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ABSTRACT

STREAMING DATA REGRESSION

Machine learning is a field of computer science that gives computers the abil-

ity to learn knowledge. Regression analysis is one of the most important tasks to

address in the area of machine learning, and it is a form of predictive modeling

technique that investigates the relationship between dependent and independent

variables. However, most regression algorithms, whether against linear regression

or nonlinear regression analysis, were designed based on batch datasets. Nowadays,

technological advancements make it possible to access fast and potentially infinite

data known as streaming data. In streaming data, the data is displayed in the form

of sequences and can only be read once in a predetermined order, so batched regres-

sion algorithms cannot be used to process streaming data. The streaming algorithm

is a new type of technique in machine learning. In streaming algorithms, data are

processed sequentially as well and can be examined in only a few passes (typically

just one).

However, as a novel learning technique, the streaming algorithm is still immature

and imperfect for the regression problem. Firstly, most of the existing streaming

regression algorithms only can address precise data; however, in many real-world

applications, streaming data is generated under noisy environments. The noisy data

impacts the learning process of many regression algorithms and thereby resulting in

the performance of many algorithms decrease dramatically. Secondly, more studies

on streaming data show that data distribution is nonstationary; it can change or

evolve. Concept drift refers to this unpredictable change of data distribution in

streaming data, and the performance of an algorithm becomes declines when concept

drift occurs. Hence, concept drift in streaming data is also a factor that impacts

the performance of streaming regression algorithms. Finally, in many real-world

applications, the regression problem of streaming data becomes more complicated.



Two or more outputs instead of single output need to be predicted. However, multi-

output regression, which corresponds to two or more outputs, has been discussed

extensively for offline, static settings. Only a few works address how to solve this

problem for streaming data. Motivated by this reasoning, our research on streaming

data regression aims to conquer the aforementioned challenges.

In order to solve streaming data regression under a noisy environment, we pro-

pose a novel online regression algorithm, called online robust support vector regres-

sion (ORSVR). ORSVR is able to solve nonparallel bound functions simultaneously.

Hence, the large quadratic programming problem (QPP) in classical v-SVR is de-

composed into two smaller QPPs. An online learning algorithm then solves each

QPP step-by-step. The results of a series of comparative experiments demonstrate

that the ORSVR algorithm efficiently solves regression problems in streaming data,

with or without noise, and speeds up the learning process. Furthermore, we also

propose an online topology learning algorithm to filter noise data in the data prepro-

cessing stage, called Gaussian membership-based self-organizing incremental neural

network (Gm-SOINN). Gm-SOINN is an unsupervised learning algorithm and can

learn a topology network to represent the data distribution accurately. The size of

the topology network is much smaller than the size of the training data. In addi-

tion, Gm-SOINN utilizes the advantages of fuzzy logic, unlike other SOINN-based

methods that allow only one node to be identified as a “winner” (the nearest node),

Gm-SOINN allows for any node to be selected as the winner and uses a Gaussian

membership to indicate the degree to which nodes are identified as winners.

In order to the streaming data regression problem under evolving environments,

we propose continuous support vector regression (C-SVR) for nonstationary stream-

ing data. Like an ensemble-based method, in C-SVR, a series of regression models

are continuously learned in a series of time windows to determine the relationship

between the input and output at different timestamps. Additionally, in contrast

to algorithms that forget all learned knowledge, learning processes in different time

windows are not independent in C-SVR. A similarity term added to the QPP carries

some learned knowledge from the last model forward into the current model. The



problem of evolving streaming data regression has been a topic of consistent research

in the fuzzy systems community. Hence, a novel evolving-fuzzy-neuro system, called

the topology learning-based fuzzy random neural network (TLFRNN), is proposed.

In TLFRNN, we revised our proposed Gm-SOINN to self-organize each layer of

TLFRNN. However, different from current EFN systems, TLFRNN learns multiple

fuzzy sets to reduce the impact of noises on each fuzzy set, and a randomness layer is

designed, which assigning the probability of each fuzzy set. Also, TLFRNN does not

utilize TSK rules; instead uses a simple inference that considering fuzzy and random

information of data simultaneously. More importantly, in TLFRNN, concept drift

can be detected and adapted easily and rapidly.

In order to solve the multiple-output regression problem of streaming data, we

present an online multi-output regression system, called MORStreaming, for stream-

ing data. MORStreaming uses an instance-based model to make a prediction be-

cause this model can quickly adapt to change by only storing new instances or by

throwing away old instances. However, learning instances in our regression system

is constrained by online demand, and need to consider the relationship between out-

puts. Hence, MORStreaming consists of two main algorithms: 1) an online learning

instances algorithm based on topology networks was designed to make MORStream-

ing robust to noise and determines the number of instances. 2) an online learning

structured-outputs algorithm based on adaptive rules was designed for MORStream-

ing to learn the correlation between outputs automatically.

In summary, our thesis describes original research into streaming data regression,

a problem that is important but relatively under explored. The original contribution

is made in 3 aspects: (i) dealing with noisy streaming data; (ii) dealing with evolving

streaming data; (iii) dealing with streaming data with multiple outputs.

Dissertation directed by Professor Jie Lu

Australian Artificial Intelligence Institute
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meanA is the mean density of the nodes in subclass A

t is the order in which the sample X inputted

µi(t) is the Gaussian membership of input sample X(t) belongs to node

i

G is a Gaussian model

mvG is the mean vector of the G

CovG is the covariance matrix of the G

numG is the winner times of the G

rG is a vigilance parameter to decide whether an input data belongs

to the G
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Chapter 1

Introduction

1.1 Background

Machine learning [7, 97] is a field of computer science that gives computers

the ability to learn knowledge. Regression analysis [45, 118] is one of the most

important tasks to address in the area of machine learning, and is a type of predictive

modeling technique which investigates the relationship between the dependent and

independent variables, such as stock price prediction, traffic flow forecasting, and the

projections for sea temperatures, and after decades of research, regression analysis

has made significant achievements. At present, regression analysis can be roughly

divided into two categories [16, 144]: linear regression and nonlinear regression.

However, both these regression algorithms were designed based on a batch dataset

[125, 178]. Nowadays, technological advancements make it possible to access fast

and potentially infinite data through a variety of sources such as social media feeds,

cloud services, and sensors, known as streaming data [201], i.e. an ordered infinite

sequence of data instances {(X1, Y1) , (X2, Y2) , . . . , (Xt−1, Yt−1) , (Xt, Yt) , . . .}. Each

data instance (Xt, Yt) is the sample of this data stream at timestamp t, where

X ∈ Rd is the input variable and Y ∈ R is the output variable [148]. In streaming

data, the data is displayed in the form of a sequence and can only be read once in

a predetermined order [28], so traditional batched regression algorithms cannot be

used to process it, and the need to discover new regression algorithms is becoming

increasingly urgent.

In computer science, streaming algorithms are a new type of technique in ma-
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chine learning [31]. In streaming algorithms, data are processed sequentially and

can also be examined in only a few passes (typically just one) [123]. In addition,

streaming algorithms only require limited memory and limited processing time per

item. Hence, the streaming algorithm represents a dynamic technique of supervised

learning and unsupervised learning that can be applied when training data becomes

available gradually over time, or its size is out of the system memory limits [129].

The aim of streaming algorithms is to adapt the learning model to new data without

forgetting its existing knowledge, so it does not retrain the model. However, as a

novel learning technique, streaming algorithms are still immature and imperfect for

solving the regression problem. Firstly, most of the existing streaming regression

algorithms can only handle precise data, but streaming data in many real-world

applications contain a lot of noisy data [167]. The reason for this is the environment

in which streaming data is generated is commonly noisy environments. The noisy

data impacts the learning process of many streaming regression algorithms, thereby

resulting in a dramatic decline in the performance of many streaming regression

algorithms. Secondly, an increasing number of studies on streaming data show that

the data distribution is nonstationary [36]; it can change or evolve. Concept drift

[73, 181] refers to this unpredictable change of data distribution in streaming data.

For example, one concept in weather data is the season which is not explicitly spec-

ified in temperature data but may influence temperature data. Another example is

customer purchasing behaviour over time which may be influenced by the strength

of the economy, where the strength of the economy is not explicitly specified in the

data. The performance of a regression algorithm may become a decline when the

concept drifts occurs[132]. Hence, concept drifts in streaming data also impact the

performance of streaming regression algorithms. Finally, in many real-world appli-

cations, the regression problem of streaming data becomes more complicated. Two

or more outputs instead of a single output need to be predicted, i.e., multi-output
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regression [104]. However, multi-output regression only has been extensively dis-

cussed in relation to offline, static settings [186]. Few works investigate a solution

to this problem for streaming data. Motivated by this, our research on streaming

data regression aims to solve the aforementioned challenges.

1.2 Research Objectives

The objectives of this research are to:

• Propose a streaming regression algorithm for noisy streaming data.

Most of the existing streaming regression algorithms only address precise data,

but for noisy streaming data, the information of data with noise features, so we

design a streaming regression algorithm to address noisy data. Hence, to deal

with the noisy streaming data, the biggest challenge is that noisy data cannot

be identified since we cannot get prior knowledge of training data. Thus, we

will design an adjust method robust to noise to dynamically adjust our model

when an instance arrives.

• Propose a streaming regression algorithm for evolving streaming

data.

The status of streaming data streams can evolve in real-world applications;

that is, concept drift will exist in streaming data. Thus, a streaming algorithm

not only needs to adjust the model instance-by-instance; it also needs to detect

and react to concept drift. However, in classification/clustering cases, the

definition of concept drift is represented by inequality between joint probability

density functions (PDF) of features and the label at two different time points

[147]. Most existing concept drift related techniques are built based on this

PDF definition. However, the definition of concept drift is less applicable in

regression cases as the dependent variable is continuous, and its probability of



4

being any single value is 0. Thus, how to detect and adapt concept drift is a

critical issue.

• Propose a streaming regression algorithm for streaming data with

multiple-outputs.

With the arrival of the big data era, streaming data regression has become more

complicated when handling large volumes of streaming data. Multi-output re-

gression, a model that predicts two or more numerical values, is commonly used

in many applications. Compared with single-output regression, multi-output

regression is more complicated because these outputs may have a structure to

represent the relationship between outputs [88]. Hence, the biggest challenge

is how to learn the structure of outputs in an online manner. However, the

structure of outputs is unknown, since we cannot obtain all training data, and

the structure of outputs also can change due to concept drift.

1.3 Research Contributions

The contributions of this research are to:

• Proposed an online robust support vector regression.

The contributions of this algorithm are summarized as follows:

1) to handle noisy data, we modified the classical v-SVR as the regression

model of ORSVR. In ORSVR, the QPP in a classical v-SVR [29] is trans-

formed into two QPPs. Then, through the new regression model, ORSVR

seeks up- and down-bound functions by solving two related OPPs simul-

taneously. Each new QPP is smaller than the large QPP in classical

v-SVR, which means the KKT conditions for each bound are simpler.

As a result, ORSVR learns faster than standard incremental v-SVR or
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incremental ε-SVR algorithms. ORSVR is also good at capturing the

characteristics of data distributions due to the modification of classical

v-SVR, so it is very useful for handling noise. Moreover, the correlation

between the box constraints and the size of the training sample set in the

classical formulation of v-SVR [89] makes it difficult to design an incre-

mental learning algorithm. However, with ORSVR, the box constraints

are independent of the sample set size, which means ORSVR can learn

online.

2) to propose an incremental learning algorithm based on KKT conditions

that ensures ORSVR can solve the QPPs in a sequential manner. The

basic idea is similar to [180] where the weight αc is changed according to

a new sample (Xt, Yt) in an infinite number of discrete steps until it meets

the KKT conditions while ensuring that the existing samples continue to

satisfy the KKT conditions at each step [48]. However, ORSVR contains

one additional complex equation constraint over ε-SVR [170], so an easy

initial adjustment needs to be made to ensure the KKT conditions are

still met when no new sample arrives. Using the incremental learning

algorithm to seek the upper function and lower functions simultaneously,

ORSVR can quickly and effectively handle data streams with noise.

• Develop a Gaussian membership-based self-organizing incremental

neural network.

The contributions of this algorithm are summarized as follows:

1) to integrate fuzzy logic [110] into the online learning process of topological

structure for the first time. Based on fuzzy logic, the result of Gm-SOINN

shows it is not sensitive to the parameters λ and agemax.

2) to propose an incremental density estimation method called evolving
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Gaussian mixture model (eGMM). The eGMM method is easily in-

tegrated into Gm-SOINN. Compared with the MAP method of enhanced

SOINN [68], eGMM does not require to set any parameters manually

and is more able to avoid building wrong connections between nodes.

3) to propose several innovations in the details of topology learning [67],

including Gaussian membership-based criteria, to identify whether a node

needs to be inserted, a recursive method to update the nodes, and a new

method to delete noise. Using these technical innovations, the topological

structure obtained by Gm-SOINN is robust to noise.

• Propose a continuous support vector regression.

The contributions of this algorithm are summarized as follows:

1) to propose a continuous learning strategy for SVR where f(X) is learned

from new data, and some outdated learned knowledge is forgotten. Hence,

f(X) is not fixed; it varies in different time windows twi to adaptively

suit the drift.

2) to propose a new definition of a QPP that incorporates a similarity term

to transfer learned knowledge from fi−1(X) into fi(X). Therefore, learn-

ing a new fi(X) is dependent on fi−1(X), which prevents catastrophic

forgetting of learned knowledge of fi−1(X) [119].

3) to propose an online way of solving the QPP of C-SVR based on KKT

conditions and one datum per time step, which means C-SVR can handle

streaming data.

4) to propose an automated method of deciding how much learned knowl-

edge in fi−1(X) needs to be transferred to fi(X). As a result, C-SVR can

forget different degrees of learned knowledge according to different types

of concept drift.
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• Develop a novel evolving-fuzzy-neuro system, called topology learning-

based fuzzy random neural network.

The contributions of this algorithm are summarized as follows:

1) to propose a fast-online clustering method that inherits the idea of our

proposed Gm-SOINN. In our proposed method, neurons in the fuzzy set

layer can be self-organized to a topology network after a single pass scan

of the training dataset, and robust to noise in the learning process. As

a result, the structure of neurons in the fuzzy set layer can accurately

represent underlying data distribution.

2) to propose a new type of structure for the evolving-fuzzy-neuro system

[15, 169] based on the topology network. In this new type of structure,

multiple fuzzy sets can be included, and each fuzzy set is assigned to

a probability by a randomness layer. As a result, although one of the

fuzzy set has not been properly determined, the prediction accuracy of

the system is still guaranteed because we can utilize other fuzzy sets to

make an inference.

3) to propose a mechanism to deal with the concept drift based on the topol-

ogy network. Unlike current evolving-fuzzy-neuro systems, our mecha-

nism does not utilize error rate to detect concept drift but changes in

the topology network, and thereby making TLFRNN detect and adapt

to concept drift rapidly and easily.

4) to propose a new type of fuzzy rules based on the topology network. In

TLFRNN, determining fuzzy rules does not need to split data spaces of

input-output variables to obtain the subspaces that can approximate to a

Takagi-Sugeno-Kang (TSK) rule [183]. In contrast, fuzzy rules are deter-

mined only by one parameter, and this parameter can be automatically
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optimized by a maximum likelihood process.

• Propose an online multi-output regression system called MORStream-

ing.

The contributions of this algorithm are summarized as follows:

1) to propose an online learning structured-outputs algorithm based on

adaptive rules. The rules, based on Hoeffding’s bound [17], are not only

learned online but also fit the drift of the structured-outputs. Based on

these types of rules, this algorithm does not fall into the local and global

categories [186]. Instead, each rule specializes in related subsets of the

outputs to represent different types of structures.

2) to develop an online learning instances algorithm based on our proposed

Gm-SOINN. This algorithm shows high robustness to noise and concept

drift because it inherits the advantages of topology learning [67]. In

addition, when the algorithm is used to obtain the instances, it does

not need to set the number of instances, and obtaining and discarding

instances is also in a self-starting scheme.

3) to construct an instance-based regression model. In this model, only

instances that have the same structure as the outputs of the predicted

data can be used to make a prediction. Furthermore, the correlation of

outputs is utilized well by a multi-output nonparametric function. Hence,

the accuracy of the prediction improves without significantly increasing

learning time.

1.4 Research Significance

The theoretical and practical significance of this research is summarised as fol-

lows:
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• Theoretical significance: This research investigates the regression prob-

lem of streaming data: several effective streaming regression algorithms are

proposed, which supplements the characteristics of streaming regression algo-

rithms and thus guarantees the validity of the streaming regression algorithms

in principle; a formal definition of streaming data with sequence, infinite size,

noisy data, and evolving data distribution are proposed, which lists the key

characteristics of streaming data. This further facilitates studies on streaming

data. The concept drift problem is divided and conquered by a set of drift

adaptation problems. More specifically, as the core of concept drift adaptation

is to update predictors, the proposed ideas could enrich the approach for pow-

erful and meaningful manipulations on updating a predictor. This research

also contributes to the theoretical analysis of drift detection by density-based

statistics by learning a topological structure of its data distribution. Mean-

while, this research explores the adaptation of concept drifts for more complex

scenarios, such as adaptation under noisy data, and adaptation under tem-

poral dependency. The extended scenarios not only improve the impact of

this area, but also motivate its continuing development. Meanwhile, this also

extends the application scenario of the multi-output prediction theory.

• Practical significance: The findings of this research contribute to the benefit

of society given the increasing demand for real-time prediction in modern

life. This study develops a set of streaming regression methods to improve

the prediction accuracy of streaming data. The first streaming regression

method can identify different patterns and the degree to which each instance

belongs to each pattern, which can also be applied to pattern recognition.

The second streaming regression method is to select the most relevant data

for learning predictors, which can also be used as a dissimilarity measurement

and multivariate two-sample test. The third regression method generates new
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prediction models from the previous prediction models, which can also be used

for transfer learning. Meanwhile, the network structure of the fourth method

makes it easy to embed in other adaptive neural networks. Meanwhile, one

method is developed in more realistic scenarios of data with multiple outputs.

The findings help resolve the real-world problems of online decision making.

There is the potential of other online applications could benefit from this study.

1.5 Thesis Organization

This thesis is organized as follows:

• Chapter 1: This chapter mainly introduces the research objectives, research

contributions, and research significance of this work.

• Chapter 2: This chapter studies the literature of streaming data, concept

drift, and streaming data regression, thereby revealing the current research

gap. In this chapter, the definition of streaming data and the process of

streaming algorithms were introduced at first. The concept drift problem and

basic procedure of concept drift detection and adaptation are then introduced,

after which categorization of the existing algorithms based on their implemen-

tation details are given. At last, the limitations of the reviewed streaming

regression algorithms are discussed, which inspires the following chapters and

solutions.

• Chapter 3: This chapter proposes a novel online regression algorithm, which

is called online robust support vector regression (ORSVR). ORSVR is able to

solve nonparallel bound functions simultaneously. Hence, the large quadratic

programming problem (QPP) in classical v-SVR is decomposed into two smaller

QPPs. An online learning algorithm then solves each QPP step-by-step. The

results of a series of comparative experiments demonstrate that the ORSVR
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algorithm efficiently solves regression problems in streaming data, with or

without noise, and speeds up the learning process. Besides, this chapter pro-

poses an online topology learning algorithm to filter noise data in the data

preprocessing stage, called Gaussian membership-based self-organizing incre-

mental neural network (Gm-SOINN). Gm-SOINN is an unsupervised learning

algorithm and can learn a topology network to accurately represent the data

distribution. The size of the topology network is much smaller than the size

of the training data. In addition, Gaussian membership is a common kind of

fuzzy logic membership. To utilize the advantages of fuzzy logic, unlike other

SOINN-based methods that allow for only one node to be identified as a “win-

ner” (the nearest node), Gm-SOINN allows for all nodes can be selected as

the winner and uses a Gaussian membership to indicate the degree to which

nodes are identified as winners.

• Chapter 4: This chapter presents a continuous support vector regression (C-

SVR) for nonstationary streaming data. Like an ensemble-based method, in

C-SVR a series of the regression model are continuously learned in a series

of time windows to determine the relationship between the input and out-

put at different timestamps. However, only one regression model is saved in

memory to make a prediction. A new regression model is learned in the new

time-window, and the old model, which was learned in the last time-window,

is discarded. Additionally, in contrast to algorithms that forget all learned

knowledge, learning processes in different time windows are not independent

in C-SVR. A similarity term added to the QPP carries some learned knowl-

edge from the last model forward into the current model. How much-learned

knowledge is transferred depends on the degree of the concept drift. Fur-

ther, because the data in nonstationary streaming data arrive sequentially,

the QPP in C-SVR is solved incrementally. The problem of evolving stream-
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ing data regression has been a topic of consistent research in the fuzzy systems

community. Hence, a novel evolving-fuzzy-neuro system, called the topology

learning-based fuzzy random neural network (TLFRNN), is proposed in this

chapter. In TLFRNN, we revised our proposed Gm-SOINN to self-organize

each layer of TLFRNN. However, different from current EFN systems, TL-

FRNN learns multiple fuzzy sets to reduce the impact of noises on each fuzzy

set, and a randomness layer is designed, which assigning the probability of

each fuzzy set. Also, TLFRNN does not utilize TSK rules; instead uses a

simple inference that considering fuzzy and random information of data si-

multaneously. More importantly, in TLFRNN, concept drift can be detected

and adapted easily and rapidly. The experiments demonstrate that TLFRNN

achieves superior performance compared to other EFSs.

• Chapter 5: This chapter proposes an online multi-output regression sys-

tem, which is called MORStreaming, for streaming data. MORStreaming

uses an instance-based model to make a prediction because this model can

quickly adapt to change by only storing new instances or by throwing away

old instances. However, learning instances in our regression system are con-

strained by online demand and need to consider the relationship between out-

puts. Hence, MORStreaming consists of two main algorithms: 1) an online

learning instances algorithm based on topology networks was designed to make

MORStreaming robust to noise and determines the number of instances; 2)

an online learning structured-outputs algorithm based on adaptive rules was

designed for MORStreaming to learn the correlation between outputs auto-

matically. Experiments involving both artificial and real-world datasets indi-

cate our proposed MORStreaming can achieve superior performance compared

with other methods.
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• Chapter 6: A brief summary of the thesis contents and its contributions are

given in the final chapter. Recommendation for future works is given as well.

Figure 1.1 : Thesis structure
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Chapter 2

Literature Review

This study focuses on solving the regression problem of streaming data. This chapter

reviews related research in this area that have recognized the significance of this

problem or provided solutions to this problem. Section 2.1 introduces streaming

data and streaming algorithms. Then, the concept drift problem is introduced,

including its definition, types, and applications in Section 2.2. Regression algorithms

for streaming data are comprehensively reviewed in Section 2.3.

2.1 Streaming Data Mining

This section gives a general review of data stream mining, which is the basis for

understanding the problems of concept drift profoundly.

2.1.1 Streaming Data

Big data is an outcome of the current information explosion that is relevant to

a diverse range of fields in the natural, life, social, and applied science, including

physics, biology, medicine, economics, and management [184, 76]. Big data has

been widely characterized by the three characteristics [101]: a hugely increased vol-

ume of data, a variety of data sources and quality, and the high velocity at which

data is generated or obtained [32]. Big data technology holds incredible promise for

improving people’s lives, accelerating scientific discovery and innovation, and insti-

gating positive societal change [201]. Meanwhile, new challenges accompanying the

heterogeneity, incompleteness, scale, timeliness, privacy, and process complexity of

big data, including aspects of data acquisition, data storage, information extraction,
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and big data analysis, need to be overcome [141, 117]. Further, three Vs are now

recognized as the development of big data analysis: Veracity, which focuses on the

unreliability inherent in data sources; Variability, which refers to variations in data

flow rates; and Value, which refers to the issue of low-value density [74, 57, 50].

The recent development of the Internet of Things brought serious challenges to

big data that data arrives in as continuous streams [130], namely the data stream,

which consists of multiple infinite and fast-evolving data series [102, 44, 90]. Eight

challenges in data stream mining were discussed in [115], covering the cycle of knowl-

edge discovery from data. These challenges are summarized from three aspects [133]:

1) the development of new data mining skills for data streams; 2) the development

of simpler, self-adaptive machine learning algorithms; and 3) the requirements of

privacy and confidentiality for gaining the trust of the users and society in the

system.

In recent years, data stream mining [160, 22] has been extensively studied in

growing fields of multidisciplinary research, including databases, artificial intelli-

gence, machine learning, automated scientific discovery, statistics, decision making,

and so on [84]. The main challenges in learning the evolving data stream have been

categorized into three kinds [152]: 1) concept drift refers to class boundaries change

over time or the distribution of feature changes [197]. For example, in dressing rec-

ommend systems, the model is trained to recognize whether the dressing in a given

photo is fashion or not. The characteristics of fashion change fast, and therefore

the classification boundaries between “fashion” and “not fashion” changes; 2) fea-

ture evolution, which denotes that new features appear or feature type changes [94].

For example, the assessment model may have new features when the bank credit

assessment system updates to include more details of the customers; 3) concept evo-

lution, represents the situation that novel classes emerge [199]. For example, new

topics appear, and old topics disappear or reappear in the bibliometric field, such
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as the novel topic of “blockchain” in 2013 and the recurrent novel class of “neural

network”.

2.1.2 Streaming Algorithms

As data evolves over time, the validity and reliability of the historical data are

questionable. Streaming data mining [112, 105] has to consider these issues to per-

form accurate, up-to-date, real-time analysis—for example, the detection of high-

way flooding [159]. Real-time prediction is one of the most important applications

of data stream mining that is widely demanded in the real world [69], which is to

make predictions in real-time [99]. It is clearly different from the prediction in a

stationary setting because each instance in a data stream is first used to test the

learned predictor, and then to train/update the predictor.

Real-time prediction for a non-stationary data stream arises in many scenarios,

such as online transactions in the financial market, weather forecasting, air quality

prediction, and so on [157, 120]. For example, 20 years ago, TV was the main source

of weather forecast information for most people. Additionally, weather forecasts

would simply indicate the weather for tomorrow or the day after tomorrow at most.

Today, people expect hourly weather reports and weather forecasts for a week in

advance. Historically, a numerical weather prediction model was used to compute

long-term weather variables. However, such models are not flexible enough to make

hourly weather predictions. Nor can they be applied to a short-term, high-frequency

online forecast system, as it takes a significant amount of time for the models to

compute the necessary partial differential equations.

Conventional machine learning methods are not applicable to make a real-time

prediction for streaming data because the prediction accuracy of the learner predic-

tor is deteriorated due to the evolving nature of streaming data that future data

may exhibit different patterns from those of the previous data used to learn the
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predictor. Although streaming data mining has become important research topics

during the last decade, a truly autonomous, self-maintaining, adaptive data mining

system is still lacking [114]. The short lifespan of data restricts us from storing

and accessing all historical data during each processing cycle; however, processing

accuracy has been strictly limited by the fact that the data can be accessed only

once (one-pass setting) [3].

2.2 Concept Drift

Concept drift [92] is a particularly important factor in data stream mining. In

this section, the concept drift problem and corresponding state-of-the-art solutions

are reviewed.

2.2.1 Definitions and Types of Concept Drift

Given the target variable y, in traditional machine learning models, the probabil-

ity function or the probability distribution of y, f(y), is assumed to be stationary.

Under this condition, statistical theory guarantees the error(discrepancy between

the predicted and real value) will decrease and thus machine learning can precisely

make predictions with convergence by continuously updating itself based on data

[72]. In a high-speed data stream, however, the distribution function rewritten as

ft(y), varies with time which may lead to increased error. Usually, in a machine

learning model, the data stream also includes corresponding feature vectors as x.

Therefore, concept drift is often defined in Eq. (2.1).

ft(x,y) 6= ft+τ (x,y) (2.1)

where τ represents the degree of time changing.

The joint probability density function ft(x,y) can be decomposed into two parts

as follows:

ft(x,y) = ft(x)× ft(y | x) (2.2)
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Each part in Eq. (2.2) represents a kind of source of concept: ft(x) means the

distribution of feature vectors has changed and ft(y|x) is the conditional probability

of the target variable given feature vectors. Concept drift is divided into two types

by decomposition: virtual drift and real concept drift [73]:

(1) Virtual drift refers to changes only in the incoming data, namely ft(x). It

doesn’t affect ft(y|x).

(2) Real concept drift refers to changes in ft(y|x).

Figure 2.1 from [73] gives a clear insight into the two types of drift. It can be seen

that the critical difference between real concept drift and virtual drift is whether

the dotted line changes. The green dots move in both virtual and real concept drift

cases, but the dotted line only shifts in the case of real concept drift.

Figure 2.1 : Types of drifts: the red and green circles represent instances of different

classes.

Furthermore, concept drift can be recognized as various patterns including sud-

den/abrupt, incremental, gradual, reoccurring drift as shown in Figure 2.2 [73].

2.2.2 Detecting Concept Drift

According to the above section, concept drift has many different patterns, and

usually, the detection methods differ for different patterns. Most of the research in

this area to date is related to sudden drift [135]. In some papers, outlier detection
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Figure 2.2 : Patterns of changes over time.

is included in the concept drift field. However, as pointed out by Gama et al. [73],

outliers or noise, which refers to a once-off random deviation or anomaly, is not

concept drift as we need to select outliers from input data to improve the model’s

accuracy rather than acquiring information from the noise. Identifying concept drift

from noise is also one of the challenges in this area.

In general, current detection methods can be divided into three main types based

on their mechanics [132].

Data Distribution

As the definition of concept drift is based on a probability density function, a

direct detection method is to identify whether the distributions are different from

the previous cases and the new stream. In statistical theory, two well-known non-

parametric methods, the Wilcoxon test [75], and K-S test [58] are designed to com-

pare two samples. K-S test constructs statistics to measure the distance between two

samples, and then determines if the distance can be considered as a significant dis-

crepancy by giving the probability distribution of K-S statistics. It has been broadly

used in the statistics field but rarely directly applied in the concept drift area as

it limits itself in one-dimensional distribution, and the real world is frequently of

high dimension. Still, the main idea of the K-S test is convincing, and most drift

detection by distribution methods are modifications of it. Kifer et al. [108] designed

a KS structure concept drift detection method by introducing a novel family of a

distance measure between distributions. Take the research of Dasu and Krishnan
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[38] as an example.

To quantify the discrepancy between the old and new data streams, they in-

troduced the Kullback-Leibler (KL) divergence (also called relative entropy) and

refined it as Eq. (2.3).

D (W1‖W2) =
∑

a∈A
Pw1(a)

Pw1(a)

Pw2(a)
(2.3)

where PW1(x) and PW2(x) are the probability mass functions of window W1 and W2

separately.

Note that the proposed distance has neither a known exact distribution, nor is

it based on familiar data distribution, so the authors introduced a non-parameter

hypothesis testing method, bootstrap. The bootstrapping procedure can be used to

estimate the standard error by random sampling with replacement.

Learner Outputs

Instead of testing the discrepancy between the distributions, Gama et al. [72]

suggested detecting drift by controlling the online error-rate of the algorithm. As

discussed in section 3.1, in the condition of a stationary environment, the error will

decrease. Therefore, drift is recognized when the error significantly increases. To

determine to what extent the augment of error is considered as a drift, a threshold

of a warning level or a drift level is needed.

Drift detection using learner output methods has been broadly used in this field,

especially in regression cases. Gama et al. [72] treated the error of a sequence

of cluster cases as random variables from a Bernoulli trial with the probability

of misclassification pi and standard deviation si =
√
pi (1− pi) /pi. They set the

warning and the drift level based on the significance level and declared a new concept

when pi+si reaches the warning level, and a new model is learned when the drift level
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is exceeded. An Early Drift Detection Method (EDDM) has been proposed based on

Gama’s model, which can be available in gradual concept drift cases [13]. Hulten et

al. [96] proposed an algorithm called the Concept-adapting Very Fast Decision Tree

learner (CVFDT), which can detect and respond to concept drift in the example-

generating process. In the detection part, they introduced the Hoeffding bounds [17]

or additive Chernoff bounds [86] to provide a statistical guarantee for the threshold.

Parameters

Compared to the former two categories, very limited research has been conducted

on detecting concept drift using parameters. In the framework of Su et al. [14], they

directly structure a learning model which can overcome the time-changing problem

rather than recognizing the appearance of drift by optimizing the parameters in a

discriminate model. The main idea of their model is to build a dynamical probabilis-

tic model using Eq. (2.4) which includes all the drift information in the parameter

vector wt.  wt = g (wt−1) + s

p (Ck | xt) = f (wt) + v
(2.4)

Furthermore, they assume the parameter vector wt satisfies:
wt = wt−1 + s

s ∼ N(0, aI)

v ∼ N(0, r)

(2.5)

where s is the uncertainty caused by concept drift, aI indicates the degree of concept

drift, and r is the variance of noise.

Another example of drift detection using parameters is proposed by Fromont et

al. [20]. They solve the drift problem by resorting to a variational Bayes inference

scheme in which the probability distribution, as well as the drift, are parameterized

using latent variables. One advantage of their model is that it allows them to
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represent both gradual and abrupt concept drift.

