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Abstract
Recentfloods inAmerica, Europe, Asia andAfrica reminded societies across theworld of the need to
revisit their climate adaptation strategies. Rapid urbanization coincidingwith a growing frequency
and intensity offloods requires transformative actions in cities worldwide.While abandoning flood
prone areas is sometimes discussed as a public climate adaptation option, little attention is paid to
studying cumulative impacts of outmigration as an individual choice. To explore the aggregated
consequences of households’ outmigration decisions in response to increasing flood hazards, we
employ a computational agent-basedmodel grounded in empirical heuristics of buyers’ and sellers’
behaviour in aflood-prone housingmarket. Our results suggest that puremarket-driven processes
can cause shifts in demographics in climate-sensitive hotspots placing low-income households further
at risk. They get trapped in hazard zones, evenwhen individual risk perceptions and behavioural
location preferences are independent of income, suggesting increasing climate gentrification as an
outcome ofmarket sorting.

1. Introduction

Climate change is not amatter of the far distant future.
High-impact storms are already increasing in fre-
quency, with the 2017 hurricanes Harvey, Irma and
Maria ranking among the 5 costliest hurricanes in US
history [1]. The impact of climate change on flood
damage is expected to be even worse in the future
when sea level rise increases, and severe storms
become more common [2]. In the US in particular,
both historically-expectedfloods increase in frequency
as well as unprecedented floods are expected to
amplify with climate change [3]. Moreover, current
population and assets exposure is argued to be under-
estimated, with 41 mln people living in 1:100 year
flood zone instead of 13 falling under the official
Federal Emergency Management Agency (FEMA)
flood maps [4]. Rapid population growth and urbani-
zation in coastal and wetland areas, driven by

economic, cultural and environmental amenities that
the coast and waterways offer [5], lead to further
increase of assets and the number of people exposed to
intensified flood hazards [6, 7]. Adaptation to climate
change that aligns both public and private actions
requires an understanding of how people behave in
response to increasing flood risks, how they are
incentivised to adapt and what implications this has
for the resilience of various groups of society. This is
supported by theory and rich empirical literature on
risk perception and its dynamics in response to floods
[8, 9], and on people’s willingness to take climate
adaptation measures such as insuring against flood
risk orflood proofing their homes [10–12].

Despite a strong empirical focus on households’
adaptationmeasures, individually-driven outmigration
as an adaptation option is still under-explored [13, 14].
Outmigration may increasingly gain popularity in the
long run when risks become too high and incremental
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adaptation measures too expensive [15]. Transforma-
tional changes—such as to move away from hazard
zones [16]—could become a viable option. Households
may voluntarily choose to do so at the point where risk
is unacceptably high, and people switch to abandoning
hazard areas [17]. This puts high-income households in
a favourable position over low-income households,
who may find themselves trapped due to the lack of
resources to move [18]. It goes in line with the concept
of ‘trapped population’ [19], that distinguishes between
individuals who decide not to relocate versus those who
are forced to stay in hazard-prone areas, possibly expos-
ing themselves to progressively severe adversities.
Moreover, floods can lead to climate gentrification [20]
as high-incomehouseholds push updemand and prices
for safe locations, further forcing socio-demographic
shifts in urban areas. While flooding has immediate
economic consequences for all affected, the longer-
term impacts are more detrimental for those who are
economically vulnerable. The consequences of floods
are therefore also characterized by environmental injus-
tice [21] and disproportionally undermine socio-eco-
nomic resilience of low-incomehouseholds [22].

Yet, an open question remains: what is the risk
threshold for people to decide to switch to out-
migration?What would be cumulative socio-demo-
graphic impacts of these behavioural traits if we wait
for floods to happen? A theoreticalmodel suggests that
as floods intensify and risk information diffuses,
flood-prone areas become gradually unattractive
creating economic stimuli for outmigration [23]. Yet,
empirical exploration of these socio-economic process
are scarce, with little knowledge on possible thresholds
and distributional impacts of this process across popu-
lations and places [24]. In particular, a quantitative
study bringing these aspects together is missing. To
address this gap, we study how people’s risk percep-
tions change dynamically with the occurrence of
major floods, exploring whether and when people
switch to outmigration as an adaptation option and
what implications it has on a city. In an empirical
agent-based simulation parametrized using unique
survey data from 8US flood-prone states we showhow
individual choices, institutionalized in property mar-
kets, involuntarily lead to demographic shifts in
response to natural hazards.We show that this process
can gradually sort out high and low income house-
holds, amplifying inequalities and placing vulnerable
households further at risk. By comparing socio-eco-
nomic dynamics in two coastal cities with different
proportion of houses in hazard-prone locations and
under different scenarios of flood frequency we
demonstrate, under which circumstances massive
outmigration is triggered. Irrespectively of the scale of
impacted households, we find that floods launch
socio-economic feedbacks that create favourable con-
ditions for climate gentrification.

