') was estimated at the TEE site with annual
stem growth measurements and litterfall data. Similar quan-
tity is computed from the BGC models by annual integration
of leaf and stem growth for each year, and their average and
standard deviation throughout the 5 year period are compared
to those from observation (Figure 5a). CASA’ substantially
overestimates the annual growth by a factor of three, but
its interannual variation is reasonable. CN estimates ANPP
reasonably with some overestimation on the mean value and
standard deviation. DGVM overpredicts ANPP and particu-
larly its year-to-year change.

[33] The disparities among the observed and simulated
ANPP is translated into the wide range of the carbon storage
size (Figure 5b and Table 5). Direct measurement of leaf
biomass for the Tapajos Forest was not found, but it is
roughly estimated to be 2.0~4.0 MgC ha ' based on typical
SLA [Carswell et al., 2000; Domingues et al., 2005; Fyllas et
al., 2009; Nepstad and Mountinho, 2009b] (also discussed
below) and LAI values (5.8 m? m ?) [Nepstad and
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Mountinho, 2008b; Brando et al., 2010] found at this site
and across the Amazon basin. It is slightly underestimated
by CASA’ (1.8 M]gC ha™"), reasonably simulated by CN
(2.4-2.7 MgC ha "), and overestimated by DGVM (6.0—
6.5 MgC ha'). The stem biomass is significantly over-
estimated by CASA’ and CN as previously found by
Randerson et al. [2009] while satisfactorily simulated by
DGVM. However, exact comparisons of stem and root
biomass are hindered by the lack of explicit representation
of coarse root pool in CASA’ and DGVM. Fine root carbon
(1.7-2.1 MgC ha ' [Nepstad et al., 2002]) is reasonably
simulated by CASA’ (2.3 MgC ha ') and CN (2.6 MgC ha™ "),
but overestimated by DGVM (7.8 MgC ha™'). CN is the only
model that has explicit live and dead coarse roots, but their
simulated total size of 95.6 MgC ha™' (live: 0.3 MgC ha ',
dead: 95.3 MgC ha ') is quite larger than those obtained from
the field study (15-16.5 MgC ha ' [Nepstad et al., 2002]).
We note that the root biomass observation by Nepstad et al.
[2002] is based on the surface to the depth of either 6 m
(for fine root) or 12 m (for coarse root), much deeper than the
modeled domain of 3.4 m, but this comparison is still
meaningful since the majority of the root mass is typically
concentrated near the surface [Zeng, 2001, and references
therein]. It is also helpful to look at the relative proportion of
each vegetation tissue (leaf, stem, fine and coarse roots) to
assess the model bias in carbon allocation scheme (Figure 5c¢).
The allocation to the fine root by CASA’ and CN (0.4% and
0.6%, respectively) are both smaller than the number derived
from the field data (1.2%, based on several references sum-
marized by Malhi et al. [2009b]), while DGVM allocates
higher fraction of 3.9%. The allocation to leaf is similarly
smaller in CASA’ and CN (0.3 and 0.6%, respectively)
and larger in DGVM (3.1%) than observed (1.7%). CASA’
and CN tend to transfer more carbon to tree trunk tissues
(including coarse root) rather than leaf and fine roots, which
actually helps to simulate reasonable leaf and fine root sizes
with the overestimated GPP. Differences between the models
and observation are also found in dead carbon pools. CASA’
tends to overestimate coarse woody debris (CWD) and sur-
face litter (76 and 6.6 MgC ha ', respectively), while its soil
organic carbon (SOC) (109 MgC ha™') is about half of the
observed size (220 MgC ha™'). CN does not distinguish the
above or below ground litter pools thus we added all the litter
pools to the SOC pool for comparison, but it underestimates
both CWD and SOC (29 and 69 MgC ha', respectively).
DGVM overestimates the surface litter (8.2 MgC ha ')
whereas it underestimates SOC (78 MgC ha '). DGVM does
not explicitly represent CWD, instead it is implicitly included
in the stem heartwood and surface litter.

[34] Leaf biomass is converted to LAI, one of the key
variables that couples biogeochemical processes to several
biogeophysical processes. It is underestimated in CASA’
and CN simulations as 4.4 m?> m 2 and 3.5 m> m 2,
respectively, while DGVM significantly overestimates it
as 14 m* m > (Figure 5d). For CASA’ and DGVM, most of
the disagreement is explained by the previously mentioned
leaf mass. For CN, its prescribed SLA at the canopy top for
the tropical evergreen broadleaf tree PFT (0.012 m* gC ™)
seems reasonable for Tapajos Forest (0.013 m® gC !
[Domingues et al., 2005]), but its canopy-average SLA
values for sunlit leaves (0.013 m? gC ") and shaded leaves
(0.015 m? gC ") are in the lower range found across the

12 of 25



G01029

AGNPP (MgC ha ' yr-)

(b)

600
500
400 -
300
200 +
100 +

Stored carbon (MgC ha™')