2.2.3 Adapting to Concept Drift

Many learning algorithms have been proposed to deal with concept drift, includ-

ing rule-based learning [162], decision trees [2], and their incremental versions [190],

clustering [164], SVM [33], Bayesian networks [103], RBF-networks [64], instance-

based learning [39], and so on [134]. In general, they can be divided into three

categories: instance selection (window-based), instance weighting (weight-based),

and ensemble learning (learning with multiple models) [134].

Instance selection

Instance selection is the most common concept drift handling technique [40].

The key idea of instance selection is to pick out the most related instances to the

current concept and avoid outdated data in the input set. Generally, it will involve

generalizing from a moving window over time. Delany et al. [40] proposed a case-

based technique for concept drift in spam filtering. It includes two parts: feature

selection and case retrieval. The feature selection part is to select the most predictive

features, and case retrieval is applied to solve the feature-value redundancy problem

and speed up the efficiency of the algorithm. The rules for instance selection are

simple, that is, to rebuild the case-base model by updating the misclassified cases at

the end of each day. Fan [56] focused on the concept drift problem in situations what

kind of old data will help detect concept drift, and in their opinion, this problem can

be easily solved by an algorithm that is extremely efficient in comparing all sensible

choices with little extra cost. Based on a decision tree ensemble, they proposed a

solution for concept drift, which can ‘sift off’ old data and combine new relevant

data into a model.
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Instance weighting

The key idea of instance weighting methods is to give each instance an appro-

priate weight, which is based on its ‘age’ (its relevance to the current concept). In

this way, the problem of determining which instance to include or delete from the

input set is transformed by comparing the importance of the instance at each time

point. Koychev [113] believed the importance of examples decreased with time and

proposed a gradual forgetting function based on time. The forgetting function can

be defined by various functions. For example, a linear gradual forgetting function

has the following form: wi = − 2k
n−1(i− 1) + 1 + k, wi > 0∑

wi = n
(2.6)

where i is a counter of observations starting from the most recent, and it goes back

over time, n is the length of the observed sequence, and k ∈ [0, 1] is a parameter

computed as a discrepancy between the increasing percentage of the last one (or the

decreasing percentage of the first one) and the average.

Another example of instance weighting is the experiments conducted on two

scenarios of concept drift [195]. In this paper, the authors applied the kernel mean

matching method and optimal weights adjustment method to weight samples for

loose concept drifting (LCD) and rigorous concept drifting (RCD) separately. They

used different functions because in LCD cases, concepts in the adjacent streaming

data are close to each other while they are randomly and rapidly changed in RCD

cases.

Ensemble Learning

Nowadays, ensemble learning methods have been successfully and broadly ap-

plied to deal with concept drift [176, 42, 142]. It combines the advantages of instance
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selection and instance weighting for the ‘ensemble’ characters. Minku et al. [142]

explained the mechanism of why an ensemble method is helpful for drifting data

using a series of experiments that validate the relationship between learning error

and a model’s diversity both before drift and shortly after drift. The results show

that ensembles with less diversity obtain lower test errors, and highly diverse ensem-

bles can obtain lower test errors shortly after drift [142]. Generally speaking, there

are three ensemble frameworks of ensemble learning, horizontal ensemble, vertical

ensemble, and a hybrid of the two. Both the horizontal and vertical ensemble com-

bines the models built on different data chunks using the same or different learning

models. The difference between them is in vertical ensemble cases; only the most

recent data chunk is used [195].

2.3 Regression For Streaming Data

Regression is an important task in streaming data mining. In this section, the

streaming data regression problem and corresponding state-of-the-art solutions will

be reviewed.

2.3.1 Online Regression Algorithms

In the past ten years, although different learning tasks such as classification and

regression for data streams have been considered, regression on data streams has

gained less attention than classification, with a few notable exceptions. For in-

stance, the Hoeffding tree-based methods [155] has attracted a lot of attention from

researchers, and many modifications and improvements of the original method have

been proposed. Fast Incremental Model Trees with drift detection (FIMT-DD), ini-

tially presented in [182], is the main example. Similar to standard Hoeffding Trees,

features are ranked according to their variance in FIMT-DD, and if the two best-

ranked features differ by at least the Hoeffding Bound [17], the tree branches and
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the process is repeated. In addition, Gomes proposed an adaptive random forest

by assembling the Hoeffding tree [79]. Ikonomovska et al. modified the Hoeffding

tree method to present option trees and ensembles of option trees for regression

[98]. Adaptive Model Rules [40] is another relevant representative of streaming data

regression and make a prediction by learning rules. In Adaptive Model Rules, the

rules are specified by a conjunction of logical operations on the input attributes in

the premise part and a linear function of the attributes in the consequent. Support

vector regression (SVR) is also extended to handle streaming data regression, Ma et

al. [140] proposed an accurate online SVR algorithm that follows the idea of [26]. In

the accurate online SVR, three sets of training data (named remaining, error, and

supporting) are built according to Karush-Kuhn-Tucker (KKT) conditions [170].

When a new sample arrives, it is assigned to one set through an infinite number

of discrete steps until it meets the KKT conditions, while ensuring that the exist-

ing data continue to satisfy the KKT conditions at each step. Following the idea

of accurate online SVR, Gu et al. [82] proposed an incremental v-SVR algorithm,

and Hang et al. [191] proposed an incremental dual-v-SVR algorithm as an exten-

sion to the incremental v-SVR. In contrast to the above model-based algorithms,

IBLStreams [168] is an instance-based learning system, where the prediction result

can be estimated by the weighted mean of the k-nearest neighbor instances. How-

ever, the above algorithms only consider if there is a single output in the regression

problem.

2.3.2 Forgetting Mechanism

In most of the current online regression algorithms, there are two main types

of forgetting mechanisms were designed to help algorithms deal with concept drift.

In the first type of forgetting mechanism, the forgetting of learned knowledge is

independent of the detection result of concept drift. Hence, the forgetting strategy
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is triggered as long as new data arrive, thereby discarding outdated knowledge.

For example, Wang et al. [19] proposed a Budgeted Stochastic Gradient Descent

(BSGD) for training support vector machines. In BSGD, the weight wi of model

fi(X) = wiX is updated when a new datum arrives, and a new support vector is

added. If the number of support vector greater than the user-decided budget, one

outdated support vector will be deleted, and the weight wi is readjusted. However,

setting the value of the budget is a difficult task in itself. In the above online SVR-

based methods [140, 82, 191], a decremental algorithm is used to forget one datum

from one of the three sets and then update f(X). However, the adjustment speed of

the model is too slow to keep up with sudden drift. Omitaomu et al. [149] proposed

an incremental SVR with varying parameters (VPI-SVR) rather than fixed ones.

VPI-SVR uses different parameters to learn f(X) in a different time window twi.

However, when f(X) is stable in conjoint time windows, VPI-SVR uses the different

parameters to learn f(X), and the performance suffers as a result.

In the second type of forgetting mechanism, the learned knowledge is forgotten

according to the detection result of concept drift. This type forms the largest cat-

egory of forgetting mechanism and is used in many algorithms. For example, Fast

and Incremental Model Trees (FIMT-DD) encompasses a change detection scheme

that periodically flags and adapts sub-branches of the tree where significant variance

increases are observed [182]. As for Adaptive Model Rules (AMRules) [6], to detect

and adapt to concept drifts, each rule is associated with a Page-Hinkley drift de-

tector [145], which prunes the rule set given changes in the incoming data. Liu and

Zio [127] proposed an algorithm called feature vector selection to detect drift, and

a new SVR based on the new data is learned when concept drift is detected. How-

ever, it is not always easy to detect concept drift because its underlying causes are

not necessarily evident in the data. In contrast to the above model-based methods,

IBLStreams [168] is an instance-based learning algorithm, so the prediction result
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can be estimated by the weighted mean of the k neighbor instances. IBLStreams

also uses a change detection scheme to update parameters such as the k and kernel

width.

Another important branch of this type of forgetting strategy is based on ensemble

[109, 126, 128], i.e., a new learner will be trained after concept drift is detected. For

example, Zhai et al. [192] ensemble BSGD with a different budget, Ikonomovska

ensemble online option trees for regression (ORTO) [98], and Gomes proposed an

adaptive random forest (ARF-Reg) [79] by assembling FIMT-DD. The overall idea

of ensemble-based methods is to learn a series of fi(X) directly from a series of time

windows twi, so fi(X) essentially represents separate streaming data at different

periods. However, as more and more fi(X) are saved, their size will eventually

exceed the computer’s memory. Therefore, these approaches include a method to

select which of fi(X) should be forgotten. However, designing a selection method

is a difficult task in itself, especially since different types of concept drifts can co-

exist in streaming data. Furthermore, ensemble-based methods normally rely on

the same forgetting mechanism for different types of concept drift. Yet ignoring the

differences between different types of concept drift will mean reduced performance.

Moreover, each fi(X) for the current time window twi is constructed independently

from the last time window twi−1. However, as for non-stationary streaming data

with gradual or incremental drift, as the old concept incrementally changes into a

new concept over a long period of time, so fi(X) for the current time window twi

can be similar to the last time window twi−1 and they are not independent. This

results in ensemble-based methods having drawbacks when handling non-stationary

streaming data with gradual or incremental drift.

In summary, many online or incremental algorithms have been proposed to dis-

cover knowledge from streaming data. However, compared with classification and

clustering, regression has gained less attention, and many challenges have not been
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overcome well. Hence, tn this thesis, we design streaming regression algorithms

from three aspects: (i) dealing with noisy streaming data; (ii) dealing with evolving

streaming data; (iii) dealing with streaming data with multiple outputs.
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Chapter 3

Streaming Data Regression Under Noisy

Environments

3.1 Introduction

To solve the regression problem of streaming data under noisy environments, one

solution is to propose a new streaming regression algorithm that is able to learn an

accurate prediction model from noisy streaming data.

Most current streaming regression algorithms were designed based on a classi-

cal regression model but using online learning theory to learn data, i.e., data is

processed sequentially, i.e., (X1, Y1) , (X2, Y2) , . . . , (Xt, Yt) and, with each new input

data, the model is updated (Xt, Yt) as ft ← ft−1 [31]. As a flexible parametric

regression algorithm, support vector regression (SVR) [170] is a popular regression

algorithm in many fields - for example, it is used to predict electrical loads [49],

stock market prices [189], and wind speeds [131]. SVR trains using a symmetrical

loss function, which equally penalizes high and low mis-estimates. In addition, SVR

uses Vapnik’s ε-insensitive approach [170], so a flexible tube of the minimal radius

is formed symmetrically around the estimated function, such that the absolute val-

ues of errors less than a certain threshold ε are ignored both above and below the

estimate. In this manner, points outside the tube are penalized, but those within

the tube, either above or below the function, receive no penalty [12]. One of the

main advantages of SVR is that its computational complexity does not depend on

the dimensionality of the input space. Additionally, it has excellent generalization

capability with high prediction accuracy.



30

Hence, for using SVR to handle streaming data, Liu et al. [126] proposed an

ensemble SVR. The proposed approach creates new sub-models directly from a basic

model, and the sub-models represent the stream data separately at different periods.

Chen et al. [34] proposed an improved multiple kernel SVR approach. However,

this is, in fact, the learning of these approaches is still needed a small batch of data,

so these methods cannot always work in a streaming data environment because only

one sample can be operated in extreme conditions. Based on the reason, online

learning [165], which investigates how to learn in an extreme condition, has been

proposed as a possible solution. As a result, researchers proposed an online ver-

sion of SVR for handling data streams. Essentially, online SVR integrates an SVR

algorithm with online learning to handle regression problems with streaming data.

Examples of this approach include Ma et al. [140], who introduced ε-SVR in an on-

line algorithm called accurate online support vector regression (AONSVR). A new

adjustment method which based on [26] was proposed to adjust model ft. In this ad-

justment method, all samples were assigned into three sets: remaining, supporting,

error set. Gu et al. [82] then improved this adjustment method to solve the extra

constriction in v-SVR and proposed an incremental v-SVR algorithm (INVSVR). In

INVSVR, the speed of adjusting model ft was significantly improved. Next, for han-

dling uncertain data streams, Hang et al. [191] decomposed the classical v-SVR into

a new model called dual-v-SVR, and use the same adjustment method in INVSVR

to adjust the model ft. Omitaomu et al. [149] applied the AONSVR to handle

evolving data streams. In his method, the AONSVR with varying rather than fixed

parameters and proposed a method to update parameter weight automatically.

Not like other online regression algorithms such as online regression tree [98] and

online multiple kernel regression [166], the above mentioned online/incremental SVR

algorithms do not need any prior knowledge of whole data streams. For example,

in an online regression tree, the depth of the tree need to be user-defined, and the
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number of kernels needs to be user-defined in online multiple kernel regression. These

parameters could be set suitable if some prior knowledge of whole data streams were

obtained. However, the performance of online SVR algorithms is still limited by two

challenges:

1). If a data source is very noisy due to, say, electromagnetic interference, tempo-

rary failure of sensors, and so on, accuracy will suffer. Some robust SVR algorithms

have been explicitly designed to handle noisy data, and these perform better than

classical SVRs [124, 154], but performance is still not optimal. For example, Lin et

al. [124] incorporated the concept of fuzzy set theory into SVR, while Peng [154]

proposed an interval twin SVR algorithm. Other SVR algorithms handle noisy data

[66, 1, 95] by replacing the constraints in classical SVR with probability constraints,

such as the SVR algorithm in [95] that is robust to bounded noise. However, the

quadratic programming problems (QPPs) in these above mentioned SVR algorithms

remain too complex for direct translation into incremental SVR.

2). Online SVRs learn slowly. The main idea of the online learning algorithm

is to adjust the weight wnew of a new sample in an infinite number of discrete steps

until it meets the Karush-Kuhn-Tucker (KKT) conditions. Further, the existing

samples must continue to satisfy the KKT conditions at each step. However, the

KKT conditions in existing incremental SVR algorithms are complex, so, in practice,

any adjustments to wnew tend to create many conflicts among the KKT conditions of

the existing samples. As a result, repeated adjustments are needed for wnew, which

drastically slows down the learning speed.

To overcome these two challenges, we proposed a novel online SVR algorithm

called online robust support vector regression (ORSVR). ORSVR is a novel variant

of incremental v-SVR algorithm that modified classical v-SVR to handle noisy data

and proposed a new incremental learning method. ORSVR seeks two unparalleled
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bound functions to construct an insensitive zone that includes as many samples as

possible. A specifically-designed incremental learning algorithm with KKT condi-

tions is then used to solve the QPPs in ORSVR step-by-step based on only one

sample per round.

To solve the regression problem of streaming data under noisy environment,

another solution is to propose a method to filter noisy data, and thereby only precise

data can be used in streaming data algorithms.

Topology learning [174, 139], which aims to learn an accurate topological struc-

ture, means the topological structure [187, 61] can closely reflect the data distri-

bution in a dataset [67]. Usually, the topological structure consists of one or more

neural networks. In each neural network, similar samples are grouped into nodes,

and the nodes are connected by an edge if the corresponding nodes have a sample

in common. The same procedure is also adapted to connect the neural networks, so

a topology structure can be considered to be a compressed version of the original

dataset [67]. Based on the topological structure, our knowledge about this dataset

can be increased by measuring its topological features such as connectedness and

intrinsic dimension [70]. Therefore, the incremental neural networks algorithm that

learns a topological structure from data streams have been proposed. Growing neu-

ral networks [63] is another kind of incremental neural network which uses a different

learning strategy. For example, Growing Neural Gas (GNG) [63] uses a combined

strategy of competitive Hebbian learning and neural gas to learn neural networks.

However, these two kinds of incremental neural networks cannot handle data streams

directly because the size of neural networks permanently increases and eventually

exceed the size of memory. Although some deleting mechanisms [65] were proposed

to shrink the size of the neural networks, these two kinds of incremental neural

networks have the trade-off between deleting previously learned nodes and inserting

new nodes, i.e., the stability-plasticity dilemma [24]. In order to solve the stability-
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plasticity dilemma, adaptive resonance theory (ART) [24] has been introduced. Lim

and Harrison [122] propose a hybrid network that combines the advantages of the

Fuzzy ART Map [25] and probabilistic neural networks for incremental learning neu-

ral networks. Marko [175] proposes a topology learning hierarchical ART network

based on two Fuzzy ART. However, these methods mainly work for supervised online

learning.

Although the performance of SOINN has been improved, the stability-plasticity

dilemma [158, 24] leads to inaccurate results of SOINN, even though the training

is repeated in the same environment. Two main reasons account for the problem:

(1). Parameters are not properly set. In SOINN, the λ and agemax parameters

need be manually set, the parameter λ is used to define the frequency of node

removal while agemax is defined as the lifetime of each edge. Therefore, a relatively

small λ and agemax results in more previously learned nodes being deleted and

more new nodes being inserted. This implies that some nodes representing the

data distribution of some areas were deleted, and some nodes representing noisy

information were inserted into a topological structure. While a relatively large λ and

agemax results in fewer nodes being deleted, this implies that some nodes representing

noisy information were not deleted and new nodes representing the data distribution

of new areas cannot be inserted. Unfortunately, due to the lack of prior knowledge

of data streams, we don’t know how to reasonably set the values of the parameters.

(2). Incorrect density estimation. In SOINN, whether to connect two nodes depends

on the density of the two subclasses that two nodes belong to. An algorithm was

designed to calculate the mean accumulated point (MAP) of nodes, and then the

MAP is used as the density of nodes because the author assumes the density of the

two subclasses can be approximated to two Gaussian distributions if using MAP

as the density of node. However, this assumption is very difficult to achieve in

practice. In addition, the algorithm that calculates the MAP strongly depends on
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the sequence of samples, i.e., the density distribution of a subclass can be different if

samples follow different sequences. Different density distribution of subclasses will

result in a different decision of whether to connect two nodes. However, in data

streams, we do not know the sequence of samples in advance.

Therefore, to propose a topology learning algorithm without the stability-plasticity

dilemma in unsupervised online learning, a Gaussian membership-based self-organizing

incremental neural network (Gm-SOINN) was proposed. Gaussian membership is

a common kind of fuzzy logic membership [47]. Previous works have proved that

fuzzy logic integrated into learning systems contribute considerably to the modeling

and processing of various forms of uncertain information, such as fuzzy rule-based

systems [138] and neuro-fuzzy systems [107]. Therefore, to utilize the advantages of

fuzzy logic, unlike other SOINN-based methods that allow for only one node to be

identified as a “winner” (the nearest node), Gm-SOINN allows for all nodes can be

selected as the winner and uses a Gaussian membership to indicate the degree to

which nodes are identified as winners. As a result, the stability-plasticity dilemma

has been solved in the learning process of our Gm-SOINN. For example, a topology

network that can accurately represent the original data distribution can be obtained

only when λ = 100 and agemax = 50. However, in our proposed method, an accurate

topology network can be obtained when λ is in the range [50 − 200] and agemax in

the range [25− 100].

3.2 Noisy Streaming Data Regression by an Online Robust

Support Vector Regression

3.2.1 Preliminary

A regression algorithm learns a model Y = f(X) =< w,X > +b, where X means

one or more independent variables and Y means a response variable. w represents
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the weight of X, b represents the bias, and 〈·, ·〉 denotes inner product in reproducing

kernel Hilbert space (RKHS).

v-Support Vector Regression (v-SVR) is a popular regression algorithm, which

can automatically adjust the parameter ε of an ε-insensitive loss function. Given a

training sample set T = {(X1, Y1) , (X2, Y2) , . . . , (Xi, Yi)} with Xi ∈ Rd and Yi ∈ R,

considered the following primal problem:

min
ω,ε,b,ξ

(∗)
i

1

2
‖w‖2 + C ·

(
vε+

1

l

l∑
i=1

(ξi + ξ∗i )

)

s.t. (〈w, φ (Xi)〉+ b)− Yi 6 ε+ ξi,

Yi − (〈w, φ (Xi)〉+ b) 6 ε+ ξ∗i ,

ξ
(∗)
i > 0, ε > 0, i = 1, . . . , l.

(3.1)

where the training samples Xi are mapped into a high dimensional RKHS using

the transformation function Φ. ‖(w)‖ is a regularization term, which characterizes

the complexity of the regression model. C is the regularization constant, and ξ(∗) is

the slack variable (‘*’ is shorthand for the variables both with and without asterisks).

v is the introduced proportion parameter with 0 ≤ v ≤ 1, which controls the number

of support vectors and errors.

Then, the corresponding dual is:

min
α,α∗

1

2

l∑
i,j=1

(α∗i − αi)
(
α∗j − αj

)
K (Xi, Xj)

−
l∑

i=1

(α∗i − αi)Yi

s.t.

l∑
i=1

(α∗i − αi) = 0,
l∑

i=1

(α∗i + αi) 6 Cv,

0 6 α
(∗)
i 6

C

l
, i = 1, . . . , l

(3.2)

where K (Xi, Xj) = 〈Φ (Xi) ,Φ (Xj)〉.
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In v-SVR, the parameter v is used to determine the proportion of the number of

support vectors which are preferable to keep in the solution with respect to the total

number of samples in the dataset, and the parameter ε in the optimization problem

formulation is estimated automatically (optimally) according to v. However, in ε-

SVR, there is no control over how many data vectors will become support vectors.

It could be a few; it could be many. But it is possible to have total control over

how much error is allowed in the model, and anything beyond the specified ε will

be penalized in proportion to C, i.e., the regularization parameter.

3.2.2 Formulation of Online Robust Support Vector Regression

Although v-SVR has some advantages over ε-SVR, v-SVR introduces two com-

plications. First, the box constraints are related to the size of the training sample

set. Second, the formulation contains an additional inequality constraint, which

makes them more complicated than ε-SVR. These complications lead to researchers

need to design extra adjustments to solve it. For example, in [82], Gu extends the

training samples and adds an extra adjustment, called an initial adjustment, as a

preprocessing step. In addition, classical v-SVR is not robust to noisy data well, so

the prediction performance of v-SVR will decrease sharply if the training dataset

has noisy data.

In this research, we propose a novel type of SVR with a simplified formulation

and design an adjustment method to adjust it online. In addition, this novel SVR

also robust to noisy data. In [154], Peng et al. proposed twin SVR (TSVR), which

is a regressor that determines a pair of up and down-bound functions by solving two

related SVM-type problems. Each problem is smaller than that of a classical SVR.

Hence, to simplify the formulation of the classical v-SVR, we design a novel SVR

which called ORSVR following the spirit of TSVR. Like TSVR, ORSVR transforms

the classical v-SVR into a new nonparallel plane regressor, but different from TSVR,
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ORSVR is robust to noisy data.

ORSVR is based on the assumption that the upper and lower bounds will build

an insensitive zone. Then, according to the same concept of an insensitive zone

in classical v-SVR, any deviations inside the insensitive zone are discarded, and

any deviations outside the insensitive zone are rejected. Further, the insensitive

zone should be of minimal size to include as many training samples as possible

(Xi, Yi), and as soon as possible, so as to ensure a better fit for the given samples.

Consequently, the upper bound function f1(X) should have a minimal w, b, ε, and

ξ and be moved upward. That way, more samples remain below the upper bound

function f1(X). Any error above f1(X) will not be captured in the slack variable ξ1i,

which is penalized in the objective function via the regularization parameter C1 > 0,

which is chosen a priori. Similarly, the lower bound function f2(X) of the insensitive

zone is moved downward by maximizing w, b, ε, and ξ in the objective function,

again, to ensure that as much training data as possible (Xi, Yi) is kept above the

lower bound. The specifics of the upper and lower bound functions, f1(X) and

f2(X), are introduced below.

min
w1,ε1,b1,ξ1i

1

2
‖w1‖2 + C1

(
v1ε1 +

1

N

N∑
i=1

ξ1i

)

s.t. 〈w1 · Φ (Xi)〉+ b1 − Yi 6 ε1 − ξ1i

ξ1i > 0, ε1 > 0, for i = 1, . . . , N

(3.3)

and

min
w2,ε2,b2,ξ2i

1

2
‖w2‖2 + C2

(
−v2ε2 +

1

N

N∑
i=1

ξ2i

)

s.t. 〈w2 · Φ (Xi)〉+ b2 − Yi 6 ε2 + ξ2i

ξ1i > 0, ε2 > 0, for i = 1, . . . , N

(3.4)

Each of these two equations determines the upper and lower bounds; however,

they cannot be solved directly. Therefore, the problem of seeking the upper bound
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function f1(X) = 〈w1 · Φ (Xi)〉+ b1 is transformed into solving the following QPPs:

min
w1,b1,ξ1i

1

2
‖w1‖2 + C1

(
v1 (b1 - ε1) +

1

N

N∑
i=1

ξ1i

)

s.t. 〈w1 · Φ (Xi)〉+ (b1 − ε1) > Yi − ξ1i and ξ1i > 0

for i = 1, . . . , N

(3.5)

where the meaning of the parameters is the same as Eq. (3.2). If we set B1 = b1−ε1,

the solution of minimizing w1, B1, and ξ1 can be found by solving the corresponding

dual:

max− 1

2

N∑
i=1

N∑
j=1

α1iα1jK 〈Xi ·Xj〉+
N∑
i=1

α1iYi

s.t.
N∑
i=1

α1i = C1v1

α1i ∈ [0, C1/N ] , i = 1, . . . , N

(3.6)

where K (Xi, Xj) = 〈Φ (Xi) ,Φ (Xj)〉, 〈·, ·〉 denotes inner product in RKHS. Sim-

ilarly, the problem of estimating f2 (Xi) = 〈w2 · Φ (Xi)〉 + b2 is equivalent to the

following optimization problem:

min
w1,b1,ξ1i

1

2
‖w2‖2 + C2

(
−v2B2 +

1

N

N∑
i=1

ξ2i

)

s.t. 〈w2 · Φ (Xi)〉+B2 6 Yi + ξ2i and ξ2i > 0

for i = 1, . . . , N

(3.7)

and the solution is found by solving this dual:

max− 1

2

N∑
i=1

N∑
j=1

α2iα2jK 〈Xi ·Xj〉 −
N∑
i=1

α1iYi

s.t.
N∑
i=1

α2i = C2v2

α2i ∈ [0, C2/N ] , i = 1, . . . , N

(3.8)

After estimating the upper bound and lower bound functions, the final regression

function is constructed as

f (Xi) =
1

2
[f1 (Xi) + f2 (Xi)] =

1

2

[
N∑
i=1

(α1i − α2i)K 〈Xi ·Xj〉+ (B1 +B2)

]
(3.9)
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Based on Eq. (3.5) and Eq. (3.7), it is clear that the formulation of ORSVR

is quite different from that of v-SVR in one fundamental way. ORSVR solves a

pair of QPPs, whereas in v-SVR, only a single QPP needs to be solved. Further, in

v-SVR, the QPP has two groups of constraints for all data points, but there is only

one group of constraints per QPP in ORSVR for all data points. This strategy of

solving two smaller sized QPPs, rather than one large QPP, means the formulation

of ORSVR simpler than classical v-SVR.

However, the box constraints from Eq. (3.6) and Eq. (3.8) are still correlated

to the size of the training samples, which makes it difficult to design an incremental

learning algorithm for the upper and down-bound functions. Therefore, to obtain

an equivalent formulation with box constraints that are independent of the sample

size, the objective function of Eq. (3.3) is multiplied by the size of the training

sample set, resulting in the following primal problem:

min
w1,b1,ξ1i

N

2
‖w1‖2 + C1

(
v1B1N +

N∑
i=1

ξ1i

)

s.t. 〈w1 · Φ (Xi)〉+B1 > Yi − ξ1i and ξ1i > 0

for i = 1, . . . , N

(3.10)

It is easy to verify that Eq. (3.10) is equivalent to the primal problem Eq. (3.5),

and the dual problem for Eq. (3.10) is

max− 1

2

N∑
i=1

N∑
j=1

α1iα1jQij +
N∑
i=1

α1iYi

s.t.
N∑
i=1

α1i = C1v1N

α1i ∈ [0, C1] , i = 1, . . . , N

(3.11)

where Q is a positive semidefinite matrix with Qij = (1/N) ·K (Xi, Xj). The lower

bound function f2(X) = 〈w2Φ (Xi)〉+ b2 can be modified in the same way.

After modification, the formulation of the classical v-SVR is transformed into
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the ORSVR where two smaller sized QPPs need be solved, and the box constraints

are independent of the size of the training sample set for each QPP. In addition, the

upper bound and lower bound functions of the regression model, as estimated by

ORSVR, well capture the characteristics of the data distributions. This allows the

conditional mean and the predictive variance to be estimated both automatically

and simultaneously. Such a feature could be useful in many cases, especially when

the noise is heteroscedastic and depends strongly on the input values. Due to these

advantages, ORSVR makes a good choice as the regression model for handling noisy

data.

3.2.3 Learning Process of Online Robust Support Vector Regression

The previous section introduced the formulation of ORSVR. This section presents

the details of the online learning process.

Karush-Kuhn-Tucker Conditions

According to convex optimization theory, a solution for the minimization problem

Eq. (3.11) could be obtained by minimizing the following convex quadratic objective

function under constraints:

minW =
1

2

N∑
i=1

N∑
j=1

α1iα1jQij −
N∑
i=1

α1iYi +
N∑
i=1

δi (α1i − C1v1N)

+
N∑
i=1

ηiα1i −
N∑
i=1

[µi (α1i − C1)]

s.t. ηi, µi > 0, i = 1, . . . N

(3.12)

Then, according to the KKT theorem [170], the first-order derivative of W leads

to the following KKT conditions:

∂W

∂α1i

=
1

2

N∑
i=1

α1jQij − Yi + δ + ηi − µi = 0 (3.13)

∂W

∂δi
=

N∑
i=1

α1i − C1v1N = 0 (3.14)
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To increase readability, we can replace δ with B1 then, as explained above, this

becomes an optimization problem with a convex domain. Following the Kuhn-Tucker

Theorem, the sufficient conditions for a point to be an optimum are

α1i ∈ [0, C1] , α1i

(
N∑
j=1

α1jQij +B1 − Yi + ηi − µi

)
= 0 (3.15)

ηi > 0, ηiα1i = 0 (3.16)

µi > 0, µi (α1i − C1) = 0 (3.17)

The regression function f(Xi) estimation can be written as

f (Xi) =
N∑
i=1

α1jQij +B1 (3.18)

and margin function is defined as

h (Xi) = f (Xi)− Yi (3.19)

Replacing
∑N

j=1 α1jQij +B1 with h(Xi) in Eq. (3.15), then the relation of h(Xi)

and 0 at the changing of α1i can be found:
h (Xi) ≥ 0 α1i = 0

h (Xi) = 0 α1i ∈ [0, C1]

h (Xi) ≤ 0 α1i = C1

(3.20)

Equation (3.20) is defined as a system of conditions, called Karush-Kuhn-Tucker

(KKT) conditions. The training sample set S is then partitioned into three inde-

pendent sets according to the value of h(Xi) (see Figure 3.1):

i. Ss = {i : h (Xi) = 0, 0 < α1i < C1} is the supporting set SS, which includes

the training samples strictly on the tube;

ii. SE = {i : h (Xi) 6 0, α1i = C1}includes the training samples exceeding the

tube; and
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iii. SR = {i : h (Xi) > 0, α1i = 0} is the remaining set SR, which includes the

training samples covered by the tube.

Figure 3.1 : The partitioning of the training samples S into three independent sets

by KKT conditions. (a) SS. (b) SE. (c) SR.

The same procedure is used for finding the lower function f2(Xi), and the KKT

condition for the analyses is
h (Xi) ≤ 0 α2i = 0

h (Xi) = 0 α2i ∈ [0, C2]

h (Xi) ≥ 0 α2i = C2

(3.21)

Similarly, the training sample set S for the lower function f2(Xi) is also be

partitioned into three independent sets according to the value of h(Xi).

Adjustment Methods

In this section, we focus on the step-by-step process for obtaining the optimum

solution of the ORSVR model. The main idea of this adjustment method follows

the same procedure as used in AONSVR and INVSVR. That is, the weight αc is

changed according to a new sample Xt in an infinite number of discrete steps until

it meets the KKT conditions, while ensuring that the existing samples continue to

satisfy the KKT conditions at each step.

However, in AONSVR, when a new sample Xt arrives, the weights αc of the new

sample Xt are initially set to 0 because the sum of α1i equals 0. Two adjustment
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steps are then needed to ensure all existing samples meet the KKT conditions.

In INVSVR, the sum of α1i equals CvN . But because the training samples in

INVSVR extended to (Xi, Yi, zi), where zi = {−1, 1} is the label of the training

sample (Xi, Yi), and the constraint
∑2N

i=1 αi = CvN has a conflict with
∑2N

i=1 ziαi =

0. Thus, the incremental learning algorithm in [82] must include an extra adjustment

step, called the initial adjustment, to preprocess the training samples. Note that

two further adjustment steps are still needed to resolve any conflicts.