2.Methods

2.1. Evolving climate-drivenflood risks in artificial
societies
Comprehensive surveys [25, 26], hedonic analysis
[27, 28], and flood modelling [29] deliver a variety of
empirical evidence for the relationships between
climate-driven floods and adaptation choices, prop-
erty values and socio-demographics in hazard zones.
Although surveys are a useful method to measure
flood risk perceptions of individuals, they provide just
a snapshot in time and omit interactions among socio-
economic actors. Hence, it is difficult to quantify from
surveys how this dynamics would impact socio-
demographics in hazard zones over time. Hedonic
analysis on the other hand can be used to assess the
aggregated marginal impact of flood risk on property
values, but it is difficult to trace back the behaviour
and perceptions that underlie these price effects [30].
Combining behavioural evidence on risk perceptions
and factors affecting them with the dynamics of
market institutions permits one to explore how urban
socio-economic patterns are shaped in flood-prone
areas and how they evolve over time.

Agent-based modelling (ABM) is the key method
to trace the emergence of system behaviour modelled
from the bottom up through the explicit coding of
behavioural rules guiding individual decisions and
interactions [31, 32]. Various theories [33] and data
sources are employed to validate behavioural rules and
resulting macro patterns in these artificial societies
[34]. The main advantages of ABM are its capabilities
to study the aggregated effects of adaptive behaviour of
many interacting heterogeneous agents with bounded
rationality who learn from their experiences and
adjust decisions [35]. Notably, ABM can be used to
model systems out-of-equilibrium [36], which allows
the exploration of non-marginal changes and regime
shifts [37]. ABM is increasingly becoming the main-
stream method to merge a variety of data on beha-
vioural traits, with adaptive learning, dynamics of
institutions and spatial or environmental changes
essential to study socio-economic impacts of climate
change [38, 39]. In the flood domain, ABM has been
used to study feedbacks between land use and inunda-
tion [40], evolution of housingmarkets in flood-prone
areas [41, 42], and uptake of flood insurance [29].

2.2.Modelling behavioural responses to climate-
drivenflood risks andhousingmarkets
To explore the impacts of potential bottom-up out-
migration from flood zones on the socio-demographic
structure of cities in face of repetitive floods, we
employ a spatial ABM of a housing market where
buyers and sellers with heterogeneous risk perceptions
and incomes interact [30, 43]. Table 1 describes the
main model inputs and the data sources used for
validation of these inputs. We use GIS data on
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Table 1. Inputs, description and data sources of the RHEAmodel.

Model input Description Data source

Residential property Houses with georeferenced location and a set of structural

characteristics: age, square footage of the house, size of the

lot (acres), number of bedrooms, a dummy variable indicat-

ing whether the house is in a special flood hazard area

(SFHA), and a variable indicating the annual probability of a
flood affecting the property

TheGIS parcels with structural character-

istics were supplied by the authors of Bin

et al [46] (Beaufort), and Bin and Landry
[28] (Greenville)

At initialization the value of the properties is estimated based

on real estate transactions from2000 to 2004 (Beaufort), and
from 1992 to 2008 (Greenville)

Households’ incomes and

housing budgets

Whenhouseholds enter themarket as a buyer, they decide on

their housing budget that is partly random (drawn from a

normal distributionwithmean=0 and sd=0.77), and
partly based on their income by the equation:

The income distribution of the households

in themodel is based onUSnational sta-

tistics [47]

( ) [ ]s+ + =e income random4.96 0.63 ln 0.77* The percentages of income that households

allocate to housing is validatedwith sur-

vey data [45] andUSnational statis-
tics [47]

Household’s risk percep-

tions and risky

behaviour

Households have heterogeneous attitudes towards flood risk.

