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RISING BINOMIAL COEFFICIENTS — TYPE 1: EXTENSIONS
OF CARLITZ AND RIORDAN

TANTHONY G. SHANNON, 2OMUR DEVECI

ABSTRACT. Following some ideas initiated by Leonard Carlitz and John Riordan,
this paper generalizes some properties of the ordinary binomial coefficient through
the use of rising factorials. Properties include connections with Beta and Gamma
functions.

1. INTRODUCTION

We explore here some extensions of Carlitz’ definition of the g-series analogue of
the binomial coefficients [1]

n
1) G
in which

(2) @, =0-q)(1-¢*...(1—q").

The latter suggests that we define a rising factorial analogue of the binomial coeffi-
cients in a similar fashion and then investigate some of its properties. We first recall
rising and falling factorial coeflicients. The rising factorial of n can be given by

(3) n=nn+1)...(n+r—1)

which is an r permutation of (n + r — 1) things, and in contrast the falling factorial
is then given by

4) nf=nn-1)...(n—r+1)

which is equivalent to P(n,r), an r permutation of n distinct things [7]. These two
factorials occupy a central position in the finite difference calculus [8] because

V" = na" 1,

and
Vil = nz"=1,
for the shift operator
VP (n,r)=P(n,r)—P(n—1,r)=rP(n—1,r—1).
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2. RISING BINOMIAL COEFFICIENTS — TYPE 1

We define
n
) i

It is clear that

because

©) [z}”zgiIZjl,

Proof.

In this proof a result stated by Carlitz [6] has been used, namely

g (1)=C2E



Rising binomial coefficients—type 1: extensions of Carlitz and Riordan 265

which is readily verified as follows:

(1) (= _ (=1 (=a)(ca+1)...(at+ k1)
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()= (im) - (3)
we then have that

n—11° n—-11" 2a+n-2[n]"
®) - o
k k-1 a+n—-1 |k
which reduces to the former when a = n = 1. To prove (8) we first need
n|* (a+k)(a+k+1)...(a+n—1)
k]l ala+1)...(a+n—k—1)
which follows immediately from the expansion of the terms in the definition and the

cancellation of common terms in the numerator and denominator. The proof of (8)
now follows as:

[n—l]a+[n—1r (a+k)(a+k+1)...(a+n—2)
k k-1 ala+1)...(a+n—k—2)
(a+k—-1(a+k)...(a+n—2)
ala+1)...(a+n—k-1)
 (a+k)(at+k+1)...(a+n—2) a+k—1
B ala+1)...(a+n—k—2) ( a+n—k—1>
which yields the desired result on multiplying numerator and denominator by (a +
n—1).

By analogy with

3. RISING BINOMIAL COEFFICIENTS AND BETA AND GAMMA FUNCTIONS

We start with the connection in (9):

n a_ L) (a+n)
©) {k] CT(a+n—FKT(a+k)

where I'(a) is the Gamma Function defined by
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which curiously has unexpected applications in medicine [3]. The proof of (9) follows:
From the definition of the Gamma function, it follows that if a is a positive integer,
then [4]

I(a)

al=T(a+1),
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from which we get

Thus,

nai a”
k T gkgn—k

= a(a+1)...(a+n—-1)

k
_ T@+n) @l
F@T(a+k)T (a+n—k)
I'(a)I'(a+n)

F'(a+n—k)T(a+k)

as required.
We next show that
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for the Beta function defined by

We use the result proved in Gillespie [3]:

['(a)T (k)
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From (9) and (10)
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The following matrix reduces to the well-known Pascal array (or associated tri-
angle) when a = 1.

2 1 [ 1] 2a 1 [ 1]
2";1 ; “ 2a-1 20 a[+12¢] 21 2a [02 ]u
a 1 . a 1 . a+1 2 . ﬂ’+i, 2 .
2a—1 L13 2aa1[f +a2£1 ;J ﬁfl[g] _,'_2;‘:-21[3]
2a;1[n12] 2a(;1[nz2]"+2_ul[n;2]” 2_(1[n52] +2a+1[n;2 ]“
0 0
. 0
2:;;1{3] 0
2;:21[”;2]{7%2:4?32[”4_2r 2;;27:45{&1;32]042::17:34[a17_131r
(12)
Two numerical examples now follow:
a=1,n=6
1 1 0 0 0 0
2 3 1 0 0 0
3 6 4 1 0 ) 10 )
Cows 3] T,
a=1,n=38
1 1 0 0 0 O 0 0 i
2 3 1 0 0 0 0 0
3 6 4 1 0 O 0 0
4 10 10 5 1 0 0 0
5 15 20 15 6 1 0 ) 10 )
6 21 35 35 2171—|—[$] [g}%—[g}
L 46x8

5. CONCLUSION

One could continue generating similar results which have a certain elegance based
on the fundamental structure of their similar fractional format [4]. Likewise, rising
binomial coefficients — Type 2 were defined in [10] as

and surprisingly they give rise to quite different properties. Some of these have
been investigated more recently [5]. The notation used in this paper for these two
factorials apparently arose from D.E. Knuth in the discussion which follows a paper
by Riordan at the University of North Carolina in 1967 [9].
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