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Abstract: In this study, the problem of an electric vehicle (EV) aggregator participating in a three-settlement pool-based market
is presented. In addition to energy procurement, it is assumed that EVs can sell electricity back to the markets. In order to obtain
optimised solutions, the aggregator is considered as a price-maker agent who tries to minimise the cost of purchasing energy
from the markets by offering price-energy bids in the day-ahead market and only energy bids in both adjustment and balancing
markets. Since the problem is heavily constrained by equality constraints, the number of binary variables for a 24-hour market
horizon is too large which leads to intractability when solved by traditional mathematical algorithms like the interior point.
Therefore, an evolutionary metaheuristic algorithm based on genetic algorithms (GAs) is proposed to deal with the intractability.
In this regard, first, the stochastic problem is formulated as a mixed-integer linear programming problem, and as a non-linear
programming problem to be solved by CPLEX and GA, respectively. The former is used to ensure that the GA is tuned properly,
and helps to avoid converging to local extremums. Furthermore, the solutions of the two formulations are compared in
simulations to demonstrate GA could be faster in obtaining better results.

Nomenclature p price bid to day-ahead market

Indices and sets pm minimum price at each step of function g
q day-ahead market cleared energy

@ € Q scenarios X energy bid to day-ahead market

teT timeslots xm min. energy at each step in function 4
y energy bid to balancing market

Abbreviations and superscript symbols ym min. energy at each step in function A

+, — positive/negative deviations .

SOC  Dbattery state of charge Risk measure
a  confidence level

EV parameters B weighting factor

N, scenario-specific auxiliary variable

¢ final SOC at the end of T’ . . .

o SOC loss from driving ¢ continuous auxiliary variable

&he grid to battery efficiency and vice versa .

BD battery degradation 1 Introduction

P . selh.ng price ) Electric vehicles (EVs) are viewed as important components in the
2,0 vehicle charge and discharge future smart grids. The utilisation of EVs in the power networks
05°¢ battery state of charge has opened up various areas of research, focusing on the technical

and economic aspects of EV integration. This is mainly due to this
fact that the proper management of these vehicles under high
penetrations of EVs, can have significant effects on both the

E™ E™ max./Min. battery state of charge

Market parameters customer and network [1].
4 adjustment market cleared price
A balancing market cleared price 1.1 Motivation
A day-ahead market cleared price
T probability of scenarios The research on EVs usually considers an aggregation agent which
0 binary auxiliary variable is responsible for managing the charging schedules of EVs and acts
a,b,c,d  continuous auxiliary variables at the interface bet_ween th_e electrici_ty markets and the EV owners
max width of each step in function ¢ [2]. EYs are equipped with batteries that .enable them to store
i . . . energy in off-peak hours (G2V) and supply it back to the network
b width of each step in function A . .
in peak hours (V2G). Therefore, the main problem of the
C;m da'y—ahead market energy procurement cost aggregator is to procure enough energy for the EVs at the
¢ W¥dth of each step mn fun“%on A minimum cost and probably sell excess energy to the markets. It
d™ width of each step in function y enforces possible limitations on customers, for example, at the time
) energy bid to adjustment market periods when they need to charge their vehicles or feed energy
" min. energy at each step in function y back to the system. On the other hand, the contracts between the
h,u,z,w binary auxiliary variables aggregator and EV owners can offer certain benefits to the
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customers through lower electricity costs or free battery
replacements.

From the grid perspective, an EV aggregator is similar to the
other demand-side aggregators which utilise the flexibility in time
shiftable loads and act on behalf of a large number of small loads
in the electricity markets [3]. The underlying assumption for such
an aggregator is to schedule the on/off or charging/discharging of
the loads based on the off-peak/peak hours or time periods of low/
high energy prices. This allows them to participate in various
market structures and to offer bids in the markets.

Most of the current literature considers EV aggregators as price-
taker agents [4]. In papers that price-maker aggregators are
considered, if the problem could be intractable, simplifying
assumptions are applied to facilitate solving the problem with
available tools. For instance, literature work [5] is limited to time-
shiftable loads that can only be charged in three hours of the day,
otherwise, its proposed algorithm is intractable. Additionally,
price-maker agents could be modelled through self-schedule
bidding where the aggregator only submits its energy bids to the
market. To our best knowledge, there are no existing studies which
address the problem of a price-maker economic bidding agent
when the conventional mathematical algorithms are intractable. In
this paper, we aim to propose a metaheuristic approach to tackle
the intractability of the problem and show the outperformance of
the presented method.

1.2 Literature survey

EV aggregation has been studied in different publications. Momber
et al. [2] introduced a methodology for maximising the profit of an
aggregator that participates in the day-ahead and balancing
markets. Bidding strategies in both day-ahead and regulation
markets are discussed in [6]. The authors in [7] consider the
bidding strategy of the aggregators as a bi-level problem. The
lower level problem addresses the market-clearing problem and the
upper-level minimises the charging cost. Vaya and Andersson [8]
solved the EV charging problem in coordination with system
operator and discussed the necessary adoptions that are needed in
day-ahead markets to introduce EV aggregators. In [9] a
mechanism is developed to coordinate independent EV aggregators
via a third-party coordinator to avoid the unnecessary rise of
market prices.

In addition, the coordinated operation of aggregated EVs with
renewable resources, especially wind power producers, has been
investigated in several studies [10—13]. This joint operation can
mitigate the inherent uncertainties in the power generation of these
resources and facilitate their integration in the power system.
Furthermore, they can constitute a virtual power plant that acts on
their behalf in the markets [14].