Some households are highly risk-averse andwould never

buy a house in theflood zonewhile others do not even think

about flood riskwhen they buy a house. This depends on

their personality and the information that they gather about

the risk (e.g. personal experience or talking to neighbours).
The information aboutflood risk that homeowners receive

changes during the simulation due to simulated floods and

interaction among others agents

The heuristic rules of howourmodelled

agents update their risk perception and

behaviour are derived from adetailed

survey among 1040 households along the

south and east coast of theUSA [45]. The
survey was designed to provide input for

themodelling of our agents

Behavioural rules for buy-

ers and sellers

The behavioural rules of buyers and sellers form the core

dynamics of our housingmarketmodel. Buyers look for a

homewithin their budget constraints and preferences for

housing attributes and home location. Sellers offer their

homes at the highest possible price. Buyers and sellers

negotiate over prices. The housingmarket is the aggregated

consequence of all these behaviours, trade attempts and suc-

cessful transactions.Which iswhywe used various sources

of expert knowledge and survey data to help us formulate the

behavioural rules for the agents in ourmodel

2×2 h in-depth interviewswith real estate
agents to specify themain architecture of

themarket (how ask and bid prices are

formed, how agents negotiate prices,

how they adjust prices, how learning on

price expectations is happening)

19× half-hour to one hour interviewswith

real estate agents inNorthCarolina on

the things that households are looking

for in a home.

surveys among 519 buyers and 521 sellers

along the south and east coast of the

USA [45]
Algorithm for updating

the seller’s price

expectations

Sellers formulate their ask price according to currentmarket

conditions. All transactions in the simulation are stored at

each time step and are used as input for the price expecta-

tions in the next time step.We run hedonic regression on

these transactions to capture themarginal price of property

characteristics, andwe use spatial interpolation of the resi-

duals (kriging) to assess the value of neighbourhood loca-
tion. The price is also corrected for demand for similar

properties in the same neighbourhood in previous time step,

evenwhen the properties are not sold yet. High demand

results in a higher price and low demand in a lower price

than estimatedwith hedonic analysis

The choice of the pricing algorithmwith

hedonci analysis and kriging is based on

rigourous cross-validation of actual

property transactions [48]

The correction for demandwas imple-

mented in themodel after consulting

with real estate agents inNorthCarolina

in 19× half-hour to one hour interviews
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structural characteristics of properties (e.g. age, sq.
feet, number of bedrooms, etc [28]) to initialize the
spatial environment in two case-study coastal towns.
The GIS data offer us exact latitude and longitude
locations of the properties. The datasets also contain
1:100 and 1:500 flood zones, as designated by the
FEMA that offers flood maps based on location and

elevation of the property [44]. To instantiate agents
behavioural rules we use the household survey con-
ducted separately among buyers and sellers (total
N=1040) in January–February 2017 in eight coastal
states in the USA, of which some have recently
experiencedmajor flooding [45]. At the core wemodel
location choices of individual households and their

Figure 1. Schematic representation of buyer behaviour in response toflood risk. Red indicates negative effects and green the positive.
The strength of the impact is given by the thickness of the lines. Themain responses of buyer agents in themodel are highlighted in
grey.

Figure 2. Schematic representation of seller behaviour in response to flood risk. Red indicates negative effects and green the positive.
The strength of the impact is given by the thickness of the lines. Themain responses of seller agents in themodel are highlighted in
grey. The box ‘moving out of the flood zone’ indicates household agents that sell their property for all sorts of reasons, and choose to
live outside theflood zone after themove. The box ‘moving out to evade the hazard’ is a subset of the former group highlighting agents
sell their house explicitly to escape the hazard offlooding.
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perceptions towards flood risk, which may affect their
behaviour in the housing market, as illustrated in
figures 1 and 2. Agents4 vary in incomes, preferences
for location and attitudes towards flood risks that
adapt over time.

Buyers choose a dwelling affordable for their
income based on its price and giving them high utility
based on individual preferences and house character-
istics. We tested both Expected Utility and Prospect
Theory specification of individual choices under risk
and found that Expected Utility explains better the
empirical macro phenomena [30], such flood risk dis-
count elicited from the housing transaction data over
11 years [28]. However, when experiencing a hazard
event behavioural biases alter individual choices.
Namely, households’ attitude towards flood risk may
inhibit them from buying a property in a flood zone
(figure 1), as elicited from the survey data [45].