Hence, we designed a simple adjustment method for upper function to seek the

minimization problem Eq. (3.10). Adding a new sample Xc, according to Eq. (3.11),

the equation:
N∑
i=1

α1i + α1c = C1v1(N + 1) (3.22)

need to be met. However, if we let the weights α1c be the equal of 0, the sum of α1i

should equals C1v1(N + 1), i.e.,
∑N

i=1 α1i = C1v1(N + 1).

To ensure all the existing samples continue to satisfy the KKT conditions, weight

α1i of each sample {s1, s2, · · · , ss} is adjusted through following equation (see Ap-

pendix A.1 for the proof):

B′1

α′1s1
...

α′1ss


=



B1

α1s1

...

α1ss


+



0 1 . . . 1

1 Q′s1s1 . . . Q′s1ss
...

...
. . .

...

1 Q′sss1 . . . Q′ssss



−1

︸ ︷︷ ︸
R



C1v1
...

−h′

−h′


(3.23)

where α′1i represents the new weight of each sample in the supporting set, and B′1

represents the new bias. Thus, Q′ij = (1/(N + 1)) ·K (Xi, Xj). Then according to

Eq. (19), we get

h′ (Xi) = f ′ (Xi)− Yi =
N∑
i=1

α1jQ
′
ij +B1 − Yi (3.24)

Because
∑N

i=1 α
′
1i = C1v1(N + 1), when a new sample Xc arrives, the weight α′1c
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of the new sample Xc can be set to 0, but it needs to be assigned to a set to satisfy

the KKT conditions. If the assignment violates the KKT conditions, α′1c will be

adjusted.

The process for making these adjustments is as follows. When adding a new

sample (Xc, Yc), the margin function changes to

h′ (Xi) =
N∑
j=1

Q′ijα
∗
1j +Q′ijα

∗
1c +B∗1 − Yi (3.25)

The variation of the margin can then be easily computed with

∆α1i = α∗1i − α′1i, i = 1, . . . N, c (3.26)

∆B1 = B∗1 − B′1 (3.27)

∆h′ (Xi) =
N∑
j=1

Q′ij∆α1j +Q′ic∆α1c + ∆b1 (3.28)

Because
∑N

j=1 α
′
1j = C1v1(N+1) and α′1c+

∑N
j=1 α

′
1j = C1v1(N+1) the following

equation can be constructed:

N∑
j=1

∆α1j + ∆α1c = 0⇒
N∑
j=1

∆α1j = −∆α1c (3.29)

Given the specific properties of each of the three sets, only the samples in support-

ing set {s1, s2, · · · , ss} are able to change ∆α1j, so only these samples can contribute

to the new equation∑
j∈S

Q′ij∆α1j + ∆B1 = −Q′ic∆α1c where i ∈ SS

∑
j∈S

∆α1j = −∆α1c

(3.30)
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Then, the equations above can be rewritten in an equivalent matrix form:

∆B1

∆α1s1

...

∆α1ss


= −



0 1 . . . 1

1 Q′s1s1 . . . Q′s1ss
...

...
. . .

...

1 Q′sss1 . . . Q′ssss



−1

︸ ︷︷ ︸
R



1

Q′s1c
...

Q′ssc


∆α1c (3.31)

Equation (31) can also be rewritten as follows:

∆B1

∆α1s1

...

∆α1ss


== β∆α1c =



β1b

β1s1
...

β1ss


∆α1c = −R



1

Q′s1c
...

Q′ssc


∆α1c (3.32)

According to Eq. (3.32), the values of ∆α1i and ∆b1 values are updated to

compute β.

In terms of the error and the remaining samples, a set N = SE∪SR = {n1, n2, · · · , nn}

is defined. These do not change ∆α1i, but they do change h′(Xi). The variations in

h′(Xi) are rewritten in matrix notation:


∆h′ (Xn1)

...

∆h′ (Xnn)

 =


∆Q′n1c

...

∆Q′nnc

∆α1c +



0 1 . . . 1

1 Q′n1s1
· · · Q′n1ss

...
...

. . .
...

1 Q′nns1
· · · Q′nnss





∆B1

∆α1s1

...

∆α1ss


(3.33)

Replacing the variations of ∆α1i and ∆B1 with the results obtained in Eq. (3.32)

gives


∆h′ (Xn1)

...

∆h′ (Xnn)

 =


∆Q′n1c

...

∆Q′nnc

∆α1c +



0 1 . . . 1

1 Q′n1s1
. . . Q′n1ss

...
...

. . .
...

1 Q′nns1
. . . Q′nnss


β∆α1c (3.34)
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Then, γ can be defined as

γ =


∆Q′n1c

...

∆Q′nnc

+



0 1 . . . 1

1 Q′n1s1
· · · Q′n1ss

...
...

. . .
...

1 Q′nns1
· · · Q′nnss


β (3.35)

And Eq. (3.34) is rewritten as
∆h′ (Xn1)

...

∆h′ (Xnn)

 = γ∆α1c (3.36)

According to Eq. (3.36), the values of ∆h′(Xi) can be updated by computing γ.

In summary, if the weight α′1c of the new sample Xc be set to 0 initially, adjusting

the value of α1i, b1, and h(Xi) can be followed Eq. (3.32) and Eq. (3.36).

Algorithm 1 summarizes ORSVR in pseudo code. Lines 2-6 perform the first

step of the adjustment, after which the sum of α′1j equals C1v1(N + 1). Lines 7-18

assign the new samples Xc into one of the three sets SS, SE, SR. Among lines 7-18,

line 14 derives the minimal increment ∆αmin
1c using the method in [140], then line 15

adjusts the weight α′1c of the new sample Xc until the assignment meets the KKT

conditions.

However, it may happen that α′1i < 0 after the update, which means α′1i <

0 conflicts with α′1i ∈ (0, C1). Therefore, we designed an additional method to

overcome this possible conflict. If α′1i < 0, we will transform one supporting sample

with a minimal ∆α′1i into the remaining set SR , and ∆α′1i is obtained with the

following equation:  ∆α′1i = α′1i/βi, when D · βi > 0

∆α′1i = −α′1i/βi, when D · βi < 0
(3.37)
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where D represents the direction and is decided by the following equation:

D = sign(−h′c) (3.38)

Calculating all ∆α′1i yields the minimal ∆α′1i, and the other α′1i and b′ are up-

Algorithm 3.1. Online Robust Support Vector Regression (ORSVR)

1: Read a new sample (Xc, Yc),

2: Set α1c = 0

3: Compute h′(Xi), i in {s1, s2, · · · , ss, c}.

4: if existing h′ (Xi) 6= 0:

5: Adjust α1i through (23) to get the new value α′1i, i in {s1, s2, · · · , ss, c}

6: end if

7: Compute h′(Xc)

8: if h′(Xc) > 0:

9: Add Xc to the remaining set and Exit

10: else:

11: Compute ∆h′(Xi). i in {s1, s2, · · · , ss}

12: while Xc is not added into a set:

13: Compute β and γ according to (36) and (39)

14: Compute the minimal increment ∆αmin
1c .

15: Update α′1i, ∆h′(Xi), SS, SE and SR.

16: Update the inverse matrix R.

17: end while

18: end if
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dated as follows:

b′1

α′1s1
...

α′1ss


=



b′1

α′1s1
...

α′1ss


+



∆b1

∆α1s1

...

∆α1ss


=



b′1

α′1s1
...

α′1ss


+ β∆α1c (3.39)

Once complete, the α′1i of the rest supporting samples will increase, so this

operation is repeated until all α′1i ∈ (0, C1).

Algorithm 3.1 shows that rebuilding the matrix R is very inefficient at each

iteration due to the high complexity of the matrix inversion (about O (n2 log(n))).

To avoid this problem, a further method is needed that is specific to this type of

matrix R and reduced the complexity to about O(s2), where s is the number of

samples in the supporting set.

The first sample is updated with

R =

 − N ′

N ′+1
Q′11 1

1 0

 (3.40)

where N ′ = N + 1.

The other samples are then added and updated with

Rnew =



0

− N ′

N ′+1
R

...

0

0 . . . 0 0


+

1

γi

 β

1

 [βT 1
]

(3.41)

If a new sample is added to the supporting set Ss, γi is defined as:

γi =
N ′

N ′ + 1
Q′cc +

[
1

N ′

N ′ + 1
Q′cs1 · · · N ′

N ′ + 1
Q′csls

]
β (3.42)

If the new sample is moved from the error set SE or the remaining set SR into
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the supporting set, β and γi also need to be recomputed as follows:

β = − N ′

N ′ + 1
R



1

Q′is1
...

Q′isls


(3.43)

γi =
N ′

N ′ + 1
Q′ii +

[
1

N ′

N ′ + 1
Q′is1 · · · N ′

N ′ + 1
Q′isls

]
β (3.44)

If the sample is moved from the supporting set SS to the error SE or remaining

set SR, the matrix R is updated as follows:

I = [1 · · · (i− 1) (i+ 1) · · · (ls + 1)]

Rnew = RI,I −
RI,iRi,I

Ri,i

(3.45)

which deletes the row and column of the removed sample and updates the others.

Complexity

Like every good complexity analysis, we compute the value of the complexity in

the worst case (O(f(x))).

We firstly analyze the time complexity. In Algorithm 1, the time complexity is

caused by three operations: 1). Step 3, i.e., calculating the margin distance h′(Xi)

of each sample. The time complexity of this operation is O(n)O(kernel); 2). Step

5, i.e., initially adjusting the weight of each support vectors. The time complexity

of this operation is O(n); 3). From Step 12 to Step 17, i.e., adjusting the weights of

each sample O(5n). Therefore, the total time complexity is O(n3)∗O(kernel). As for

space complexity, it is very easy to compute in Algorithm 3.1, because it is mainly

caused by saving kernel matrix. Therefore, the total space complexity is O(n2).

The complexity of the kernel operations can easily be avoided by saving all the

kernel values in a matrix. This reduces time complexity, yet adds to the space com-

plexity the factor O(n2). Although the complexity O(n3) can seem same compared
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to other online SVR algorithms, but, in practice, this does not happen. In the aver-

age case, the algorithm has almost half complexity of other online SVR algorithms,

as shown in the experimental section. The speed of learning depends mostly on the

number of support vectors, which can significantly influence performances.

3.2.4 Experiments

In this section, we illustrate the effectiveness of our proposed ORSVR through

comparing its performance to other online SVR algorithms. The evaluations in-

volved different scenarios using both artificial and real-world datasets. The artificial

datasets allowed us to control the relevant parameters and to evaluate the algorithms

empirically with specific types of changes. The real-world datasets enabled us to

evaluate the merit of the proposed approach in practical scenarios. All experiments

were conducted in Python 3.5 on a PC running Windows 7 with an Intel Core i5

processor (2.40 GHz) and 8-GB RAM.

Artificial Datasets

Table 3.1 : Parameters for each compared incremental SVR

Parameters
Method

AONSVR INVSVR ORSVR

C 100 100 100

ε 0.1 0.1 *

v * 0.01 *

Kernel 200 200 200

* means the parameter does not need to be set in this algorithm

In our first set of experiments, we compared ORSVR with AONSVR [140] and

INVSVR [82] on several artificial datasets. For simplicity, we used the radial basis
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function (RBF) kernel for all algorithms and set the model parameters C1 = C2 = C

and v1 = v2 = v for each algorithm to the values listed in Table 3.1.

The first test was to estimate a sinc function, given N examples (Xi, Yi), with

Xi drawn uniformly from [−3π, 3π] and Yi = sinc (Xi) + ei.

sinc(X) =

 sin(X)/X if X 6= 0

1 if X = 0
(3.46)

where ei is the noise drawn from a uniform distribution on U(−k, k). Here, U(−k, k)

represents the uniformly random variable in [−k, k].

(a) AONSVR

(b) INVSVR (c) ORSVR

Figure 3.2 : The regression models obtained built by applying different incremental

SVR algorithms on the sinc data.

Figure 3.2 shows the results for the sinc evaluation. The red dots represent the
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predicted value, and the blue dots represent the true value. When the predicted

value is very close to the true value, the blue dot will almost cover the red dot.

Therefore, from Figure 3.2, we can see the regression model built by AONSVR does

not perfectly fit the data, because most of the red dots are not covered. The results

with INVSVR were better, but the model still does not perfectly fit the data. By

contrast, the regression model built by ORSVR does fit the data well, showing that

ORSVR built the model with the highest accuracy.

Figure 3.3 shows the results of the same experiment in terms of root-mean-square

error (RMSE) [27], training time (in seconds), and the number of support vectors

needed to estimate the final regression function for different sample sizes N .

(a) RMSE

(b) Training Time (c) Support Vectors

Figure 3.3 : Comparative results in terms of RMSE, training time, support vectors

in sinc dataset (the x-axis represents the size of instances).

As shown in Figure 3.3(a), ORSVR had a smaller RMSE than AONSVR and
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INVSVR, which shows that ORSVR has better generalization ability. Figure 3.3(b)

shows that ORSVR’s learning speed was not significantly lower than either AONSVR

or INVSVR, but ORSVR was able to include more support vectors (as shown in

Figure 3.3(c)). These results show that although ORSVR has more support vectors,

the learning speed of ORSVR not much slower than AONSVR and INVSVR. The

reason may be the strategy of converting a single large QPP into two smaller QPPs

speeds up the learning process.

(a) AONSVR

(b) INVSVR (c) ORSVR

Figure 3.4 : The regression model obtained by applying different incremental SVR

algorithms on the sinc dataset with noise.

To further explore the potential advantages of ORSVR over AONSVR and IN-

VSVR, we compared the regression performance trends on a noisy version of the sinc

data and an increased sample size N. The noisy data are randomly sampled from a



54

Uniform distribution Uni(-0.015,0.015). The noisy sinc data is shown in Figure 3.4.

From Figure 3.4, we can see that AONSVR and INVSVR suffered serious over-

fitting problems, and many noisy samples were selected as support vectors, whereas

ORSVR was still able to represent the data distribution accurately despite the noise.

Further, ORSVR only selected a few samples as support vectors, ignoring a large

proportion of the noisy ones. The results demonstrate that ORSVR is not sensitive

to the variances brought about by noise. We attribute this to ORSVR’s ability

to automatically increase the width of the insensitive zone as the amount of noise

increases. As such, these results also illustrate one of ORSVR’s advantages.

(a) RMSE

(b) Training time (c) Support vectors

Figure 3.5 : Comparative results in terms of RMSE, training time, support vectors

in sinc dataset with noise (the x-axis represents the size of instances).

Figure 3.5 shows results of this experiment in terms of root-mean-square error

(RMSE), training time (in seconds), and the number of support vectors required to
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estimate the final regression function for different data sizes N .

As shown in Figure 3.5(a), ORSVR had a smaller RMSE than AONSVR and

INVSVR in this experiment, too, which again shows that ORSVR is more robust to

noisy samples. By handling noisy samples effectively with a ‘dynamic’ insensitive

zone, the resulting model was less influenced by the noisy samples. Thus, ORSVR

has better generalization ability (i.e., a smaller RMSE). This is because the ORSVR

is good at characterizing data distributions, whereas AONSVR and INVSVR had

a tendency to overfit the training samples. These algorithms cannot prevent the

influence of noisy samples because ε-SVR and v-SVR consider the deviations overall

training samples to minimize the cost function. Comparing ORSVR with AONSVR

and INVSVR with many different settings of data size N , the generalization ability

of ORSVR was the best. Figure 3.5(b) highlights that ORSVR learned significantly

faster than AONSVR and INVSVR. The strategy of dividing the large QPP into two

smaller QPPs is partly responsible, but the sparsity is another contributing factor.

ORSVR had the lowest sparsity of the three algorithms. In addition, as shown in

Figure 3.5(c), the number of supporting vectors required to estimate the regression

function with AONSVR and INVSVR was almost equal to the number of noisy

samples, while the proportion was significantly lower with ORSVR. Hence, ORSVR

also showed the best sparsity among all approaches and, as mentioned earlier, the

number of support vectors is the main determinant of prediction speed. In summary,

we find from the results of this analysis that the ORSVR algorithm provides superior

results in the face of noisy data compared while preserving the advantage of faster

learning speeds.

Real-world Datasets

Turning to the real world, we tested ORSVR on nine publicly-available regression

datasets. Each dataset represents a different application, with a wide range of data
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sizes and dimensionalities. We divided the datasets into two groups. The first five

being small datasets, and the last four being larger datasets. Table 3.2 lists the

details for each.

Table 3.2 : List of datasets

ID Name Instances Attributes

Small Datasets

D1 Triazines 186 60

D2 Housing 506 13

D3 Strength 1030 8

D4 Abalone 4177 8

D5 Parkinson’s 5875 20

Large Datasets

D6 CPUsmall 8192 12

D7 Laser 10073 10

D8 Friedman 15000 10

D9 Cadata 20640 8

* represents the parameter is not be set in this algorithm

Datasets D1-D5 were sourced from the UCI repository

(http://archive.ics.uci.edu/ml/). D6 is available at http:/ /www.csie.ntu.edu.tw/

∼cjlin/libsvmtools/datasets/regression.html. D7 comes from the Santa Fe Time Se-

ries Competition Datasets (http://www.psych.stanford.edu /∼andreas/Time-Series

/SantaFe.html). D8 is a noisy dataset (Friedman, 1991), where the input attributes

(x1, . . . , x10) are generated independently, each of which is uniformly distributed



57

over [0, 1]. The dataset is produced by

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + δ(0, 1) (3.47)

where σ(0, 1) is the noise term, which is normally distributed with a mean of 0 and a

variance of 1. Note that x1, . . . , x5 only are used in (34), while x6, . . . , x10 are noisy

irrelevant input attributes. D9 is are available from StaLib.

In next experiments, we used a linear kernel K (x1, x2) = exp (−‖x1 − x2‖2/2σ2),

and a Gaussian kernel K(x1, x2) = exp (−‖x1 − x2‖2/2σ2) with σ = 0.5 for all exper-

iments. The parameter ε , representing the strictness of the restoration adjustments,

was fixed at −1. The values for v and C were fixed at 0.1 and 100, respectively, in

all experiments.

(a) D1 (b) D2

(c) D3 (d) D4

Figure 3.6 : RMSE obtained by different algorithms in D1 - D4 datasets.
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(a) D5 (b) D6

(c) D7 (d) D8

(e) D9

Figure 3.7 : RMSE obtained by different algorithms in D5 - D9 datasets.

Figure 3.6 and 3.7 compare the regression performance of ORSVR, AONSVR,

and INVSVR on the different experimental datasets and different kernels. Over

all nine datasets, the Gaussian kernel produced the lowest RMSE with the excep-

tion of the Parkinson’s dataset (D5). ORSVR and INVSVR performed better than

AONSVR on all datasets because both use the parameter v to control the bounds
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of the proportion of support vectors and errors. The ORSVR algorithm showed

markedly better on the Friedman dataset (D8) because it includes noisy data and

a heteroscedastic error structure, which offers further support for the advantages

of ORSVR over INVSVR. This result also highlights the benefits of allowing an

arbitrarily-shaped insensitive zone in ORSVR, rather than the tube shape in v-SVR.

(a) D1 (b) D2

(c) D3 (d) D4

Figure 3.8 : Training time obtained by different algorithms in D1 - D4 datasets.
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(a) D5 (b) D6

(c) D7 (d) D8

(e) D9

Figure 3.9 : Training time obtained by different algorithms in D5 - D9 datasets.

Figure 3.8 and 3.9 compare the run-time of the three algorithms. In general, as

the size of the training samples size N increased, the run-time increased for all three.

Further, the Gaussian kernel was faster than the linear kernel and, moreover, the

ORSVR’s had the fastest training speed over all data sets. These results support
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the notion that solving two smaller-sized QPP instead of a single larger QPP speeds

up the learning process. Like the synthetic experiments, ORSVR required fewer

support vectors in proportion to the number of training samples, which further

contributed to the faster run-time.

In many real-world applications, the ability to generalize a model and the speed

of learning are important considerations. By successfully combining the advantages

of SVR and incremental learning, ORSVR shows promise as an alternative to these

situations. It not only has the advantage of faster learning speeds but is also sparser

and has a greater capacity for generalization than other incremental SVRs in terms

of high prediction speeds and satisfactory test accuracy. In addition, ORSVR has the

advantage of handling noisy data, which makes it suitable for real-world regression

problems with data streams.

3.3 A Gaussian Membership-based Self-Organizing Incre-

mental Neural Network to Filter Noisy Streaming Data

3.3.1 Overview of Enhanced SOINN

E-SOINN was developed for online unsupervised clustering tasks [68]. When a

new sample X is presented to E-SOINN, it calculates the nearest node (winner),

denoted as s1, and the second-nearest node (second-winner), denoted as s2, by the

following equations:

s1 = arg minc∈AN ‖X −Wc‖ (3.48)

s2 = arg minc∈AN\{s1} ‖X −Wc‖ (3.49)

If the distance between the new sample X and the s1 or s2 is less than the

threshold Ti, the data is assigned to the s1 or s2. Otherwise, E-SOINN determines

that the new sample X is very different from the current nodes and a between-

class insertion should be done. The similarity threshold Ti is calculated using the
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maximum distance between node i and its neighbor nodes

Ti = max
j∈neii

‖Wi −Wj‖ (3.50)

If node i does not have nodes that connect to it, the threshold is defined as the

minimum distance between node i and other nodes in the network

Ti = min
j∈AN\{i}

‖Wi −Wj‖ (3.51)

Consider the case in which a new sample X is assigned to the nearest node s1.

The weights vector Ws1 of the winning node and its neighbors are updated as follows:

∆Ws1 =
1

Ls1
(X −Ws1) (3.52)

∆Wj =
1

εLs1
(X −Wj) (3.53)

where j is the neighbors of the winning node s1. In addition, E-SOINN uses the

MAP of a node to describe the density of the node. The accumulated points spi are

calculated as the sum of points for node i during a learning period

spi =
n∑
j=1

(
λ∑
k=1

pi

)
(3.54)

where n indicates the number of learning cycles. The point of node i is calculated

as the follow:

pi =


1(

1+ 1
mi

∑mi
j=1‖Wi−Wj‖

)2 if node i is winner

0 else

(3.55)

where m is the number of neighbors of node i. Then the MAP of node i is calculated

as follows:

hi = spi =
1

M
spi =

1

M

n∑
j=1

(
λ∑
k=1

pi

)
(3.56)

where M = n× λ.
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Figure 3.10 : Fluctuating distribution with overlapped area.

Figure 3.10 is an example of a density distribution with an overlapping area,

but the density distribution fluctuates. E-SOINN approximates the density distri-

bution into Gaussian distributions. Algorithm 3.2 and Algorithm 3.3 were proposed

respectively, to separate the composite class into subclasses and build connections

between nodes.

Equations (3.57) and (3.58) are described below

min (hwinner, hsec ondwinner) = θAAmax (3.57)

min (hwinner, hsec ondwinner) > θBBmax (3.58)

In both equations, the winner and second winner lie in the overlapping area

between subclasses A and B. The parameter θ with three possible values within the

range [0, 1] can be automatically calculated using the threshold function below

θ =


0.0, if 2× mean A ≥ Amax

0.5, if 3× mean A ≥ Amax > 2× mean

1.0, if Amax > 3× mean A

(3.59)

where Amax is the apex density of subclass A, Bmax is the apex density of subclass

B, and the meanA is mean density of the nodes in subclass A

meanA =
1

NumA

∑
i∈A

hi (3.60)
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Algorithm 3.2 Separate a composite class into subclasses

Input: the set of all nodes AN

Output: overlapped area

1: for nodei in {AN} do

2: if nodei has a local maximum density do

3: {N} ← nodei

4: end if

5: end for

6: for Ni in {N} do

7: {C} ← findConnectedNodes (Ni)

8: for Ci in {C} do

9: Ci.lable ← Ni.label

10: end for

11: end for

12: return Ci with two labels

For deleting noisy nodes, the following strategy is used: (1) For all nodes in AN ,

if node i has two neighbors, and hi < c1
∑NA

j=1 hj/NAN , then remove node i. (2) For

all nodes in AN , if node i has one neighbor, and hi < c2
∑NA

j=1 hj/NAN , then remove

node i. (3) For all nodes in AN , if node i has no neighbor, the control parameters

c1 and c2 need to be predefined by the user, as it is difficult to give these parameters

a standard for every task.

3.3.2 Gaussian Membership-based Self-Organizing Incremental Neural

Network

Gm-SOINN inherits and develops the single-layer SOINN, therefore the patterns

that neighbor the feature space, i.e., “similar patterns”, are mapped to the same
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Algorithm 3.3 Build connections between nodes

Input: winner s1 and second winner s2

Output: connections between s1 and s2

1: if s1 with no label or s2 with no label

2: connect the two nodes with an edge

3: else if the label of s1 and s2 are same

4: connect the two nodes with an edge

5: else if s1 belongs to subclass A and s2 belongs to subclass B

6: if Equation (3.57) or (3.58) is satisfied

7: connect the two nodes with an edge

8: else

9: do not connect the two nodes

10: end if

11: end if

node, or to nodes that are adjacent in the network. There is only one layer of Gm-

SOINN, and this layer is used to process the received data and record the learning

result. The structure of the layer (such as the node number and the topology

structure) is not predefined and is automatically obtained with the incremental

learning of external data. In Gm-SOINN, Gaussian membership is used to represent

the degree of input sample X(t) belonging to a node and updates the winning

node and the neighbors of the winning node based on Gaussian membership. In

addition, Gm-SOINN not only records the weights vector of one node but also the

density distribution of the subclass that it belongs to, and the density distribution is

learned by eGMM . eGMM is implemented, based on evolving Vector Quantization

(eV Q) [138, 87] algorithm, so it can accommodate data online and refine the models



66

generated using merge-operations.

The flowchart of Gm-SOINN is the same process as other single-layered SOINN-

based methods, such as E-SOINN [68], LD-SOINN [185], and KDE-SOINN [193].

When a new sample X(t) is given to Gm-SOINN, it finds the winner s1 and the

second-winner s2 of the sample by a similarity metric. If the metric between the

new sample X(t) and the s1 or s2 is more than the similarity threshold Ti, the sample

X(t) is assigned to s1. If no edge connects s1 and s2, GM-SOINN should determine

whether to connect s1 and s2 with an edge. If s1 and s2 connects, then the “age” of

the edge is set as “0”, and the age of all edges linked to s1 is subsequently increased by

“1”. In addition, the weights vector of s1 and its neighbors is updated. The density

distribution of the subclass of s1 is also updated. Otherwise, Gm-SOINN determines

that the sample X(t) is very different from the current nodes and should be inserted

as a new pattern. When the age of an edge exceeds agemax, the edge is deleted. After

λ learning iterations, Gm-SOINN classifies nodes to different classes, then deletes

noisy nodes. When the learning process has finished, Gm-SOINN outputs the final

topological structure. Below, we introduce the details of Gm-SOINN.

Insert New Pattern

Assume a data stream with samples X(1), . . . , X(t), . . . , X(Q) ∈ Rd. The learn-

ing task of Gm-SOINN is to represent the dataset by one or more neural networks.

In the neural networks, similar samples are grouped into ith nodes with a weights

vector Wi(t) ∈ Rd. These nodes are connected by an edge, if the nodes are close to a

sample in common after a single pass scan of the training dataset. The learning task

is formally defined in the literature as a minimization of the reconstruction error

Q∑
t=1

∑
i∈AN

µi (t) d
2
i (t) (3.61)
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where di(t) is the Euclidian distance (L2-norm) between the inputs X(t) and Wi(t),

so:

d2i (t) = ‖(X (t)−Wi (t))‖2, 1 6 t 6 Q, 1 6 i 6 AN (3.62)

However, µi(t) is not represented by “0” or “1”; rather, it is represented by

Gaussian membership [91]. The greater the value of µi(t) represents the closer

input of X(t) is to Wi(t), and

0 6 µi (t) 6 1,
∑
i∈AN

µi (t) = 1 (3.63)

The Gaussian membership µi(t) should be determined by the following equations:

µi (t) =

[
d2i (t)

AN∑
j=1

(
1

d2j (t)

)]−1
(3.64)

from Equation (3.64), we can see that the Gaussian membership µi(t) is determined

based on all distances di(t), i.e., based on all node’s weights vector Wi(t).

The weights vector Wi(t) should be defined as the weighted mean of the sample

X(t) belonging to the ith node and the Gausssian membership µi(t) represents the

weights, so Wi(t) is calculated as follows:

Wi (t) =

AN∑
i

µ2
i (t)X (t)

AN∑
i

µ2
i (t)

(3.65)

However, if Eq. (3.65) is used to calculate Wi(t), we need to know the exact value

of AN , and the value of AN will not change during each operation. Unfortunately,

Gm-SOINN is an incremental learning algorithm, thus the value of N cannot be

known because it may be increased. Based on this reason, we propose an incremental

method to calculate the Gaussian membership µi(t).

According to Eq. (3.65), we know the weights vector Wi(t+ 1) is denoted as:

Wi (t+ 1) =

t+1∑
k=1

µ2
i (k)X (k)

t+1∑
k=1

µ2
i (k)

=

t∑
k=1

µ2
i (k)X (k) + µ2

i (k + 1)X (k + 1)

t∑
k=1

µ2
i (k) + µ2

i (k + 1)

(3.66)
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where k = 1, 2, . . . , t+ 1.

The relationship between the old weights vector Wi(t) and the new vector Wi(t+

1) is then introduced as follows:

Wi (t+ 1) = Wi (t) + ∆Wi (t+ 1) (3.67)

Therefore, in order to obtain the ∆Wi(t + 1), we first transfer the definition of

Wi(t+ 1) from Eq. (3.66) to Eq. (3.68):

Wi (t+ 1) = Wi (k)− Wi (k)µ2
i (t+ 1)

t+1∑
k=1

µ2
i (k)

+
µ2
i (t+ 1)X (t+ 1)

t∑
k=1

µ2
i (k) + µ2

i (t+ 1)

(3.68)

Then, ∆Wi(t+ 1) can be denoted as:

∆Wi (t+ 1) =
µ2
i (t+ 1) (X (t+ 1)−Wi (t))

t∑
k=1

µ2
i (k) + µ2

i (t+ 1)

(3.69)

The weights vector ∆Wi(t + 1) updated in Eq. (3.69) cannot be calculated in

incremental form, since the denominator in Eq. (3.69) cannot be calculated directly,

and the calculation of Gaussian membership µi(k) requires all the past input sample

X(k). Therefore, an approximate calculation of this term is proposed by introducing

the exponential weighting of the past Gaussian membership µi(k), calculated at

each time instant, so that the weights vector Wi(t) of the past input sample X(k)

decreases exponentially.

The term in the denominator is denoted as Ui(k) ∈ Rd and calculated as

Ui (t+ 1) = fvUi (t) + µ2
i (t+ 1) (3.70)

where Ui(t) is defined as follows:

Ui (t) =
t∑

k=1

µ2
i (k) (3.71)
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The parameter fv, (0 ≤ fv ≤ 1) denotes the forgetting factor of past input data,

i.e., the forgetting factor of the past Gaussian membership Ui(t). The ∆Wi(t + 1)

can now be written as:

∆Wi (t+ 1) =
µ2
i (t+ 1) (X (t+ 1)−Wi (t))

Ui (t+ 1)
(3.72)

where the current Gaussian membership µi(t+ 1) is calculated by Eq. (3.64).

Build Connections Between Nodes

When s1 and s2 are found, it is necessary to judge whether a connection between

them should be built. However, in Gm-SOINN, it is difficult to use Algorithm 3.3

to judge whether to build this connection when the two nodes belong to different

Figure 3.11 : Density distribution in Gm-SOINN.

classes. The reason is if the MAP is still used for the density of nodes in Gm-SOINN,

the density distribution of a subclass that the node belongs to will be as shown in

Figure 3.11, not as in Figure 3.10. It can be seen from Figure 3.11 that the density

distribution cannot be approximated to two Gaussian distributions. Therefore, a

new method is needed to ascertain whether to build a connection between s1 and a

s2.

In Gm-SOINN, each node will store a Gaussian model that it belongs to. Hence,

we propose an eGMM method based on eV Q algorithm [138] to directly learn the

density distribution of each Gaussian model. Whether to build a connection between
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a s1 and s2 can then be judged, based on the Gaussian models belonging to the two

nodes.

Algorithm 3.4 Build connections between nodes

Input: node s1 and node s2

Output: connections between s1 and s2

1: if s1 with no label or s2 with no label

2: connect the two nodes with an edge

3: else if the label of s1 and second winner s2 are same

4: connect the two nodes with an edge

5: else if s1 belongs to Gs1 and s2 belongs to subclass Gs2

6: if Gs1 overlap Gs2 and Gs1 and Gs2 is the homogeneity

7: connect the two nodes with an edge

8: else

9: do not connect the two nodes

10: end if

11: end if

In eGMM , each Gaussian modelG is associated with a 4-tupleG =< mvQ, CovQ,

numQ, rQ > to represent its density distribution. According to the theory of bivari-

ate normal contours, we set rS = x2d(α). Here, x2d(α) is a value of x2 distribution

with d degrees of freedom and α confidence; α is usually equal to 0.90 or 0.95. Based

on the Gaussian model G, a layered tree-structured Gaussian mixture model can be

generated to model the structure of eGMM . Using a down-top hierarchical cluster-

ing approach, each node in the model’s layers represents a cluster of the Gaussian

components in eGMM , and is modeled by a single Gaussian model G. Each leaf

node of the tree-structured model corresponds to a node in the topological structure.
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Following this idea, we propose Algorithm 3.4 to judge whether to build connections

between s1 and s2.