-100+
-200}

Obs CASA’ CN DGVM
100}
80|
60 |
401}

20 +

Relative size of plant tissues (%)

o

DGVM

CASA’ CN

Obs

SAKAGUCHI ET AL.: CLM3.5-BGC DROUGHT SIMULATIONS IN AMAZON

G01029

(d) ® Obs NoBGC == CASA’
18 r == CN = DGVM
16 |
14 L I %
12
T 10t
E 8
< 6 Mm_—.'—'
- [ [ ) [ ]
4 — —
2
0 1
2000 2001 2002 2003 2004
5 (e)
4r o
S
©
©
£
o
2
s
©
O
-

2000 2001 2002 2003

N Leaf
I stem
F. Root
[ c. Root
[ cwo
I s
I soc

Figure 5. Comparison of observed and simulated carbon dynamics. (a) Mean annual above ground NPP
and standard deviation (error bar), (b) carbon storage sizes, (c) relative proportion of carbon storage in the
four vegetation tissues, (d) LAI time series, and (e) Leaf fall time series. Numerical values for Figure Sb
are given in Table 5. In Figures 5a, 5d, and Se, “Obs” refers to the field measurements at TEE Tapajos site
control plot [Brando et al., 2008; Nepstad and Mountinho 2008b; Nepstad and Mountinho, 2010]. In
Figures 5b and 5c, “Obs” refers to the mean values from the compiled data by Malhi et al. [2009b]. The
color legend for Figures 5b and 5c is given next to Figure 5S¢ with the following notations: F. Root, fine
root; C Root, coarse root; CWD, coarse woody debris; SL, surface litter; SOC, soil organic carbon. In
Figure 5d, “NoBGC” represents the values used to force the model, not the simulated values.

Amazon forest (0.013-0.02 m? gC ' and 0.02-0.04 m>
gC ! for sunlit and shaded leaves, respectively) [Carswell
et al., 2000; Domingues et al., 2005; Fyllas et al., 2009],
probably leading to the underestimation of LAI with the
rather reasonable leaf mass. It is also noticeable in Figure 5d
that the simulated LAI has only year-to-year variations while
the observed LAI time series exhibits small, but certain sea-
sonality. The leaf carbon dynamics appears more clearly in
the litterfall data, which shows distinct peaks every year in dry

seasons (Figure 5¢). Small variations in LAI and a distinct
peak in litterfall indicate a period of leaf flush in the dry
season [Huete et al., 2006, Doughty and Goulden, 2008a;
Brando et al., 2010; N. Restrepo-Coupe, manuscript in
preparation, 2011]. This leaf carbon dynamics is not captured
by the three BGC models because leaf phenology (except for
the background mortality) is not specified to the tropical
evergreen broadleaf PFT. However, leaf turnover is sug-
gested to be important in reproducing GPP seasonality at this
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Table 5. Summary of the Observed and Simulated Ecosystem Properties®

Nepstad et al. [2002]

Model Simulations®

Rice et al. Pyle et al. Quesada et al. Silver et al. Malhi et al.
Variables Treatment  Control [2004] [2008] [2009] [2000] [2009b] CASA’ CN° DGVM
Canopy height (m)  18~40 18~40 40 (mean) - 36.0 (0.1) 20.6 (0.1)
LAGB® 145.5 152.5 143.7+54 148+3 551.4 (1.2) 321.0 (2.0) 193.8 (2.2)
(MgC ha™")

Fine root® 1.7£0.1 21+02 30+4 23(0.00 26(0.1) 7.8(0.5)
(MgC ha™)

Coarse root* 16.5+£34 15.0+3.0 - 95.6 (0.6) -
(MgC ha™")

Number of trees 182 203 469 - - 632 (14)
(ha™")

CWD (MgC ha ') 48+52 439+52 76.1 (0.6) 29.3 (1.8) -

Surface litter 3.75 £ 0.47 6.6 (0.1) - 8.2 (4.5)
(MgC ha™)

SOC’ (MgC ha™) 220 108.9 (0.1) 68.8 (0.5) 78.3(1.9)

*Values from Nepstad et al. [2002] are converted from Mg biomass to MgC assuming that 50% of biomass is comprised by carbon. The values from
Rice et al. [2004] and Pyle et al. [2008] were taken from the synthesis by Malhi et al. [2009b]. LAGB, live aboveground biomass; CWD, coarse woody

debris; SOC, soil organic carbon.

PAll the values from model simulations are mean values from 2000 to 2004 simulations. Values in parentheses are standard deviations for the 5 years

based on monthly mean values.

°CN does not specify the physical locations (above or below ground) of the litter pools, thus the surface litter is not listed here. (Instead they are

” 2

classified by the tissue types and decomposition rates: “labile,

cellulose,” and “lignin.”)

dFor CASA’, LAGB is obtained as the sum of the leaf and stem carbon; for CN it is the sum of leaf, live stem, and dead stem carbon; and for DGVM, it
is the sum of leaf, sapwood, and heartwood carbon. The “dead” carbon pools within the stem are considered as part of the “live” biomass, to be consistent
with the estimation in the field based on allometric equations [Chambers et al., 2001a]. Unless the model results would provide unrealistically low values.

