
UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

STREAMING DATA REGRESSION

by

Hang Yu

A Thesis Submitted

in Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Sydney, Australia

November, 2020



Certificate of Authorship/Originality

I, Hang Yu declare that this thesis, is submitted in fulfillment of the requirements for

the award of Doctor of Philosophy, in the Faculty of Engineering and Information

Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referencecl or acknowledged. In

adclition, I certify that all information sources and literatttre used are indicated in

the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Tlaining Pro-

gram.

signatrrre:

Dare: lo f tt I lo lo

Production Note:

Signature removed prior to publication.



ABSTRACT

STREAMING DATA REGRESSION

Machine learning is a field of computer science that gives computers the abil-

ity to learn knowledge. Regression analysis is one of the most important tasks to

address in the area of machine learning, and it is a form of predictive modeling

technique that investigates the relationship between dependent and independent

variables. However, most regression algorithms, whether against linear regression

or nonlinear regression analysis, were designed based on batch datasets. Nowadays,

technological advancements make it possible to access fast and potentially infinite

data known as streaming data. In streaming data, the data is displayed in the form

of sequences and can only be read once in a predetermined order, so batched regres-

sion algorithms cannot be used to process streaming data. The streaming algorithm

is a new type of technique in machine learning. In streaming algorithms, data are

processed sequentially as well and can be examined in only a few passes (typically

just one).

However, as a novel learning technique, the streaming algorithm is still immature

and imperfect for the regression problem. Firstly, most of the existing streaming

regression algorithms only can address precise data; however, in many real-world

applications, streaming data is generated under noisy environments. The noisy data

impacts the learning process of many regression algorithms and thereby resulting in

the performance of many algorithms decrease dramatically. Secondly, more studies

on streaming data show that data distribution is nonstationary; it can change or

evolve. Concept drift refers to this unpredictable change of data distribution in

streaming data, and the performance of an algorithm becomes declines when concept

drift occurs. Hence, concept drift in streaming data is also a factor that impacts

the performance of streaming regression algorithms. Finally, in many real-world

applications, the regression problem of streaming data becomes more complicated.



Two or more outputs instead of single output need to be predicted. However, multi-

output regression, which corresponds to two or more outputs, has been discussed

extensively for offline, static settings. Only a few works address how to solve this

problem for streaming data. Motivated by this reasoning, our research on streaming

data regression aims to conquer the aforementioned challenges.

In order to solve streaming data regression under a noisy environment, we pro-

pose a novel online regression algorithm, called online robust support vector regres-

sion (ORSVR). ORSVR is able to solve nonparallel bound functions simultaneously.

Hence, the large quadratic programming problem (QPP) in classical v-SVR is de-

composed into two smaller QPPs. An online learning algorithm then solves each

QPP step-by-step. The results of a series of comparative experiments demonstrate

that the ORSVR algorithm efficiently solves regression problems in streaming data,

with or without noise, and speeds up the learning process. Furthermore, we also

propose an online topology learning algorithm to filter noise data in the data prepro-

cessing stage, called Gaussian membership-based self-organizing incremental neural

network (Gm-SOINN). Gm-SOINN is an unsupervised learning algorithm and can

learn a topology network to represent the data distribution accurately. The size of

the topology network is much smaller than the size of the training data. In addi-

tion, Gm-SOINN utilizes the advantages of fuzzy logic, unlike other SOINN-based

methods that allow only one node to be identified as a “winner” (the nearest node),

Gm-SOINN allows for any node to be selected as the winner and uses a Gaussian

membership to indicate the degree to which nodes are identified as winners.

In order to the streaming data regression problem under evolving environments,

we propose continuous support vector regression (C-SVR) for nonstationary stream-

ing data. Like an ensemble-based method, in C-SVR, a series of regression models

are continuously learned in a series of time windows to determine the relationship

between the input and output at different timestamps. Additionally, in contrast

to algorithms that forget all learned knowledge, learning processes in different time

windows are not independent in C-SVR. A similarity term added to the QPP carries

some learned knowledge from the last model forward into the current model. The



problem of evolving streaming data regression has been a topic of consistent research

in the fuzzy systems community. Hence, a novel evolving-fuzzy-neuro system, called

the topology learning-based fuzzy random neural network (TLFRNN), is proposed.

In TLFRNN, we revised our proposed Gm-SOINN to self-organize each layer of

TLFRNN. However, different from current EFN systems, TLFRNN learns multiple

fuzzy sets to reduce the impact of noises on each fuzzy set, and a randomness layer is

designed, which assigning the probability of each fuzzy set. Also, TLFRNN does not

utilize TSK rules; instead uses a simple inference that considering fuzzy and random

information of data simultaneously. More importantly, in TLFRNN, concept drift

can be detected and adapted easily and rapidly.

In order to solve the multiple-output regression problem of streaming data, we

present an online multi-output regression system, called MORStreaming, for stream-

ing data. MORStreaming uses an instance-based model to make a prediction be-

cause this model can quickly adapt to change by only storing new instances or by

throwing away old instances. However, learning instances in our regression system

is constrained by online demand, and need to consider the relationship between out-

puts. Hence, MORStreaming consists of two main algorithms: 1) an online learning

instances algorithm based on topology networks was designed to make MORStream-

ing robust to noise and determines the number of instances. 2) an online learning

structured-outputs algorithm based on adaptive rules was designed for MORStream-

ing to learn the correlation between outputs automatically.

In summary, our thesis describes original research into streaming data regression,

a problem that is important but relatively under explored. The original contribution

is made in 3 aspects: (i) dealing with noisy streaming data; (ii) dealing with evolving

streaming data; (iii) dealing with streaming data with multiple outputs.

Dissertation directed by Professor Jie Lu

Australian Artificial Intelligence Institute
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meanA is the mean density of the nodes in subclass A

t is the order in which the sample X inputted

µi(t) is the Gaussian membership of input sample X(t) belongs to node

i

G is a Gaussian model

mvG is the mean vector of the G

CovG is the covariance matrix of the G

numG is the winner times of the G

rG is a vigilance parameter to decide whether an input data belongs

to the G
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