From Algorithm 3.4, the judgment (step 6) is split into two steps as follows: (1a)

measures the degree of overlap of the two Gaussian models, and (1b) assesses the

homogeneity of the two Gaussian models.

The Bhattacharyya distance [106] is applied to calculate the degree of overlap,

which is defined for multivariate Gaussian distributions as:

olap (Gs1 , Gs2) =
1

8
(mvs1 −mvs2)

T × Cov−1 (mvs1 −mvs2)

+
1

2
ln


 |Cov−1|√∣∣Cov−1

s1

∣∣× ∣∣Cov−1
s2

∣∣




(3.73)

where Cov−1 =
(
Cov−1

s1
+ Cov−1

s2

)
/2. The useful property of Bhattacharyya is that

the distance delivers exactly 0 if two ellipsoids are touching, “>0” when they are

overlapping (the closer the value to 1, the bigger the overlap) and “<0” when they

are disjoint. Thus, a feasible threshold for Gaussian models overlap candidates is 0.

(a) Gaussian models form a

homogenous combination

(b) Gaussian models do not form a

homogenous combination

Figure 3.12 : Touching Gaussian models.

The final decision as to whether s1 and s2 should be connected depends on the
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homogeneity of Gaussian models that two nodes belong to. Two Gaussian models

are homogenous when their joint distribution follows the “behavior” of their single

distributions. To illustrate, we provide two examples of touching Gaussian models in

Figure 3.12. In Figure 3.12(a), the two Gaussian models are homogenous. In Figure

3.12(b), the models follow different trends in two-dimensional space, and therefore it

is not homogeneity. Our homogeneity condition expresses the change in the volume

of the merged Gaussian models; an undetermined high-volume blow-up indicates an

inconsistency in the joint subclass homogeneity. Therefore, we hypothetically merge

the two Gaussian models, Gs1 and Gs2 , into one Gaussian model (for formulas see

below) Gmd and compare the volume Vmd of the new Gaussian model Gmd with the

volume of the old two Gaussian models: Vs1 and Vs2 .

If the following condition is fulfilled:

Vmd 6 Vs1 + Vs2 (3.74)

the two Gaussian models must be homogenous. The parameters V denotes the

volume of an arbitrary ellipsoid in high-dimensional space:

VG =
√

2
(P+1)

(P/2)−1∏
i=0

1

P − 2i

√|CovG|rG (3.75)

where P is the dimensionality of the feature space.

However, Gm-SOINN is an incremental neural network, so the Gaussian models

will change when new samples are inputted. As a result, the density distribution

also is changed, so the eGMM should adaptively learn the density distribution of

each Gaussian model. In order to allow eGMM to easily adapt to Gm-SOINN, the

core components in eGMM can therefore be formulated as follows:

(1) If the Gaussian membership µi(t) of a new input sample X(t) belonging to s1

is lower than Ts1 or the Gaussian membership µi(t) of a new input data X(t)
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belonging to s2 is lower than Ts2 , a new Gaussian model G is created for X(t)

as follows:

G :
〈
mvG = X(t), CovG = (δI)−1,numG = 1, rG = x2numG

(α)
〉

(3.76)

(2) Otherwise, if s1 and s2 have a connection, the 4-tuple of G is updated as

follows:

numG (t+ 1) = numG (t) + 1 (3.77)

mvG (t+ 1) = mvG (t) +
1

numG (t + 1)
(X (t)−mvG (t)) (3.78)

CovG (t+ 1) =

(
1− 1

numG (t+ 1)

)
CovG (t)

+
1

numG (t+ 1)
(X (t)−mvG (t)) (X (t)−mvG (t))T

(3.79)

rG (t+ 1) = x2numG(t+1) (α) (3.80)

While s1 and s2 have no connection, if we need to connect the s1 and s2, the

4-tuple of G is updated as follows:

numG = numGs1
+ numGs2

(3.81)

mvG =
numGs1

mvGs1
+ numGs2

mvGs2

numGs1
+ numGs2

(3.82)

CovG =
numGs1

numG

×
(
CovQs1

+
(
mvG −mvGs1

) (
mvG −mvGs1

)T)
+
numGs2

numG

×
(
CovGs2

+
(
mvG −mvGs2

) (
mvG −mvGs2

)T) (3.83)

rG = x2numG
(α) (3.84)

If we do not need to connect s1 and s2, we separately update Gs1 and Gs2

follow Eq. (3.77)-Eq. (3.80).

In summary, in our proposed eGMM , no parameters are required be set manu-

ally and Gaussian mixture model will be updated then the new samples are inputted.
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In addition, eGMM is equipped with a dynamic (single-pass) class merging strat-

egy which not only resolves significant overlap occurring over time as classes move

together, but also compensates for a slight overlap or touching classes.

Classify Nodes to Different Classes

Algorithm 3.5 Classify nodes to different classes

Input: the set of all nodes AN

Output: final classes

1: for nodei in {AN} do

2: if the G of nodei different with the G of nodei that in set {N} do

3: {N} ← node i

4: end if

5: end for

6: for Ni in {N} do

7: {C} ← findConnectedNodes(Ni)

8: for Ci in {C} do

9: Ci.lable ← Ni.label

10: end for

11: end for

12: return final classes

If the number of input samples generated so far is an integer multiple of pa-

rameter λ, we need to update the subclass label of every node. In Gm-SOINN,

if two nodes can be linked with a series of edges, we say that a path exists be-

tween the two nodes, i.e., given a series of nodes xi ∈ A, i = 1, 2, . . . , n, makes

(i, x1), (x1, x2), . . . , (x(n−1), xn), (xn, j) ∈ C, we say that a “path” exists between

node i and node j. Martinetz [49] proposed if two nodes are connected with one
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path in topology representing networks , the two nodes should belong to one class.

Algorithm 3.5 shows how to classify nodes to different classes.

Delete Noisy Nodes

Algorithm 3.6 Deleting noise nodes

Input: a set of nodes AN

Output: noise nodes {O}

1: for nodei in {AN} do

2: if nodei has only two or fewer two edges:

3: G← get the Gaussian model of nodei

4: calculate the Mahalanobis distance MSi between G and nodei

5: if MSi > rG

6: {O} ← nodei

7: end if

8: end if

9: end for

10: for nodei in {O} do

11: delete nodei and its edges

12: end for

Finally, we need to delete noisy nodes. Because the nodes in Gm-SOINN are

associated with a Gaussian model G, the simple Algorithm 3.6 can be adopted in

Gm-SOINN to delete noisy nodes and edges. Unlike E-SOINN, it is not necessary to

predefine the control parameters c1 and c2 in Algorithm 3.6, because eGMM handles

data from a global perspective. Thus, the Gaussian models and density distribution

are relative stable. In addition, different recognition results for the nodes will not
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be returned when the training is repeated in the same environment using the same

dataset presented in a different sequence.

Complete Algorithm of Gm-SOINN

The learning process is stopped when the final classes and the output of the

prototype vectors of every class have been obtained. The complete algorithm of

Gm-SOINN is shown in Algorithm 3.7.

In Algorithm 3.7, the similarity threshold Ti is calculated using the maximum

Gaussian membership between node i and its neighbor nodes

Ti = max
j∈neii

µij (3.85)

If node i does not have neighbors, the threshold is defined as the minimum

Gaussian membership between node i and other nodes in the network

Ti = min
j∈AN\{i}

µij (3.86)

It can be seen from Algorithm 3.7 that Gm-SOINN only sets two parameters

manually. In the learning process, one difference between Gm-SOINN and other

SOINN-based methods is that Gm-SOINN uses the Gaussian membership µi as a

similarity metric, to identify whether a new pattern needs to be inserted when a

new input data X(t) arrives. The Gaussian membership µi is updated at each step.

Another difference is that Gm-SOINN stores Gaussian mixture models to represent

the density distribution of the current observations, so building connections between

two nodes and deleting noisy nodes will be based on the Gaussian mixture models.

3.3.3 Experiments

In this section, we introduce the experiments on artificial and real-world datasets.

Since Gm-SOINN aims to combine the advantages of topology learning and Gaus-
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Algorithm 3.7. Gaussian membership-based self-organizing incremental

neural network (Gm-SOINN)

Input: Sequence {X}, λ, agemax

Output: the number of classes and the topology of every class

1: Initialize set AN with the first 2 samples drawn from {X}.

2: while {X} is not empty do

3: Find winner s1 and second winner s2 from neuron set AN , as

s1 = arg max
i∈AN

µi, s2 = arg maxµi
i∈AN\{s1}

4: if s1 < Ts1 or s2 < Ts2 then

5: insert X with weight WX(t) to AN , and set winning times LX = 0.

6: Add a new Gaussian model GX

7: else

8: judge whether to build a connection between s1 and s2 and connect s1

and s2 by Algorithm 3.4. 9: update the Gaussian mixture models

10: Increase the winning times as LX(t) = LX(t− 1) + 1. Then adapt U as

Un1 (t) =
(
1− 0.1Cn1

)
Un1 (t− 1) + µ2

i (t)

Un1i
(t) =

(
1− 0.1Cn1i+2

)
Un1 (t− 1) + µ2

i (t) for all direct neighbors i of s1

11: Update s1 and its neighbor according Eq. (3.67).

12: Increase the age of all edges linked with s1 by 1.

13: for all edge agei,j > agemax do

14: Remove the edge connecting i and j.

15: end for

16: end if

17: if number of input samples divides λ then

18: classify nodes to different classes using Algorithm 3.5.

19: delete noisy nodes using Algorithm 3.6

20: end if

21: end while
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sian membership, with a self-organizing incremental neural network, other SOINN-

based methods were implemented for comparison. All experiments were conducted

in Python 3.5 on a PC running Windows 7 with Intel Core i5 processor system

configuration (2.40 GHz) and 8-GB RAM.

There are normally four parameters in E-SOINN [68]: λ, agemax, c1 and c2. The

definition of λ and agemax has been introduced in Section I and these two parameters

significantly influence the shape of the topological structure. The two parameters

c1 and c2 are defined for controlling the deletion behavior.

A relatively large c1 or c2 value will contribute to a higher noise tolerance, but

more useful nodes will be deleted at the same time. Therefore, if these four pa-

rameters are not properly set, a topology structure that can closely represent the

data distribution of the dataset cannot be obtained. In our proposed Gm-SOINN,

the topological structure only depends on the two parameters, λ and agemax. The

definition of λ and agemax is the same as in the E-SOINN, i.e., λ is defined as the

frequency of node removal and agemax is defined as the lifetime of each edge.

As for the strategy of selecting parameters, due to in the other SOINN-based

methods, λ is set to a multiple ϕ of 100 and agemax is set to a multiple ϕ of 50, where

ϕ = 1/2, 1, 2, 3, . . . [68]. Thus, for comparing with other SOINN-based methods, we

build a candidate set of λS = {{ϕ100 | ϕ = 1/2, 1, 2 . . .}} and a candidate set of

agemaxS = {{ϕ50 | ϕ = 1/2, 1, 2 . . .}} in each experiment, then use a grid search

method [50] to select the best parameters of every SOINN-based method.

Artificial Datasets and Experiment Results

Our proposed Gm-SOINN has the advantage that the stability-plasticity dilemma

will be relieved. To test this advantage, we compared Gm-SOINN with three SOINN-

based methods (E-SOINN, LB-SOINN, and KDE-SOINN) on the artificial dataset II

that include one class, because Gm-SOINN and these SOINN-based methods use a
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similar strategy to handle data in the same class. The significant difference between

Gm-SOINN and these SOINN-based methods is that the Gaussian membership µi

of nodes will be considered when the nodes are updated.

The artificial dataset II is generated by y(t) = sin(o(t))/20 + εi

X(t) = o(t)/10− 6.25
(3.87)

where o(t) is randomly sampled from (0,5), and εi is randomly sampled from a

Uniform distribution Uni(−0.015, 0.015). For parameters, we chose the λS =

{50, 200} and agemaxS = {50, 100} in this experiment.

Figure 3.13 and 3.14 shows the results of our comparison, based on some com-

binations of λ and agemax. It can be seen that the number of nodes decreases with

λ and agemax decreases for all SOINN-based methods. In addition, when λ is set

over 100 and agemax = 100, almost every SOINN-based method learns a topological

structure to represent dataset II accurately. However, when the parameters are set as

λ = 100 and agemax = 50, the results illustrate that the E-SOINN and LB-SOINN

methods are unable to accurately represent the data distribution of the artificial

dataset II, because some nodes that represent some area of data distribution are

deleted. The result of KDE-SOINN method is also unable to accurately represent

the data distribution, because the nodes are wrongly classified to three classes. The

reason is KDE-SOINN methods save more nodes than the other SOINN-based meth-

ods even when the same λ and agemax parameters are used. In contrast, Gm-SOINN

achieves a topology structure that accurately represents the data distribution and

classifies the nodes into one class. The results prove that Gm-SOINN is less sensitive

to parameters than other SOINN-based methods.
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λ = 200, agemax = 100 λ = 100, agemax = 50

(a). E-SOINN

λ = 200, agemax = 100 λ = 100, agemax = 50

(b). KDE-SOINN

λ = 200, agemax = 100 λ = 100, agemax = 50

(c). LB-SOINN

Figure 3.13 : Topological structure results on dataset II
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λ = 200, agemax = 100 λ = 100, agemax = 50

Figure 3.14 : Topological structure results (Gm-SOINN) on dataset II.

Other SOINN-based methods [67, 68] can also learn the topological structures

of every class when a dataset includes multiple classes. Therefore, to validate the

performance of our proposed Gm-SOINN in processing multi-class data, we adopted

artificial dataset III, which has been used in other SOINN-based methods [67, 68].

Dataset III comprises two overlapped Gaussian distributions, two concentric rings,

and a sinusoidal curve. In addition, for illustrating our proposed Gm-SOINN is also

robust to noise. Like other SOINN-based methods [67, 68], we add 10% noise to

test data and noise is distributed over the whole data.

Moreover, to compare with other SOINN-methods, the definition of station-

ary and non-stationary environments that are introduced in other SOINN-based

methods [67] are introduced in our experiment. A stationary environment dictates

that patterns are chosen randomly from the whole dataset to train the network on-

line. A non-stationary environment dictates that patterns are chosen sequentially

from five areas of the original artificial dataset III to train the network online. We

tested Gm-SOINN using this dataset in both stationary and non-stationary envi-

ronments. When selecting parameters, E-SOINN obtains the correct topological

structure when the parameters are set as λ = 100 and agemax = 100, so in this ex-

periment, λS = {50, 100, 200} and agemaxS = {25, 50, 100} is used when comparing
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with the other SOINN-based method.

(a) Stationary environment (b) Non-stationary environment

Figure 3.15 : Topological structure of artificial dataset III.

In general, with a decrease of λ and agemax, the number of nodes and edges

also decreased. Figure 3.15(a) shows the result in a stationary environment, while

Figure 3.15(b) depicts the result in a non-stationary environment when λ = 100,

agemax = 100. In both stationary and non-stationary environments, the Gm-SOINN

system reports that five classes exist and gives the topological structure of each

class, illustrating that the Gm-SOINN algorithm performs the same functions as

other SOINN-based methods for the same artificial dataset.

In Gm-SOINN, an eGMM was devised to determine whether a connection be-

tween s1 and s2 should be built. The eGMM can make a correct decision on building

a connection between s1 and s2 even when the two nodes appear in highly overlapped

classes. To validate this advantage, we used artificial dataset IV, illustrated in Fig-

ure 3.16(a), which comprises three overlapping Gaussian distributions. In addition,

to compare with other SOINN-based methods, we also used the same methods, i.e.,

noise is distributed over the whole data, and 10% noise is added to this dataset. Fig-

ure 3.16(a) shows that the density of the overlapping area in the dataset is high, but

the dataset can still be separated into three classes based solely on its appearance

when plotted. To compare Gm-SOINN with other SOINN-based methods, we also
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test our algorithm in stationary and non-stationary environments. When selecting

parameters, E-SOINN obtains the correct topological structure when the parame-

ters as λ = 200 and agemax = 50, so in this experiment, λS = {50, 100, 200} and

agemaxS = {25, 50, 100} is used when comparing with other SOINN-based method.

(a) Dataset IV

(b) density distribution in stationary (c) density distribution in non-stationary

(d) topological structure in stationary (e) topological strucutre in non-stationary

Figure 3.16 : The result of artificial dataset IV.

The conclusion, how the parameters λ and agemax affect the result is the same

as the artificial dataset III experiment. The density distribution obtained by the

eGMM method in stationary and non-stationary environments is depicted in Figure

3.16(b) and (c), and the topological structure obtained by Gm-SOINN in stationary
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and non-stationary environments is shown in Figure 3.16(d) and (e) when λ = 100,

agemax = 100. As Figure 3.16(b) and 3.16(c) show, eGMM estimates the density

distribution accurately and separates the three high-density overlapping subclasses

in both environments. The density distribution estimated by eGMM is very similar

in both environments. Figure 3.16(d) and 3.16(e) show that Gm-SOINN reports

the existence of three classes in dataset IV and gives the topological structure of

every class. Therefore, the results shown in Figure 3.16 prove that Gm-SOINN

satisfactorily obtains the topological structure for a multi-class dataset where the

distribution area of every class overlaps significantly. Moreover, we find that the

nodes in each topological structure obtained by Gm-SOINN are close to the center

of their Gaussian distribution.

Real-world Datasets and Experiment Results

In the first real-world experiments, we used the dataset called fashion-mnist

(https://github.com/zalandoresearch/ fashion-mnist) to test Gm-SOINN. The

database consists of a training set of 60,000 examples and a test set of 10,000 ex-

amples. Each example is a 28×28 grayscale image, associated with a label from 10

classes.

Figure 3.17 : Results of fashion-mnist dataset.

For the stationary environment, 10,000 samples are chosen randomly from the

original dataset, and the number of samples in each class is 1000. For the non-

stationary environment, samples from class 1 are input to the system in the first
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stage. After being trained 1000 times, samples from class 2 are input to the system,

and so on. When the parameters are set as λ = 800, agemax = 100, for both

stationary and non-stationary environments, Gm-SOINN reports that 12 classes

exist in the original dataset, which is more than 10 classes in the original datasets.

Figure 3.17 gives the prototype vectors (network nodes) of every class, and the

results show that Gm-SOINN separates classes 4 and 9 into two classes, respectively,

because of the differences between the original image samples in classes 4 and 4’,

and in classes 9 and 9’.

We then compared Gm-SOINN with three batch methods, three SOINN-based

methods (E-SOINN, LB-SOINN, and KDE-SOINN) and one incremental fuzzy method

in terms of recognition ratio. Three batch methods used were LinearSVC [55],

RandomForestClassifier [121] and KNeighborsClassifier [37]. The incremental fuzzy

method is the fuzzy board learning system (FBL) [59]. Note that batch methods

cannot learn in a non-stationary environment. The parameters of batch methods

were selected by [153]. For SOINN-based methods, the algorithm that classifies

nodes into different classes is operated only when the number of input samples is a

multiple of λ. In this experiment, we hope the classify operation will operate when

the last sample is inputted, so we set λ to a value that can be divided by 60000, i.e.,

λS = {200, 400, 600, 800} and agemaxS = {100, 200, 300, 400}.

However, in the non-stationary environment, the recognition ratio obtained by

Gm-SOINN and other SOINN-based methods is improved; Gm-SOINN obtains the

highest recognition ratio, which is higher than the ratio of the batch methods. From

this experiment, we know that Gm-SOINN separates overlapping classes more suc-

cessfully than other SOINN-based methods, giving Gm-SOINN a higher recognition

ratio.

A comparison of the results is shown in Table 3.3. Although Gm-SOINN out-
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performs other SOINN-based methods and FBL in the stationary environment, the

recognition ratio it achieves is less than the ratio obtained by the batch methods.

Table 3.3 : Comparison of results based on fashion-mnist dataset

Methods Parameter
Recognition ratio

S N

LinearSVC C = 100, “kernel”:“linear” 0.943 *

“criterion”:“gini”,

RandomForest Classifier max depth = 100, 0.951 *

n estimators = 100

KNeighbors Classifier
n neighbors = 5, p = 1,

0.939 *
“weights”:“distance”

E-SOINN
λ = 800, agemax = 100,

0.881 0.890
C1 = 0.001, C2 = 1.0

LB-SOINN
λ = 800, agemax = 100,

0.904 0.912
C1 = 0.001, C2 = 1.0

KDE-SOINN
λ = 800, agemax = 100,

0.921 0.933
C = 1.0

FBL Nr = 7,Nt = 1, Ne = 53 0.872 0.861

Gm-SOINN λ = 800, agemax = 100 0.930 0.943

S represents stationary, N represents non-stationary, * represents no value

Next, we show Gm-SOINN to be less sensitive to parameters than other SOINN-

based methods. The parameter λ was sampled from (100,1000), and agemax was

only set as 100, because the parameter does not influence the number of classes

in this experiment. The number of nodes and classes obtained by each SOINN-

based method is shown in Table 3.4. Table 3.4 shows that the number of classes

obtained by Gm-SOINN by setting different λ values in both the stationary and non-

stationary environments is between 8 and 10. The difference between the number

of classes in the stationary environment and the non-stationary environment is not



87

significant. KDE-SOINN saves the largest number of nodes. When λ is set to a value

smaller than 300, the number of classes obtained by KDE-SOINN is approximately

10, but when λ is set to a value over 400, the number of classes obtained by KDE-

SOINN is significantly more than 10. By contrast, when λ is set to a value smaller

than 500, E-SOINN and LB-SOINN obtain significantly less than 10 classes as a

result of saving fewer nodes, but LB-SOINN obtains a more stable result than E-

SOINN. Gm-SOINN saves the second highest number of nodes, so when λ is set

to a value smaller than 300, the number of classes obtained by Gm-SOINN is also

Table 3.4 : Comparison of stability results based on fashion-mnist dataset.

λ = 100 λ = 200 λ = 300 λ = 400 λ = 500 λ = 600 λ = 700 λ = 800 λ = 900 λ = 1000

methods number S N S N S N S N S N S N S N S N S N S N

E-SOINN
nodes 18 20 32 35 50 53 49 57 69 77 116 123 114 124 138 141 121 127 109 111

classes 4 4 2 3 4 4 8 8 7 8 15 13 9 12 12 14 7 9 9 9

LB-SOINN
nodes 18 21 34 37 49 51 49 56 71 79 119 120 113 125 137 142 123 133 112 109

classes 4 4 5 5 5 6 7 8 9 9 13 12 11 12 10 12 8 8 9 8

KDE-SOINN
nodes 40 42 52 55 79 91 98 102 120 131 143 154 176 189 209 221 187 199 168 175

classes 5 7 4 5 6 8 9 10 13 11 16 15 12 13 14 14 12 14 11 11

Gm-SOINN
nodes 35 36 49 53 79 81 87 90 109 110 125 126 131 132 139 144 140 142 136 139

classes 4 4 5 6 7 8 8 8 9 9 10 10 10 11 12 12 12 11 11 12

S represents stationary, N represents non-stationary

approximately 10, but when λ is set to a value over than 400, the number of classes

obtained by KDE-SOINN is not significantly more than 10. These results illustrate

that Gm-SOINN is more stable than other SOINN-based methods, i.e., under more

candidates of sets of parameters than in other SOINN-based method, Gm-SOINN

can divide the dataset into about 10 classes.

An AT&T face dataset was chosen for the second experiment, which includes

40 distinct subjects and 10 different images per subject. The dataset is commonly

used to test the performance of SOINN-based methods. The method in [67] is used

to preprocess the dataset for obtaining prototype vectors from the network. Then
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we used these prototype vectors to classify the original face images and calculate

the recognition ratio. The same parameters of each comparative approaches were

used, as shown in Table 3.3. Compared with other SOINN-based methods and

the FBL algorithm, the recognition ratio obtained by Gm-SOINN is higher in the

stationary (96.1%) and in the non-stationary environment (95.8%), but lower than

batch methods in the stationary environment.

One goal of topology learning systems is to minimize distortion error. Vec-

tor Quantization (VQ) [81] is a typical application in which error minimization

is important. For this reason, we experimented using VQ to code a 1024 × 768

size image of a raccoon face (Figure 3.18(a)). To illustrate the advantage of our

proposed method, we compared Gm-SOINN with K-means, GNG and the SOINN-

based methods E-SOINN, LB-SOINN, and KDE-SOINN. In the K-means method,

we set a set of k = [5, 7, 9], then use a grid search method to select the best k values.

In GNG, Gm-SOINN and the SOINN-based methods, we set λS = {25, 50, 100},

and agemaxS = {25, 50, 100}. Since K-means and GNG are unsuitable for sequential

input vectors, this experiment only compares the Gm-SOINN method with other

SOINN-based methods in the non-stationary environment. Compression ratio and

peak signal to noise ratio (PSNR) are often used to evaluate VQ algorithm per-

formance in image compression applications. Here, we use bit per pixel (BPP) to

measure the compression ratio, and PSNR is defined as [146]. For VQ, given the

same bpp, higher PSNR means less information loss, and the corresponding code-

book is consequently better.

Figure 3.18 depicts the reconstructed images are obtained by the Gm-SOINN

in stationary and non-stationary environments. The reconstructed results show

that our proposed GM-SOINN learns the codebook of raccoon face well in both

stationary and non-stationary environments. Table 3.5 summarizes the results of

Gm-SOINN and other methods. Table 3.5 shows that in the stationary environment,
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(a) original image (b) stationary environment (c) non-stationary environment

Figure 3.18 : Results of VQ in different environments.

K-means induces the lowest information loss but has the least compression ratio.

The compression ratios obtained by GNG, Gm-SOINN and other SOINN-based

methods are very similar, and are all less than the ratio obtained by K-means. Gm-

SOINN obtains the highest PSNR, which is very close to the K-means result. In the

non-stationary environment, the compression ratios obtained by Gm-SOINN and the

other SOINN-based methods are also very close, and none are significantly different

from the results in the stationary environment. However, Gm-SOINN obtains the

highest PSNR, which exceeds the K-means result. Therefore, this experiment also

shows that for topology learning, the proposed method works well for VQ in both

stationary and non-stationary environments.

3.3.4 Computational Complexity

The computational requirements for each stage of the Gm-SOINN algorithm are

computed separately. Suppose N is the size of the nodes in the topological structure.

In the Gm-SOINN algorithm, the main computation arises from calculating the

Gaussian membership between nodes. When a new sample X(t) is inputted we

need to find s1 and s2 at the first stage, so the computational complexity is O(N)

because we only need to calculate the Gaussian membership is X(t) close to every

node. When getting the Ts1 and Ts2 , we need to scan all nodes again in the worst-
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Table 3.5 : Comparison of BPP and PSNR with other algorithms

Methods
BPP PSNR

S N S N

K-means 0.146 * 40.76 *

GNG 0.142 * 39.73 *

E-SOINN 0.140 0.140 40.03 40.61

LB-SOINN 0.140 0.140 40.20 40.97

KDE-SOINN 0.142 0.143 40.57 41.44

Gm-SOINN 0.141 0.141 40.73 41.59

S represents stationary, N represents non-stationary, * represents no value

case scenario, i.e., the s1 and s2 have no neighbors, so the computational complexity

increases to O(N2). In the second stage, we need to determine whether to connect

the s1 and s2, so we need to calculate the Eq.(3.73) and Eq.(3.74), but all nodes

do not need to be scanned. Therefore, the computational complexity of the second

stage is O(1). Finally, we need to update the Gaussian mixture models and the

weights vector Wi(t) of all nodes that have a path with s1. The computational

complexity of updating the Gaussian model in the worst case is O(N), i.e., s1 and

s2 belongs different Gaussian model and cannot be connected, so we need to update

two Gaussian models. The computational complexity of update the weights vector

Wi(t) of nodes in the worst case is O(N), i.e., all nodes have a path with s1. If

N is the multiple of λ, we need to classify all nodes to different classes and delete

noisy nodes. These two operations also need to scan all nodes, so the computational

complexity of these two operations is O(N). Therefore, the total computational

complexity of Gm-SOINN processing an input sample is O(N2 + 1 + N) = O(N2).

If there are N samples in the dataset, the computational complexity of Gm-SOINN
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is O(N2), which is same as other single-layer SOINN-based methods.

In a practical experiment, for improving the training efficiency, we save a table

that records the Euclidian distance between each node, and update it with the

following formula when the processing of an input sample is finished:

d2
ij

(t) = ‖∆Wi (t)−∆Wj (t)‖2 + 2dij (t) ‖∆Wi (t)−∆Wj (t)‖ (3.88)

Therefore, we avoid recalculating the Euclidian distance between each node when

a new sample is inputted.

3.4 Summary

To solve the regression problem of streaming data under a noisy environment, we

proposed an online robust support vector regression which called ORSVR. ORSVR is

an exact incremental regression algorithm for handling data streams that transforms

the classical v-SVR into a dual regression model. ORSVR captures the characteris-

tics of data distributions very well, which makes ORSVR robust to noise. Addition-

ally, ORSVR determines the up and down-bound functions by breaking the large

QPP associated with SVR into two smaller QPPs and solving each simultaneously.

The KKT conditions are met for each new sample and maintained for existing sam-

ples, but each bound of the divided QPP is simpler than in classical v-SVR, which

results in a faster incremental learning speed. However, the ORSVR requires an

additional constraint to be compatible with incremental learning. Therefore, the

ORSVR approach incorporates several new methods that constitute the incremen-

tal learning algorithm for ORSVR. One method introduces a procedure for preparing

the initial solution prior to incremental learning. The other is an adjustment step to

ensure all the weights of the support vectors are greater than 0. The experimental

results demonstrate that ORSVR successfully handles noisy data and is faster than

other incremental SVR algorithms.
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Besides, we proposed an online topology learning algorithm which called GM-

SOINN to filter noisy data from a data stream. Gm-SOINN method is able to learn

a topological structure in an online manner from an unlabeled data set. Due to

introducing fuzzy logic, unlike other SOINN-based methods, the Gm-SOINN uses a

Gaussian membership to indicate the degree to which nodes are identified as a winner

(closest node). In addition, based on the Gaussian membership, some theoretical

and technical innovations, such as a recursive method of updating nodes and a

nonparameter density estimation method which is called eGMM, were proposed.

When comparing with other SOINN-based methods, these innovations make that

the Gm-SOINN does not have the stability-plasticity dilemma and need fewer user-

decided parameters. When comparing with the fuzzy logic system, the Gm-SOINN

is not only robust to noise but also obtains better performance in stationary and

nonstationary environments. Besides, although fuzzy logic is introduced, the Gm-

SOINN is not required to design a method to learn the fuzzy rules. More important,

topology learning makes Gm-SOINN can handle some problems, such as VQ, that

cannot be directly handled in fuzzy learning systems.
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Chapter 4

Streaming Data Regression Under Evolving

Environments

4.1 Introduction

Since the generation of streaming data is always in a noisy environment, we

have proposed some algorithms to reduce the impact of noisy data in chapter 3.

However, more and more studies on streaming data show that the data distribution

is not only noisy but also nonstationary [36, 116], i.e., it can evolve. Concept

drift [73, 181] refers to this unpredictable change of data distribution in streaming

data. For example, one concept in weather data may be the season that is not

explicitly specified in temperature data but may influence temperature data [23].

Another example may be customer purchasing behavior over time that may be

influenced by the strength of the economy [30], where the strength of the economy

is not explicitly specified in the data. The performance of a regression algorithm

may become worse when a concept drifts occurs[132]. Hence, concept drifts in

streaming data also impact the performance of streaming regression algorithms.

To deal with concept drifts, there are two main types of forgetting mechanisms

were designed for streaming regression algorithms. In the first type of forgetting

mechanism, the forgetting of learned knowledge is independent of the detection

result of concept drift. Hence, the forgetting strategy is triggered as long as new

data arrive, thereby discarding outdated knowledge. In the second type of forgetting

mechanism, the learned knowledge is forgotten according to the detection result of

concept drift. However, detect and adapt to the concept drift is a difficult task itself
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due to concept drift takes various types. Normally, concept drift can be classified

into four types [132] according to the degree of drift: 1) sudden drift, which means

a concept abruptly changes over a short period of time; 2) gradual drift, a new

concept gradually replaces an old one over a period of time; 3) incremental drift,

which means the old concept incrementally changes into a new concept over a long

period of time; and 4) recurring drift [80, 9], an old concept may reoccur after some

time. Different learning strategies should be designed for different degrees of drift,

but the learning strategies of most streaming regression algorithms lack diversity.