“Observed fine and coarse root biomasses in the work of Nepstad et al. [2002] are based on the depth range of 0—6.1 m and 0—12 m, respectively. The
estimation of total root biomass by Malhi et al. [2009b] is for 0—1 m depth, and the values from the model represent the value for 0-3.43 m depth.

The observation from Quesada et al. [2009] is taken from Malhi et al. [2009b] for three depth levels (0—1 m, 1-2 m, and 2-3 m) and summed to provide

the total amount.

site due to the dependency of photosynthetic capacity on leaf
age [Doughty and Goulden, 2008a].

[35] Canopy height is another variable that links biomass
size to biogeophysical processes. The average canopy height
in the Tapajos forest has been reported to be 3540 m,
although a recent LiDAR survey conducted in the area
indicates a high variability (S. R. Saleska, unpublished data,
2010). Simulated canopy height by CN (36 m) agrees quite
well with the observations while DGVM underestimates it
at 21 m (Table 5). Canopy height produces a pronounced
effect on the turbulent exchanges (especially for momentum
and trace gases such as CO,) in land-atmosphere coupled
studies through its role in computing roughness length and
zero-displacement height [e.g., Oleson et al., 2004], and the
underestimation of canopy height by DGVM leads to the
low bias in the momentum flux (section 3.1.2). We should
also note that the underestimation of the canopy height by
DVGM is accompanied with the overestimation of stem
biomass, suggesting that the generic allocation schemes in
DGVM cannot simulate realistic structure for the tropical
evergreen broadleaf PFT. A similar conclusion applies to
CN with its overpredicted stem biomass.

[36] The above analyses are useful but should be con-
sidered to be first order for two reasons. First, direct data-
model comparison is not always possible because the
observed and simulated spatial domains are different (e.g.,
soil depth) or physical observation is not easily made (e.g.,
fractional cover of each PFT). Second, the exact distur-
bance history is not available, and thus not simulated in
this study while the observed forest ecosystem is suggested
to be recovering from past disturbances [Saleska et al., 2003;
Rice et al., 2004].

3.2. Drought Scenario Simulations

3.2.1. TEE Simulation and Comparison

[37] Throughfall exclusion at the TEE site produced
a significant difference in soil moisture throughout the
observed depth (10 m), but we restrict our comparisons of the
soil moisture to the data from the shallower layer (the top 2 m
depth) since the model domain extends only to 3.4 m. The
observation on the drought plot reported the TWC reduction
of ~55 mm compared to the control plot after the first season
of the exclusion treatment (Figures 2c and 6b). The difference
increased to 98 mm in the third year and then stabilized at that
level for the rest of the experimental period. This reduction
for the first 3 years is reasonably reproduced in our model
simulations, but the difference keeps increasing instead of
stabilizing (Figure 6b). Although the models’ wet bias still
persists, especially during the wet seasons, the effect of the
reduction in throughfall inputs appears in the simulated water
stress function. As shown in the previous section 3.3.1, under
natural throughfall it is only in the intense dry season of
2002 and part of the following wet season that the simulated
vegetation experiences severe water limitation (Figure 2d),
whereas water stress is imposed in every dry seasons after
2001 in TEE simulations (Figure 6¢). Note that CN also simu-
lates severe water stress regardless of the higher root fraction
than other models in deep layers.

[38] In the field TEE experiment, the water stress ap-
peared as the gradual decline of LAI from about 6 m* m 2 at
the beginning of the experiment to less than 4 m? m ™2 in the
driest period of 2002, a 33% reduction (Figure 6d). CASA’
does not show any drought stress on LAI; while DGVM
simulates a decline, it remains unrealistically high. The sim-
ulated LAI response by CN is the most realistic, with a

14 of 25



G01029

LAGB (MgC ha)

Throughfall (mm month')

Water stress factor

ANPP (MgC ha'' y)

SAKAGUCHI ET AL.: CLM3.5-BGC DROUGHT SIMULATIONS IN AMAZON

700

600

I Natural
[ Drought

(@)

o
[®

25

600

500

400

300

200

100

o
<)

o
o

©
ES

20

15

10

2001 2002 2003 2004

2000 2001 2002 2003 2004

(e)

[N Obs MM CASA’
[N CN [DGVM

2000

(9) '

2001

2002

2003 2004

2000 2001

2002

2003 2004

Total water content (mm)

LAGB change (KgC ha' mm)

ANPP change (KgC ha' yr' mm)
®
o

1000

900

800

700

600

500

400

G01029

o

2000 2001 2002 2003 2004
(d)
S ST TN ey
I
%0 %0000 4000 g0 00
———-——————\.\_-
™ g = =
2000 2001 2002 2003 2004

(f)

,

-100

-200

-300

-400

2000 2001 2002 2003 2004

LR

2000 2001 2002 2003 2004

Figure 6. Results from the throughfall exclusion simulations. (a) Throughfall in the natural and drought
simulations by NoBGC model, (b) 0-2 m total soil water (TSW), (c) water stress function (equation (A3)),
(d) LAL (e) observed and simulated above ground NPP (ANPP), (f) difference in ANPPs from the drought
and control experiments, normalized by TSW difference (equation (5)), (g) Live Above Ground Biomass
(LAGB), and (h) difference in LAGB between the drought and control experiments, normalized similarly to
Figure 6f. Gray shading in Figures 6b—6d represents the period of throughfall exclusion (i.e., typical wet

season).
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Figure 7. Main results from the all-year drought simulations. (a) Monthly throughfall in control (blue)
and drought simulations (green), (b) water stress function (equation (A3)), (c) normalized difference in
ANPP (equation (5)) between the all-year drought and control simulations, and (d) normalized difference
in LAGB. In Figures 7c and 7d, the bar graphs with dashed lines represent the reduction levels observed
in the wet season throughfall exclusion experiment [Brando et al., 2008], as a reference.

reduction of 20-40% from the control simulation, but the
timing of the decline is delayed by almost 2 years.

