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ABSTRACT

Computer Vision-assisted Battery-free RFID Systems for Object
Recognition, Localization and Orientation

by
Zhongqin Wang

Supervisor: Dr. Min Xu

Battery-free radio frequency identification (RFID) is a promising technique in
Internet of Things (IoT) applications that use wireless signals to identify a physical
object from its attached RFID tag. Compared to the existing barcode identification
systems, RFID can still work in the non-line-of-sight (NLOS) scenarios that some
obstructions block the identifier. Recently, many researchers start regarding each
RFID tag as a battery-free sensor, whose indicator is the backscatter signal finger-
print reported by an RFID reader. Since the sensor could sense the change in the
position and orientation of an RFID tag relative to a reader antenna as well as sur-
roundings, a variety of battery-free RFID sensing systems are proposed for object
localization, direction tracking, material recognition, human breathing/heartbeat
rate assessment, liquid leakage detection, etc. However, some technical challenges
still remain to be addressed in these purely RFID-based systems. This thesis intro-
duces computer vision (CV) techniques into RFID systems to minimize the impact
of RF phase periodicity and multipath interference. In the thesis, three categories
of CV-assisted battery-free RFID systems for object recognition, localization and
orientation are designed, and the main contributions include:

1) This thesis presents RF-Focus, a CV-assisted system that recognizes moving
RFID-tagged objects within the region of interest and tracks their trajectories in
multipath environments. To achieve RF-Focus, novel RSSI/RF phase-distance mod-
els with additional multipath terms compared to traditional models are proposed to
characterize the impact of multipath interference, and thereby a dual-reader-antenna
solution is designed to deal with it. Moreover, the multipath terms in RSSI and RF
phase can be leveraged to clean the phase shift caused by frequency-dependent RFID
hardware characteristics in RF phase. After that, an innovative fusion algorithm is
designed to match position proposals outputted by a 2D camera and the cleaned
RF phase for object recognition. In the experiments, RF-Focus achieves 91.67%
ROI object recognition in multipath environments when simultaneously tracking
five moving objects.

2) This thesis proposes RF-MVO, a CV-assisted system that locates stationary
RFID tags in 3D space without driving a platform carrying reader antennas along
a predefined trajectory or pre-deployed track. To achieve RF-MVO, a 2D camera
is affixed to reader antennas. A fusion model is designed to fuse camera trajectory
in the camera view with depth-enabled RF phase to achieve real-world trajectory
transformation and tag DOA estimation. On this basis, a novel 3D localization is



proposed, which could avoid consuming huge computations to search for all possible
regions. In addition, a joint optimization algorithm is designed to accelerate RF-
MVO and improve its estimation accuracy. Finally, this thesis introduces horizontal
dilution of precision widely used in satellite positioning systems to find out the
optimal localization result. The experiments show that RF-MVO achieves 6.23cm
localization accuracy in 3D space.

3) This thesis proposes RF-Orien3D, a CV-assisted system that leverages the
variation of each tag radiation pattern in a two-RFID-tag array to estimate a labeled
object’s spatial directions (i.e., azimuth and elevation) in multipath environments.
To achieve RF-Orien3D, this work proposes novel RSSI/RF phase-distance models
when tag mutual coupling and multipath interference both occur. In the models,
one variable to be estimated is tag radiation pattern, which is simulated by building
a two-tag array from a 2D image; another is modulation factor, which is estimated
using RFID fingerprints in non-coupling and coupling in free space. On this basis,
a convolutional neural network (CNN)-based method is proposed by simulating all
multipath impacts on RFID fingerprints based on the proposed fingerprint models
to pre-train a CNN and then collecting measured data to fine-tune the CNN for 3D
orientation. In the experiments, RF-Orien3D achieves median angle errors of 29◦

and 11◦ in azimuth and elevation.
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Chapter 1

Introduction

1.1 Battery-free RFID in Internet of Things

Battery-free Radio Frequency Identification (RFID) provides feasible connectiv-
ity between the physical world and the internet, which has been becoming a funda-
mental technology in Internet of Things (IoT). It is a form of wireless communication
technique for object identification that uses radio waves to identify an object em-
bedded or pre-attached with a battery-free RFID tag, which has been widely used
in many fields from industry to retail, healthcare, manufacturing, entertainment,
hospitality, etc. A typical battery-free RFID system consists of an RFID reader,
reader antennas and battery-free RFID tags. Its workflow is described in Fig. 1.1:
1) the reader transmits a radio frequency (RF) signal to space through an antenna
transmitter; 2) an RFID tag receives the signal, producing a backscatter signal back
to the antenna receiver; 3) a host computer analyzes the tag data, including its iden-
tifier (i.e., Electronic Product Code, EPC) and other information stored in the tag
memory, on upper applications. A series of RFID standards have been proposed
for commercial product development and use. A global RFID standard ISO/IEC
18000-63[47] regulates how RFID systems work, what operating frequencies they
operate at, how RFID data is transferred, and how communication works between
an RFID reader and a passive RFID tag.