Various sources of uncertainty in the power system such as
market prices or the generation of renewable resources introduce
risk to the decision making of the agents in the electricity markets.
Regarding the EV aggregators, this problem has been addressed in
several publications. Momber et al. [2] models the uncertainties
using a set of scenarios and hedges the risk by adding the
conditional value-at-risk (CVaR) measure to the problem. Other
approaches use Monte—Carlo simulation [15] and robust
optimisation [5, 16].

If the amount of traded energy of an aggregator can influence
market prices, the aggregator is considered as a price-maker agent.
Recently, a few studies have paid attention to this issue since the
advancement in new technologies in demand-side allow providing
a higher amount of demand response from the customer side. In
particular, the authors in [17] address the effect of time-shiftable
loads on energy prices. In this study, generic models for such
flexible loads are proposed and included in the optimisation
problem to investigate their effect on market settlement. A large
price-maker agent can have impact on both market cleared energy
and the cleared price. In [18-20] only the impact of market
participant on energy has been considered. This type of price-
maker agent is called self-scheduling. On the other hand, the
methodologies in [17, 21, 22] consider both energy and price bids
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for price-maker participant which makes it as a price-maker
economic bidding agent.

Compared to the preliminary conference version [21], this study
has the following major improvements: (i) The two pool-based
markets in [21] are extended to three markets, and the number of
considered EVs is significantly increased. (ii) In the current work,
two types of solution methods are considered and compared. The
two approaches are a mathematical algorithm based on the
traditional CPLEX tool and a metaheuristic one; whereas the
authors in [21] only solve the problem through CPLEX algorithm.
(iii) The large number of EVs and a 24-hour market horizon are the
main challenges of the CPLEX approach in the sense that the
problem becomes intractable when the number of EVs, time slots
and scenarios are increased. In fact, the proposed model in [21] is
not practical due to the small number of EVs in the case study. To
address this issue, in this paper, a metaheuristic methodology based
on GAs is proposed, where the problem is reformulated as a non-
linear optimisation problem to be solved by GA. Therefore, in
contrast with [21], here the problem is formulated twice, (i) as a
mixed-integer programming problem to be solved by CPLEX and
(i) as a non-linear programming problem which is solved by GA.
(iv) As far as we know, previous studies including [21], in which a
price-maker economic bidding problem is modelled, use simplified
assumptions to make the problem tractable. This paper, on the
other hand, proposes a GA-based methodology through which the
problem is solved without simplification. Specifically, it should be
noted that, due to the number of binary variables, the price-maker
economic bidding problems are mathematically more complicated
than price-taker and/or self-schedule ones. Accordingly, the
solution of such formulation is better optimised, as demonstrated in
this paper. Therefore, this paper serves as a reference where the
price-maker economic bidding problem is handled without
simplification. (v) The numerical results are extended to present
the application of economic bidding method and GA.

1.3 Contributions

Compared with the home appliances, EVs usually need more
electricity and also have this unique ability to store energy. These
features along with the significant increase in the number of EVs
allow aggregating a large number of vehicles which possibly can
act as a price-maker in the electricity market. Therefore, in this
paper we extend the price maker concept to an aggregator who
coordinates a large fleet of EVs and acts as an economic bidding
agent in the day-ahead market.

Although EV aggregator problem has been reported in prior
literature, some challenging issues still remain that should be
addressed properly. In particular, there is a great need for a
methodology to deal with the intractability of price-maker
economic bidding EV aggregators. Moreover, a few studies are
available that investigate the application of metaheuristic
algorithms in replacing conventional methods to increase the
problem solving speed. However, none of these studies have
modelled the price-maker economic bidding aggregator. For
example, The authors in [23] proposed a methodology to reduce
the solution computing time of market clearing problem. Compared
to our work, both papers use GA to reduce the solution time of the
problem in question. While the exact methods can successfully
solve the problem in this paper, in our work the problem is
intractable when solved by the traditional mathematical approaches
in CPLEX. The contributions of the present work are as follows:

(i) The proposed optimisation framework includes a price-maker
agent participating in a three-settlement pool-based market. The
considered agent is a price-maker EV aggregator who participates
in the day-ahead market by offering price-energy bids (economic
bidding) and in adjustment and balancing markets by offering only
energy bids (self-schedule). The price-maker problem is non-linear
which is properly transformed into a mixed-integer linear problem
(MILP).

(i) The problem is benchmarked against self-schedule scheme
where the EV aggregator participates in the day-ahead market by
offering energy bids only.
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(ii1) From implementation point of view, the MILP problem can be
time consuming, seeing as the exponential relationship between the
number of variables and the time that it takes to solve a mixed-
integer problem. Accordingly, an evolutionary metaheuristic
algorithm based on GA is proposed to cope with problem
intractability. To this end, the problem is reformulated to be solved
by GA. One novel aspect of the formulation is that the selection of
energy and prices from price quota curves (PQCs) is done through
Roulette wheel selection (RWS). Besides, a novel selection method
is used in ‘Selection’ step of GA which enables it to find feasible
solutions.

(iv) Finally, the problem is formulated as a risk-averse optimisation
problem by adding a CVaR risk measure to the objective function.

1.4 Paper organisation

The remaining sections are organised as follows. Section 2
describes the market framework and explains two different
strategies which are used for solving the problem. The
mathematical formulation of the problem and the formulation
which is used in the genetic algorithm (GA) are proposed in
Section 3. Section 4 is dedicated to numerical results of the
problem based on Iberian electricity market data. Section S5,
provides a concluding discussion.