[39] For the drought response in ANPP, progressive
decline in each year and slight recovery in the wetter year
(2004) was observed in the field (Figure 6¢). Although all
the BGC models clearly overpredict ANPP, the overall
yearly behavior of ANPP is reproduced except for DGVM.
The ANPP sensitivity to drought in DGVM simulation is
not realistic; it drops by more than 90% from the first to
the fourth year and recovers in the following year to reach
45 MgC ha ' yr ', even higher than that in the control sim-
ulation. This drastic response is likely caused by the DGVM
allocation scheme in which the computation of growth
(positive NPP) and mortality (negative NPP) are coupled and
constrained by the allometic relationship; the stem biomass
has a negative ANPP (i.e., mortality) in year 2003 when all
the available assimilated carbon is used for root and leaf
growth, and the new root and leaf biomass (growth minus
background mortality) is still not large enough to sustain the
current stem biomass according to the allometric relationship.
In the following wetter year, the stem biomass is quickly
increased to satisfy the allometric relationship with new and
larger leaf and root biomass, resulting in an unrealistic stem
growth.

[40] When ANPP is compared to the control field exper-
iment, the observed ANPP reduction was 12% (2001), 30%
(2002), and reached the largest 41% in the fourth year (2003).
ANPP by CASA’ is the least sensitive to drought, with the
ANPP reduction being at most 13% relative to the control
simulation. CN overestimates the largest ANPP drop in 2003
as 57%, although its prediction stays the most reasonable
among the models. The largest change simulated by DGVM
amounts to be 78% reduction, nearly twice the observed. This
simple comparison of the simulated and observed ANPP
reduction, however, may be affected by the models’ biased
soil moisture. Thus the sensitivity of ANPP to drought is also
evaluated by normalized change of ANPP using the respec-
tive modeled reductions in TWC;

ANPPrgp — ANPPcrr
(TWCrgg) — (TWCcrr)

AANPP oy = (5)

where AANPP,,., is the normalized change of ANPP,
(TWC) is the annual mean of the total water content (mm) in
the top 2 m depth, and the subscripts CTR and TEE refer to the
natural and drought experiments, respectively. The normal-
ized ANPP change reveals that the modeled ANPP responses
in CN and DGVM simulations are not overestimatetion,
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instead it is rather smaller than the observed level when
considered per unit change of soil water content (Figure 6f).
Therefore these models may underestimate the change of
ANPP due to drought stress, given unbiased soil moisture.

[41] The simulated sensitivity of live aboveground bio-
mass (LAGB) to drought stress is substantially smaller than
the observed (Figure 6g). Brando et al. [2008] observed that
the most intense drought impact on LAGB was the loss of
~30 MgC ha™' yr ! relative to the control experiment in the
last 2 years. On the contrary, the modeled decline was only
~10 MgC ha™' yr! or less. This discrepancy is further
enhanced when the loss of LAGB is normalized similarly to
ANPP (Figure 6h). In the fourth year, the normalized dif-
ference of LAGB on the observation is about 400 kgC ha '
mm ', while the predictions by all the models are less than
70 kgC ha ' mm ', The main reason for the insensitivity
of the modeled LAGB is that CASA’ and CN do not have
explicit mortality mechanisms from water stress for tropical
evergreen PFT, thus LAGB experiences only a background
mortality. The drought mortality is included in DGVM in
the allocation algorithm as negative allocation to the plant
tissue, but it is not large enough to reproduce the loss of
LAGB at the observed level. It also can produce unrealistic
ANPP response as described above.

[42] The total stem density in DGVM simulation remains
the same between the control and drought simulations in the
first 3 years, followed by a small reduction of 17 stems ha '
(3%) in the fourth year. It appears to be within a reasonable
range comparing with the 3—7% increase in the mortality
observed in the field experiment [Nepstad et al., 2007;
Brando et al., 2008], but lack of size structure in DGVM
prohibits direct comparison of stem mortality from the TEE
field study (as defined by Nepstad et al. [2007]). We also note
that the modeled stem density is quite sensitive to precipita-
tion such that it can remain the same or even slightly increase
in similar drought simulations, depending on precipitation
inputs varying within a reasonable climatological range.
For PFT relative abundance, small shifts (~3%) favoring C4
grasses were simulated, presumably unsupported by data.
3.2.2. Sensitivity Tests Under Different Drought
Scenarios