Households may choose to put their house on sale
and look for a home in another location. Sellers form
an efficient ask price based on hedonic analysis of the
actual house sales in the region [28].We furthermodel
adaptive price expectations in this ABM market using
hedonic analysis and kriging of recent simulated sup-
ply, demand and transactions (analogous to appraisals
of real estate agents in the real housing market). Seller
always choose the highest bidder, hence houses that
are much in demand likely sell above original asking
price. If house receive no bids, a seller would gradually
reduce the ask price. Those sellers who used to reside
within a flood zone will more likely search for a new
house in a safe location when they have experienced a
flood (figure 2) [45].

Further, we simulate how people update their risk
perceptions and their preferences for living in a flood
zone after the occurrence of a major flood, which is
grounded in theory and empirical observations of
household-level preferences and behaviour in
response to floods [45]. This is modelled by altering
the posterior probability that buyers will avoid proper-
ties in the flood zone, or that households abandon the
flood zone, conditional on their level of fear towards
flooding, their experience with flooding and whether
their property got damaged from floods. Individual
changes in behaviour cumulatively affect the aggregate
supply, demand, and value of properties in hazard ver-
sus safe areas. Driven by adaptive households’ pre-
ferences, the effects of floods propagate through
market interactions, affecting the socio-demographic
structure of climate-sensitive urban areas.

To account for increasing frequency and the extent
of flooding expected with climate change, we run the

model under different flood occurrence scenarios and
apply it to two cases in North Carolina, USA: beaufort
and Greenville. Both cities are in an area where hurri-
canes caused major flood damage to properties in the
past. The cities differ in the nature of the flooding
(coastal storm surge versus inland river flooding) as
well as in the extent of the flood zone—Beaufort has a
larger share of hazard-prone properties (29.9% and
21.5% are in the 1:100 and 1:500 flood zone, com-
pared to 6.4% and 0% respectively in Greenville), and
hence the impact of flooding is more widespread. We
simulate 15 years of property transactions in the per-
iod 2015–2030. We assess the impact of floods by
comparing three scenarios: a benchmark scenario
with no floods, a scenario with a single flood in 2020
and a scenario with repetitive floods in 2020 and 2024.
The likelihood of the second scenario may seem
unrealistic from the first glance for flood zones of
1:100 frequency. However, Greenville has already had
two major floods happen shortly after each other in
1996 (hurricane Fran) and in 1999 (hurricane Floyd)
[28], even without climate change effects pronounced
back then in the area. Hurricane Harvey was the third
1:500 year flood in three years [49]. Hence, we use the
repetitive floods in two coastal towns with different
shares of houses in flood zones to explore a bottom-up
response to increasing flood probability and severity of
floods with climate change. Considering downscaled
climate change scenarios and their impact on flood
occurrences in the area would be an important direc-
tion for future work. Given the stochastic nature of
ABMs, we compare the three scenarios across 663
Monte Carlo runs (221 runs for each scenario).

3. Results: transitioning fromaffluent
neighbourhoods to poverty traps

Affluent locations in a coastal town may become
unattractive for living as floods become repetitive and
signal the extent of risk when affecting a large share of
local properties [23]. Housingmarkets drift into a new
regime when damages lead to a drop in the aggregate
demand, when market recovery does not occur
smoothly, and when some people rush to relocate into
safe zones while others remain trapped in the hazard
zones [50].

3.1.Damages and drop in demand
Under a variety of behavioural heuristics elicited from
the survey, our spatial agent-based coastal housing
market model indicates that a major flooding initially
stagnates the market. Properties suffer damages and
demand for properties in the flood zone declines
rapidly as household agents avoid risk-prone proper-
ties. It causes a significant drop in property values in
the hazard zones (figure 3).

In both towns the simulated peak price drop
occurs immediately after the first flood, after which

4
For the sake of readability of this paper we decided to keep our

description of our ABM very general. For more details please have a
look at our supplementary methods, or at the online version of our
model at the online ABM sharing platformCoMSES, which includes
the model code, ODD+D description and input data. https://
comses.net/codebases/8e6c8883-d618-4286-808f-8632adf4f1e0/
releases/1.0.0/.
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values slowly start to recover. The price recovery is a
result of newcomers entering the market from outside
who have not yet experienced local floods. These peo-
ple are generally less risk-aware than those who have
experience with flooding and damage to property [45]
and see an investment opportunity in the temporarily
low-valued properties in the hazard zones. As a result
of market sorting, this group of risk-unaware buyers
generally have a lower income than households who
lived there before the flood. Due to path dependence
over time, the effect is amplified by the fact that
demand for safe properties increases followed by pri-
ces, forcing low-income households into hazard
zones. Consequently, our model shows that the first
flooding results in a price drop of 26% (29% for
Greenville) on average in the 100 year flood zone and
20% in the 500 year flood zone for Beaufort
(figures 3(a) and (b)). The second flood leads to a 35%
drop (32% for Greenville) in property values on this
simulated market in the 100 year flood zone and 25%
in the 500 year flood zone.