2 Problem description

The problem under consideration is the minimisation of the costs
of an EV aggregator who participates in a three-settlement pool-
based market including the day-ahead, adjustment and balancing
markets, on a short-term basis. It is assumed that EVs can sell
electricity back to the network. The considered aggregator offers
price-energy bids in the day-ahead market and only offers energy
bids in the adjustment and balancing markets. The objective
function consists of the difference between the cost of purchasing
energy from the markets and the profit of selling energy back to the
market, along with the cost of battery degradation and CVaR risk
criterion. The problem constraints are composed of two parts: (i)
technical constraints of EVs' batteries and (ii) the corresponding

market constraints. Finally, the problem is formulated as a
stochastic programming problem. Main sources of uncertainty are
market prices which are modelled via scenarios using PQCs. The
problem is non-linear but it can be transformed into a MILP
problem as it is explained in the following sections.

Fig. 1 illustrates the problem of the paper. The aggregator, after
collecting EVs' demands, uses an optimiser to offer energy and
price bids to the pool market. After the market is cleared, the
cleared energy and prices are available to the aggregator. Then the
aggregator submits the charging and discharging schedules to EV
owners. In this work, ‘optimiser’ is modelled via two different
approaches, a CPLEX-based mathematical algorithm and an
evolutionary metaheuristic one based on GA. The latter is proposed
to deal with the intractability impediment of the former and
consequently increase the speed of the solving process.

2.1 Market framework

The aggregator is considered as a price-maker agent. Since the day-
ahead market is the main trading floor of which the aggregator
purchases most of its energy, it participates in this market by
offering both energy and price bids.

In order to determine the relationship between price and energy,
PQCs are used. Usually, the amount of power that a price maker
produces or consumes is known as the quota of that price-maker.
For a given hour, the market-clearing price can change based on
the quota of the price maker. In this respect, the curve that shows
the market clearing price as a function of the price maker quota is
called PQC or residual demand curve as shown in Fig. 2. For a
price maker consumer (producer), the hourly PQCs are step-wise
monotonically increasing (decreasing) with respect to consumption
level. These curves show how market clears and can be obtained
using forecasting procedures [20].
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Fig. 2a shows an economic bidding offer and a self-schedule
offer. In the self-schedule offer, the offered energy will be cleared
with the respective price, no matter how high the price can be.
However, in the economic bidding offer, the cleared price and
energy are limited to the offered energy and price, respectively. For
example, the PQC in Fig. 2a shows a high level of offered energy
with a low offered price. Therefore, the maximum allowed energy
that will be cleared with this offered price is g, which is less than
.. So, the cost of purchasing g, amount of energy from the day-
ahead market will be: ¢, - p,. On the other hand, in the second
PQC shown in Fig. 2b, the offered price is high enough to allow
the offered energy to be cleared. However, the cleared price will be
obtained based on the offered energy, i.e. 4, ; < p;. Accordingly,
the cost of purchasing x, will be: 4, , ; - X;.

2.2 Problem-solving strategies

The problem is heavily constrained by equality constraints
including binary variables. It can lead to problem intractability as
the number of variables increases. Therefore, in this paper, an
evolutionary metaheuristic algorithm based on GAs along with the
main mathematical algorithm is proposed and the results are
compared. As mentioned earlier, the problem is non-linear. In the
mathematical approach, there is no choice but to use binary
auxiliary variables in order to transform the non-linear problem
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Aggregator Optimizer
Cleared price
and energy Pool

Fig. 1 Aggregator's intermediary role
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Fig. 3 Schematic overview of the paper

into a mixed-integer one. However, GA can solve both linear and
non-linear problems without the need for those auxiliary variables
of the mathematical approach. Accordingly, the number of
variables will be reduced, and the solving process will be easier.

Fig. 3 represents the overall schematic of this study. The
problem of a price-maker EV aggregator is formulated as a price-
maker agent who participates in the day-ahead market by offering
price and energy bids (economic bidding). Offering price bids in
addition to that of energy lead to better-optimised solutions. The
formulated problem is non-linear and therefore, it is linearised in
order to be solved by the mathematical algorithm in CPLEX.
Moreover, the primary non-linear problem is transformed into
another non-linear form to be solved by GA. The linear model is
used to solve a small-sized problem by considering some
simplified assumptions [In order to reduce the number of variables,
hence the size of the problem, it is assumed that the number of time
slots is <24, e.g. 5.]. Next, the results are utilised to fine-tune GA
and minimise the possibility of converging to local minimums.
Finally, by considering all variables, the problem is solved using
GA.

2.3 Optimisation problem

Let @ indicate the index of the scenario, and ¢ represent the index
of time. At each time slot ¢ and scenario @ the considered
optimisation problem can be formulated as the following:

Q T
Z ”m Z (% mj't, [0} + 7/[. u)gt, [0}
=1 t=1

+At.wyt.w + BDt,a) -P- /)z‘_w)] (l)

min (1 —-/)

1 Q
5 + m Z Tl

+p
o=1
s.t.
VLO G+ 8ot Vi = Ol @)
Technical constraints of EVs 3)

In this objective function, =, is the probability of scenario @ and
Gr.0» 8.0 and y,, are the energies purchased energy from day-
ahead, adjustment and balancing markets, respectively. g -4
represents the cost of energy procurement from day-ahead market.
y - g and A - y show the cost of purchasing energy from adjustment
and balancing markets, respectively. Battery degradation is denoted
by BD; , and only considered for selling energy to the market. The
next term indicates the profit obtained by selling energy at a fixed
price, P. Finally, the last term stands for the CVaR formula.
Constraints (2) enforce the energy balance, meaning that the total
purchased energy must be equal to the total charge of EVs. The
problem is also constrained to the technical constraints of EVs
which will be explained in the next section.
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3 Problem formulation

First of all, the constraints of aggregated EVs will be presented.
The considered vehicle constraints are as follows:

Vt,w: 0/ p+ 01 < E, 4
Ora
Vi, w: 009C = 0700, + ol — é_ — P 6)
Vi, w: E™ < 079¢ < E™, (6)
oiC = ¢, )

Constraints (4) are total batteries charge and discharge limitation,
where E represents maximum charge/discharge rate. ¢;,, and ¢,
are the total charges and discharges of vehicles at time slot ¢ and
scenario w. Constraints (5) represent the state of charge (SOC) at
each time slot and scenario. P9 is the total SOC of all batteries
and p,, indicates all the energy loss due to the movement of
vehicles. Constraints (6) impose the maximum and minimum
limitations of SOC. Constraint (7) describes the final value of
SOC.