[43] We conducted additional sensitivity tests to further
understand the model behavior by finding in which season or
how much throughfall exclusion is necessary for the models
to produce a LAGB response similar to that observed. In one
experiment where throughfall reduction is imposed during
the dry season instead of the wet season, the simulated
drought response of LAGB is even less than that for the wet
season exclusion (not shown). In another experiment,
throughfall exclusion is applied throughout the entire year
(Figure 7a). The associated intensification of water stress in
the model caused the greater reduction of ANPP, but the
normalized reduction of LAGB by CASA’ and CN is still
smaller than the observed loss in wet season only TEE
(Figures 7b—7d). DGVM predicts a catastrophic die-off of the
tropical evergreen PFT after the fourth year, resulting in a loss
of the entire LAGB of the PFT. 95% of the grid area is re-
placed with C4 grass within 2 years. This is unlikely to take
place in the real world, considering the results from another
TEE in eastern Amazon forest where 7 years of year-round
throughfall exclusion yielded 2.5% yr ' mortality on average
[da Costa et al., 2010], and is reflective of limitations of
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DGVM associated with its primary purpose to represent
global-scale plant biogeography (see biogeographical rules in
section 2.2). Together with a separate offline simulation in
which throughfall was brought back to the control level, it
highlights an important tipping point: 20 years were required
to recover a dominance of evergreen forest.

4. Discussion

4.1. Photosynthesis and Respiration

[44] CLM3.5 and its BGC submodels are shown to sig-
nificantly overestimate photosynthesis. Overly wet soil causes
some overestimation, but we found persistent high photo-
synthesis in other offline simulations with more realistic
soil water content following the approach of Decker and
Zeng [2009]. An analysis of photosynthesis—light response
curve reveals a light saturation of photosynthesis around
30 pmolCO, m 2 s~ ! for this forest while modeled photo-
synthesis lacks any such asymptote (Figures 8a and 8b). A
similar disagreement in the asymptotic behavior is also
found in the relationship between photosynthesis and eco-
system ET (not shown), together suggesting that other
factors (temperature, diurnal water stress, or nutrients) are
limiting midday ecosystem photosynthesis. One hypothesis
explicitly incorporated in the CN’s nitrogen limitation
model is that nutrient limitation constrains assimilation
(section 2.2), which brings in the modeled light use effi-
ciency (LUE, defined here as the initial slope of GPP—
photosynthetically active radiation relationship) in much
closer agreement with observations (Figure 8c), but the
existence of other midday limiting factors are also possible
[see Doughty et al., 2006]. Another potential cause for
discrepancy in observed versus modeled LUE, posing a
challenge for further development of BGC models, is in
scaling of photosynthesis from the leaf to the canopy. It is
known that the size structure of the forest influences light
penetration and diffuse/direct light environments, but the
current model is lack of size structure or parameterizations
for the effect of forest gaps [e.g., Watanabe et al., 2002;
Fisher et al., 2010]. Further, the parameters for the linearly
varying SLA within the canopy profile were verified with
temperate forests [Thornton and Zimmermann, 2007], but
may need to be evaluated with data from tropical forests [e.g.,
Carswell et al., 2000; Domingues et al., 2005].

[45] Respiration is another key part of the carbon balance
in which our analysis revealed considerable disagreements
among the models, each of them also differing from the eddy
covariance estimation. For example, the diurnal range of
Reco is quite large in all the three BGC simulations, mostly
due to strong temperature effects on plant respiration (Ra).
CASA’ assumes that Ra is 50% of GPP, which is generally
supported for temperate forests and also for Tapajos forest
[Delucia et al., 2007; Malhi et al., 2009b], but this assump-
tion produces the largest diurnal cycle of Reco that is in poor
agreement with observations. This simple Ra calculation
seems unrealistic for models with subdaily time steps and for
the Amazon forest where only 30% of GPP is typically used
for biomass growth [Chambers et al., 2004; Malhi et al.,
2009b]. The temperature sensitivities of Ra and Rh are
represented by either a Qo (CN) or Lloyd-Taylor function
(DGVM) (equations (B2), (B6), and (B11)), but their accu-
racy has been shown to be poor particularly at temperature
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Figure 8. Observed and modeled relationship between GPP and photosynthetically active radiation
(PAR) based on the monthly averaged diurnal cycles in 2002—2004. (a) Observation from the eddy
covariance tower, (b) CLM3.5 without BGC models (NoBGC), and (c¢) CN “no N-lim” and “N-lim”
are based on GPP computed without and with nitrogen limitation, respectively. The number in the top
left corner of each panel is the initial slope of the linear-fitting curve. The horizontal dashed lines repre-
sent the apparent maximum GPP in the eddy covariance data. The results from CASA’ and DGVM are
almost identical to those from NoBGC and hence are not shown.

above 20°C [Atkin et al., 2005; Davidson et al., 2006], which
is common in the Amazon forest. Recent observational
studies provide hints for more process-based parameteriza-
tions that distinguish “apparent” temperature sensitivity
[Davidson et al., 2006], but such fully mechanistic repre-
sentation of fine-scale processes, including the diffusion of
gas and substrate through the air or water, may not be feasible
yet to be incorporated in the current BGC models. A simpler
representation still should follow general functional beha-
viors and spatial variations in parameters [e.g., Khomik et al.,
2009; Zhou et al., 2009].