3.2.Market recovery
Recovery time of property values strongly depends on
the number of properties in the flood zone and the
number of households affected by the flood. Our
model illustrates thatmarkets with only few properties
in hazard zones (Greenville, figure 3(b)) quickly
recover, as the city population forgets about few local
flood occurrences in the large pool of unaffected
properties. Hence, there is sufficient demand from
risk-unaware households moving into flood zones,
and it does not create a lasting market effect. In
contrast, markets with a large share of flood-prone
properties (Beaufort, figure 3(a)) witness a trouble-
some shift in the market trend. When many people
have experienced flooding or property damage the

price drop is significant and lasting. Moreover, there is
a surplus of properties for sale in the flood zone
compared to the relatively few risk-seeking households
that buy them, resulting in a large share of unsuccessful
sale attempts in Beaufort after theflood (figure 4(a)).

3.3.Outmigration fromflood-prone areas
In the model, empirical behavioural traits prescribe
some affected households to relocate from hazard
areas after a flood. It results in a significant out-
migration of households away from the flood zone,
particularly when the number of affected households
is relatively small. The fraction of households moving
out is a lot smaller when there are more properties
affected, limited by market demand for flood-prone
properties. Namely, while a great number of house-
hold agents desire to move out, the relocation is
limited by the number of people that are willing to buy
these properties. Initially the sales increase slightly due
to risk-unaware buyers that are attracted by the low
prices, but in the long run people risk getting locked in
the hazard zones because few people want to buy their
houses (figures 4(a) and (b)). This is particularly the
case in Beaufort that has a large share of affected
households and relatively few risk-unaware buyers
(figure 4(a)). Moreover, when prices drop sharply
following a flood it impedes some household agents
from selling at a price lower than their mortgage5

(figures 4(c) and (d)). Hence, households with a low
down-payment become locked into living in hazard
areas. Households that invested more personal capital
in the property (and have lowermortgages) have better

Figure 3.Change in average property value in the 100 year (continuous line) and 500 year (dashed line, Beaufort only)flood zones as a
result offlooding. Recovery time differs between the cases becauseGreenville has a lower proportion of properties in theflood zone.
Lines represent the average impact of one flood (red) and of repetitive floods (blue) across 663Monte Carlomodel runs. The bands
represent 80%of the runs.

5
This immediate effect of people getting stuck does fade away

relatively quickly when prices recover and people have paid offmore
of their debts. The pattern is independent of the study area, which
indicates that paying off themortgage ismore important as prices do
not recover very well in Beaufort after theflood.
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opportunities tomigrate out of the hazard zones, since
they can afford accepting a lower price for their house.

3.4. Climate gentrification
The two above-mentioned processes—a drop in
demand and prices after the flood, and new low-
income risk seekers moving in—together cause a
gradual increase in poverty in the years following
major flooding events. Our results demonstrate that
flood damages and the drop in property values results
in a gradual decrease in incomes of households
residing in the flood zone, with the lower income
cohorts affected stronger. Across all Monte Carlo runs
themedian income of households in the 100 yearflood
zone decreases by 2%–3% after a single flood and
4%–6% in ten years with two major floods, while in
that same period the lowest income quintile decreases
by 4% up to 7%–9% respectively. As such, the poor
people get poorer, increasing social vulnerability in
flood-prone areas. Consequently, the percentage of

households earning beneath the poverty threshold
increases steadily in both modelled towns in the years
following a flood (figure 5), which happens already
after a single flood. In the repetitive floods scenario we
see that the first flood has the strongest impact,
showing that the impact of a flood on poverty is more
pronounced after a long periodwithoutfloods.