In the following, the problem formulation for both strategies
will be presented.

3.1 Mathematical optimisation format

The presented objective function in the previous section is non-
linear. In order to replace non-linear parts with linear mixed-integer
terms, the following reformulation is performed.

The cost of buying energy from the day-ahead market, C; ,, is
defined as

Cio= oMo ®)

Therefore, based on the explanations in the previous section about
the clearing process by means of PQCs and following the approach
introduced in [17], C; ,, can be written as:

if x, < q;hw

9t.0 = Xt
th : th
Gro =G0 if Gro<x ©)
: th
Cf, 0= /‘Lt.w.s ‘Gto if X < G100
N

i oth ?
Ct.a) =Pt Yo if 9.0 <X

the piecewise function of C,, can be written in the following
mixed-integer form:

Vt,w: x;— 6, oL < g1 (10)
Vt,0: G < X, (11)
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This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



Vt’w: q;ha) - (1 - at.a))L < qt,w» (12)

V1, ®: Gy < Gl (13)

ny, )

V6,01 Y honsbrons + Zoskin) = Ol < Cron  (14)

s=1

my, ¢

V6,01 Cro < Y Aars(Brons + 2o ki) (15)

s=1
LX) ) )
Vt’ : x;‘.q:z,s(at,m,s + ut, m,xp;‘,‘;"),s) - (1 - 9!, m)L S Ct, > (16)

s=1

M, @

Vi,w: Cr o < x:‘i;,s(ar.w.s + U, sp;?zs)’ (17)
s=1
L)
Ve gl = D X s (18)
s=1
N,
Vi,w: p, = 2 (at,w.s + ut,w.sp;?:;,s)’ (19)
s=1
m o
Vt, w: Xt = Z (bt.a).s + ZLst-x;?;E‘s), (20)
s=1
Vi, 0,5 0 < ay o5 < Uy sr s 21
Vts @, AN 0 S bt‘(u.s S Zl.a).sb??;(,xa (22)
)
Vi, : z U s =1, (23)
s=1
My, g
Vo 3z, 1, (4)
s=1
V0,50 0w, U o5 Zws € {0, 1}, (25)

where constraints (10)—(13) represent the conditions of the
piecewise function, ie. x <g, or x > g, and the binary
variable 6,, decides which condition is held. The next four
constraints determine C;, based on 6, ,. Constraints (18)—(20)
select the value of ¢, p, and x, from their respective PQCs.

Two other non-linear terms, i.e. 7,4 - 8.» and A, - ¥, can be
replaced with:

ho

V4,01 8o = D (dros+ o s8io.s): (26)
s=1
U/.w
V00 Vo= D (Crans + Wea s 27)
s=1
Vi, 0,5: 0 < d; s < Ny sdior.se (28)
Vt’ CO,S: 0 S CY,U),.S' S WI,(U,-S'C;?ZJX,X’ (29)
o
Vo Y =1, (30)
s=1
O
Viw: Y Wiy =1, 3D

s=1

864

VE,®,8: hy 5o Wr s € {0,1}. (32)

Finally, the formulation of MILP problem is

Q T
PIEINCH
wo=1 =1

hao

+ z 7t m,s(dt,w.s + ht.w.sgtn.‘:z.s)

min (1 —p)

= 33
O w ( )
+ Z At o, .s-(Cr, ws T Wz,w,sy;? ‘an)v) +BD,,
s=1
1 Q
-P- Qt_,w)] + <+ 1— (XUJEI ”mﬂm}
s.t.
Vtv [ + 8rw + Vo = Q;.-wy (4) - (30), (34)
T o
Vo: Z Crot Z Tt o, S(dt, w.s + o 81 ‘ar;v)
t=1 s=1
%0 _ (35)
+ Z At,a).s(ct.a).s + Wr.w‘sytr?;").s) +BD,
s=1
=P pro) =€ <y
Yw: n, > 0. (36)

where constraints (35) and (36) are CVaR constraints.

3.2 Evolutionary metaheuristic format

As discussed in Section 1, due to a large number of variables, the
computation time for solving the problem can significantly rise.
Therefore, this paper proposes an evolutionary metaheuristic
approach based on GA to solve this problem. GAs are global
optimisation methods inspired by the Darwinian concept of
survival [24, 25]. In this concept, individuals with better capability
of environmental adaptation will have a better chance to survive.
GAs are free-derivative technics and their chance of being caught
in the local optimum is low. Therefore, GAs have the potential of
obtaining near global solutions, while including the constraints
[26].

Constraints (10)—(32) in the previous subsection are introduced
in order to deal with the non-linearity of stepwise function of
PQCs. For GA, a selection mechanism based on RWS will be
proposed to be replaced by the mentioned constraints. In GA, RWS
is used for selecting potentially useful solutions for recombination.
It works by generating a uniform random number and then, the
span that includes the generated number is selected. For instance,
in Fig. 4, P, is selected if r = U(0, 1) is greater than P, and less
than P, + P,.

Now, in a given PQC, if the stepwise function is mapped to one
axis, the result will be like RWS (Fig. 5). Therefore, the selection
of price/energy can be done by RWS.

To select the offered price and energy of day-ahead market, the
following process is used:

e x, and p, are randomly generated by means of a uniform
distribution shown by U(a, b). a and b are the start and endpoint
of the respective PQC.