[46] Realistic partitioning and appropriate treatment of
distinct carbon pools are also important for simulating res-
piration fluxes. Since each pool (e.g., leaf, surface litter, or
slow soil carbon) has distinct physical and chemical char-
acteristics, environmental conditions, and the rate of respi-
ration per unit carbon (k; in equations (B1) and (B7), and ryep
in equation (B10)) [Chambers et al., 2004]. Therefore a
lumped representation of multiple carbon pools has more
difficulty in simulating the timing and magnitude of respi-
ration response to the changing environment. For example,
soil moisture is currently used for adjusting the decomposi-
tion rate of aboveground litter in CASA” and DGVM, but it is
observed that the aboveground litter dries more quickly than
soil, leading to different seasonality between the above-
ground and belowground carbon pools [Chambers et al.,
2001b; Sotta et al., 2007]. Table 6 compares the observed
and simulated mean respiration fluxes and the residence time
(storage size divided by flux) of different carbon pools to
better illustrate the relationship between the carbon storage
size and the respiration flux. One can see that the timescale of
carbon flow through vegetation (Ra) in CASA’ and dead
carbon pools (Rh) in all the models are not in good agreement
with the observation. These differences will be reflected in
atmospheric CO, concentration and resulting radiative forc-
ing in a fully coupled simulation. Such partitioned measure-
ments of storage sizes and respiration flux is quite valuable
to constrain the strength and weakness of the respiration
algorithms and their optimizations, but models need to have
realistic representation of carbon pools that can be directly

compared to the data in order to take advantage of those
measurements. At the same time, the difficulty in further
partitioning in field measurements still hampers complete
analyses. For instance, our residence time analysis for the
stem in CN and DGVM is not quite comparable to the
observation because the dead portion of the stem and coarse
root is included in the observed biomass while it does not take
part in the respiration flux.

4.2. Water Stress and Mortality

[47] Our analysis found that the water stress for photo-
synthesis (equation (A3)) is simulated too severely by the
base model CLM3.5, while the reduction of LAGB is under-
estimated by all the BGC models. The former is the response
to short-term drought and/or regular dry period, and the latter
is the response for a long-term drought. In a short-term
drought in the studied ecosystem, CLM3.5 fails to simulate
the observed GPP seasonality. Previous versions of CLM
and other land surface and ecological models had the same
problem [Saleska et al., 2003], and this study showed that
reasonably or even overly wet soil with explicit consideration
of groundwater in CLM3.5 does not fully reproduce the
interactions between soil water and tropical vegetation.
Instead, it is necessary to review tropical tree PFT parameters
[e.g., Domingues et al., 2005], reformulate the water stress
function [e.g., Fisher et al., 2010], or include biophysical
processes found in the same or similar ecosystems such as
deep root systems [Bruno et al., 2006] and hydraulic redis-
tribution [Oliveira et al., 2005]. Some of these have already
been tested by Lee et al. [2005] and Baker et al. [2008] with
promising results. Incorporation of a more mechanistic rep-
resentation of the soil-to-leaf continuum [Sperry et al., 1998;
Fisher et al., 2006, 2007] with parameters for root architec-
ture and the relative contributions of soil, root, and xylem
hydraulic resistances to water transport, instead of a single
water stress function solely dependent on soil water content,
is a possible next step for a more mechanistic basis of drought-
induced stress.

[48] The modeled mortality (LAGB loss) from the long-
term drought is substantially less than the observed. One
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model vegetation to have unrealistically high net productiv-
ity. The models show more difficulties to agree with the
observations in biogeochemical processes, as highlighted by
statistically insignificant correlations in the seasonal cycle
of NEE, highly overestimated LAGB, and inconsistent
relationships in the carbon pool sizes and the respiration
fluxes. Similar results by Randerson et al. [2009] implicates
that the errors from model parameterizations exceed those
from global-scale input data. Further review on the character-
istics of tropical tree PFTs, allocation algorithms and more
realistic model representation of carbon pools are necessary.

[51] In the model experiments under long-term artificial
drought conditions, the sensitivity of ANPP to drought stress
is reproduced by the BGC models to some extent, but the
drought sensitivity of aboveground biomass pools (including
LAI) is grossly underestimated. It questions the reliability of
future projections of the Amazon forest dieback when these
BGC models are coupled to general circulation models, and
suggests the need for the enhancement of mortality processes
in the model as well as for the field measurements targeting
specific mechanisms for mortality. Some of the processes
responsible for the observed drought-induced mortality
depend on the size-class structure, which are not readily
incorporated in global BGC models yet, particularly taking
into consideration the long timescale needed for BGC simu-
lations. We speculate that intercomparison of large-scale and
fine-scale BGC models [Smith et al., 2001; Huntingford et
al., 2008] would provide hints for the improvements of the
current parameterizations or size-class representations adopt-
able for global-scale models. It is also possible to improve the
model’s realism by linking the existing, but uncoupled pro-
cesses; the root biomass and water stress for photosynthesis,
and this water stress accumulated into plant mortality.