To solve the streaming data regression problem under evolving environments, we

propose continuous support vector regression (C-SVR) for nonstationary streaming

data. Like an ensemble-based method [143, 78], in C-SVR a series of fi(X) are

continuously learned in a series of time windows twi to determine the relationship

between the input and output at different timestamps. However, only one fi(X) is

saved in memory to make a prediction. A new fi(X) is learned in the new twi, and

the old fi−1(X), which was learned in the last twi−1, is discarded. Additionally, in

contrast to algorithms [127, 149] that forget all learned knowledge, fi(X) learning

is not independent in C-SVR. A similarity term added to the QPP carries some

learned knowledge from fi−1(X) forward into fi(X). How much-learned knowledge

is transferred depends on the degree of the concept drift. Further, because the data

in nonstationary streaming data arrive sequentially, the QPP in C-SVR is solved

incrementally.

The problem of streaming data mining has been a topic of consistent research

in the fuzzy systems community [41] because the generation of streaming data com-

monly occurs in an uncertain environment. However, classical fuzzy systems cannot

deal with streaming data because it is not only uncertain, but infinite, sequential

and, more importantly, evolving. It follows directly that, in order to obtain knowl-

edge from streaming data, a fuzzy system needs to meet four learning requirements:
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1) recursive and fast learning: data processing is non-iterative; 2) incremental or

online learning: data are presented and learned one at a time; 3) memory-efficient

learning: no need to save previously processed data; 4) adaptive learning: the struc-

ture and parameters of a model can be changed to adapt to concept drift. To address

these issues, evolving fuzzy systems (EFSs) [15] have been proposed. EFSs can learn

incrementally, possibly even in real-time, on streaming data, and they are also able

to adapt to changes in environmental conditions or properties of the data generation

process. Normally, EFSs are designed based on fuzzy rules [10, 11] or fuzzy-neuro

systems [156, 171]. For example, a flexible fuzzy inference system (FLEXFIS) [138]

is designed based on a fuzzy rule. In contrast, a dynamic evolving neural-fuzzy

inference system [107] (DENFIS) is designed on fuzzy-neuro systems. Compared to

evolving-fuzzy-rule systems, evolving-fuzzy-neuro systems use structure inspired by

neural networks to determine their parameters (fuzzy sets and fuzzy rules), so it

inherits the advantages of neural networks. In most evolving-fuzzy-neuro systems,

an online clustering method is firstly used to obtain the system structure. Then, the

parameters (fuzzy sets and fuzzy rules) based on the structure are learned. However,

for streaming data regression, evolving-fuzzy-neuro systems still have some draw-

backs: 1) determining fuzzy sets is not robust to data sequence, so an algorithm

returns different results for one dataset when the data is presented in a different

sequence; 2) determining fuzzy rules is complex due to subspaces that can approx-

imate to a Takagi-Sugeno-Kang (TSK) [183] rule need to be obtained, and many

parameters need to be optimized; 3) it is difficult to detect and adapt to changes in

the data distribution, i.e., concept drift, if the output is a continuous variable.

In summary, the performance of current EFSs for streaming data regression

is still limited. Hence, a novel evolving-fuzzy-neuro system, called the topology

learning-based fuzzy random neural network (TLFRNN), is proposed. In TLFRNN,

similar to current evolving-fuzzy-neuro systems, we still learn neurons to build a neu-
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ral network as the system structure and utilize fuzzy logic to make an inference, i.e.,

given an input data at timestamp t, firstly compare input data with the premise part

of each neuron to obtain the membership values of each consequent, then aggregate

the qualified consequents to produce output data. However, TLFRNN uses a novel

method to learn the structure and to determine parameters.

4.2 Continuous Support Vector Regression for Evolving Stream-

ing Data

4.2.1 Continuous Learning Strategy

The learning strategy of our proposed C-SVR is unique. It is not like the learning

strategies of other online SVR-based methods such as [140], which use a constant

state, i.e., the same parameters, to learn the predictors, as the learning state of

C-SVR is adaptive and dependent on the degree of concept drift. It also is not like

the learning strategies of other ensemble SVR-based methods such as [128], which

need to save multiple learners. In C-SVR, only one learner is saved.

Considering evolving streaming data of {(X1, y1), . . . , (Xt, yt), . . .} where t is the

order the data arrives in, Xt is the input, and yt is the output. Then, assume that a

time window twi has size l so that a total of l data that can be captured in order by

twi. For example, tw1 = {(X1, y1), . . . , (Xt, yt), . . . , (Xl, yl)}, where 1 ≤ t ≤ l. Our

continuous learning strategy is based on this assumption and is shown in Figure 4.1.

From Figure 4.1, we can see that a series of fi(X) are learned in consecutive time

windows twi to make predictions about the near future. Note that non-stationary

streaming data in consecutive twi do not overlap. C-SVR’s learning process in each

twi is further divided into the following steps.

Step 1. The data distribution of twi−2 is compared to twi−1 to determine the

degree of concept drift, then the learned knowledge in fi−1(X) is transferred to
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Figure 4.1 : The continuous learning strategy.

fi(X).

Step 2. One new datum Xt is taken.

Step 3. The incremental solution is used to update fi(Xt−1) to fi(Xt) based

on: the new datum Xt; the degree of concept drift; and the learned knowledge of

fi−1(X).

Step 4. If a new time window twi+1 does not arrive, go to Step 2. Otherwise,

go to Step 1.

Each time a new twi arrives, this learning process repeats iteratively to learn the

current fi(X) and continuously adapt to the current concept. However, in the first-

and second-time windows, tw1 and tw2, the learning process is slightly different. In

the first tw1, we do not need to consider the learned knowledge because we do not

have any learned knowledge. In addition, in the first tw1 and second tw2, we do

not need to consider the degree of concept drift, the reason being that the degree of
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concept drift is obtained by comparing the fi(X) and fi+1(X) in our proposed C-

SVR, so it is only when we have learned at least two functions that we can determine

the degree of drift.

4.2.2 Continuous Support Vector Regression

This section demonstrates how our proposed C-SVR integrates new information

from streaming data and the process for forgetting outdated information to adapt

to concept drift. First, we provide a general overview of the continuous learning

strategy, then each of the components is described in more detail in the individual

subsections.

Quadratic Programming Problem

Based on the above section, we know that C-SVR should be able to continuously

learn a series of fi(X) for consecutive time windows twi, and also that learning

fi(X) is dependent on fi−1(X) and the degree of concept drift. Thus, when the data

distribution of twi−1 drifts slightly relative to the data distribution of twi−2, fi(X)

should be more similar to fi−1(X) and less similar otherwise. Therefore, the best

solution for our expectation is a compromise between (individual) optimality and

(neighbor) similarity. Accordingly, we have defined a simple distance in C-SVR to

measure d(fi−1(X), fi(X)) so as to quantify the similarity between two neighboring

input-output functions fi−1(X) and fi(X) and, then, to minimize the two-term cost

function:

minErr2i + γ · d (fi, fi−1) (4.1)

where the first term is the usual cost function for C-SVR and the second evaluates the

total difference between the two consecutive discriminant functions. Here, the free

parameter γ regulates the compromise between both terms as with any regularized

fitting.
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Similar to the classical ε-SVR method [29], we look for a pair of (wi, bi) that

define an input-output function given by fi(X) = 〈wi · Φ(X)〉+ bi, where bi can be

computed as follows:

bi = yi − 〈wi · Φ (X)〉 (4.2)

Hence, a simple quadratic distance measure is used to quantify the diversity

between functions:

d (fi, fi−1) = ‖wi − wi−1‖2 (4.3)

Applying this measure to (4.1) results in a new QPP for C-SVR, introduced as

follows:

min
ωi,ε,bi,ξ(∗)

1

2
‖wi‖2 + C ·

l∑
t=1

(ξit + ξ∗it) +
γ

2

(
‖wi − wi−1‖2

)
s.t. − yit + (〈wi,Φ (Xit)〉+ bi) + εi + ξit > 0,

yit − (〈wi,Φ (Xit)〉+ bi) + εi + ξ∗it > 0,

ξ
(∗)
it > 0, εi > 0, t = 1, . . . , l.

(4.4)

The first two terms in Eq. (4.4) correspond to the usual margin and absolute

penalty terms in an SVR. The final term in Eq. (4.4) corresponds to the new

diversity penalty. Including this term means fi(X) is dependent on fi−1(X). Hence,

the solution to this optimization problem with dual variables is to find the saddle

point of the Lagrangian [161]:

LD =
1

2
‖wi‖2 + C ·

l∑
t=1

(ξit + ξ∗it) +
γ

2

(
‖wi − wi−1‖2

)
−

l∑
t=1

αit (yit − 〈wi,Φ (Xit)〉 − bi + εi + ξit)

−
l∑

t=1

α∗it (〈wi,Φ (Xit)〉+ bi − yit + εi + ξ∗it)

−
l∑

t=1

(ηitξit + η∗itξ
∗
it)

(4.5)
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where α
(∗)
it and η

(∗)
it are nonnegative Lagrange multipliers. Differentiating L with

respect to wi, bi, and ξ
(∗)
it and setting the result to zero yields:

∂LD
∂wi

= wi + γ (wi − wi−1)−
l∑

t=1

Φ (Xit) (αit − α∗it) = 0

⇒ wi =
γ

1 + γ
wi−1 +

1

1 + γ

l∑
t=1

Φ (Xit) (αit − α∗it)

∂LD
∂bi

= −
l∑

t=1

(αit − α∗it) = 0

∂LD
∂ζit

= C − ηit − αit = 0⇒ αit ∈ [0, C]

∂LD
∂ζ∗it

= C − η∗it − α∗it = 0⇒ α∗it ∈ [0, C]

(4.6)

Substituting Eq. (4.6) into L leads to the following dual problem:

min
α(∗)

1

2 (1 + γ)

l∑
t=1

l∑
j=1

Qtj (αit − α∗it)
(
αij − α∗ij

)
+

γ

1 + γ

l∑
t=1

(αit − α∗it)y(i−1)t

−
l∑

t=1

yit (αit − α∗it) +
l∑

t=1

εi (αit + α∗it)

s.t. αit, α
∗
it ∈ [0, C] , t = 1, . . . , l.

l∑
t=1

(αit − α∗it) = 0

(4.7)

Here, Qij is a matrix with kernel properties:

Qtj = 〈Φ (Xit) · Φ (Xij)〉 = K (Xit, Xij) (4.8)

where K is a kernel function.

Incremental Solution

With non-stationary streaming data, one typically operates with only one datum

at a time. Therefore, we propose an incremental solution to solve the QPP of C-SVR
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on a data-by-data basis. As shown in the previous section, minimizing α, α∗ values

create a dual optimization problem Eq. (4.8) that must be solved. Similarly, we

can compute another Lagrange function that includes all constraints and introduces

other Lagrange multiples:

LD =
1

2 (1 + γ)

l∑
t=1

l∑
j=1

Qtj (αit − α∗it)
(
αij − α∗ij

)
+

γ

1 + γ

l∑
t=1

(αit − α∗it)y(i−1)t

−
l∑

t=1

yit (αit − α∗it) +
l∑

t=1

εit (αit + α∗it)

+
l∑

t=1

[µit (αit − C) + µ∗it (α∗it − C)]

+ ζi

l∑
t=1

(αit − α∗it)−
l∑

t=1

(δitαit + δ∗itα
∗
it)

s.t. δ
(∗)
it , µ

(∗)
it , ζi > 0, t = 1, . . . , l

(4.9)

Computing partial derivatives of the Lagrangian:

∂LD
∂αit

=
1

2 (1 + γ)

l∑
j=1

Qtj

(
αij − α∗ij

)
+

γ

1 + γ
y(i−1)t

− yit + εi − δit + µit + ζi = 0

∂LD
∂αit

=− 1

2 (1 + γ)

l∑
j=1

Qtj

(
αij − α∗ij

)
− γ

1 + γ
y(i−1)t

+ yit + εi − δ∗it + µ∗it − ζi = 0

∂LD
∂ζi

=
l∑

j=1

(
αij − α∗ij

)
= 0

(4.10)

Then to increase readability, we can replace ξi with b: ξi = b. This is still an

optimization problem with a convex domain, so the sufficient conditions for a point
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to be optimum are (Kuhn-Tucker Theorem) [48]:

αit ∈ [0, C],

αit

(
l∑

j=1

Q′tj
(
αij − α∗ij

)
+ bi + y′(i−1)t + εi − yit − δit + uit

)
= 0

α∗it ∈ [0, C],

α∗it

(
−

l∑
j=1

Q′tj
(
αij − α∗ij

)
− bi − y′(i−1)t + εi + yit − δ∗it + u∗it

)
= 0

δit > 0, δitαit = 0

δ∗it > 0, δ∗itα
∗
it = 0

µit > 0, µit (αit − C) = 0

µ∗it > 0, µ∗it (α∗it − C) = 0

(4.11)

where

Q′tj =
1

2 (1 + γ)
Qtj (4.12)

and

y′(i−1)t =
γ

(1 + γ)
y(i−1)t (4.13)

Further, if we assume the estimated fi(Xt) in the twi can be written as f ′i (Xt) =∑l
j=1Q

′
tj

(
αij − α∗ij

)
+ bi, then a marginal function can be obtained:

hi (Xt) =
(
f ′i (Xt) + y′(i−1)t

)
− yit (4.14)

For simplicity, θij can be defined as the difference between αij and α∗ij, and the

Kuhn-Tucker Theorem (KKT) conditions can be obtained by replacing θij in Eq.

(4.13): 

hi (Xt) ≥ +ε θij = −C

hi (Xt) = +ε θij ∈ [−C, 0]

hi (Xt) ∈ [−ε,+ε] θij = 0

hi (Xt) = −ε θij ∈ [0, C]

hi (Xt) ≤ −ε θij = +C

(4.15)
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Using these KKT conditions, the data can be divided into three sets:

1) Support set:

SS = {t| (θij ∈ [0,+C] ∧ hi (Xt) = −εi)∨ (θij ∈ [−C, 0] ∧ hi (Xt) = +εi)}

2) Error set:

ES = {t| (θij = −C ∧ hi (Xt) > +εi)∨ (θij = +C ∧ hi (Xt) 6 −εi)}

3) Remaining set:

RS = {t|θit = 0 ∧ |hi (Xt)| 6 εi}

Hence, our proposed incremental solution aims to find a way to maintain con-

sistent KKT conditions Eq. (4.15) when new data is added to one of the three

sets.

The support set is defined as SS = {s1, s2, . . . , sls} and, to ensure all data satisfy

the KKT conditions Eq. (4.15) during the learning procedure, the following linear

system occurs when SS is changed:∑
j∈SS

Q′tj∆θij + ∆bi = −Q′tc∆θic

∑
j∈SS

∆θij = −θic
(4.16)

These equations can be rewritten in an equivalent matrix form:

∆bi

∆θs1
...

∆θsls


= β∆θic =



βb

βs1
...

βsls


∆θic = −R



1

Q′s1c
...

Q′slsc


∆θic (4.17)
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where matrix R can be defined as:

R =



0 1 . . . 1

1 Q′s1s1 · · · Q′s1sls
...

...
. . .

...

1 Q′slss1 . . . Q′slssls



−1

(4.18)

For the error and remaining sets, we have defined a “not support set” as NS =

ES ∪ RS = {n1, n2, . . . , nln}. Again, to ensure all data satisfy the KKT conditions

Eq. (4.9) during the learning procedure, the following linear system occurs when

NS is changed:

∆hi (Xt) =
l∑

j=1

Q′tj∆θij +Q′tc∆θic + ∆bi (4.19)

Rewriting the variation of the h formula in matrix notation gives:
∆hi (Xn1)

...

∆hi (Xnln
)

 = ω∆θtc (4.20)

where matrix ω can be defined as:

ω =


∆Q′n1c

...

∆Q′nlnc

+



0 1 . . . 1

1 Q′n1s1
. . . Q′n1sls

...
...

. . .
...

1 Q′nlns1
. . . Q′nlnsls


β (4.21)

From Eq.(4.19) and Eq. (4.22), we can see that the values of ∆θi and ∆bi can

be updated by computing β, and the value of ∆hi can be updated by computing ω.

Therefore, the fi(X) can be learned with Algorithm 4.1:

Algorithm 4.1 shows that the minimal increment ∆θi can be obtained by the

same method used in [140]. The inverse matrix R is updated in two situations:

adding the first data or adding other data.
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Algorithm 4.1 Incremental solution

Input: a new data (Xc, yc)

Parameter: initial θic = 0, bi = 0

Output: fi(X)

1: Compute hi(Xc)

2: if |hi (Xc)| < εi:

3: Add Xc to the remaining set

4: Exit

5: else:

6: while Xc is not added into a set:

7: Compute β and ω according to (19) and (23)

8: Compute the minimal increment ∆θi.

9: Update ∆θi, ∆bi, ∆hi(Xc), SS, ES and RS.

10: Update the inverse matrix R.

11: end while

12: end if

13: output f ′i(X) + yi−1t
′

When adding the first data in R, the update follows

R =

 −Q′11 1

1 0

 (4.22)

When adding other data, R is updated with

Rnew =



0

R
...

0

0 . . . 0 0


+

1

ω

 β

1

 [βT 1
]

(4.23)
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where β and ω are recomputed to follow each situation. If one datum is added to

the SS, ω is defined as:

ωi = Q′cc +

[
1 Q′cS1

· · · Q′cSls

]
β (4.24)

As outlined, this incremental solution means C-SVR can handle streaming data

because f(X) is updated data-by-data.

4.2.3 Concept Drift Degree

From Eq. (4.7), we know that the free parameter γ regulates the diversity

of fi(X) and fi−1(X). Low values of γ will almost decouple fi(X) and fi−1(X),

which allows for increased flexibility. Conversely, high γ values will produce a fi(X)

that is almost identical to fi−1(X). Therefore, parameter γ can be seen as the

degree of concept drift. Parameter γ should increase to increase the similarity of

fi(X) to fi−1(X) because fi−1(X) should gradually approximate the real input-

output function, which does not drift. In contrast, parameter γ should decrease to

differentiate fi(X) from fi−1(X) because the real input-output function has drifted

and fi−1(X) no longer represents it.

To determine the value of parameter γ, we have incorporated our previous work,

i.e., a competence-based drift detection method [135], into C-SVR. The reason for

choosing this method is when using an SVR to learn f(X), and only the support

vectors are saved because the f(X) is constructed only by support vectors. Hence,

only support vectors can be analyzed to identify concept drift. However, the number

of support vectors is small. Our proposed competence-based drift detection method

is able to achieve stable and good results, especially for small samples [135]. There-

fore, incorporating our proposed competence-based drift detection method results

in our proposed C-SVR achieving more stable and better results than other concept

drift detection methods [132].
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The key idea of the competence-based drift detection method [43] is that changes

in the probability distribution of data should reflect its competence. Hence, our

proposed competence-based drift detection method compares two data distributions

in the competence space instead of the original data feature space. Assume two

datasets S1, S2 ⊆ CB(case-base), the competence-based empirical distance between

S1 and S2 is defined as [135]:

dCB (S1, S2) = 2× sup
A∈Â

∣∣SCB1 (A)− SCB2 (A)
∣∣ (4.25)

where 0 ≤ dCB (S1, S2) ≤ 1. Here, the more different the distribution of the two

groups of data, the larger the competence-based empirical distance.

Therefore, to get the value of parameter γ, a group of support vectors Si−2 in

twi−2 and a group of support vectors Si−1 in twi−1 will be joined together to form

one CB. After modeling all the support vectors in CB in the competence model,

two related closures RCCB(S1) and RCCB(S2) are separately obtained. Using the

density of RCCB
i (S) ∈ RCCB(S), each group of support vectors can be represented

by their distribution in the competence space. The difference between the sup-

port vectors of the two groups can be measured by the competence-based empirical

distance dCB(Si−1, Si−2). However, the distance dCB(Si−1, Si−2) cannot directly be

used to set the γi because of the range of γi is [0,+∞], and if the degree of con-

cept drift increases, the value of γi should decrease. Therefore, we use the following

formulation to calculate γi:

γi =


+∞ where G(dCB) = 0

1
G(dCB(Si−1,Si−2))

where 0 < G
(
dCB

)
< +∞

0 where G(dCB) = +∞

(4.26)
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where G(dCB(Si−1, Si−2)) can be calculated by:

G =


0 where dCB = 1/2

1
1−1/(n−1) − 1 where dCB = 1− 1/n, n > 2

1/dCB other

(4.27)

Although dCB(Si−1, Si−2) is a time-consuming task, the calculation of

dCB(Si−1, Si−2) is fast in C-SVR because the number of support vectors in each

group is small.

4.2.4 Experiments

This section details the experiment results to compare C-SVR to the state-of-

the-art approaches. The evaluations involve different scenarios using both artificial

datasets and real-world datasets (see Table 4.1). The artificial datasets allowed

us to control the relevant parameters and to empirically evaluate the algorithms

with specific types of concept drift. The real-world datasets enabled us to evaluate

the merit of the proposed approach in practical scenarios. However, note that in

these latter experiments, it was not always possible to precisely state when a drift

occurred or even whether there was drift at a specific timestamp. All experiments

were conducted in Python 3.5 on a PC running Windows 7 with an Intel Core i5

processor (2.40 GHz) and 8-GB RAM.

Experimental Setup

To validate the effectiveness of C-SVR, we compared its performance to AON-

SVR [140], VPI-SVR [149], incremental SVR based on time windows (TW-SVR),

AddExp.C-SVR [111], and Learn++.NSE-SVR [51].

AON-SVR is a popular online SVR algorithm for handling streaming data be-

cause its incremental solution of the QPP was widely used in other online SVR
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algorithms, including those mentioned above. For example, VPI-SVR and AON-

SVR use the same incremental solution. The only difference between the two is that

VPI-SVR uses different parameters in different time windows to learn fi(X). The in-

cremental solution for TW-SVR is also the same as AON-SVR, but when a new time

window arrives, the information of the previous fi−1(X) is completely discarded and

a new fi(X) is learned. AddExp.C and Learn++.NSE are two well-known adaptive

ensembles for dealing with concept drift. They are adaptive datum-based ensembles

(AddExp.C) and adaptive batch-based ensembles (Learn++.NSE), respectively. In

our experiments, we made a small change to these two ensemble algorithms. In

AddExp.C-SVR, new ε-SVR was learned in the new twi through the incremental

solution from AON-SVR. Then the AddExp.C algorithm was used to update the

weights of each expert prediction fi(X) to ultimately make the predictions. In con-

trast, each time step of the Learn++.NSE consists of a batch of data (these can be

seen as the size of the time windows). Hence, the batches are considered to have a

size of m. The weak learner is the ε-SVR. However, Learn++.NSE-SVR does not

learn a new ensemble fi(X) in a new twi. Rather the Learn++.NSE algorithm is

used to decide whether to learn a new ensemble, but the fi(X) is also updated in a

twi by the incremental solution, which is used in AON-SVR for handling streaming

data. Learn++.NSE is also used to update the weights of each ensemble fi(X) to

make a prediction.

All the above mentioned online SVR algorithms are designed with a forgetting

strategy. AON-SVR includes a decremental learning algorithm. When the number

of processed data exceeds a certain number, the information of one previous data

is ignored to update fi(X). The “certain number” can be seen as the size m of a

time window. VPI-SVR and TW-SVR uses a simple forgetting strategy, i.e., the

previous fi−1(X) is completely forgotten and a new fi(X) is learned when a new

twi arrives. With the ensemble SVR algorithms, the forgetting strategy used follows
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the best result indicated by its authors. With AddExp.C-SVR, the fi(X) with the

lowest weight was excluded. With Learn++.NSE-SVR, the model j with the largest

current error was excluded. In all ensemble-based SVR algorithms, the maximum

number of models in the ensemble was set to 20. This choice was considered the

most suitable for all the ensembles since the maximum number of models usually

varies between 15 and 30 [111, 51], and the use of more models linearly increases

the processing time of the experiments.

Turning to the parameters of the above algorithms, two parameters C and ε

needed to be set in all algorithms, each of which has been shown to affect perfor-

mance [29]. However, the automatic method [149] of setting parameters C and ε

in VPI-SVR means that only two predefined parameters C and ε needed to be set

for the first-time window tw1. In subsequent time windows, these parameters were

set automatically. Some of the other parameters in the ensemble SVRs needed to

be set for ensemble learning. For example, in AddExp.C, the parameters were set

based on the pilot studies from [111]: factor for decreasing weights β = 0.5, factor

for new expert weight γ = 0.1, and loss required to add a new expert τ = 0.5. The

parameters for Learn++.NSE were set according to the authors’ suggestions [168]:

slope a = 0.5 and infliction point b = 10.

Artificial Datasets

To illustrate that our method C-SVR has better performance to deal with non-

stationary streaming data, this section presents some experimental results for the

artificial datasets with concept drift. However, in this research, we only consider

datasets with incremental, sudden and gradual drift in the following experiments (see

Table 4.1), the reason being that research into these three types of drift detection

focuses on how to detect the concept transformation process rapidly. In contrast,

the study of recurring drift emphasizes the use of historical concepts - that is, how
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to find the best matched historical concepts in the shortest time.

The first is the drifting hyperplane dataset [62]. This is a well-known drift

dataset for evaluating algorithms that deal with concept drift. It contains noise and

incremental drifts and non-recurring drifts and is similar to the one proposed in [111]

(AddExp). The whole dataset consists of 10 inputs with a uniform distribution over

the interval of [0, 1] and 1 output data yi ∈ [0, 1]; and there are 2000 data (M = 2000)

in the dataset. The dataset contains four concepts, with each concept holding 500

data. A random variate noise uniformly distributed in the interval of [−0.1, 0.1] is

injected into each output yi (for i = 1, . . . ,M). The value of yi is set to 0 or 1 if its

value is less than 0 or greater than 1, respectively.

In this experiment, the size of the time window is 200. Then, we set C = 100

and ε = 0.1 for each of the above-mentioned algorithms. Each method is evaluated

using the root mean square error (RMSE), which is calculated using the predicted

outputs and the real outputs from the online data. RMSE is a widely used metric

to evaluate models. It provides a loss function that penalizes larger errors. A lower

RMSE means the algorithm performed better. Figure 4.2 shows the results of our

comparison based on the drifting hyperplane dataset.

From Figure 4.2, in general, we can see that, in most time windows that have no

incremental drift, such as tw1 ([0− 200]), tw2 ([200− 400]), tw7 ([1200− 1400]), and

tw10 ([1800− 200]), the RMSE obtained by each online SVR-based algorithm shows

a convergent trend as the training data increases. However, when incremental drift

occurs, i.e., M = 500 and M = 1500, the RMSE obtained by every online SVR-

based algorithm shows an upward tendency as the training data increases. The

trend of the RMSE is identical because each online SVR-based algorithm learns

f1(x) with the same parameters in the tw1 ([0− 200]). However, because TW-SVR

and VPI-SVR relearn a new function fi(x) in each new twi, such as tw2 ([200−400]),
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Figure 4.2 : Results on the drifting hyperplane dataset (X-axis represents the size

of instances, and Y-axis represents RMSE).

the RMSE fluctuates sharply when each twi arrives, i.e., RMSE instantly surges and

then gradually declines to final convergence. Although AddExp.C-SVR also relearns

a new function fi(x) in each new twi, the old function fi−1(x) is not discarded, so

the RMSE does not sharply increase. In contrast, AON-SVR and Learn+.NSE-

SVR do not relearn a new function fi(x) when a new twi arrives, so the RMSE

remains stable. However, when the first time window twi arrives after an incremental

drift, such as tw4 ([600 − 800]) and tw9 ([1600 − 1800]), the RMSE convergence

speed for AON-SVR and Learn++.NSE-SVR is slower than that of TW-SVR, VPI-

SVR, and AddExp.C-SVR. However, each has a different reason for converging more

slowly. For AON-SVR, the reason is that the information of the last fi−1(x) is

not completely discarded. However, for Learn++.NSE-SVR, the reason is that the

incremental drift cannot be detected in time, so the RMSE will continue to grow until

Learn+.NSE-SVR decides to learn a new function. Also, the RMSE instantaneously

surges at the moment of learning a new function. In addition, at time M = 1000,

although incremental drift occurs, TW-SVR, VPI-SVR, and AddExp.C-SVR learn

two distinct functions in tw5 ([800− 1000]) and tw6 ([1000− 1200]), and the RMSE
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obtained by TW-SVR, VPI-SVR, and AddExp.C-SVR is not influenced by concept

drift, but the RMSE obtained by AON-SVR and Learn+.NSE-SVR is influenced by

incremental drift, so it increases at that time. C-SVR also relearns a new function

fi(x) in the new twi but, unlike the above algorithms, the information of the last

function fi−1(x) is not completely discarded so the RMSE does not instantaneously

surge when a new twi arrives. The RMSE only slightly trends up, such as in the early

stages of tw2 ([200 − 400]). However, when the first time window arrives after an

incremental drift occurs, such as tw4 ([600− 800]) and tw9 ([1600− 1800]), C-SVR’s

RMSE convergence speed is slower than TW-SVR, VPI-SVR, but faster than AON-

SVR, AddExp.C-SVR and Learn+.NSE-SVR. In addition, although incremental

drift occurs at time M = 1000, C-SVR’s RMSE is not affected by the drift because

it learns two distinct functions in tw5 ([800− 1000]) and tw6 ([1000− 1200]).

To further illustrate C-SVR’s advantage, we experimented with a drifting Fried-

man’s function as the sudden drift dataset. Friedman’s function has linear and

non-linear relations between the input variables and the output variable. The func-

tion contains five input variables, x1, . . . , x5, and 1 output variable, yi. The in-

put variables are uniformly distributed over the interval of [0, 1]. To create drift-

ing scenarios, one drifting dataset using the original Friedman’s function was pro-

duced according to [98]. The dataset also has 2000 data and sudden concept

drifts. The concept drift is localized in two distinct regions of the instance space.

The first region with drift is defined with the conjunction of inequalities R1 =

{x2 < 0.3 ∧ x3 < 0.3 ∧ x4 > 0.7 ∧ x5 < 0.3}, and the second region is defined with

the conjunction of inequalities R1 = {x2 > 0.7 ∧ x3 > 0.7 ∧ x4 < 0.3 ∧ x5 < 0.7}.

Let M denote the size of the dataset. There are three points of abrupt change in

the training dataset, the first one at 1
4
M data, the second one at 1

2
M data and the

third at 3
4
M data. The complete description of these drifting data can be found in

[98].
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Figure 4.3 : Results on the drifting Friedman’s dataset (X-axis represents the size

of instances, and Y-axis represents RMSE).

Figure 4.3 shows the results of our comparison based on the drifting hyperplane

dataset. From Figure 4.3, we reach a similar conclusion to the first experiment, in

general. For example, in most time windows that have no sudden drift, such as tw1

([0−200]), tw2 ([200−400]), tw7 ([1200−1400]), and tw10 ([1800−200]), the RMSE

obtained by each online SVR algorithm shows a convergent trend as the training

data increases. However, unlike the previous experiment, when sudden drift occurs,

i.e., M = 500 and M = 1500, the RMSE for every online SVR-based algorithm

shows a more dramatic and rapid upward trend. Therefore, this also illustrates that

sudden drift has a more serious impact on performance than incremental drift.

The last is a dataset with gradual drift. In this dataset, there are also four

concepts with a function. The function contains 3 input variables, x1, . . . , x3 ∈ [0, 1],

and 1 output variable, yi. We also simulate a window (which includes 200 instances)

of change where the probability of a given instance belonging to the current concept

of the new concept is governed by a sigmoid function. Basically, at the start of

the window, the probability that one instance is drawn from concept 1 is higher,

while at the end of the window, the probability of it being drawn from concept 2



115

Figure 4.4 : Results on the gradual drifting dataset (X-axis represents the size of

instances, and Y-axis represents RMSE).

increases, after the window is overall instances will be drawn from concept 2 (the

“new concept” is now stable). In this example, there are three gradual drifts centered

around instances 500, 1000, and 1500 respectively.

Figure 4.4 shows the results of our comparison based on the gradual drifting

dataset. From Fig. 4.4, we still reach a similar conclusion to the first and second

experiment, in general. However, unlike the previous two experiments, when the

gradual drift window arrives, i.e., [400-600] and [1400-1600], the RMSE for every

online SVR-based algorithm shows a more rapid upward trend in [500-600] and

[1500-1600] than in [400-500] and [1500-1600].

In summary, these results from the aforementioned three experiments show that

our proposed C-SVR achieves more stable and better results than the other online

SVR-based algorithms for non-stationary streaming data regression. The reason is

C-SVR learns fi(X) which is dependent on fi−1(X). Hence, C-SVR is not like AON-

SVR, VPI-SVR, TW-SVR, i.e., the learned knowledge is discarded in a new twi+1

with or without concept drift in twi. In contrast, when there are no concept drifts in

twi, the learned knowledge can be saved in C-SVR, thereby the learning of fi(X) does
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not need to start from an initial state and can make an accurate prediction as soon

as possible. On the other hand, C-SVR is not like AddEXP.C-SVR, Learn++.NSE-

SVR, i.e., outdated fi(X) cannot be discarded in time. In C-SVR, if there are

concept drifts in twi, the learned knowledge will be discarded, therefore the learning

of fi(X) is not affected by outdated knowledge, thereby reducing the impact of

outdated models on the prediction results.