* X, determines the limitation for the cleared price, 4, ,, ;, as shown
in Fig. 6. Similarly, p, determines the limitation for cleared
energy, g, which is equal to X} , in Fig. 6.

* Finally, the minimum value of price and energy will be cleared.
For example, considering the second PQC in Fig. 1, the offered
energy is 40 MWh, i.e. x, = 40. In PQC, the respective price for
X, =40 is €20/MWh, i.e. 4, = 20. It means that the cleared
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price would not be >€20/MWh. On the other hand, the offered
price is €35/MWh, i.e. p, = 35 which is greater than 4, . So,
the cleared price will be €20/MWh. In other words,
clearedprice = min {p;, 4, ,} as shown in Fig. 6.

For the adjustment and balancing markets, only the selection of
offered energy is needed, which is also the cleared energy (self-
schedule). In these markets, RWS is used to determine the
respective price as illustrated by Fig. 7.

The values of g; , and y, ,, are not generated independently, due
to the equality imposed by the constraints (2). In order to ensure
that these constraints remain to be maintained, the following
formulations are adopted:

X, w,j

Viwj= <o, j=1,2, 37
}(Lw'j Zj)(t,w,j J ( )
8o = )?t,(u,l X (Q;,-m - qt.a))’ (38)
Yo = )QLH),Z X (wa - qt,(u)v (39)

where y; ., j = U(0, 1).
Therefore, the constraints (10)—(32) are replaced with four
RWS. Finally, the reformulated form of the problem for GA is

Q T
min (l - ﬂ) Z o z (Ct.a) + Ytws8tw T At,w,syt.w
w=1 t=1
+ BDt,(u -P- Q;uz)] (40)
1 Q
HhE+ 1, > ﬂwnw)
=1
s.t.
Vi,w,j: 0< 0 <1, (41)
Vt,: 0l + 01w < E, (42)
Q.
Vi,w: 020 = N + ol — % = Pron (43)
Vi, w: E™ < 79C < E™, (44)
&t = o, (45)

T
Vo: z (Cz,m + Vw580t MaosViow
t=1

(46)
+ BDz‘w -P- pt_w) - é < N

VYw: n, > 0. 47

along with the following parse solution equations
Vt,w: A s = RWS(x), (48)
Vi, 0: X s = RWS(p)), (49)
Vt,®: ¢, = min {X, X:‘i:"x.v}’ (50)
Vtv w: Ct,m = min {Pn )“t,a),s} *qt.w- (51)
VL. Frws = oot~ gl (52)

D Y P70 '

k

V40 8w = Y Frap (53)

J=1
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J
VLo Vo= Y, Frap (54)

IS
Vi, w: Yiw.s = RWS(gr,m)v (55)
Vi, A,y s = RWS( ). (56)

It should be noted that ¢S9C is not an independent variable and its
value is calculated using constraint (43) which is subsequently used
in constraints (44). So, it is not generated by GA process.

In the following, the definition of the penalty function,
crossover and mutation methods, and selection technique of GA is
explained.

3.2.1 Penalty function: In order to include inequality constraints
of the problem, two forms of penalty function are considered in the
GA.

Uniform Random Number
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| | |
0 Py P+P PA+P+ P 1
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Fig. 4 Roulette wheel selection
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Fig. 6 RWS for day-ahead market offers
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For each constraint involving non-negative conditions, the
following penalty function is added to the objective function:

pen _ x| —x

x>0-x 5

(57)

Note that all variables of the problem are non-negative.

For each constraint involving ‘smaller than or equal to’
conditions, the following penalty function is added to the objective
function

X

¢

X< £ o = max{ 1,0} (58)

3.2.2 Crossover and mutation: Arithmetic crossover technic is
used for crossover. The percentages of crossover and mutation are
0.8 and 0.3, respectively.

3.2.3 Selection: In order to select the next generation, the
following procedure is followed: the total population of parents and
offspring is divided into two, feasible and infeasible, matrices. The
feasible matrix has priority. The individuals in the feasible matrix
are sorted based on their objective function while, the individuals
in the infeasible matrix are sorted based on their penalty function

(Fig. 8).

3.3 Benchmark scheme

In order to compare the results of self-schedule and economic
bidding offers in the day-ahead market, a modified version of the
problem formulation is presented. Here, the offers become self-
schedule. To this end, it is sufficient to replace the objective
function (33) with (59) and constraints (10)—(25) with constraints
(60)—(63), respectively, as the following:

Q T
DD
w=1 t=1
My, w

2 A’t. a),s(bz‘,w,s + ZIA(U.S‘X;.]:;,S)

s=1

min (1 -/)

ho

Y Vwsllrons + io,s8l.) (59)

s=1

Ot w
+ Z Ato.s(Cras T Wt.m.sy;:ﬂ:;.s) +BD;,
s=1

Q
- 1
- P Ql.w)] + ﬂ &+ mﬂ;l Tollw |»
s.t.
m o
V01 %= Y (Bans + 2o M), (60)
s=1
Vl, @, S O S bt,w,s S Zt,w,sb;t‘?;s? (61)
866

"y, )

Viw: Y zp.=1, (62)

s=1

Vi, 5t 745 € (0,1} (63)

4 Numerical results

This section is divided into two subsections. In the first subsection,
considering some assumptions which make the problem tractable,
the results of the mathematical formulation are presented. In this
subsection, the impact of different factors such as economic and
self-schedule bidding in the day-ahead market, risk and battery
degradation are evaluated. In the second subsection, the results of
metaheuristic and mathematical methods are compared, without
considering the simplifying assumptions.