[52] We realize that our analysis do not provide the
uncertainties of the simulation results that are caused by
the errors in the forcing data, model parameters, and past
disturbance history. This is particularly important in BGC
model simulations, because such uncertainties can be
spread within the carbon balance over time, leading to the
wide range of carbon pool sizes and associated fluxes even
by a single model. This is certainly a part of our future
work, but nonetheless, this study provides enough evi-
dence of deficiencies in the model structures and for-
mulations of CLM3.5 and the three BGC models, and
suggests that such rigorous model evaluations are pre-
requisite for the interpretation of future climate simula-
tions with full carbon cycle. This study also points to the
necessity of data available for assessing key areas of land
and BGC model mechanisms, including temporally con-
tinuous and finely partitioned storage and respiration
measurements, and complementary field studies addres-
sing the diversity of plant functional responses to drought
stress in terms of root distributions, vegetation phenology,
and stomatal behavior. The closer cooperation between the
observational and modeling communities will be indis-
pensable for the developments of the next generation of
BGC models.

Appendix A: Photosynthesis in CLM3.5

[53] Photosynthesis is computed in the Community Land
Model version 3.5 (CLM3.5) to obtain the stomatal resis-
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tance following the relationship [Collatz et al., 1991; Oleson
et al., 2004]
- = mé gPatm +b

Ts Cs €

(A1)

where r; is the stomatal resistance (s m*> zmolCO5"), m is a
constant depending on Plant Functional Type (PFT), A is
photosynthetic activity (umolCO, m 2 s, ¢, is the CO,
concentration at the leaf surface (Pa), e, is the vapor pressure
at the leaf surface (Pa), e; is the saturation vapor pressure
inside the leaf that is computed from vegetation temperature,
P.um is the atmospheric pressure (Pag, and b is the minimum
stomatal resistance (umolCO, m * s™'). A is computed
following Farguhar et al. [1980] and Collatz et al. [1991] as
the minimum rate among three processes (here, we limit our
description to C3 plants): (1) limitation by light on regen-
eration of ribulose biphosphate (RuBP), (2) limitation by the
amount of the activated RuBP carboxylase, and (3) limita-
tion due to the maximum exporting rate of the photosyn-
thesis products. In the latter two processes, A is dependent
on V., the maximum rate of carboxylation per unit leaf
area (umolCO, mZs'):

Ty-25

Vinax = NaFLNRFLMazs (ago) ™ f(T,)Bf(N)

(A2)

where N, is the area-based leaf nitrogen concentration
(gN m > one-sided leaf area, PFT-dependent), Finyr is
the fraction of leaf nitrogen in Rubisco (gNrubisco gN]_elaf,
PFT-dependent), Fyr is the mass ratio of nitrogen in
the Rubisco molecule to total molecular mass of Rubisco
(gNRubisco gﬁ{lbicso, constant for all the PFTs), a,5 is Rubisco
activity at 25°C (umolCO, gRubisco ' s '), agio is the
Q-10 parameter for Rubisco activity, f(T,) is a function
representing inhibition of photosynthesis at high temper-
ature, T, is the temperature of leaf (K), 0, is a water stress
function, and fy is the nitrogen limitation factor. For the
models other than CN, f(N) for each PFT is given in a look-
up table derived from a reference simulation of CLM-CN
done at National Center for Atmospheric Research. For
example, it is set as 0.87 for tropical broadleaf evergreen
PFT in CLM3.5 and CASA’, and 0.69 in DGVM [Oleson et
al.,2008; S. Levis, personal communication, 2010]. f(N) is
not applied in CN simulations, instead the nitrogen limita-
tion is included within the carbon allocation algorithm so
that plants under insufficient nitrogen to support full growth
are forced to allocate smaller carbon in accordance with
stoichiometry of carbon and nitrogen in plant tissue. The
water stress function (3, is based on the plant wilting factor,
w, and the mass fraction of root, r, in each ith soil layer;

10
B = Z Witi.
i=1
The wilting factor w; is given as

<H<até*el(‘e.t)< Wﬁi/(/me ) <1 gliqj >0
sat,i Yopen =Y eiose ’

0 6[,'(“' = 0

(A3)

where f,; is saturated volumetric water content, 0j;q;
is volumetric water content, ;. ; is volumetric ice content
(m3 m ), y; is soil matric potential (mm), and ypeq and
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Figure Al. Examples of the vertical distribution of root mass fraction in CLM3.5. The solid lines are the
profiles used in the base model CLM3.5 and when it is coupled to CASA’ or DGVM. The dashed lines
are those used for CLM3.5-CN. NET boreal, needleleaf evergreen boreal tree; BET trop, broadleaf ever-
green tropical tree; BDT temp, broadleaf deciduous temperate tree; BES temp, broadleaf evergreen tem-
perate shrub; C3, C3 grass; CN-woody, all the woody PFTs in CN simulation; CN-non-woody, all the

nonwoody PFTs in CN simulation.