Next, we discuss the impact of parameters on the performance of each online

SVR algorithm. Two parameters C and ε need to be set in each online SVR algo-

rithm. The impact of these two parameters on performance is discussed in former

publications [140, 82]. Therefore, there is no need to discuss the impact of these two

parameters on each online SVR-based algorithm here. Each online SVR-based algo-

rithm uses the same parameters C and ε. However, from the above two experiments’

results, we can see that the performance of each algorithm in different time windows

is different. Therefore, to further illustrate the advantage of our proposed C-SVR,

we designed the third experiment to discuss the impact of the time windows’ size

on the performance of each algorithm. In this experiment, we set the size of the

time window to 50, 100, 200, 400, and 500. We then compared the RMSE and the

learning time of each algorithm based on time windows of different sizes. Figure 4.5

shows the comparative results.

Figures 4.5 (a), 5 (b) and 5 (c) show that the average RMSE obtained by TW-

SVR, VPI-SVR, and AddExp.C-SVR, in three datasets with concept drift, are sig-

nificantly different if using time windows of different sizes. However, when the new

time window arrives at exactly the time that each concept drift occurs, the aver-

age RMSEs obtained by TW-SVR, VPI-SVR, and AddExp.C-SVR are smaller than

when the concept drift does not occur when that time window arrives. In contrast,

there is little difference between the average RMSE obtained by AON-SVR and

Learn+.NSE-SVR and our proposed C-SVR when using time windows of different
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(a) Hyperplane dataset (b) Friedman’s dataset

(c) Gradual drift dataset

Figure 4.5 : RMSE according to the size of time-window.

sizes. Of these, the RMSE obtained by AON-SVR and C-SVR increases slightly with

the increase of the time window’s size, while Learn+.NSE-SVR decreases slightly

with the increase of the time window’s size.

Figures 4.6 (a), 4.6 (b) and 4.6 (c) show that the learning time of TW-SVR,

VPI-SVR, AddExp.C-SVR, AON-SVR, and C-SVR increases with the increase of

the time window’s size. The reason for this is that the training data increases with

the increase in the size of the time windows, which results in the increase of data that

belongs to the three sets −SS (Supporting set), ES (Error set), and RS (Remaining

set). Therefore, when learning new data, the data in the three sets that need to be

also adjusted increases, thereby increasing learning time. AON-SVR needs to choose

a datum to discard, so the learning time is longer than other online SVR algorithms.

Learn++. NSE-SVR only relearns a new function when concept drift occurs, so its
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(a) Hyperplane dataset (b) Friedman’s dataset

(c) Gradual drift dataset

Figure 4.6 : Time according the size of time-window.

learning time is less affected by the size of the time window, but when the size of

the time window is less than 500, the learning time of Learn++. NSE-SVR is much

longer than the other online SVR-based algorithms.

We also carry out comparative experiments using online SVR-based algorithms

and other types of online regression algorithms. An incremental SVR algorithm,

named I-SVR, is included to demonstrate the advantages of a forgetting mecha-

nism. I-SVR is without a forgetting mechanism and uses an incremental solution as

in [140] to solve the QPP of a classical ε-SVR. Online SVR-based algorithms with

a forgetting mechanism include TW-SVR, VPI-SVR, AON-SVR, AddExp.C-SVR,

Learn++.NSE-SVR, and our proposed algorithm C-SVR. For each dataset, we set

time windows of different sizes; the details are given in Table 4.1. Based on the
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size of the time window, we used a parameter optimization method [18] to find the

approximate values of the parameters C and ε of all online SVR-based algorithms.

For some parameters that need be set to AddExp.C and Learn++.NSE, we used

the same parameters as those used in the artificial datasets. Other types of on-

line regression algorithms include FIMT-DD [182], ORTO [98], ARF-Reg [79], and

AMRules [6] which are implemented by MOA software [19].

Table 4.1 : Datasets details.

Name Instances Attributes Time-window size

Hyperplane (incremental drift) 2000 10 200

Artificial Friedman (sudden drift) 2000 5 200

Gradual drift dataset 2000 3 200

CCPP 9568 5 300

Real-world Bikes 17389 16 500

Cpusmall 8192 12 400

House 20640 8 1000

Solar 32686 6 1000

Table 4.2 shows the comparison results for every algorithm in terms of RMSE

for different datasets. The results demonstrate that our proposed C-SVR obtains

the best performance.

Real-world Datasets

In this section, we present the experiment results from six real-world regression

datasets. The datasets were selected from different applications with a wide range of

data sizes and dimensionality. The details for each dataset are also shown in Table

4.1.
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Table 4.2 : Comparison results on synthetic datasets (RMSE)

Hyperplane Friedman Gradual drifting datasets Average-Rank

FMITDD 4.42E-01 (9) 2.63E-01 (8) 9.82E-02 (9) 8.67

ORTO 10.27E-01 (11) 8.12E-01 (11) 3.08E-01 (11) 11

ARF −Reg 3.88E-01 (8) 4.67E-01 (10) 8.41E-02 (8) 8.67

AMRules 4.48E-01 (10) 3.12E-01 (9) 1.10E-01 (10) 9.67

I − SV R 2.31E-01 (7) 14.82E-01 (7) 3.74E-02 (7) 7.00

TW − SV R 8.01E-02 (6) 11.49E-02 (5) 2.36E-02 (6) 5.67

V PI − SV R 7.98E-02 (5) 11.78E-02 (6) 2.35E-02 (5) 5.33

AON − SV R 7.49E-02 (2) 11.47E-02 (3) 2.12E-02 (2) 2.33

AddExp.C − SV R 7.54E-02 (3) 11.67E-02 (4) 2.26E-02 (4) 3.67

Learn+ +.NSE − SV R 7.61E-02 (4) 11.32-02 (2) 2.25E-02 (3) 3.00

C − SV R 7.38E-02 (1) 11.29E-02 (1) 1.99E-02 (1) 1.00

The datasets are described as follows: the CCPP and Bikes datasets are taken

from the UCI repository (http://archive. ics.uci.edu/ml/). The CCPP dataset

is collected from a combined cycle power plant over six years (2006-2011), and

the work in [179] proved that it does not have any drift. The Bikes dataset con-

tains daily counts of rented bicycles from the bicycle rental company Capital −

Bikeshare in Washington D.C., with the weather and seasonal information. The

Cpusmall dataset is taken from the Delve datasets (http://www.cs.toronto.edu/

d̃elve/data/datasets.html), and the goal is to predict a computer system activity

from system performance measures. The House dataset is a collection of all the

housing block groups in California from the 1990 Census. A block group on aver-

age includes 1425.5 individuals living in a geographically compact area. The Solar

dataset is provided by NASA and is taken from the HI-SEAS weather station in the

period between Mission IV and Mission V. The data interval is roughly 5 minutes.

Table 4.3 shows the comparison results for every algorithm in terms of RMSE
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for different real-world datasets. The results demonstrate that although I-SVR ob-

tains the best performance on the CCPP datasets, i.e., there is no clear concept

drift in the datasets, the performance of other online regression algorithms with a

forgetting mechanism is not much worse than that of I-SVR. In contrast, in the last

four datasets, i.e., there may be concept drift in the datasets, online regression al-

gorithms with the forgetting mechanism significantly outperform I-SVR. Therefore,

the forgetting mechanism is an important key in solving the online non-stationary

regression problem. Next, to compare the results obtained by the online SVR-based

algorithms and our proposed C-SVR, we can see that C-SVR achieved a better per-

Table 4.3 : Comparison results on real-world datasets (RMSE)

FMITDD 3.57E+00 (9) 2.57E+00 (2) 1.03E+00 (1) 5.54E+04 (3) 1.14E+02 (9) 4.8

ORTO 4.53E+02 (11) 5.93E+01 (11) 9.31E+01 (11) 9.42E+04 (10) 2.25E+02 (11) 10.8

ARF −Reg 3.72E+00 (10) 7.29E-01 (1) 1.12E+00 (2) 10.07E+04 (11) 9.47E+01 (4) 5.6

AMRules 3.42E+00 (8) 2.92E+00 (3) 1.31E+00 (3) 4.72E+04 (1) 9.52E+01 (5) 4

I − SV R 3.04E+00 (1) 6.30E+00 (10) 1.92E+00 (9) 7.19E+04 (9) 1.11E+02 (10) 7.8

TW − SV R 3.36E+00 (6) 5.17E+00 (9) 1.97E+00 (10) 6.01E+04 (6) 1.08E+01 (6) 7.4

V PI − SV R 3.32E+00 (7) 5.02E+00 (8) 1.83E+00(8) 6.06E+04 (7) 1.04E+01 (7) 7.4

AON-SVR 3.12E+00 (2) 4.29E+00 (6) 1.74E+00 (7) 6.28E+04 (8) 1.18E+02 (8) 6.2

AddExp.C − SV R 3.29E+00 (5) 4.30E+00 (7) 1.59E+00 (6) 5.87E+04 (5) 9.46E+01 (3) 5.2

Learn+ +.NSE − SV R 3.24E+00 (4) 3.22E+00 (4) 1.51E+00 (5) 5.82E+04 (4) 9.42E+01 (2) 3.8

C − SV R 3.18E+00 (3) 3.65E+00 (5) 1.46E+00 (4) 4.83E+04 (2) 9.40E+01 (1) 3

formance than the other online SVR-based algorithms on the last four algorithms,

except for Learn++.NSE-SVR. The reason for this may be because the perfor-

mance of Learn++.NSE-SVR is not impacted by the size of the time window, so

Learn++.NSE-SVR achieves a better performance than C-SVR when the size of the

time window has not been suitably set. However, for most of the datasets, C-SVR

achieves the best performance when the size of the time window has been set to a

multiple of 100. Additionally, with an increasing amount of data being assigned to
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one of the three sets (SS, ES, RS) and no data to discard, the learning speed will

become increasingly slower, until it is much slower than that of C-SVR. Next, to

compare the results obtained by FIMT-DD, ORTO, ARF-Reg, AMRules, and our

proposed C-SVR, we can see that C-SVR can also achieve comparative performance.

However, the main advantage of the C-SVR is stability (has minimum average-rank).

The reason for this is that the difference between incremental drift, gradual drift

and sudden drift was omitted in ORTO, FIMT-DD, ARF-Reg, AMRules, but was

considered in our proposed method.

4.3 Topology Learning-based Fuzzy Random Neural Net-

work for Evolving Streaming Data

4.3.1 Preliminary

As a type of evolving fuzzy systems [15], to handle regression, the rules of

evolving-fuzzy-neuro (EFN) systems are mainly the first-order TSK type [169]:

Rulei :IF
(
x1 is A

i
1

)
AND . . .AND

(
xn is A

i
n

)
THEN

(
yi = ai0 + ai1x1 + . . .+ ainxn

) (4.28)

where Rulei(i = 1, 2, . . . , R) is the ith TSK rule [138], xj(j = 1, 2, . . . , n) is the jth

input variable, and Aij is the jth antecedent of the ith rule. yi(i = 1, 2, . . . , R) is

the output variable of the ith rule, and aij(j = 0, 1, 2, . . . , n) is the jth coefficients

in the consequent part of the ith rule.

When a TSK system receives input data X, each Rulei in the TSK system will

be fired with a firing strength µi. Correspondingly, the final estimated output of

the system (ŷ) is defined in terms of a weighted average of the output produced by

each Rulei:

µi =
n∏
j=1

µij (xj) and ŷ =

∑R
i=1 µ

iyi∑R
i=1 µ

i
(4.29)
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where the firing strength µi is the weight of the ith TSK rule, µij is the membership

degree of the jth input variable, and ŷ is the overall TSK system output.

Figure 4.7 : Evolving-fuzzy-neuro systems.

An eFN system is essentially a neural network [169] that has the ability to

adapt its structure and parameters to new input data through incremental/online

learning. An illustration of an eFN system is shown in Figure 4.7. The neural

network learns the TSK rules which are in common. The dotted neurons in the

second layer represent new fuzzy neurons that were added through learning. Each

layer of the neural network is described as follows:

• Layer 1: the input data X = (x1, x2, . . . , xn) is received in this layer and passed

to the next layer.

• Layer 2: each input variable xj of the input data X is fuzzified into the

membership degree uij in this layer because each neuron in this layer is the jth

antecedent of one TSK Rulei and is attached to a fuzzy membership function.

For example, a neuron in this layer can represent a linguistic variable “old”
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while another can be used to represent “young”.

• Layer 3: the firing strength µi of a rule is determined in this layer, because

the neurons in this layer perform the product operation over the membership

degrees µij which are received from layer 2.

• Layer 4: each neuron in this layer normalizes the firing strength µi of each

Rulei received from layer 3.

• Layer 5: each neuron in this layer has two inputs, one is the normalized firing

strength µi from the corresponding neuron in layer 4, while the second input

is output yi in the consequent parts of a rule. The output of each neuron in

this layer is a weighted output.

• Layer 6: in this layer, the weighted outputs from layer 5 are tallied to generate

the final estimated output ŷ of the eFN system.

When designing an eFN system, a common approach to determine the an-

tecedents of the TSK rule is to use clustering algorithms to obtain fuzzy neurons.

Clustering algorithms [53, 83] can not only be applied to input variables, but can

also be applied to output variables. To obtain TSK rules, clustering [151] is com-

monly applied in the data space of input-output variables and the resulting clusters

are projected onto the input variables’ coordinates to determine the antecedents of

the TSK rule. Normally, the number of fuzzy neurons determines the number of

rules because each of the fuzzy neurons delineates a fuzzy region in the data space,

meaning each of the fuzzy neurons defines a TSK rule. The coefficients in the con-

sequent part of the TSK rule are learned separately using linear-optimized methods

such as RLS [52] and online gradient descent.
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4.3.2 TLFRNN: Learning Structure

This section describes how to learn the structure of TLFRNN. Besides, the mech-

anism of TLFRNN handling concept drift is detailed in this section.

Learning Topology Network

In evolving-fuzzy-neuro systems, uncertain data need to be mapped onto the

universe of discourse X in the fuzzy set according to a neuron. The X is defined

as µA : X → [0, 1], where each element of X is mapped to a value between 0 and

1. This value, called the membership value, quantifies the grade of the membership

of the element in X to the fuzzy set A. This membership value µ is later brought

into the inference process and significantly affects the accuracy of the prediction. In

data streams, clustering is implemented in a random environment, so an algorithm

returns different results for one dataset when the data is presented in a different

sequence. The reason is current online clustering methods which obtain neurons are

sensitive to the data sequence. Even in some methods, inappropriate selection of

initial clusters, the clustering results will be poor regardless of how the algorithm is

adjusted later, and thereby impacting the accuracy of the fuzzy set and membership

value. Unfortunately, in streaming data, we are not able to determine which samples

can be the initial clusters since samples are randomly selected from streaming data.

To overcome the randomness problem, we integrate the idea of fuzzy random

variables [163, 163] into the TLFRNN. Since the membership value is dependent on

the initial cluster and the initial cluster is random if the training data are streaming

data, our proposed TLFRNN will build multiple fuzzy sets, and the input data will

be transferred into fuzzy random variables. For example, the inputs of one sample

can be transferred into Table 4.4, where µ is the membership value, and P is the

probability of this membership value.

Since the input data in our proposed TLFRNN will be converted into fuzzy
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Table 4.4 : Fuzzy random variables

Inputs

X

µP1
1 , µ

P1
2 , µ

P1
3 µP2

1 , µ
P2
2 , µ

P2
3 µP3

1 , µ
P3
2 , µ

P3
3

P1 P2 P3

random variables, TLFRNN has an extra layer called the randomness layer com-

pared with the traditional structure of evolving-fuzzy-neuro systems (see Figure

4.7). Assume there are two different fuzzy sets in TLFRNN, the relation between

the randomness layer and the fuzzy set layer in TLFRNN are shown in Figure 4.8.

Figure 4.8 : The layers of randomness and fuzzy set in TLFRNN.

From Figure 4.8, we can see a fuzzy set connects to a neuron in the randomness

layer. When a sample Z(t) = (X(t), y(t)), where X(t) ∈ Rd, and y ∈ R1, arrives,

according to the neurons in the randomness layer, we first get probability P1 and

probability P2 respectively. Then, according to the neurons in the fuzzy set layer,
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we can get two fuzzy memberships of this sample, first fuzzy membership with

probability P1, and the second fuzzy membership with probability P2.

Following the idea of learning neurons in the randomness and fuzzy set layer,

we propose an online clustering algorithm which inherits the idea of our proposed

self-organized topology learning method [55]. Hence, in our proposed clustering

algorithm, two parameters need to be set manually: 1) λ is used to define the

frequency of neuron removal. A relatively large λ value contributes to the deletion

of fewer neurons. This implies that more neuros will remain. 2) agemax is defined

as the lifetime of each edge between neurons. A relatively large agemax value will

result in a neuron having more neighbors. However, noise becomes hard to delete.

Our proposed Gm-SOINN (see Section 3.2) can online learn a topology network.

Based on the topology network, the learning process is robust to noise and is a

better fit to the real data distribution. However, GM-SOINN was proposed for

unsupervised task, hence we simplified the Gm-SOINN to a regression method.

Assume we need to learn the structure of TLFRNN as shown in Figure 4.8, the

neurons in the fuzzy set layer will sustain two distinct topology networks, and each

topology network needs to connect to a neuron in the randomness layer (see Figure

4.9).

Figure 4.9 : Topology networks.
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Hence, assume streaming data {Z} with samples {Z(1), . . . , Z(t)} ∈ Rd+1, the

process of learning neurons in the randomness layer and the fuzzy set layer is as

follows:

In TLFRNN, each neuron in the randomness layer has a probability Pi(X(t))

and is calculated by

Pi (X (t)) =
K∑
i=1

ωi (t) f (X (t) ,Wi (t) ,Σi (t)) (4.30)

where K is the number of neurons in the fuzzy set layer that connect this neuro, ωi(t)

is the weight of the ith component, such that
∑K

i=1 ωi(t) = 1, and f(X(t),Wi(t),
∑

i(t))

is the Gaussian density distribution with mean Wi(t) and covariance matrix
∑

i(t).

In this case,
∑

i(t) is a diagonal matrix for d dimensional, as it is shown in:

Σi (t) = diag
(
σ2
i,1, σ

2
i,2, . . . , σ

2
i,d

)
(4.31)

However, to reduce the interference of the parameter values of a neuron over the

parameter values of other neurons. For this, we propose to normalize the means

after multiplying them by the covariance matrix. Let
∑−1

i (t) be a positive semi-

definite matrix and
∑−1

i (t) = AAT , furthermore, in our case A = AT . Then, we

can write f(X(t),Wi(t),
∑

i(t)) as:

f (X (t) ,Wi (t) ,Σi (t)) =
1√

2πσ2
i (t)

× exp

(
X*T (t)W ∗

i (t)− 1

2σ2
i (t)

)
(4.32)

where X∗i (t) = AX(t),W ∗
i (t) = AWi(t).c

Assume there are two neurons in the randomness layer, in the initial step, the

value Wi of each neuron in the randomness layer is set to sample Z(1), and sample

Z(2), respectively. If sample Z(3) is inserted into the topology network that connects

the first neuron in the randomness layer, the Wi(t) is updated according to:

W ∗
1,j (t+ 1) = W ∗

1,j (t) + (Kω1)
−1p (1|X (t))

(
X∗j (t)−W ∗

1,j (t)
)

(4.33)

σ2
1,j (t+ 1) = σ2

1,j (t) + (Kω1)
−1p (1|X (t))

[(
X∗j (t)−W ∗

1,j (t)
)2 − σ2

1,j (t)
]

(4.34)
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ω1 (t+ 1) = ω1 (t) +K - 1 (p (1|X (t))− ω1 (t)) (4.35)

where:

p (i|X (t)) =
ωif (X (t) ,Wi (t) ,Σi (t))

P (X (t))
(4.36)

As for learning the fuzzy set layer, we use all the neurons Fi(t) in the fuzzy set

layer that are connected to the first neuron W1(t) in the randomness layer as an

example.

Algorithm 4.2 lists the details of the learning topology network. From Algorithm

4.2, we can see the first step is to determine whether or not to insert a new sample

Z(t) in the fuzzy set layer, i.e., as a new neuron Fi(t). Assume we already have N

neurons {F1(t), . . . , FN(t)} existing in topology network at timestamp t. When a

new sample Z(t) is given, it finds the nearest neuron (winner) F ′1(t) and the second-

nearest neuron F ′2(t) (s-winner) of the sample Z(t) by the fuzzy membership µi(t).

If the fuzzy membership µi(t) between the new sample Z(t) and the winner F ′1(t)

or s-winner F ′2(t) is more than the threshold Ti, and if no edge connects F ′1(t) and

F ′2(t), F
′
1(t) and F ′2(t) should be connected with an edge. The “age” of the edge is

set as “0”, and the age of all the edges linked to the F ′1(t) is subsequently increased

by “1”. Then an edge is deleted if its age exceeds agemax. Otherwise, the new

sample Z(t) is inserted into the topology network as new neuron FN+1(t). When

the number of input samples equals λ, the deletion of neurons will be triggered.

According to the idea of Gm-SOINN, the winner F ′1(t) is updated as follows:

F ′1 (t+ 1) = F ′1 (t) + γi (t+ 1) ∆F ′1 (t+ 1) (4.37)

where the parameter γi(t), (0 ≤ γv ≤ 1) is the reciprocal of the winning times Wi of

winner F ′1(t+ 1).

As for the other neuros Fi(t+ 1) that connect to the winner F ′1(t+ 1), these are
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Algorithm 4.2. Learning topology network

Input: Sequence {Z}, agemax, λ

Output: The topology network

1: Initialize set AN with the first 2 samples drawn from {Z}

2: while {Z} is not empty do

3: Find winner F ′1 and second winner F ′2 from neuro set AN , as

F1
′ = Fi with arg max

i∈AN
µi, F2

′ = Fi with arg max
i∈AN\{F1

′}
µi

4: if F ′1 < T1 and F ′1 < T2 then

5: Add a neuro Fi with weight Z(t) to AN , and set active times Ci = 0.

6: else

7: Increase the active times as CF ′1(t) = CF ′1(t− 1) + 1. Then update neuros

in the fuzzy set layer as

F ′1 (t+ 1) = F ′1 (t) + γi (t+ 1) ∆F ′1 (t+ 1)

Fi (t+ 1) = Fi (t) + λ · γi (t+ 1) ·∆Fi (t+ 1)

for all neuros Fi that connect to F ′1

8: Increase the active time Ci of all neuros linked with F ′1 by 1

9: Increase the age of all edges linked with F ′1 by 1.

10: for all edge agei,j > agemax do

11: Remove the edge connecting Fi and Fj.

12: end for

13: end if

14: if number of input samples divides λ then

15: Remove neuros Fi that only one neuro connects to it.

16: Remove neuros Fi that the active time CFi
does not increase.

17: end if

18: end while
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updated as follows:

Fi (t+ 1) = Fi (t) + λ · γi (t+ 1) ·∆Fi (t+ 1) (4.38)

where λ is the learning rate which was chosen to decrease the number of samples

by λ = 1/ki, with ki the number of samples which connect to the winner. Based on

Eq. (4.49) and Eq. (4.50), all neurons Fi can be updated in an online manner.

Due to introducing a randomness layer, we can learn multiple fuzzy sets, and one

fuzzy set will be assigned a probability. So our proposed TLFRNN is not sensitive to

the randomness of streaming data. Besides, our topology network learning method

is robust to λ and agemax parameters. Hence, this reduces the need for accuracy of

user-set parameters.

Concept Drift Learning

Detecting and adapting concept drift is an important part of EFSs. Most current

EFSs detect concept drift by detecting a change in the error rate [10, 157], since

directly detecting a change in the data distribution D(X, y) is a time-consuming

task. However, in our proposed TLFRNN, the learned neurons will build a topology

network that is able to represent the data distribution D0,t(X, y) accurately. Hence,

by utilizing the topology network, we can easily handle the concept drift problem.

In TLFRNN, adapting to concept drift does not mean the drift has to be detected.

When a new sample is given, TLFRNN updates itself from a global and local view-

point. From a global viewpoint, there is a variable C in our proposed Algorithm 1

that can be used to record the number of neurons to be activated. If a neuron is

active, this means it is selected as the winner or s-winner, or it can connect to the

winner by edges in this learning iteration. Hence, variable C of the neurons in each

topology network does not increase in this iteration. We label them as outdated

neurons and delete them from each topology network. From a local viewpoint (i.e.,

at each topology network), as the position of neurons will be updated according to
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Algorithm 4.2, the topology network will finally adapt to the new data distribution.

Furthermore, the neurons in the randomness layer are also updated according to the

updating of the topology network to which it connects.

4.3.3 TLFRNN: Determining Parameters

In this section, we describe how to determine the parameters of our proposed

TLFRNN. In addition, we also demonstrate how to use the maximum likelihood

process to optimize the parameters of TLFRNN.

Fuzzy Set And Fuzzy Rules

For streaming data regression, the inference of current EFSs is commonly based

on first-order Takagi-Sugeno fuzzy rules [169], that is, the consequent yi(t) of each

fuzzy rule is modeled by a linear function (see Eq. (4.28)). Hence, determining fuzzy

rules need to split data spaces of input-output variables to obtain the subspaces that

can approximate to a TSK rule [200, 188]. However, in practical applications, the

prediction problem in each subspace is still a nonlinear model and cannot approxi-

mate to a TSK rule. In addition, due to the first-order TSK rule is a linear function,

the prediction model of current EFSs is actually a combination of multiple linear

models. As a result, current EFSs are difficult to model the nonlinear relationship

between input and output. Furthermore, to obtain the consequent yi(t), several

parameters such as the parameters aij in Eq. (4.28) need to be learned.

In our proposed TLFRNN, each neuron Fi(t) in the fuzzy set layer is a fuzzy rule

and has a consequent yi(t), and different with the first-order Takagi-Sugeno fuzzy

rule, the consequent yi(t) of each fuzzy rule is calculated by:

yi (t) = f (X (t) | {Fi (t)}) =
Kh(t)

(
X (t)− FX

i (t)
)
F y
i (t)∑n

j=1Kh(t) (X (t)− FX
i (t))

(4.39)
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and the Kh(t)

(
X(t)− FX

i (t)
)

is defined as:

Kh(t)

(
X (t)− FX

i (t)
)

=
1√

(2π)d |H (t)|
· exp

(
−1

2

(
X (t)− FX

i (t)
)T
H(t)

−1 (
X (t)− FX

i (t)
)) (4.40)

where d is the dimension of the input data, H(t) is a diagonal matrix with squares

of smooth parameter hk(t), and |H(t)| = Πkhk(t).

Due to the consequent yi(t) of each fuzzy rule is represented by a kernel function,

so the data spaces of input-output variables do not need to be split to obtain the

subspaces that can approximate to a linear model. Hence, based on this type of

fuzzy rules, the inference of an input data X(t) is as follows:

• Step 1. We first calculate the probability Pi that the input data X(t) attaches

each neuron in the randomness layer by Eq. (4.31).

• Step 2. We then obtain the fuzzy membership µi where by input data X(t)

attaches to each neuro Fi in the fuzzy set layer and normalizes the fuzzy

membership µi to obtain the weights:

θi =
∑
i

µi∑
j µj

(4.41)

• Step 3. Next, given the input data X(t), we further obtain the consequent

yi(t) of each neuro Fi using Eq. (4.39).

• Step 4. Like other fuzzy systems, we also weight the yi(t) to obtain a weighted

value y∗(t) by:

y∗ (t) =
∑
i

θiyi (t) (4.42)

• Step 5. Finally, we obtain the prediction value ŷ(t):
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ŷ (t) =
∑
i

Pi (t) y
∗
i (t)∑

j Pj (t)
(4.43)

Therefore, different from current EFSs, in the inference of our proposed TL-

FRNN, the random and fuzzy information of samples are used at the same time and

the consequent yi(t) of each fuzzy rule is modeled as a nonlinear function.

Selecting Parameter

According to Eq. (4.40), only the smooth parameter H(t) influences forecasting.

Some methods, such as RLS and online gradient descent [136], are used to select the

smooth parameter automatically. However, these methods require that the neuros

Fi in the fuzzy set layer cannot be changed in the next learning iteration. However,

in our proposed TLFRNN, the neuros Fi may be Fi(t) 6= Fi(t + 1). Hence, we

develop a new method for automatically setting the appropriate smooth parameter.

In our proposed method, at first, the smooth parameter H(t) is redefined as

follows:

H (t) = diag
(
s (t) δ21 (t) , . . . , s (t) δ2k (t) , . . . s (t) δ2d (t)

)
(4.44)

so Eq. (4.40) can also be rewritten as:

Kh(t) (X (t)− Fi (t))

=
1√

(2π)d(s (t))d
∏

k δ
2
k (t)

· exp

(
− 1

2s (t)
(X (t)− Fi (t))T∆ (t) (X (t)− Fi (t))

)
(4.45)

where ∆(t) = diag
(
δ−21 (t), . . . , δ−2k (t), . . . , δ−2d (t)

)
.

However, as there is a neuron Fi(t) in the fuzzy set layer may change as new

input data X(t) arrives, s(t) needs to be recalculated when new X(t) arrives. Given

input data X(t), we denote the kth dimension of neuron Fi as F k
i and we can obtain
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the possibility P̂ (X(t)) of input data X(t) under moment s(t) as:

P̂ (X (t) |s∗ (t)) =
∑
i

Kh(t) (X (t)− Fi (t) |s∗ (t))µi (t)

=
∑
i

λi (t) (s∗ (t))d exp
(
−0.5(s∗ (t))2χi (t)

)
µi (t)

(4.46)

where

λi (t) =
1√

(2π)d
∏

k δ
2
k (t)

(4.47)

s∗ (t) = s(t)−0.5 (4.48)

χi (t) =
∑
k

(
Xk (t)− F k

i (t)
)2
δ−2k (t) (4.49)

We assume the P̂ (X(t)) of this moment input data X(t) is the maximum under

this moment smooth parameters∗(t), i.e. P̂max (X(t) | s∗(t)). Thus, we can obtain

P̂max (X(t) | s∗(t)) by maximizing the likelihood function L (s∗(t) | X(t)). Then, the

likelihood function L (s∗(t) | X(t)) can be transformed into

L (s∗ (t) |X (t)) =
∑
i

µi (t)L (s∗ (t) |X (t) , Fi (t)) (4.50)

Hence, maximizing L (s∗(t) | X(t)) equates to maximizing L (s∗(t) | X(t), Fi(t))

for each neuron Fi(t). Next, we transform the likelihood function L (s∗(t) | X(t), Fi(t))

into the log-likelihood function, so

L (s∗(t)|X (t)) =
∑
i

µi (t)
(
lnλi (t) + d ln s∗ (t)− 0.5(s∗ (t))2χi (t)

)
(4.51)

Let ∂L(s∗(t)|X(t))
∂s∗(t)

= 0, we have

s∗ (t) =

√
d
∑

i µi (t)∑
i µi (t)χi (t)

(4.52)

then according to
∑

i µi(t) = 1, we finally obtain

s∗ (t) =

√
d∑

i µi (t)χi (t)
(4.53)
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where
∑

i µi(t)χi(t) ∝
∑

i µi(t) ‖X(t)− Fi(t)‖2.

According to the learning objection of the topology network, the number of

neurons Fi(t) in the fuzzy set layer increases gradually with the continuous ar-

rival of the streaming data, and
∑

i µi(t) ‖X(t)− Fi(t)‖2 decreases. Then due to∑
i µi(t)χi(t) ∝

∑
i µi(t) ‖X(t)− Fi(t)‖2, the decreasing of

∑
i µi(t)‖X(t) − Fi(t)‖2

will result in s∗(t) decreasing. Next, according to Eq. (4.43) and Eq. (4.47), we

can conclude that the smooth parameter H(t) decreases as the number of neurons

Fi increases in our proposed method.

4.3.4 Experiments

In this section, we illustrate the advantages of our proposed TLFRNN by com-

paring its algorithm with other evolving fuzzy systems. As TLFRNN is an evolving-

fuzzy-neuro system, we first validate our proposed algorithm for learning neural

networks. Then, we validate the regression performance of TLFRNN. The evalu-

ations involve different scenarios using both artificial and real-world datasets. All

experiments are conducted in Python 3.5 version on Windows 7 running on a PC

with a system configuration Intel Core i5 processor (2.40 GHz) with 8-GB RAM.