Although we see that prices and selling conditions
recover somewhat in a span of 5–10 years after the
flood, in particular in Greenville, the increase in pov-
erty seems to be more permanent in both study areas.
Even when prices have a tendency to return to their
old level, poverty still increases by over 30% compared
to the control scenario (no floods) ten years after the
first flood. The processes gradually change the centre
of gravitation on a market pushing high-income
households towards safe zones, while attracting
increasing numbers of vulnerable households to risk-
ier locations. This goes hand-in-hand with climate
gentrification based on speculative investments in

Figure 4.Households that want tomove out of theflood zone after theflood but cannot. Either theywithdraw their property from the
market after a number of unsuccessful attempts due to lowdemand (figures 4(a) and (b)), or because theirmortgage debt is higher
than themarket value of the property (figures 4(c) and (d)). Lines represent the average impact of one flood (red) and of repetitive
floods (blue) across 663Monte Carlomodel runs. The dashed lines in the Beaufort case represent the effect in the 500 year flood zone.
The bands represent 80%of the runs.

7

Environ. Res. Lett. 15 (2020) 034008



low-hazard properties [20], which further reinforces
the trends of high-hazard neighbourhoods falling into
decline.

4.Discussion and conclusions

This paper contributes to the climate adaptation litera-
ture by studying the consequences of household-level
outmigration decisions on socio-demographics and
urban resilience, mediated through housing market
responses. Our coastal housing market ABM shows that
household behaviour in response to floods triggers
market sorting, which enhances the risk of climate
gentrification. Low-income households get trapped in
hazard zones, even when households’ risk perceptions
and behavioural preferences are independent of income.
The behavioural rules in our simulations are validated
with empirical surveyfindingsonoutmigration triggered
by floods that are already happening in our current
climate, including thefloods causedbyHarvey [45].

We use the spatial ABM to study urban sorting
triggered by consecutive floods, which could be expec-
ted as floods intensify in frequency and volatility with
climate change. The comparison between the two
coastal towns—with 6.4% of houses in the 100 year
flood zone (Greenville) versus 29.9% of houses in the
100 year flood zone and another 21.5% in the 500 year
flood zone (Beaufort)—provides an intuition on how
markets with boundedly-rational agents with hetero-
geneous risk attitudes react when floods intensify in
severity. Hence, we can already find some empirical
parallels of our model’s scenarios such as the out-
migration that happened after hurricane Katrina6 [52].

The results of this paper highlight that a bottom-up
‘Laissez-Faire’ approach to climate adaptation could
locally result in increased social vulnerability to flood
risk, the extent of which will likely expand rapidly
given the climate and population trends along the
coast [6]. We stress that a timely and coordinated
approach of well-structured institutional action is
necessary in order to increase urban resilience against
climate-change-driven floods. An artificial society,
such as in the presented ABM, can be instrumental in
exploring adaptation pathways where costs and bene-
fits are shared by public and private actors, permitting
to explore cross-scale adaptation [14] policies.

While our model shows important market-driven
effects of floods on urban resilience, the interaction
with other institutions and socio-demographic pro-
cesses might amplify or attenuate the effects. Our
model can be extended by including other relevant
drivers of socio-economic vulnerability to floods, and
ways to channel smooth urban transformations in cli-
mate-sensitive areas. Future researchmay focus on: (1)
connecting to labour markets—storms put businesses
out of operation or cause major interruptions, and job
(un)availability inhibits people’s options to out-
migrate, (2) integrating of sociodemographic push
and pull effects—the impacts are amplified by urban
blight when critical poverty thresholds are reached in
the hazard area, and (3) modelling of institutional
responses—insurance companies, (federal) risk-man-
agement agencies and policy interventions can play a
major role in the recovery trajectory after a flood, and
in damage prevention before the flood. Institutions in
particular can be instrumental in improving social
resilience against future flooding and assuring the
benefits of cross-scale adaptation [53]. The model is
explicitly designed to explore bottom-up drivers of
resilience against flooding. Given that it projects an
emerging increase in social vulnerability, it is

Figure 5.Change in poverty in the 100 year (continuous line) and 500 year (continuous line, Beaufort only) reoccurring flood zones as
a result of flooding.We use the 2016US poverty threshold for 4-person households as a [51]. Lines represent the average impact of one
flood (red) and of repetitive floods (blue) across 663Monte Carlomodel runs. The bands represent 80%of the runs.

6
In the model we did not simulate a complete abandoning of

properties. All properties in the model had to be re-occupied. We
are uncertain how this effects the results, but the model allows
possibilities to further explore this.
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worthwhile to investigate what role institutions can
have in alleviating the impacts of future floods.
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