In order to deal with the potential problem that GA converges to
local extremum points, two methods are employed: (i) Regardless
of its intractability, the problem is run by CPLEX. As opposed to
finding the best possible solution, it does not take long for CPLEX
to find a suboptimal solution. This suboptimal point is used as an
initial point for GA to reduce the possibility of converging to local
minimums. (ii) GA is run more than once, using several initial
points, to ensure it does not converge to local extremums. After
applying these techniques, our simulation results show that the
problem achieves better optimal solutions.

PQCs are estimated by using Iberian electricity market data
[27]. In the following subsection, seven price scenarios are
considered. The characteristics of 1000 identical EVs and
parameters of CVaR measure are:

[ E O E™ E™ a, /}]

(64)
=[4,0.93,0.93,0,12,0.95,0.5]

4.1 Mathematical algorithm

In this subsection, it is assumed that EVs can only be charged at 8
h of the day, seeing as the process of solving the problem through
mathematical algorithms is intractable, considering all 24 h. This
practical assumption reduces the number of variables, especially in
the economic bidding method. Five factors affect the results: initial
and final SOCs, risk criteria, economic bidding or self-schedule
scheme, the period when vehicles are charged and battery
degradation.

Table 1 reflects the effect of all of the above factors except
battery degradation. In this table, two different final SOCs are
considered, ‘not set’ and ‘6 kWh’ (half of the batteries’ capacity).
When the final SOC is not set, it automatically becomes zero at the
end of the day. This is because the program tries to sell whatever
energy is stored in the batteries to gain profit. Therefore, one can
understand that the final SOC is set to zero in the first case.
Similarly, two cases of initial SOCs are considered by setting
SOC(0) to 0 or 6 kWh. Furthermore, two cases of charging time are
considered: from the beginning of the day through 08:00 am, and
from 10:00 pm to 06:00 am of the next day. It means that EV
owners are limited to charge their vehicles at these specified time
spans. The purpose is to investigate the effect of the charging time
on the profit. For instance, when SOC(0) = 0 and final SOC is not
set, which means final SOC will be zero to reach a more optimised
result, EVs have to buy energy to utilise or sell. On the other hand,
when final and initial SOCs are set to 6 kWh, EVs have to buy the
exact amount of energy that they have used or sold to reach final
SOC of 6 kWh at the end of the day. Therefore, in both cases, EVs
buy exactly the amount of energy that they used and sold.
However, as it can be seen from Table 1, if final and initial SOCs
are 6 kWh, the results are better than the cases when the two SOCs
are set to zero. Therefore, the presented model is helpful to
determine the initial and final battery SOC.

The third factor that impacts the results is how the aggregator
participates in the day-ahead market, i.e. via economic bidding or
self-schedule offers. Finally, the last factor is weighting factor of f
to control CVaR risk measure. Since the program tries to minimise
the objective function, it can be seen that with the increase of f§ the
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Table 1

Obtained results with economic bidding and self-schedule schemes

Case #1: Charging Time: 00:00 - 8:00 (Final SOC: not set)
Economic Bidding Self Schedule
SOC(0) =0 SOC(0) =0
B 0 0.2 0.5 0.7 0.8 1 0 0.2 0.5 0.7 0.8 1
Mean (€) 635.62 635.62 669.00 670.55 672.96 1209.05 831.61 831.61 833.29 833.29 833.29 1349.61
SOC(0) = 6 SOC(0) =6
B 0 0.2 0.5 0.7 0.8 1 0 0.2 0.5 0.7 0.8 1
Mean (€) -1050.24 -1050.24 -1050.24 -1050.24 -1050.24 -648.32 -869.76  -869.76 -869.76 -869.76 -869.76 -600.23
Case #2: Charging Time: 00:00 - 6:00 & 22:00 - 23:59 (Final SOC: 6)
Economic Bidding Self Schedule
SOC(0) =0 SOC(0) =0
B 0 0.2 0.5 0.7 0.8 1 0 0.2 0.5 0.7 0.8 1
Mean (€) 2569.02 2575.07 2575.82 2596.02 2596.02  3423.41 2642.90 2643.06 2643.24 2648.73 2653.69 3527.53
SOC(0) =6 SOC(0) =6
B 0 0.2 0.5 0.7 0.8 1 0 0.2 0.5 0.7 0.8 1
Mean (€) 720.30 720.30 736.66 738.93 742.96 1286.80 844.41 844.41 846.02 846.02 846.02 1340.18
Table 2 Battery degradation Table 3 GA parameters
A B Arithmetic " . Maximum
Mutation Population
BatDeg v x BatDeg 7 x Cases crossover Fite psize number of
™ e - = coefficient iterations
ean (€) 704.19 669.00 ean (€) 753.49 736.66 Case 1 0.3 0.02 300 500
v: BatDeg is considered. X : BatDeg is not considered. Case 2 0.3 0.02 300 400
Case 3 0.3 0.02 400 500
Case 4 0.4 0.1 1000 2000
.4 1 1 2
__ 700 T/B —0.99 Case 5 0 0 000 000
T 680 :
= " =04
3 660 DI improvement in terms of risk management, while the objective
= T \’5 =03 function rapidly deteriorates.
o Tm—e— _ B=0.1
640 TTe= P T °
1420 1440 1460 1480 1500 4.2 Genetic algorithm
CVaR [€]

Fig. 9 Variations of the objective and CVaR functions for different values
of p

expected values increase as expected. On the other hand, economic
bedding results are more optimised than that of self-schedule in all
cases where other factors are identical, i.e. f, initial and final
SOCs, and charging time. For example, for charging time of 00:00
to 08:00 when SOC(0) =0 and f = 0, the expected value of the
economic bidding approach is equal to 635.62, while that of self-
schedule method is equal to 831.61. Moreover, it can be seen that
the expected values drop as SOC(0) increases. The reason is when
SOC(0) = 6 the batteries are half-charged at the beginning of the
time horizon and, therefore, EVs buy less energy than the case of
SOC(0) = 0. Also, in case that the final SOC is not set and the
initial SOC is set to 6 kWh, the results are negative. It means that
EV owners are earning money, and the optimal solution is obtained
when final SOC becomes zero. Hence, average battery charge
dropped from 6 to 0 kWh. A portion of it is used by vehicle's
movement, and the rest is sold to the markets. Only those who need
>6 kWh energy for their trips buy electricity.