In the experiment, we employed a prequential strategy which was introduced in

[71]. In this strategy, a sample is first evaluated by a learning model and is then

used to update the learning model. By considering all the metrics, we calculate their

mean value for all data streams. In addition, as suggested by [150], a windowed

measurement method is also considered, and a non-overlapping sliding window of

size 200 is also used. Aiming at reducing the effects of randomness in our evaluation,

all multi-output regression methods are performed at least thirty times for each

dataset, and the performance is taken as the average between the repetitions.
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Learning Topology Network

To validate our proposed algorithm for learning topology network (for conve-

nience, we call it TN in the next sections), we compare TN to fuzzy c-means (FCM)

[35] and SOINN [67] - selecting FCM to illustrate the advantage of topology learn-

ing and selecting SOINN to illustrate the advantage of fuzzy learning. The specific

comparison scheme is: we firstly use FCM, SOINN, and TN to separately obtain

the neural networks based on the following dataset: y(t) = sin(o(t))/20

X(t) = o(t)/10− 6.25
(4.54)

where o(t) is randomly sampled from (0,5). To illustrate that our proposed method

is also robust to noise, we add 10% noise to the dataset and the noise is distributed

over the whole.

We then make a prediction of the given dataset based on the neural network

(represented by neurons) obtained by each algorithm. By comparing the prediction

results in terms of the average root mean square error (ARMSE), we can validate

the performance of each algorithm.

Next, we discuss the parameters of each algorithm. When using FCM to obtain

the neurons, it is necessary to select two parameters: 1) C is used to define the num-

ber of neurons; 2) m is the fuzzifier m and determines the level of cluster fuzziness.

A large m results in smaller membership values and, hence, fuzzier clusters. In the

limit m = 1, the memberships converge to 0 or 1, which implies a crisp partitioning.

In the absence of experimentation or domain knowledge, m is commonly set to 2.

TN does not need to define the number of neurons, but it needs to set λ and agemax.

λ is used to define the frequency of neuron removal. agemax is defined as the lifetime

of each edge. SOINN also does not need to define the number of neurons, but it

needs more parameters. Except for the need to manually set λ and agemax, C1 and
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C2 also need to be set manually. The definition of λ and agemax is the same as

in our proposed algorithm. C1 and C2 are defined to control deletion behavior. A

relatively large C1 or C2 value will contribute to higher noise tolerance; however,

more useful neurons will be deleted at the same time.

(a) C = 10 and m = 2, FCM (b) C = 20 and m = 2, FCM

(c) λ = 100 and agemax = 25, SOINN (d) λ = 200 and agemax = 50, SOINN

(e) λ = 100 and agemax = 25, TL (f) λ = 200 and agemax = 50, TL

Figure 4.10 : Neurons obtained by each algorithm.

Figure 4.10 shows the topology network obtained by each algorithm using dif-

ferent parameters. Then we set the smooth parameter to be equal to 0.5 to make a

prediction. Table 4.5 lists the prediction results. From the first line of Table 4.5, we

can see that FCM achieves a good prediction result when the number of neurons is
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Table 4.5 : Different smooth parameter settings

Clustering Parameters Neurons ARMSE

FCM
C = 10 and m = 2, 10 0.004071

C = 20 and m = 2 20 0.03652

SOINN
λ = 100 and agemax = 25 13 0.003823

λ = 200 and agemax = 50 19 0.003712

TN
λ = 100 and agemax = 25 13 0.003623

λ = 200 and agemax = 50 23 0.003492

set to 20. However, when the number of neurons is set to 10, the prediction result

declines, as shown in the second line of Table 4.5. The reason is shown in Figure

4.10(a) and Figure 4.10(b). From Figure 4.10(b), we can see the data distribution is

well represented by neurons when their number is set to 20; but from Figure 4.10(a),

the data distribution cannot be well represented by neurons when the number is set

to 10. Therefore, if we want to use FCM to obtain the neurons of an EFS with good

performance, we must set C with an appropriate value. However, under evolving

streaming data, it is very difficult to decide which value of neurons is enough to

represent the data distribution. In contrast, SOINN does not need a predefined

number of neurons. From Figure 4.10(c) and Figure 4.10(d), we can see SOINN

automatically learns the neurons by setting the value of λ and agemax, and, as the

value of λ and agemax becomes smaller, the number of obtained neurons decreases.

The prediction result, shown in the third line of Table 4.5, indicates that SOINN

can learn neurons with a good prediction ability when λ = 200 and agemax = 50.

However, the next line of the table shows that the EFS obtained by SOINN has a

poor prediction performance when λ = 100 and agemax = 25. The reason is shown

in Figure 4.10(c) and Figure 4.10(d). From Figure 4.10(a), we can see the data
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distribution is well represented by neurons. However, because the λ and agemax are

set with smaller values, some neurons that represent the data distribution of various

areas are deleted, resulting in the data distribution not being well represented by

neurons. Similar to SOINN, TN also does not need predefined numbers of neurons.

From 4.10(e) and 4.10(f), we can see the neurons decrease with the value of λ and,

as agemax becomes smaller, the number of obtained neurons decreases. However,

the last two lines of Table 4.5 show the EFS obtained by TN has a good prediction

performance. The reason is shown in Figure 4.10(e) and Figure 4.10(f). From these,

we can see the data distribution is well represented by neurons, when λ = 200 and

agemax = 50.

Therefore, the result proves that the robustness of these two parameters is im-

proved using our proposed algorithm. Figure 4.10(a) and Figure 4.10(b) show that

some neurons are not located in the true data distribution because of noisy neu-

rons. However, this phenomenon does not exist in Figure 4.10(c), 4.19(d), 4.10(e),

and 4.10(f), demonstrating that the neurons obtained by SOINN and TN are more

robust to noisy neurons than FCM due to the integration of topology learning.

Concept Drift

Another advantage of TLFRNN is that concept drift can be solved by our pro-

posed TN algorithm. Hence, to illustrate the advantage of this, we use the following

datasets:  y(t) = x(t) t in [0− 400]

y(t) = 0.5 cos(10x(t)) + 0.5 t in (400− 800]
(4.55)

where x(t) ∼ U(0, 0.5). The artificial dataset was generated by two models. As

with the last experiment, we also add 10% noise to the dataset, and the noise is

distributed over the whole dataset. Figure 4.11 shows the neurons in a different time-

window. In this experiment, the length of the time-window is 200, i.e. λ = 200.
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The parameter agemax = 50.

(a) λ = 200 (b) λ = 400

(c) λ = 600 (d) λ = 800

Figure 4.11 : Neurons obtained by TN in nonstationary environment.

From Figure 4.11, we can see the neurons obtained in the first time-window were

all saved and updated after finishing the process of the second time-window: concept

drift does not occur. However, when the learning process of the third time-window

finishes, the neurons obtained in the first and second time-window are deleted. The

deletion neurons indicates concept drift was detected by our method, and it adapts

to the new data distribution by deleting the outdated neurons. In the last time-

window, because the data distribution matches that in the third time-window, the

neurons obtained in the later data were also saved and updated.

To further illustrate the advantages, we compare TN with FCM and SOINN. As

in the last experiment, we use FCM, SOINN and TN to obtain the neurons based
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on the dataset Eq. (4.55), transform these neurons into EFS by setting the smooth

parameter to 0.2, and finally compare the prediction results of the EFS that have

been learned through the different algorithms. As for the parameters of FCM and

SOINN, we set C = 20 and m = 2 in FCM. The reason for setting C = 20 is that

TN obtains about 40 neurons when the learning process finishes. To compare this

with TN, the values of λ = 200 and agemax = 50 in SOINN match the values in TN.

(a) FCM (b) SOINN (c) FSOINN

Figure 4.12 : Regression learning results on the artificial dataset (two models).

Figure 4.12 compares the results. From Figure 4.12(a), we can see it is difficult

for FCM to learn an EFS with good prediction results. The reason for this is it is

difficult for FCM to learn suitable neurons to represent the data distribution from a

dataset with concept drift. From 4.12(b), we can see SOINN obtains better results

than FCM. The reason for this is SOINN has an incremental learning mechanism, so

the neurons learned by SOINN will be updated to fit the new data distribution by

sequentially processing the data. However, the outdated neurons cannot be deleted

by SOINN, resulting in the prediction results of some neurons containing serious

errors. Our proposed TN is more accurate than FCM and SOINN. This is because

not only is TN capable of detecting and adapting to concept drift, and it is also

more robust to noisy data. In summary, our proposed TN can learn the neurons

that represent the data distribution from evolving and noisy streaming data.
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TLFRNN: Smooth Parameters

In the aforementioned experiment, we focus on validating the performance of the

TN algorithm. We do this by proving the regression ability of TLFRNN. From the

introduction, we know that the regression performance of our proposed TLFRNN

is affected by the smooth parameter. However, it is difficult to set the smooth

parameter manually without prior information of the streaming data. So, we propose

a method to select the smooth parameter automatically H(t). To substantiate our

proposed TLFRNN, we first evaluate the method of selecting the smooth parameter

H(t).

We also test the accuracy of our method with a smooth static parameter. The

training sets were generated by function Eq. (4.27), and ARMSE was also used to

measure accuracy. As for the parameters of TN, we set λ = 200, agemax = 50 and

λ = 100, agemax = 25 respectively. We next used the different parameter settings to

obtain neurons 10 times. A comparison of the results is shown in Figure 4.13.

Figure 4.13 : RMSE based on different smooth parameter settings.

Figure 4.13 shows that our method is the most accurate and, if more neurons
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are generated, our method achieves better accuracy. However, this is not true with

the smooth static parameter; the level of accuracy barely changes with an increase

in the number of neurons. This also indicates that FSOINN is effective at reaching

the optimal state.

TLFRNN: Artificial Dataset

This section presents the experiment results for some of the artificial datasets.

The comparison experiments were carried out with non-fuzzy systems, evolving fuzzy

systems and our proposed TELFIS. The non-fuzzy systems are FIMTDD [182],

AMR [6]. The evolving fuzzy systems include two types: 1). eFRB includes FLEX-

FIS [138] and Gen-Smart-EFS [137] (an extension of FLEXFIS); 2) eNF includes

DENFIS [107], PANFIS [156] and PALM [60]. FIMTDD and AMR are included

to demonstrate the need to use fuzzy learning. The reason for including EFSs is

to demonstrate the advantages of using topology learning. Table 4.6 shows the

parameters of each algorithm. The parameters of each algorithm are selected ac-

cording to their own criteria within the optimal parameters. If a method applies a

window-based updating strategy during the experiments, such as FIMTDD, the size

of the time-window is 200. Each algorithm is also evaluated using ARMSE which is

calculated using the predicted outputs and the real outputs from the online data.

The first artificial dataset is the drifting hyperplane dataset [62]. This is a

well-known drift dataset for evaluating algorithms that deal with concept drift. It

contains noise, gradual drifts, and non-recurring drifts. The whole dataset consists

of 10 inputs with a uniform distribution over the interval of [0, 1] and 1 output

data yi ∈ [0, 1]; and there are 2000 data (M = 2000) in the dataset. The dataset

contains four concepts, where each concept holds 500 data. A random variate noise

uniformly distributed in the interval of [−0.1, 0.1] is injected into each output yi (for

i = 1, . . . ,M). The value of yi is set to 0 or 1 if its value is less than 0 or greater
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Table 4.6 : The parameters of each algorithm.

Algorithms
Consequent Parameters

NumberofUse−DefinedParameters
Estimation Method

FMITDD RLS
Learning rate: 0.01, and change probability: 0.05

The minimum number of samples in leaf: 200

AMR RLS
Error threshold: 50 and minimum number of samples: 200

the magnitude of changes that are allowed: 0.05

Gen− Smart− EFS RLS
A scale factor δ: 1.35

A forgetting factor: 1.0

FLEXFIS RLS
Learning rate: 0.01

Vigilance parameter: 0.3

DENFIS RLS
Learning rate: 0.01

Distance threshold: 0.01

PANFIS RLS

A value was chosen to control whether PANFIS augments

its structure or tunes the current structure: 0.1

A value was chosen to yield more rules: 0.01

PALM RLS
Two thresholds of rules merge: 0.5 and 0.5

An adjustment parameter which controls the membership grades :50

TLFRNN1 Maximum likelihood process
Frequency of neuron removal: 100

Lifetime of each age: 25

TLFRNN2 Maximum likelihood process
Frequency of neuron removal: 200

Lifetime of each age: 50
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than 1, respectively.

A drifting Friedman’s function serves as the second dataset. Friedman’s function

has linear and nonlinear relations between the input and output variables. The

function contains five input variables, and one output variable. The input variables

are uniformly distributed over the interval of [0, 1]. To create drifting scenarios, one

drifting dataset using the original Friedman’s function was produced according to

[182]. The dataset also has 2000 data and abrupt concept drifts. There are three

points of abrupt drift in the training dataset, the first one at 1
4
M data, the second at

1
2
M data and the third at 3

4
M data. During the first stationary period, the Friedman

function is modelled. At the first and second points of abrupt drift, the modified

functional dependencies are introduced and the regions R1 and R2 are expended.

The complete description of these drifting data can be found in [68].

The third artificial dataset is the network traffic flow. We use the TCP traffic

data that we collected to build an experimental dataset. We collected 12590 traffic

data points as a time-series data set. The traffic data are processed to present the

amount of traffic in bytes per unit of time and represent a sample. The traffic data

is aggregated with time bin 1s, that is the number of packages which arrive within

the 1s time interval. To generate noise, we randomly add 1000 samples as the noisy

data. If it is a noisy data, the value of traffic data is set to 0.

Table 4.7 : Comparison results on artificial datasets (ARMSE).

FIMTDD AMR Gen-Smart-EFS FLEXFIS DENFIS PANFIS PALM TL-EFS1 TL-EFS2

Hyperplane 4.421 4.478 3.773 3.866 3.764 3.833 3.961 3.669 3.657

Friedman 2.627 3.122 2.875 2.966 2.724 2.759 2.665 2.468 2.453

Network 0.982 1.091 0.832 0.839 0.841 0.867 0.852 0.832 0.820

Table 4.7 shows the results of our comparison based on artificial datasets. By

comparing the results obtained from the three datasets, we can see the accuracy
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achieved by EFSs is higher than the non-fuzzy systems except on the Friedman

dataset. Although the results obtained by EFSs on the Friedman dataset (except

for our proposed EFS) are lower than FIMTDD, the performance of EFSs is better

than AMR. Therefore, the comparative results prove the advantage of fuzzy learn-

ing in processing noisy data. The comparative results also illustrate the ability of

the detection mechanism of the current EFSs to adapt well to incremental drift,

but not as successfully to abrupt drift. This results in FIMTDD achieving better

performance than current EFSs on the Friedman dataset. In contrast, the fact that

TLFRNN1 and TLFRNN2 obtain the best performance on the three datasets shows

that our proposed EFS adapts well to abrupt or incremental drift, thereby proving

the effectiveness of the topological network-based detection mechanism of concept

drift. Next, comparing all fuzzy systems, we can see our proposed TLFRNN ob-

tains better performance on all datasets whether λ = 200, agemax = 50 or λ = 100,

agemax = 25. This phenomenon also proves the neurons obtained by our proposed

TN algorithm are more suitable for the distribution of the actual output data. The

result obtained by TLFRNN when λ = 200 and agemax = 50 is close to the result

obtained by TLFRNN when λ = 100 and agemax = 25. So, this outcome proves the

performance of our proposed TLFRNN is not very sensitive to λ and agemax.

Regression On Real-world Datasets

In this section, we use real-world datasets to further validate the performance of

our algorithm. The datasets were selected from different applications with a wide

range of data sizes and dimensionality. First, five datasets were taken from the UCI

Machine Learning Repository (https://archive.ics.uci.edu/ml/ datasets.php), where

it was proved in [179] that CCPP (Combined Cycle Power Plant) does not contain

any drift and three time-series datasets were taken from different real applications

(S&P index, SMEAR, and NN5). The S&P index dataset is a dynamic real-world
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financial dataset on the Yahoo finance website which contains data on the period

from January 3, 1950 to March 12, 2009. This dataset is highly dynamic as evidenced

by the two peaks and the valley in the data trend around 2000, 2003, and 2007.

The SMEAR dataset comprises a set of 30-min-interval environment observations

collected from the SMEAR II station. There are many uncertain data in this dataset.

The NN5 datasets comprise 111 time series with 735 observations originating from

daily withdrawals at 111 cash machines in England. However, we only combine the

first 10 time series of NN5 into D8. Table 4.8 shows the type of datasets and the

sample size.

Table 4.8 : Real-world datasets

ID Dataset SAMPLE SIZE Attributes

D1 CCPP 9586 5

D2 Parkinsons 5875 21

D3 CPU 8192 19

D4 California Housing 20640 8

D5 Protein 45730 9

D6 S&P Index 14893 1

D7 SMEAR 140576 43

D8 NN5 7350 10

The final comparison experiments were carried out based on all the algorithms

which are used in the above section. The parameters of each algorithm are the same

as in Table 4.6, and the size of the time-window is 200. Table 4.9 shows the results

of the real-world experiments. The experiments demonstrate that TLFRNN out-

performs the other algorithms on most datasets except on the “Parkinsons” dataset

and the SMEAR dataset. Hence, the experiment results prove the superiority of
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Table 4.9 : Comparison results on real-world datasets (ARMSE).

D1 D2 D3 D4 D5 D6 D7 D8

FMITDD 0.035 0.068 0.039 0.140 0.254 0.064 0.023 0.945

AMR 0.034 0.069 0.039 0.143 0.255 0.089 0.014 0.952

PALM 0.053 0.075 0.042 0.139 0.245 0.047 0.033 1.003

Gen− Smart− EFS 0.048 0.071 0.038 0.133 0.258 0.061 0.018 0.932

DENFIS 0.051 0.070 0.042 0.180 0.244 0.055 0.037 0.971

PANFIS 0.049 0.073 0.040 0.179 0.253 0.052 0.021 0.959

PALM 0.055 0.074 0.041 0.155 0.257 0.042 0.010 0.966

TLFRNN1 0.033 0.082 0.039 0.136 0.233 0.036 0.047 0.933

TLFRNN2 0.032 0.083 0.039 0.137 0.232 0.037 0.048 0.927

using topology learning and introducing randomness for learning evolving fuzzy sys-

tem. The reason why TLFRNN does not achieve the best performance because

the “Parkinsons” dataset is more suitably trained with a linear model. However,

its nonlinear learning ability is well demonstrated on the other datasets. As TL-

FRNN does not achieve the best performance on the SMEAR dataset, this shows

that TLFRNN still has limitations on high dimensional datasets and gives a com-

parable performance to non-fuzzy algorithms (FIMTDD and AMR). The results of

TLFRNN1 and TLFRNN2 show our proposed algorithm is robust to parameters. In

summary, our proposed algorithm is a more accurate alternative to current online

regression algorithms for streaming data.

4.4 Summary

It is well-known that the data distribution of streaming data is nonstationary;

it can change or evolve. Concept drift refers to the change of data distribution,

and a data stream with concept drift is called evolving streaming data. Although
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some streaming regression algorithms integrate the forgetting mechanism to handle

evolving streaming data, the difference between the various types of concept drift

is ignored. Hence, we proposed continuous support vector regression (C-SVR) as

a method for solving regression problems with evolving streaming data. C-SVR is

based on a continuous learning strategy that learns a series of regression models in a

series of time windows. However, only one regression model for making a prediction

is saved in the computer’s memory. A new regression is learned when each new

time window arrives, and the last regression model that was learned in the last time

window is discarded. A unique difference with our approach is an added similarity

term to the Quadratic programming problem that makes the new regression model

dependents on the last regression model by transferring some learned knowledge

between time windows. The amount of transferred learned knowledge is determined

by the extent of the drift as measured by the competency-based method. Like other

SVRs designed to work with streaming data, C-SVR solves the QPP in an online

manner. Experiments indicate that C-SVR achieves better performance than several

online SVR algorithms, especially for datasets with incremental concept drift.

Besides, we proposed a novel evolving-fuzzy-neuro system for a data stream

not only with concept drift but with noisy data. In order to improve the perfor-

mance of evolving-fuzzy-neuro systems for streaming data regression, we propose

a novel evolving-fuzzy-neuro system, called the topology learning-based evolving-

fuzzy-system (TLFRNN). In TLFRNN, to decrease the sensitivity of prediction

accuracy to the system structure, first, we learn multiple fuzzy sets and introduce

a randomness layer to assign each fuzzy set a probability. Then, to make fuzzy

rules model the nonlinear relationship between inputs and outputs well, we propose

a new type of fuzzy rule, and further, a new type of inference is designed. Our

designed inference not only fits the nonlinear function well, it also considers the ran-

dom and fuzzy information simultaneously. Furthermore, the inference of TLFRNN
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is only influenced by one parameter. This parameter does not need to be learned

because it can be decided by a maximum likelihood process. To handle concept

drift, a topology network-based mechanism for concept drift is introduced. As the

topology network can accurately represent the real data distribution, TLFRNN can

adapt to new data distributions easily and rapidly without detecting concept drift.

The experiment results show that our proposed algorithm has better performance

in relation to streaming data regression.
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Chapter 5

Streaming Data Regression Under Multi-Outputs

Environments

5.1 Introduction

In previous chapters, we have all made a hypothesis about regression, that is,

only a single one output needs to be predicted. However, with the arrival of the big

data era, many applications are generating huge amounts of streaming data, and

thereby resulting in regression analysis becoming increasingly complex. Accordingly,

in more and more practical applications, multiple outputs instead of one output are

predicted, i.e., multi-output regression [120, 198, 172]. Compared with single-output

regression, multi-output regression is more complicated because these outputs maybe

have a structure to represent the relationship between outputs. Traditionally, based

on the structure of outputs, multi-output regression can be divided into global and

local methods [21]. Global methods use the idea of classical learning algorithms for

single output, i.e., to predict the multiple outputs as a whole [8]. In contrast, the

idea of local methods is simpler, i.e., to decompose the multi-outputs into multiple

single outputs, then use classical learning algorithms for single output to predict each

output. However, most existing methods are usually computationally and memory

demanding, and are unsuitable for dealing with streaming data.

This research aims to provide a system called MORStreaming to address the

multi-output regression problems in streaming data. The system uses an instance-

based model [4] for regression, which means MORStreaming can easily adapt to

a new concept by simply storing new instances, or throwing old instances away.
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However, since the training data is streaming data, MORStreaming needs to consider

three main challenges: 1) In contrast to the majority of the instance-based learning

systems [168], the instances can only be obtained in an online manner because the

streaming data arrive sequentially. 2) The structure of outputs is unknown, since

we cannot obtain all training data, and the structure of outputs also can change due

to concept drift. 3) How to use the instances and the structure of outputs to make a

prediction. In order to solve these challenges, in the learning stage, MORStreaming

learns rules to reflect the different structures of outputs, then classifying all obtained

instances into different rules according to the input of data. In the prediction stage,

finding rules which cover predicted data according to the input of predicted data,

then only the instances which under these rules can be used to make a prediction of

this predicted data.

5.2 MORStreaming: A Multi-Output Regression System for

Streaming Data

5.2.1 Preliminary

Multi-output regression is an important branch of structured output learning.

Let {(X1, Y1), (X2, Y2), . . . , (XN , YN)} be a training dataset whereXi is a d-dimensional

vector [Xi,1 . . . Xi,d]
T describing the inputs of the ith sample of the dataset, and Yi is

an m-dimensional vector [Yi,1 . . . Yi,m]T of the outputs. The problem of multi-output

regression is to learn a model f(X)→ Y that maps the input X to the output Y .

Throughout this section, we briefly introduce several state-of-the-art methods

for multi-output regression, categorized as local methods and global methods:

• Local methods are based on the idea of converting the multi-output regres-

sion problem into m single-output problems, then learning a model for each

output, and finally concatenating all m predictions. For example, Hoerl and
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Kennard [93] separate the multivariate output into multiple univariate outputs,

and then utilize the ridge regression to make a prediction. Next, inspired by

stacked generalization that was originally used to deal with multi-label clas-

sification, the multi-output regressor stacking method is proposed [77]. The

regressor chains method [172] is another important local methods based on the

idea of chaining single-output models. Zhang et al. [196] presented a multi-

output support vector regression. This type of regression develops a vector

virtualization method to build a multi-output model that takes into account

the relations between all the outputs.

• Global methods are mainly based on simultaneously predicting all the outputs

using a single model that can capture all internal relations between them. Izen-

man [100] proposed a reduced-rank regression, which adds a rank of constraint

on the estimated outputs. Struyf and Dzeroski [173] integrated a constraint-

based system into the process of learning multi-objective regression trees Tuia

et al. [177] also developed a multi-output support vector regression method

but by extending the single-output SVR to multi-outputs while maintaining

the advantages of a compact and sparse solution using a cost function.. Aho et

al. [5] presented a novel method for learning ensemble rules for multi-output

regression and treating multiple numeric outputs as a whole.

In summary, the above multi-output regression methods are usually memory de-

manding and computationally, i.e., instances need to be processed multiple times,

and hence are not suited for dealing with streaming data. In addition, these meth-

ods do not have a mechanism to handle the noisy and evolving characteristics of

streaming data.
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5.2.2 Multiple-output Regression System

In this section, we will introduce the details of our proposed multiple-output

regression system, MORStreaming.

MORStreaming

Figure 5.1 : Summary of the MORStreaming process.

The most important component in MORStreaming is to learn instances to create

topology networks, where learning instances are constrained by structured-outputs.

Assume the training data is streaming data with d-dimensional input attributes and

three-dimensional output attributes, {[X1(t), . . . , Xd(t)], [Y1(t), Y2(t), Y3(t)]}. Fig-

ure 5.1 illustrates the four-step process of MORStreaming. First, MORStreaming

assumes there is no relationship between two arbitrary output attributes, so three

topological networks are learnt, based on each output attribute, i.e., the first topol-
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ogy network is learnt by data {[X1(t), . . . , Xd(t)], [Y1(t)]}, the second topology net-

work is learned by data {[X1(t), . . . , Xd(t)], [Y2(t)]} and the third topology network

is learnt by data {[X1(t), . . . , Xd(t)], [Y3(t)]}. After, the first iteration of learning

instances is complete, and we learn rules to explore the structure between the output

attributes. If a rule is learned to represent the attribute Y2(t) has a relationship with

Y3(t), then a new topology network is built by combining instances in the second

topological network that were covered by R1, and instances in the third topologi-

cal network that were covered by R1. Finally, in the second iteration of learning

instances, the new topology network is updated by streaming data that was cov-

ered by R1, otherwise, streaming data is used to update the first, second, and third

topology network. Then, a new iteration of learning rules is explored to find new

relationships of output attributes. The following sections of this chapter introduce

learning in the structured-output and topology network.

Learning Structured-outputs

The most significant difference between single-output and multi-output regres-

sion is that multi-output regression needs to consider the structure, or correlation,

of outputs. Typically, multi-output predictors can be divided into local and global

strategy approaches. However, there are three challenges when using these ap-

proaches to handle streaming data: 1). Unlike batch-based methods, the size of

streaming data is larger than computer memory. Therefore, the structure of the

outputs cannot be obtained or estimated. 2). The structure of outputs is evolving

and can change when the distribution of data changes, i.e., concept drift. 3). The

structure of outputs is neither local nor global. For example, assuming there are

three output attributes {Y1(t), Y2(t), Y3(t)} of tth sample {X(t), Y (t)}, where the

attribute Y1 has a relationship with Y2 attribute, but the attribute Y3 is indepen-

dent of the Y1 and Y2 attribute, the structure of these three output attributes should
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be presented as {(Y1, Y2), (Y3)}.

To solve above three challenges, the modularity property of a rule set is used

to distinguish from the local and global methods. In our proposed MORStreaming

system, a rule R is an implication in the form A ⇒ C where the consequent C is

a kind of correlation of output attributes, and the antecedent A is a conjunction

of logical operators based on input attributes,. The logical operators A are called

literals (L) and have distinct forms depending on the input attribute. For example,

if inputs are real numbers, literals can have the forms L = (X1 ≤ v) or L = (X2 > v)

meaning the value of first input attribute X1 of tth sample {X(t), Y (t)} must be less

or equal to v, and second input attribute X2(t) must be greater than v, respectively.

When a rule R covers the tth sample {X(t), Y (t)}, the consequent C returns a

kind of correlation of output attributes, such as {(Y1, Y2), (Y3)}. R is said to cover

a sample {X(t), Y (t)} if, and only if, input X(t) satisfies all the literals in A. In

addition, a default rule D exists in MORStreaming, and with a set of n learned rules

R = {R1, . . . , Rn} to build a rule set (shown in Figure 5.2). Default rules assume

there are no relationships between any two output attributes.

Figure 5.2 : Rule sets.

To learn the rule set R from streaming data, new instances need to be online

learnt, and the rule set can be continuously grown. In MORStreaming, growing the

rule set means learning a new rule Rl A ⇒ C or a rule Rl is expanded by adding

a new literal to the antecedent Al. Of course, the literal only be added if there is
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strong evidence that the new literal is the best one among the set of candidates.

Hence, a merit function needs to be designed for determining which attribute and

split point were selected as a literal. In our proposed MORStreaming, in order to

evaluate the merit of splitting an input attribute Xj given the split-point v, the

mean-variance ratio (MVR) function. MVR is used and defined as:

MVR (Xj, v) =
1

m

m∑
o=1

V Ro (Xj, v) (5.1)

where V Ro(Xj, v) assesses the merit of splitting the input attribute Xj given the

split-point v concerning the output attribute Yo, and m is the number of output

attributes. The variance ratio (VR) is defined as

V Ro (Xj, v) = 1− 1

2

varo (IL)

varo(I)
− 1

2

varo (IR)

varo(I)
(5.2)

varo(I) =
1

m− 1

m−1∑
i=1

(ρi,o(I)− ρ̄o(I))2 (5.3)

ρi,o(I) =

∣∣∣∣cov (Yi(I), Yo(I))

σiσo

∣∣∣∣ (5.4)

where Yi(I) is the set of ith output attribute of instances that are covered by the

rule Ri since its last expansion. ρ̄o is the mean of the value ρo of output attribute

ρi,o. EL is the set of instances {Xi, Yi ∈ E : Xi ≤ v} and ER is the set of instances

{Xi, Yi ∈ E : Xi > v}.

However, considering the literal is chosen from streaming data, the Hoeffding

bound is used to guarantee the new literal is the best one in the candidate set, The

Hoeffding bound is defined as

ε =

√
P 2 ln(1/δ)

2n
(5.5)

where P represents a range, δ is probability and n is the number of instances.

This equality can be utilized to determine the minimum number n of instances

required to expand a rule Ri, i.e., if r > ε, where r = MVRBest−MVR2 ndBest means
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the score difference between two best potential literals, we can state that current

literal is the best literal with probability 1−δ, and no need to collect more instances.

Hence, the rule can then be expanded by this literal. Note that a candidate literal

must be the best split for each input attribute. In MORStreaming, score difference

r only take values in the range [0, 1] interval, so P is set to 1.

Although Hoeffding bound guarantee MVR will increase in the process of learning

rule set, it can not guarantee that VR is increased for all output attributes, and may

only be a subset of output attributes. For this reason, after selecting the best literal,

only output attributes whose VR is increased, are considered to have a correlation.

Let Cl be the current correlation of the multi-outputs according to a rule Rl, and

Ebest is the set of instances in the corresponding best branch. The new correlation

C ′l is defined as the set of output attributes that effectively increase in var after the

expansion of Rl:

C ′l =

{
Yo : Yo ∈ Cl ∧

varo (Ebest)

varo(E)
> 1

}
(5.6)

Besides, to keep saving information for the other output attributes, we added a

complementary rule Ro, containing the set of output attributes, that were pruned

after the split, into rule set. The antecedent of Ro is equal to the antecedent of Rl

before the split, and Ro will only be learned for the output attributes Yo ∈ C ′o, such

that

C ′o = Cl/C
′
l (5.7)

Based on the above introduction, the algorithm for learning a rule set in MORStr-

eaming is shown in Algorithm 5.1. In Algorithm 5.1, we can see the rule set R is

empty in the initial step and initializing the statistics LD for the default rule RD.

Then, when a new instance (X(t), Y (t)) is available, the statistics necessary to

expand the rule RL are updated. If r > ε, this rule is expanded. If the expansion

of this rule causes a specialization of the rule Rl on a subset of the current output
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attributes, a complementary rule Ro is also created and added to the rule set. If

no rule covers X(t), the statistics of the default rule LD are updated, and a new

default rule R′d is created if the default rule Rd is expanded.

Algorithm 5.1. Outputs-structure learning

Input: Sequence {X(t), Y (t)}, R← ∅, D ← 0

Output: Rule set R = R1, . . . , Rm

1: for each {X(t), Y (t)} do

2: for each Rl ∈ S(X(t)) do

3: Rc ← Rl

4: update Ll

5: expanded ← expend(Rl)

6: if expanded = TRUE then.

7: Compute C ′o as in Eq. (5.6).

8: Co ← C ′o

9: R← R ∪ {Rc}

10: end if

11: end for

12: if S(X(t)) = ∅ then

13: update LD

14: expanded ← expend(D)

15: if expanded = TRUE then.