Welose are PFT-dependent potentials at which stomata are
fully open and closed, respectively. CLM3.5 uses the root
fraction distribution from Zeng [2001];

exp(—razni-1) +exp(=rbzni-1)

0.5 forl <i< 10

— exp(—razhﬁ,-) — exp(—rbz;,_,-)
O.S[exp(—razh_i,l) +exp(—rbz;,.,-,1)} fori =10
(A5)

where r, and r, are PFT-dependant coefficients. CASA’ and
DGVM also use this form while CN adopts the following
distribution

(i) = de(i) - 0.5 KE ~ 2 1)) + (3 - %z(i))} (A6)

Zp Zy Zp Zy

where z;, is the depth of the bottom interface of the last layer
that has nonzero root fraction (3.4 m for woody PFTs, and
1.4 m for nonwoody PFTs), and z(i) is the bottom interface depth
of the layer i, and dz(i) is the layer thickness. Equation (A6)
gives more root fraction in the deeper soil layer than
equation (AS5) (Figure Al).

Appendix B: Respiration in CLM3.5
Biogeochemical Submodels
Bl. CASA’

[s4] The autotrophic respiration (Ra) is assumed to be a
constant (0.5) fraction of GPP in CASA’. The heterotrophic
respiration (Rh) for each litter and soil organic matter pool is

parameterized as a function of carbon (kg C) and sensitivity
functions of temperature and soil moisture:

Rh,i = Cl'kith(T).ﬁlw(g) (Bl)

where Ry ; is the Rh from ith carbon pool, C; is the amount
of carbon, k; is the maximum decay rate, f;,1(T) and f;,,(6) is
the temperature and soil moisture functions to modify the
decomposition rate. f,,r(T) is an exponential (Q;¢) function
with the base reaction rate (Kt pase) 0f 2.0 at 30°C

fir = (7-30)/10

T,base (BZ)

where weight-averaged soil temperature from the layers in
the top 30cm is used for T. f,(6) is a linear function of the
soil wetness.

S = 025+ 0.755 (B3)

s is the soil wetness of the top 30 cm (i.e., the top five model
soil layers) defined as

: [0 — GW:A:I
s = Z ﬁwﬂ,w

where Wi is the fraction of the thickness of each layer to
the total soil layer depth.

(B4)

B2. CN

[s55s] The maintenance respiration depends on nitrogen
content of each tissue and temperature (P. E. Thornton et al.,
manuscript in preparation, 2010)

Rm.i = rrespNifmT(T) (BS)
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where e, is the base resplratlon rate per unit nitrogen
content (2.525 x 10°® gC gN! s7!), N; is the nitrogen
content of each living tissue (leaf, stem, coarse and fine
roots), and f,1(T) is a Q¢ function with the base reaction
rate (Kt pase) 0f 2.0 at 20°C.

St (T)

where 2.525¢ ¢ (2C gN' s ') is the respiration base rate per
unit nitrogen content. Air temperature at 2m height is used
for leaves and stems, and soil temperature is used for fine
root. Growth respiration is assumed to be 30% of the total
new growth carbon on a given timestep.

[s6] Heterotrophic respiration is parameterized as a func-
tion of carbon, temperature, soil water content, and available
nitrogen in the form of

Ry = Cikifir (T )fine (W) fiv

= (2.525¢ )y, 2010

base

(B6)

(B7)

The relationship with temperature, fir, follows the form
suggested by Lloyd and Taylor [1994] and weight-averaged
by the thickness of each layer over the top 30 cm of the soil

5
1 1
for = Z{exp {308 56 (7 o TM)} Wsoil:j}

j=1

(B8)

The term within the summation is set to zero when the tem-
perature is below —10°C.

[57] The soil water effect on the decomposition, fi, is
computed from soil water matric potential

5
X log (Wmin /¥,
fhw = ZMWS(H]J (Bg)
=1 10g(\Pmin/lI’sat.j>
where W, is the minimum soil water potential for
decomposition (—10 MPa) and ¥, ; is the saturated soil
water potential. The nitrogen limitation, f, is computed
from the competitions between the plant and microbial
demand for the soil mineral nitrogen.

B3. DGVM

[58] In DGVM, the maintenance respiration of the three
living plant tissues, leaf, root, and stem, depends on the
amount of carbon and temperature [Levis et al., 2004]

fmr( ) (B10)

Rm, 7, re\p

where 1., is PFT-specific respiration rate (gC gN'sh C
is the amount of carbon in g for a given carbon pool, cn is
the tissue-specific C:N ratio, and f,,,1(T) is the sensitivity
function suggested by Lloyd and Taylor [1994]

(B11)

1
Jmr = €xp [308 56( m)}

56.02

where T is the vegetation temperature given in °C for leaf
and sapwood, and mean temperature of the top 25 cm soil
for root.

[59] For leaf and root maintenance respiration, (B11) is
further multiplied by a phenology factor, which represents a
fraction of leaves displayed on a pft on a given day, relative
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to the maximum leaf area index for the year. The growth
respiration is assumed to be 25% of GPP minus the sum of
maintenance respiration.

[60] Heterotrophic respiration for the two litter and two soil
organic pools is similar to that of CASA’ (equations (B1) and
(B3)), but the Q;, temperature response function is replaced
with the Lloyd and Taylor [1994] relationship (B11).
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