Table 2 shows the effect of battery degradation. Considering the
battery degradation will increase the costs, however, it accounts for
a small amount of the total costs. Case A corresponds to Case #I in
Table 1 with initial and final SOCs equal to zero. Similarly, Case B
accords with Case #2 in Table 1 with initial and final SOCs equal
to 6 kWh. Note that all results are obtained considering the
economic bidding approach where f = 0.5.

Fig. 9 shows the impact of risk. As can be seen from this figure,
by increasing f, the value of CVaR decreases and the value of
objective/cost function increases. # = 0 corresponds with the risk-
neutral problem, and in f# = 1 case, the risk is completely included
in the problem. From f=0.4 to = 1.0 there is not much of
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In this subsection, the results of solving the problem with both GA
and CPLEX are reported. These results are obtained using a
computer with Intel® Core™ i7-6700k CPU and 32.0 GB RAM. In
solving the problem with CPLEX under GAMS, eight cores
(threads) are used, and with GA, with the help of Parallel
Computing Toolbox of MATLAB, four cores (workers) are
utilised.

It takes a significantly long time for CPLEX to solve the
problem of a price-maker economic bidding EV aggregator that
participates in a three-settlement pool-based market with the 24-
hour market horizon. Therefore, the problem is reformulated to be
solved by GA. In this respect, the size of the problem is reduced to
enable CPLEX to solve it in a reasonable time. The size-reduction
is done by considering a few number of time slots and scenarios.
Next, the outcomes of CPLEX is used to fine-tune GA in two
ways: (i) CPLEX results serve as an initial point for GA, and (2)
GA parameters are adjusted to approximately reach the same
results as CPLEX. Thus, CPLEX helps GA avoid local minimums
as much as possible. Finally, the number of scenarios and time slots
are gradually increased to find the point where CPLEX becomes
intractable, and also to compare the performance of GA and the
CPLEX algorithm. In addition, for the sake of simplicity, all results
are obtained by setting = 0. Also, the final SOC is set to zero, but
the influence of initial SOC is investigated. Five different cases are
studied to investigate the effect of the number of scenarios and
time slots on the performance of the methods. The GA parameters
for each case are reported in Table 3. It is worth mentioning that
with a small number of scenarios and time slots, the problem can
be solved via both CPLEX and GA. However, by increasing the
number of scenarios and time slots, GA results become more
optimised. In the following, the details of the five different cases
are reported.
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4.2.1 Three scenarios and three times slots (3 x 3): We start
by considering only three PQC scenarios and three time slots, i.e.
hours in this study. Here, the initial SOC is zero. The obtained
mean cost with CPLEX is —€12.4916. The average result by
running GA three times is €7.28.

6000
< 4000
7]

o
“ 2000

0

0 0.5 1 1.5 2 2.5
NFE
%106

Fig. 10 GA output convergence versus number of function evaluations

Table 4 Case #2: Three times slots and three scenarios
and GA is run five times for each scenario

Run Sc#l (€) Sc#2 (€) Sc#3 (€)
#1 -549.64 -548.05 -547.3
#2 -563.89 -565.98 -566.33
GA #3 -555.97 -556.98 -543.93
#4 -559.46 -556.64 -556.62
#5 -563.86 -563.89 -556.18
Average -558.56 -558.31 -554.07
CPLEX -575.52 57455 -561.39

Table 5 Case #4: 12 times slots and five scenarios and GA
is run five times for each scenario

Run Sc #1 Sc #2 Sc #3 Sc #4 Sc #5
#1 -480.29 | -47353 | -488.39 | -493.59 | -494.26
#2 -549.39 | -549.36 | -554.28 | -557.23 | -557.22

GA #3 -465.51 -460.68 | -479.48 | -486.35 | -486.21

#4 -475.96 -472.72 -490.71 -489.58 -492.18

#5 -519.41 -520.62 -527.27 -530.53 -527.45

Average -498.11 | -49538 | -508.03 | -511.46 | -511.46
CPLEX -490.78 | -496.75 | -449.10 | -459.66 | -489.86
0
_ _.@ - CPLEX
Q@ i @I GA °o - ®- ° _e
W, gt
o —200 P-0-0-0_0-"°
5 ’
= v
5} /1
% —400 r
o 2 ~ == d
~600 ~- e
0 2 4 6 8 10
Case

Fig. 11 CPLEX and GA results

Table 6 CPLEX and GA results

gn?; #of 50C(0) Computation time | CPLEX | GA cost
slots scenarios CPLEX GA cost (€) (€)
3 3 0 ~2s ~100s |[-12.4916 7.28
3 3 6 ~2s ~100s |-570.4916| -556.98
5 5 6 ~60s ~300s |-576.2818| -517.27
5 5 6 ~60s ~300s |-570.2474|-556.9834
12 5 6 ~800s ~700s |-477.2371| -504.89
24 5 6 = ~1500s ¥ -200.38
24 12 0 ~3000s 119.5694
24 12 6 ~3000s -211.3834
24 12 6 ~3000s -228.0345
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4.2.2 Three scenarios and three times slots (3 x 3): Again
there are three time slots and PQC scenarios, but the initial SOC is
6 kWh for each vehicle. The obtained mean cost with CPLEX is —
€570.4916 and the average result by running GA five times is —
€556.98.