16: R← R ∪D

17: D ← 0

18: end if

19: end if

20: end for
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Learning Instances

As an instance-based learning system, how to learn the instances is critical, be-

cause the performance significantly dependents on the quality of instances. Instances

with a better quality mean the distribution of the instances is closer to the distribu-

tion of the original dataset. In this research, we used our proposed simplified version

Gm-SOINN (see Algorithm 4.2) to obtain instances.

Instanced-based Prediction Model

When a sample
{
X ∈ Rd

}
has to be predicted, rules which cover it need to be

found at first, then it is necessary to obtain instances that follow these rules to make

a prediction. Assume the rule Rl and its complementary rule Ro cover this sample.

Hence, instances Fl =
{
X ∈ Rd, Y ∈ Rl

}
and instances Fo =

{
X ∈ Rd, Y ∈ Ro

}
were obtained respectively, according to rules Rl and Ro, where l ≥ 1 and o ≥ 1.

Based on these instances, we propose a nonparametric regression function to make

the predication of this sample, but our proposed model for multi-output regression.

For the sake of notational simplicity, we will assume just two outputs, denoted as

Y1, Y2 ∈ R. It is assumed the two output attributes Y1, Y2 are correlated, so our

proposed multi-output nonparametric regression function [54, 85] directly uses the

co-outputs in the expression for the estimator as described below:

Ŷ1(X̂) =

∑n
i=1

[
KY1
H1

(
Xi − X̂

)
Yi +KYY Y2

H2

(
Xi − X̂

)
Y2

]
∑n

i=1

[
KY1
H1

(
Xi − X̂

)
+KY1Y2

H2

(
Xi − X̂

)] (5.8)

where kY1 and kY2 are the kernels that reflect the influence in the predicted output

of the Y1 and Y2 of instance Fi, respectively.

When one output attribute Ŷi is covered by multiple rules, the final values of Ŷi

is calculated by:

Ŷ ∗1 (X̂) =

∑N
k=1 IRk

Ŷ1(X̂)∑N
k=1 IRk

(5.9)
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where N is the number of rules which cover the input data X̂, and IRk
is the number

of instances under the rule Rk.

Learning Noise and Concept Drift

Learning noise is very important in streaming data mining because training with

noise may impact prediction accuracy. In our system, noise detection is from a local

viewpoint because it is performed at each rule. Under each rule, according to the

objective of topology learning, a more accurate topology network (i.e., closer to the

true data distribution) will be learned simultaneously, as more instances are learned,

and thereby resulting in fewer instances connected to this noise. Hence, it meets the

deleting condition more readily (refer to details from line 13 to line 15 of Algorithm

4.2).

Learning concept drift is also an important concept in data stream mining. In

our researched problem, concept drift can be seen from a global and local view-

point. From a global viewpoint, there is a new structure of outputs when concept

drift occurs. For adapting to this concept drift, a new rule that represents this new

structure of outputs will be learnt according to Algorithm 5.1. Furthermore, abun-

dant rules (i.e., conflict with new rules) are deleted to save memory and improve

prediction accuracy. Besides, in our proposed Algorithm 4.2, a variable e can be

used to record the number of instances to be selected as winners. A rule is also

identified as an abundant rule when, if the variable e of all instances is not increased

after N iterations. From a local viewpoint (i.e., at each rule), although there is

no new structure of concept drift, the relationship between the input and output

changed under one rule. To adapt to this concept drift, the state of instances under

this rule will be updated according to Algorithm 5.1, and thereby the topological

structure will finally adapt to new data distribution.
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5.3 Experiments

In this section, we illustrate the advantages of our proposed MORStreaming

system by comparing it with other multi-output methods. The evaluations involve

different scenarios using both artificial and real-world datasets. All experiments

are conducted in Python 3.5 version on Windows 7, running on a PC with system

configuration Intel Core i5 processor (2.40 GHz) with 8-GB RAM.

5.3.1 Evaluation Strategy

To evaluate the performance of each multi-ouput methods, we employed a pre-

quential strategy which introduced in [71]. In this strategy, a sample is first evaluated

by a learning model, and then used to update the learning model. For considering

all the metrics, we calculated their mean value for all data streams. In addition,

as suggested by [150], a windowed measurement method also be considered, and a

non-overlapping sliding window of size 200 is also used. Aiming at reducing the

effects of randomness in our evaluation, all multi-output regression methods were

performed at least thirty times for each dataset, and the performance was taken as

the average between the repetitions.

In this sense, we validate the performance of algorithms in terms of three aspects,

i.e., predictive performance, model size, and running time. To validate predictive

performance, the average root means square error (ARMSE) was calculated, consid-

ering both an overall measurement using all the arrived samples and errors in the

sliding window. The ARMSE is defined as:

ARMSE =
1

d

d∑
t=1

√∑N
i=1 (yti − ŷti)

2

N
(5.10)

In addition, the running time (s) spent by each system and the total model size

(MB) consumed by the learning models were also recorded. In all cases, metrics

were recorded in intervals of 200 samples.
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5.3.2 Artificial Datasets

MORStreaming has two defining characteristics. First, it uses a different method

to the traditional local or global method. Second, it uses a topology learning method

to learn instances. Hence, to illustrate the advantages of using a different method,

two extensions of MORStreaming were presented following the idea of classical local

strategy (MORStreaming-L) and global strategy (MORStreaming-G). In our local

strategy, a rule set is learned independently for each output, and the final prediction

results is calculated by concatenating individual prediction results of each rule. In

contrast, it is choosing a literal in global strategy based on a compromise on reducing

the MVR with respect to all output attributes. Besides, to illustrate the advantages

of the topology learning method, an extension of MORStreaming is presented, using

a KNN method to learn instances (MORStreaming-K).

Next, to demonstrate the advantages of MORStreaming, we experimented with

four artificial datasets: 2Dplanes, FriedD, FriedAsyncD, and MV. The datasets are

designed by Duarte and Gama [46], and are used in the researches of multi-output

regression for data streams. As for concept drift, FriedD and FriedAsyncD datasets

contain one concept drift. To be more specific, the concept drifts in FriedD dataset

occur simultaneously for all the output variables in the middle location of the data

stream, while the concept drifts in FriedAsyncD occur asynchronously. Lastly, the

design of MV dataset was inspired by the homonym dataset [46]. Details of the four

artificial datasets are described in Table 5.1.

As for parameters, MORStreaming has two main groups of parameters: expan-

sion rule, and learning instances. In order to expand the rule set, the parameters

include the probability δ, the minimum number n of samples which required to ex-

pand a rule Ri, and the Hoeffding bound ε. However, even though the Hoeffding

bound ε will decreases considerably with more instances obtained, it is not effi-
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Table 5.1 : Artificial datasets

Dataset SAMPLE SIZE Inputs Outputs

2Dplanes 256000 20 8

FriedD 256000 10 4

FriedAsyncD 256000 10 4

MV 256000 20 9

cient to select literals in practice if only dependent on Hoeffding bound. Hence, a

threshold τ is defined in our proposed MORStreaming system, and if ε < τ , the

literal with the higher MVR is chosen, and the rule is expanded considering the

literal. In order to learn instances, the parameters include parameter λ, which is

used to define the frequency of neuron removal, and parameter agemax is defined as

the lifetime of each edge. In our proposed MORStreaming system, the parameter λ

equals the parameter n in rule expansion. Moreover, due to the KNN algorithm in

MORStreaming-K, an important parameter k, representing the number of nearest

neighbors, needs to be set. Based on our designed dataset, the parameters refer

to the rule expansion were set to n = 200 (i.e., equal to the size of the window),

τ = 0.05, δ = 0.0000001, and parameters refer to the expansion rule were set to

λ = n = 200, and agemax = 50.

The comparative results are shown in Table 5.2, Table 5.3, and Table 5.4, where

“*” represents MORStreaming for convenience. In Table 5.2, MORStreaming-L

achieved slightly lower ARMSE in artificial datasets than other methods. Table 5.3

shows that MORStreaming-G needed fewer model sizes than other methods. In ad-

dition, MORStreaming-K50 required less running time than other artificial dataset’s

methods (Table 5.4). However, from these three perspectives, MORStreaming out-

performed the other methods. The reasons for the higher performance include:
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Table 5.2 : Comparative results of ARSME

2Dplanes FiredD FriedAsyncD MV

*−L 2.736 8.643 6.976 24.112

* 2.741 8.709 7.102 24.539

*−G 3.477 10.977 9.234 35.343

*−K50 2.845 9.236 8.472 33.684

*−K200 2.739 8.716 7.122 24.342

Table 5.3 : Comparative results of Running time

2Dplanes FiredD FriedAsyncD MV

*−L 89.676 401.166 403.392 689.482

* 97.345 412.008 417.396 709.459

*−G 154.023 460.349 506.423 820.943

*−K50 92.609 406.755 411.387 701.307

*−K200 129.347 434.831 465.391 780.365

1) Compared with MORStreaming-L, although MORStreaming produces a slightly

higher error and higher running time than MROStraming-L, MORStreaming needs

fewer model sizes than MORStreaming-L; and 2) Compared with MORStreaming-

G, MORStreaming has higher predictive accuracy and needs less running time. 3)

Compared with MORStreaming-K, the predictive performance of MORStreaming

is more stable because MORStreaming-K is dependent on the K value. If the K

value becomes large, ARMSE becomes low, but needs more model sizes and needs

more running time than MORstreaming. In summary, MORStreaming outperforms

MORStreaming-L, and since it can be used to learn a rule set, our proposed method
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Table 5.4 : Comparative results of Model size

2Dplanes FiredD FriedAsyncD MV

*−L 28.290 1203.685 1139.272 1648.291

* 15.532 670.717 606.633 805.970

*−G 10.652 500.134 489.306 576.004

*−K50 12.598 579.060 553.601 734.702

*−K200 17.378 770.631 705.491 979.109

has an advantage over MORStreaming-G. When compared with MORStreaming-

K, the higher performance of MORStreaming illustrates the advantage of using a

topology learning method to learn instances.

In addition, not only comparing the ARMSE for the whole dataset, the evolution

of the ARMSE through time spent was also considered. The line plots are presented

for the evaluated datasets, 2Dplanes, FriedD, FiedAsyncD, and MV in Figure 5.3.

From these results, different patterns emerge depending on the considered dataset,

but considering each dataset itself; all methods presented the same behavior, based

on the AMRSE. Since concept drift is present in datasets FriedD and FriedAsyncD,

the ARMSE presented a sudden increase in its error, but quickly reaching the con-

vergence. This phenomenon illustrates the efficiency of our proposed mechanism,

which used to learn concept drift.

Next, the evolution of the running time was also considered in each dataset

(Figure 5.4). From Figure 5.4, we can see similar behaviors, i.e., an approximately

linear relationship between the times spent of each multi-output regression method

emerged for all datasets. These experimental results illustrate each system meets the

requirement of designing a system for streaming data, i.e., time complexity can not

be too large. Besides, the experimental results show the number of saved instances
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(a) 2DPLANES (b) FRIEDD

(c) FRIEDASYNCD (d) MV

Figure 5.3 : ARMSE based on different datasets.

will impact the time which is spent to learn rules and make predictions.

Finally, we compare the evolution of the model size through time. The compar-

ative results are shown in Figure 5.5. Similar to the experimental results of running

time, the relationship between the amounts of memory spent by different systems

through time was linear for nearly all the datasets.

5.3.3 Real-world Datasets

This section presents the experimental results for some of the real-world datasets.

The comparison experiments were carried out with rule-based systems, decision tree-

based systems, and our proposed MORStreaming system. The rule-based systems
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(a) 2DPLANES (b) FRIEDD

(c) FRIEDASYNCD (d) MV

Figure 5.4 : Running time based on different datasets.

are MTR-HTMean [46], and MTR-HTPerceptron [46]. The decision tree-based systems

include two types, standard iSOUP-Tree [150], and stacked iSOUP-Tree [150]. Table

5.5 summarizes the main characteristics of each multi-output regression method,

including their acronyms, which will be used from here onward.

Next, to better compare the performance, some parameters are fixed for each

method following typical configurations of the literature [194]. The attempts of

splits were performed once at intervals of 200 samples. The probability δ for the

calculation of Hoeffding bound was set to 0.0000001, and the tie-break parameter τ

was set to 0.05. In all datasets, we want to provide a ‘warm’ start for the evaluations,

so employee 200 samples to initiate the tree predictors, As for the perceptron weights
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(a) 2DPLANES (b) FRIEDD

(c) FRIEDASYNCD (d) MV

Figure 5.5 : Model size based on different datasets.

in AMRules and iSOUP-Tree, they were set to uniform random values in the [−1, 1]

interval, and new leaf nodes can inherit their ancestors’ weights. The evaluation

strategy is the same as the strategy introduced in section IV.A. The comparative

experimental results still include predictive performance, running time and model

size.

As for real-world datasets, a summary of each dataset used in our evaluations is

described in Table 5.6. Their detailed descriptions are as follows:

1) Bicycles: The dataset has already been used in two researches for the multi-

output regression problem of data streams [46]. This dataset describes the

count of rental bikes in an hour, during the period between 2011 and 2012 in
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Table 5.5 : Description of the compared methods

Acronym Description

MTR-HTMean

The variant of MTR-HT which calculates

the mean of the outputs at the leaf nodes

MTR-HTPerceptron

The variant of MTR-HT which learns

a perceptron model of outputs at the leaf nodes

iSOUP-Tree
The variant of Hoeffding-Tree method which dynamically

selects rules between the MTR-HTMean and MTR-HTPerceptron

iSOUP-HT
The variant of Hoeffding-Tree method which always use

the stacked regressors for making predictions

the “Capital” bikeshare system. The data also contains seasonal and weather

information for each rent cases. The task is to predict the count of casual

(non-registered), registered and total users.

2) Eunite03: The dataset was firstly reported in the competition of the 3rd

European Symposium on Intelligent Technologies, Hybrid Systems and their

implementation on Smart Adaptive Systems (2003), and then employed into

researches of multi-output regression for data streams [46]. The dataset con-

cerns the continuous production process of manufactured glasses. The input

features of each observation include parameters that were employed in pro-

ducing the glass products, while the outputs refer to the glass quality.

3) RF1 and RF2: These two datasets were obtained from the US National

Weather and firstly reported by [172], Then, they were employed into re-

searches of multi-output regression for data streams [46]. The “RF1” and

“RF2” dataset all describe the river network flows considering a time window

of 48 hours in the future, at specific locations. However, the first dataset, RF1,



172

Table 5.6 : Real-world datasets

Dataset SAMPLE SIZE Inputs Outputs

Bicycles 17379 22 3

Eunite03 8064 29 5

RF1 9005 64 8

RF2 7679 576 8

SCM1d 9803 280 16

SCM20d 8966 61 16

uses only the sensor data, whereas the second dataset, RF2, adds a precip-

itation forecast information (expected rainfall) for each of the measurement

sites.

4) SCM1d and SCM20d: These two datasets were extracted from the Trading

Agent Competition in the Supply Chain Management tournament in 2010.

And firstly proposed by [172]. Then, these two datasets were applied into

researches of multi-output regression for data streams [46]. Each observation

corresponds to a day in the tournament (220 days for each tournament and

18 games during the whole tournament). The input features correspond to

the prices considering a specific day in the tournament. Each dataset has 16

outputs, which correspond to the next day mean price (SCM1d) or mean price

for 20-days in the future (SCM20d), regarding each product in the simulation.

First, with respect to predictive performance, Table 5.7 summarizes the ARMSE

that obtained by each multi-output regression methods. Besides, the smallest ARMSE

per dataset is highlighted in bold. As depicted in the table 5.7, MORStreaming was

the most accurate system because it obtained the best average rank (2). The iSOUP-
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Table 5.7 : Comparison results of ARMSE on real-world datasets

MTR-HTMean MTR-HTPerceptron iSOUP-Tree iSOUP-HT MORStreaming

Bicycles 86.735 (1) 141.685 (5) 101.392 (3) 132.971 (4) 87.976 (2)

Eunite03 25.869 (3) 26.891 (5) 25.960 (4) 22.322 (1) 23.864 (2)

RF1 23.156 (4) 28.034 (5) 13.023 (2) 20.042 (3) 11.035 (1)

RF2 26.877 (2) 60.972 (5) 23.515 (1) 57.679 (4) 35.959 (3)

SCM1d 245.912 (2) 354.702 (5) 215.423 (1) 317.705 (4) 279.626 (3)

SCM20d 246.806 (4) 198.315 (5) 147.391 (2) 170.410 (3) 139.585 (1)

AV E Rank 2.67 5 2.17 3.17 2

HT, which used the stacked perceptron predictors, reached the smallest ARMSE in

only one dataset (Eunite03). MTR-HTMean also reached the smallest ARMSE in only

one dataset (Bicycles). iSOUP-Tree was the second-best performer which reached

the second-best average rank (2.17). MTR-HTPerceptron was the worst predictor.

Table 5.8 : Comparison results of running time on real-world datasets

MTR-HTMean MTR-HTPerceptron iSOUP-Tree iSOUP-HT MORStreaming

Bicycles 7.925 (1) 14.685 (5) 14.166 (3) 14.671 (4) 10.679 (2)

Eunite03 11.650 (1) 15.303 (3) 16.622 (4) 17.656 (5) 12.646 (2)

RF1 175.856 (2) 220.333 (5) 191.379 (3) 203.267 (4) 173.591 (1)

RF2 150.467 (1) 171.913 (3) 187.870 (5) 186.942 (4) 159.159 (2)

SCM1d 809.125 (1) 816.528 (4) 814.768 (3) 850.753 (5) 811.162 (2)

SCM20d 100.944 (1) 122.349 (5) 115.231 (4) 112.749 (3) 109.138 (2)

AV E Rank 1.17 4.17 3.67 4.17 1.83

With respect to the running times for the compared methods, the simplest alter-

native of the Hoeffding tree-based method, MTR-HTMean, is the fastest predictor in

all datasets, as shown in Table 5.8. Again, the shortest running times per dataset are
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Table 5.9 : Comparison results of model size on real-world datasets

MTR-HTMean MTR-HTPerceptron iSOUP-Tree iSOUP-HT MORStreaming

Bicycles 4.467 (2) 4.561 (3) 4.631 (4) 5.042 (5) 2.566 (1)

Eunite03 8.792 (4) 8.695 (3) 8.021 (2) 9.477 (5) 7.064 (1)

RF1 11.562 (4) 11.434 (2) 11.523 (3) 18.042 (5) 11.035 (1)

RF2 37.277 (2) 37.697 (3) 38.711 (4) 39.767 (5) 33.959 (1)

SCM1d 665.412 (3) 667.025 (4) 664.232 (2) 707.033 (5) 649.162 (1)

SCM20d 275.068 (2) 278.631 (3) 283.915 (4) 307.045 (5) 273.188 (1)

AV E Rank 2.83 3 3.17 5 1

in bold. Our proposed MORStreaming needs more running time than MTR-HTMean,

but a faster running time than MTR-HTPerceptron (the reason is it needs more time

to build perception models), so it achieved the second smallest average rank in terms

of running time. In general, iSOUP-HT performed as fast as iSOUP-Tree for the

majority of the datasets.

Lastly, the model size (MB) of each method are summarized in Table 5.9. From

Table 5.9, we can see our proposed MORStreaming system spent fewer memory

resources than other competitors. In contrast, iSOUP-HT spent more memory re-

sources than the other competitor’s strategies. Excluding our proposed MORStream-

ing and iSOUP-HT, the remaining datasets compared methods only differed in small

amounts, regardless of the compared dataset.

5.4 Summary

To solve the multi-output regression problem of streaming data, we propose a

new multi-output regression system, called MORStreaming. In MORStreaming, the

characteristics of streaming data such as sequential, infinite, noisy, and evolving

factors are considered at the same time. The establishment of MORStreaming
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system faces two challenges. The first challenge is there is an existing structure

in outputs due to the number of outputs greater than one, and the structured-

output can change due to concept drift. The second challenge is the need for online

learning instances.

Based on these two considerations, we first proposed a structured-outputs learn-

ing algorithm to learn specific rules to represent the structure of the outputs. The

algorithm is built on adaptive rules, so the rules not only can be learned in an online

manner but can also fit the drift of the structured-outputs. We then propose an on-

line instances learning algorithm. Our proposed online instances learning algorithm

is able to sequentially handle input data by following the rules that we learned, and

saving a topology network, which significantly smaller than the size of the original

streaming data. As for evolving and noisy characteristics, a topology network-based

detection mechanism is introduced to adapt instances to new data distribution and

to delete noisy instances. Experimental results show that our proposed algorithm

demonstrates improved generation ability and can adapt well to drift.



176

Chapter 6

Conclusion and Future Study

6.1 Conclusions

The development of the Internet of Things and Big data generates an increas-

ing demand for real-time prediction in modern life. Hence, as the main type of

real-time prediction problem, regression is getting more and more attention. Con-

ventional batch-based regression algorithms are built on a static assumption of in-

dependent and identically distributed (i.i.d) data and therefore are not suitable

to make a real-time prediction for streaming data. Many subsequent studies have

proved that streaming regression algorithms are effective approaches to solve the

regression problem of streaming data. In streaming algorithms, data are processed

sequentially as well and can be examined in only a few passes (typically just one). In

addition, streaming algorithms use limited memory and limited processing time per

item. Hence, the streaming algorithm represents a dynamic technique of supervised

learning and unsupervised learning that can be applied when training data becomes

available gradually over time, or its size is out of system memory limits. The aim of

streaming algorithms is to adapt the learning model to new data without forgetting

its existing knowledge, so it does not retrain the model. However, recent research

of streaming regression algorithms still poses several unsolved and challenging prob-

lems in this area, i.e., 1) most of the existing streaming regression algorithms only

can handle precise data, but streaming data in many real-world applications with

a lot of noisy data. The reason for that is the environment of generating stream-

ing data is a noisy environment. The noisy data impacts the learning process of
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many streaming regression algorithms, and thereby resulting in the performance

of many streaming regression algorithms decrease dramatically; 2) more and more

studies on streaming data show that the data distribution is nonstationary, it can

change or evolve. Concept drift refers to this unpredictable change of data distri-

bution in streaming data. The performance of a regression algorithm may become

worse when concept drift occurs. Hence, concept drift detection and adaptation

techniques are effective approaches to solve the problem of distribution changes; 3)

in many real-world applications, the regression problem of streaming data becomes

more complicated. Two or more outputs instead of single one output need to be

predicted, i.e., multi-output regression. However, the multi-output regression only

has been discussed extensively for offline, static settings. Few works address how to

solve this problem for streaming data.

To solve the above-mentioned challenges, this thesis proposes five concrete algo-

rithms. The findings of this study are summarized as follows:

i. Proposed an online robust support vector regression for noisy streaming data

regression. Online robust support vector regression (ORSVR) is an exact in-

cremental regression algorithm for handling data streams that transform the

classical v-SVR into a dual regression model. ORSVR captures the charac-

teristics of data distributions very well, which makes ORSVR robust to noise.

Additionally, ORSVR determines the upper and lower-bound functions by

breaking the large QPP associated with SVR into two smaller QPPs and solv-

ing each simultaneously. The KKT conditions are met for each new sample

and maintained for existing samples, but each bound of the divided QPP is

simpler than in classical v-SVR, which results in faster incremental learning

speed. However, the ORSVR requires an additional constraint to be compat-

ible with incremental learning. Therefore, the ORSVR approach incorporates

several new methods that constitute the incremental learning algorithm for
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ORSVR. One method introduces a procedure for preparing the initial solution

prior to incremental learning. The other is an adjustment step to ensure all

the weights of the support vectors are greater than 0. The experimental results

demonstrate that ORSVR successfully handles noisy data and is faster than

other incremental SVR algorithms.

ii. Proposed a Gaussian membership-based self-organizing incremental neural

network (Gm-SOINN) to online filter noisy data. Our proposed Gm-SOINN

method can learn a topological structure in an online manner, from an un-

labeled dataset. Due to introducing fuzzy logic, unlike other SOINN-based

methods, Gm-SOINN uses a Gaussian membership to indicate the degree to

which nodes are identified as a winner (closest node). In addition, based on

the Gaussian membership, some theoretical and technical innovations such as

a recursive method of updating nodes and a non-parameter density estimation

method, which is called eGMM were proposed. When comparing with other

SOINN-based methods, these innovations make Gm-SOINN does not have the

stability-plasticity dilemma and need fewer user-decided parameters. When

comparing with the fuzzy logic system, Gm-SOINN is not only robust to noise

but also obtains better performance in a stationary and nonstationary envi-

ronment. Besides, although fuzzy logic is introduced, Gm-SOINN does not

require to design a method to learn the fuzzy rules. More important, topol-

ogy learning makes Gm-SOINN can handle some problems, such as Vector

Quantization, that cannot directly be handled in fuzzy learning systems.

iii. Proposed a continuous support vector regression for evolving streaming data.

Continuous support vector regression (C-SVR) is based on a continuous learn-

ing strategy that learns a series of regression model in a series of time win-

dows. However, only one regression model for making a prediction is saved in
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the computer’s memory. A new regression model is learned when each new

time window arrives, and the last regression model that was learned in the

last time window is discarded. A unique difference with our approach is an

added similarity term to the Quadratic programming problem that makes the

new regression model dependents on the last regression model by transferring

some learned knowledge between time windows. The amount of transferred

learned knowledge is determined by the extent of the drift as measured by the

competency-based method. Like other online or incremental support vector

regression designed to work with streaming data, C-SVR solves the quadratic

programming problem in an online manner but achieves better performance

than other streaming regression algorithms.

iv. Proposed a novel evolving-fuzzy-neuro system, called the topology learning-

based fuzzy random neural network, for streaming data not only with concept

drift but with noisy data. In the topology learning-based fuzzy random neural

network (TLRFNN), to decrease the sensitivity of prediction accuracy to the

system structure, first, we learn multiple fuzzy sets and introduce a random-

ness layer to assign each fuzzy set a probability. Then, to make fuzzy rules

model the nonlinear relationship between inputs and outputs well, we propose

a new type of fuzzy rule, and further, a new type of inference is designed. Our

designed inference not only fits the nonlinear function well, it also considers

the random and fuzzy information simultaneously. Furthermore, the infer-

ence of TLRFNN is only influenced by one parameter. This parameter does

not need to be learned because it can be decided by a maximum likelihood

process. To handle concept drifts, a topology network-based mechanism for

concept drift is introduced. As the topology network can accurately represent

the real data distribution, TLRFNN can adapt to new data distributions eas-

ily and rapidly without detecting concept drift. The experiment results show
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that our proposed algorithm has better performance in relation to streaming

data regression.

v. Proposed an online multi-output regression system, called MORStreaming. To

solve the characteristics of streaming data such as sequential, infinite, noisy,

and evolving factors at the same time. The establishment of the MORStream-

ing system faces two challenges. The first challenge is there is an existing

structure in outputs due to the number of outputs greater than one, and the

structured-output can change due to concept drift. The second challenge is

the need for online learning instances. Based on these two considerations, we

first proposed a structured-outputs learning algorithm to learn specific rules

to represent the structure of the outputs. The algorithm is built on adaptive

rules, so the rules not only can be learned in an online manner but can also

fit the drift of the structured-outputs. We then propose an online instances

learning algorithm. Our proposed online instances learning algorithm is able

to sequentially handle input data by following the rules that we learned, and

saving a topology network, which significantly smaller than the size of the

original streaming data. As for evolving and noisy characteristics, a topology

network-based detection mechanism is introduced to adapt instances to new

data distribution and to delete noisy instances.

6.2 Future Study

Although we proposed some streaming regression algorithms to solve several

unsolved and challenging problems in this area, these algorithms still have some

drawbacks. Hence, in a future study, we need to solve the following drawbacks:

i. Theoretically, a decremental learning paradigm for ORSVR could be designed

in a similar manner. Further, both the incremental and decremental versions
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of ORSVR may benefit from leave-one-out cross-validation and/or learning

with limited memory in terms of efficiency. However, ORSVR still needs some

improvement for use with real-world noisy data streams. From our analysis,

we find too many samples were saved into computer memory to slow down

the learning speed. Hence, we need to design a method to filter unimportance

samples.

ii. In Gm-SOINN, two parameters must be determined by the user, and the two

parameters will influence the result of Gm-SOINN. However, it is difficult

to automatically determine such two parameters. The reason is the optimal

choice of such parameters is different for different tasks, and thereby, it is

difficult to give a standard of such parameters for every task. Although these

parameters are not so sensitive, we remain hopeful that some methods are

useful to automatically deduce the optimal choice of such parameters for the

task. Such problems will be addressed in subsequent studies.

iii. In our proposed C-SVR, a fixed-size time window is used to detect concept

drift. However, in future studies, we intend to look beyond fixed-size time

windows with a similar TAI-SVR method that involves varying the size of the

time windows to further improve the accuracy of C-SVR. The reason for this

is the interval between the occurrences of two concept drifts is not necessarily

fixed, so using time windows of varying sizes is helpful to determine the degree

of concept drifts more accurately.

iv. In our proposed evolving-fuzzy-neuro system, the neurons in the fuzzy set layer

can be learned by our proposed clustering algorithm. Although our proposed

clustering algorithm robust to noise and can accurately represent the real data

distribution, a mechanism for over-fitting prevention should be introduced to

prevent saving too many neurons.
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v. In our proposed MORStreaming, to improve the prediction accuracy of our

proposed MORStreaming, we consider the concept drift problem. However,

compared with the detection of concept drift in streaming data with a single

output: 1) the training data becomes more complex when data with multiple-

outputs. This complexity includes the volume of data becoming larger, and

a change in the number and scale of each feature of the data stream; 2) the

underlying distribution of the streaming data with multiple-output becomes

more complex. Specifically, all outputs may have the same underlying dis-

tribution, or each output has a unique underlying distribution; and 3) the

correlation of outputs becomes more complex. That is, when streaming data a

single output, we do not need to consider if the output has a correlation with

other outputs. However, in multiple-output streaming data, a output may be

correlated with other outputs.

Furthermore, this thesis identifies the following directions as future work:

i. streaming data regression for scarce data. Scare data may manifest in different

ways such as imbalanced data, insufficient data, and streaming data with

uneven time stamps.

ii. regression for streaming data with temporal dependency. The most important

challenge of this problem is drift adaptation with temporal dependency because

it needs solid theoretical guarantees other than the learning theory.

iii. regression for multiple data streams. Real-world applications such as online

decision-making system often require a method for handling multiple streams

at the same time. Therefore, a drift detection and adaptation framework for

multiple data streams is needed
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Appendix

A. 1

Assuming that N samples have already been handled, when a new sample Xc

arrives, Qij is updated as:

Q′ij =
1

(N + 1)
K (Xi, Xj) (6.1)

Then, the margin functions can be updated as:


h′1s1
...

h′1ss

 =


1 Q′s1s1 . . . Q′s1ss
...

...
. . .

...

i Q′sss1 . . . Q′ssss





B1

α11

...

α1s


(6.2)

Following ORSVR, when a new sample Xc arrives, the weight α1i is updated.

We assume the updated weight to be α′1i, so if the weight α1c is set to 0 according

to (11), we have
N∑
i=1

α′1i = C1v1(N + 1) (6.3)

Therefore, the sum of the increment of every weight equals C1v1, and we have

[1, . . . , 1]


∆α1i

...

∆α1s

 = C1v1 (6.4)
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According to the KKT conditions of the supporting sets, we have

C1v1(N + 1)

0

...

0


=



0 1 . . . 1

1 Q′s1s1 . . . Q′s1ss
...

...
. . .

...

1 Q′sss1 . . . Q′ssss





B′1

α′11
...

α′1s


(6.5)

Based on (49) and (51), we have

C1v1

−h′1s1
...

−h′1ss


=



0 1 . . . 1

1 Q′s1s1 . . . Q′s1ss
...

...
. . .

...

1 Q′sss1 . . . Q′ssss





∆B1

∆α11

...

∆α1s


(6.6)

So 

∆B1

∆α11

...

∆α1s


=



0 1 . . . 1

1 Q′s1s1 . . . Q′s1ss
...

...
. . .

...

1 Q′sss1 . . . Q′ssss



−1 

C1v1

−h′1s1
...

−h′1ss


(6.7)

Combining (52) and (54), we have

B′1

α′1s1
...

α′1ss


=



B1

α1s1

...

α1ss


+



∆B1

∆α11

...

∆α1s


=



B1

α1s1

...

α1ss


+



0 1 . . . 1

1 Q′s1s1 · · · Q′s1ss
...

...
. . .

...

1 Q′sss1 · · · Q′ssss



−1

︸ ︷︷ ︸
R



C1v1
...

−h′

−h′


(6.8)

Thus, Eq. (3.23) is proved.
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[5] T. Aho, B. Ženko, and S. Džeroski, “Rule ensembles for multi-target regres-

sion,” in 2009 Ninth IEEE International Conference on Data Mining, 2009,

pp. 21–30.

[6] E. Almeida, C. Ferreira, and J. Gama, “Adaptive model rules from data

streams,” in Machine Learning and Knowledge Discovery in Databases,

H. Blockeel, K. Kersting, S. Nijssen, and F. Železný, Eds. Berlin, Heidel-
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