4.2.3 Five scenarios and five time slots (5 x 5): In this case, the
number of both PQC scenarios and hours are increased to five. The
considered initial SOC is 6 kWh for each vehicle. The obtained
mean cost with CPLEX is —€576.2818 and the average result by
running GA five times is €517.27.

The above three cases are used to tune the GA algorithm, and to
show that GA can reach almost the same solution as CPLEX. In the
following two cases, CPLEX becomes intractable. This is why we
adopt GA in this paper. The presented GA algorithm can be used in
any stochastic programming where a large number of equality
constraints and binary variables lead to intractability.

4.2.4 5 scenarios and 12 time slots (5 x 12): The initial SOC is
6 kWh for each vehicle. The obtained mean cost with CPLEX is —
€477.2371 and the average result by running GA five times is —
€504.89.

Note that in this case, it takes a longer time for CPLEX to reach
the final optimal answer. Therefore, the program was interrupted
by the user after 775 s CPU time. The CPU time for GA was 680 s
to reach the maximum number of iterations. Therefore, GA reached
a more optimised solution faster than CPLEX. It is true that GA's
solution might not be the best result, but there is a trade-off
between the favourable solution, computing time, and the usage of
hardware resources. The computing speed of CPLEX dramatically
decreases when the number of variables and the dimensions of the
problem increase, whilst GA's speed is less affected by these
factors.

4.2.5 5 scenarios and 24 time slots (5 x 24): The initial SOC is
6 kWh for each vehicle. In this case, the problem was not solved
with CPLEX because it can take a long time to respond, especially
in worst-case scenarios. The average result by running GA five
times is —€200.38.

The lower profit than previous cases is due to the fact that
vehicles have less movement in the initial hours of the day, i.e. first
12 hours, compared to the second 12 hours.

It is notable that cases #4 and #5 are added to emphasise why
GA is used. Long run-time of CPLEX in mixed-integer problems is
an obstacle which is resolved by using GA.

Fig. 10 shows one of the five runs of GA. There are some
fluctuations before NFE =~ 0.5 x 10°. It happens as the solution is
infeasible and GA tries to find a feasible one. This is owing to the
sorting technic that is used. Actually, GA finds the first feasible
solution after around 400 iterations out of 2000 total iterations.

Tables 4 and 5 show the detailed results of GA and CPLEX for
the Cases 2 and 4, respectively. Each of these tables represents the
expected cost per scenario obtained with both GA and CPLEX. As
mentioned, for each of these cases, GA is run five times. The result
of each run is presented per scenario along with the average value
of all GA executions. As stated earlier, the results of CPLEX in
Case 4 are not optimal solutions.

It merits mentioning here that since the considered time horizon
in Table 1 is different from that of Tables 4 and 5, the results are
not comparable.

Fig. 11 illustrates the obtained results of solving the problem
using GA and CPLEX. In the first four cases, where the number of
variables is not big, the results of CPLEX are better. However, in
other cases, where more scenarios and variables appear, GA is not
only faster than CPLEX, but also has better solutions. The results
are obtained by generating different scenarios, setting initial SOC
to 6 kWh and final SOC to 0 kWh. The figure clearly demonstrates
the inefficiency of CPLEX when the problem is highly complicated
and constrained.

Table 6 shows the obtained results by CPLEX and GA as the
numbers of hours and scenarios are gradually increased. For
comparison purposes, the results for initial SOC set to 0 or 6 kWh
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is presented. On the other hand, final SOC is set zero for all cases.
As it can be seen, in the first four rows of the table, CPLEX
outperforms GA. Both computation time and optimised cost of
CPLEX are better than GA in these four cases. However, these
cases are impractical due to small number of scenarios and time
slots. In the rest of the table, the number of scenarios and time slots
are large enough to make CPLEX slower than GA or intractable.
The empty rows under ‘CPLEX computation time’ and ‘CPLEX
cost’ correspond to intractable cases where GAMS stopped by user.
In the two cases where SOC(0) = 0, ‘GA cost’ is positive. This is
because final SOC is set to zero, therefore, EVs have to buy
electricity for their trips. However, if they do not intend to use their
vehicles, they can buy energy during off-peak hours and feed it
back to the network in peak hours. Consequently, the total cost is
not too high.

5 Conclusion

A risk constrained stochastic programming problem is formulated
in this paper for a price-maker economic bidding EV aggregator
who participates in a three-settlement pool-based market, namely,
day-ahead, adjustment and balancing markets.

Given a large number of variables, the problem could be easily
intractable. In order to address this issue, an evolutionary
metaheuristic algorithm based on GAs is proposed, along with the
mathematical optimisation method. In this regard, the problem is
formulated separately for GA and mathematical method. To
investigate the performance of our work, a detailed illustrative case
study based on the Iberian electricity market data is presented. In
this vein, three different categories of assessments are presented.
First, the impact of the economic bidding strategy on the
optimisation is evaluated by benchmarking the economic bidding
offers of day-ahead market against self-schedule ones in this very
market. The results show that the economic bidding approach
transcends the self-schedule one. Second, the effect of risk is
investigated by changing the weighting parameter of /. Lastly, the
performance of the GA and mathematical approach are examined.
We demonstrated that the mathematical algorithm is intractable
when solving the problem of a price-maker economic bidding EV
aggregator without simplifying assumptions. Instead, the proposed
methodology based on GA is used to solve the problem. Moreover,
in order to resolve the issue of the GA converging to local
extremum points, we ran the program several times and considered
the average as the solution.

Finally, the problem of this paper can be extended by
considering the cost of parking lots as well as by adding rival
aggregator whose offered prices affect on another. On the other
hand, the offered methodology can be applied in modelling a
virtual power plant consisting of EV aggregators and wind power
producers.
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