Since passive tags do not require an additional power supply to power up, they
are much cheaper, smaller and easier to be implemented in practice than other
battery-powered identification devices. In traditional barcode scanning systems, we
need to manually rotate an object to a certain direction to see the barcode for reliable
scanning and scan objects one by one. Fortunately, an RFID system can achieve a

5),'�
5HDGHU

3DVVLYH�
5),'�7DJ

$QWHQQD

8SSHU�
$SSOLFDWLRQ

Figure 1.1 : Battery-free RFID system workflow
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typical reading range of as long as 6∼10 meters and enable to read many RFID tags
from any orientation simultaneously, so RFID could reduce labor cost and accelerate
inventory process. More importantly, passive tags do not require line of sight (LOS)
to communicate with an RFID reader than other identity carriers like one- and two-
dimensional (2D) barcodes. And RFID can protect products against counterfeiting
by directly adding a globally unique identification number into each product during
a manufacturing process. The RFID-tagged product can be individually tracked
through the supply chain in order to identify whether it is authentic or to access
additional information about its source for item-level visibility. In total, accurate,
automated and real-time information from RFID enables true IoT applications.

1.2 Battery-free Sensing with RFID

Initially, RFID is designed for automatic object identification. Some recent re-
search works have given RFID a whole new sense. They regard an RFID tag as a
battery-free sensor attached to an object. The sensor indicator is the backscatter sig-
nal fingerprint, including received signal strength indicator (RSSI) and RF phase.
Since it varies with environmental change and the distance of a tag to a reader
antenna, many battery-free sensing systems have been proposed to achieve RFID
localization [110, 65, 64, 106, 108], mechanical vibration period sensing [111, 57],
liquid leakage detection [37], material recognition and profile imaging [93], through-
wall motion tracking [102, 113], human breathing and heart rate estimation [100,
117, 90, 114], human activity recognition [99, 30, 29, 92] and so on. Compared to
other wireless RF signals, e.g., millimeter Wave (mmWave) and Wifi, RFID is a
flexible and low-cost solution and can provide ID-dependent object tracking and
recognition, making its use appeal to both the industry and the research commu-
nity. Many IoT applications will benefit from battery-free RFID sensing works. For
example,

1) Object Position Tracking. At present, most airline companies are still
using barcode systems to identify and sort passengers’ luggage, which inevitably
requires consuming a lot of time and effort to scan each baggage to different flights.
Accurate baggage identification and localization can help sorters improve their sort-
ing efficiency and prevent baggage from being transferred to other wrong sorting
conveyors. In industrial fields, quality assurance systems require workers to check
the number of products inside packages and quickly locate defective products on the
assembly line from these packages with the same appearance. In a library application
scenario, when each of the books on shelve is attached with an RFID tag, librarians
can easily obtain the order of the books on shelves and find out those misshelved
books by obtaining their position information. Developing automatic pick-and-place
robots is becoming a promising way to help care for the elderly. It has been of great
interest in the robotic community and industry to enable the robot to search for an
object, pick it up, and then deliver it to the elderly. The first fundamental task is
to recognize this object of interest and thereby locate it in space.

2) Object Authentication for Unmanned Supermarkets. In recent years,
unmanned supermarkets with new shopping experience have attracted more and
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more attention. According to different approaches used, unmanned supermarkets
can be divided into four categories: 1) Amazon Go with pure computer vision (CV);
2) Bingo Box and Easy Go with RFID; 3) TaoCoffee with RFID and CV fusion; 4)
F5 future stores with QR code. Among them, RFID-based systems exist a crucial
challenge: customers may tear off an RFID tag from a cheap item and then attach
it to an expensive item, or someone may use fake RFID tags to cheat this RFID
system. One feasible solution is to fuse RFID and CV for object authentication.
When checking out, a CV system could depend on the existing deep learning-based
methods to recognize each item and then obtain their positions in space. At the
same time, an RFID system could also identify each item and locate their spatial
positions. By matching ID and position information from RFID and CV, it can
effectively avoid the cheating problem.

1.3 Main Challenges

At present, state-of-the-art works have undoubtedly made essential progress in
battery-free sensing. However, they still face the following problems in practical
object recognition, localization and orientation applications.

1) Region-of-Interest Moving Object Recognition. In some conveyorized
application scenarios, RFID systems may only concern with those RFID tags that
exist on the conveyor belt. Due to unpredictable RFID signal propagation, however,
some RFID tags outside the region may be read, making the systems falsely consider
these unwanted tags are located in the region of interest (ROI). An effective solution
to deal with this issue is that each RFID tag can be accurately pinpointed in space.
In realistic environments, however, the transmitted RF signal from a reader antenna
will be reflected off some reflectors (such as tagged objects, walls, and furniture) to
an RFID tag, in addition to the signal traveling along the direct tag-to-antenna
path. This phenomenon is called the multipath effect. In this case, the distorted
signal fingerprint cannot accurately indicate the tag-to-antenna distance for tag
localization. Hence, how to minimize the multipath interference for fine-grained
ROI moving object recognition is a challenge.

2) Stationary Object 3D Localization. Since RF phase repeats from 0 to 2π
radians every half a wavelength, several possible candidate positions may exist in a
surveillance region. This phenomenon is called RF phase periodicity. Some existing
solutions in stationary RFID localization fix reader antennas to a robotic platform
and then move it along a pre-deploying track at a constant speed. And some deploy
an antenna on a drone and use a very complicated camera-based system to capture
its trajectory in space. Besides, most of the existing solutions need to pre-define a
surveillance region where the tracked RFID tags may exist and divide the region into
centimeter-level or even smaller grids for position estimation. However, the range of
this pre-defined region is usually unknown in advance. And if a large region is given,
the vast computation for searching will seriously affect the real-time performance.
Therefore, how to achieve low-latency and high-precision RFID spatial positioning
when a reader antenna moves along an unknown trajectory is a challenge.

3) Multi-Tag Labeled Object 3D Orientation. Multi-tag based sensing is
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becoming a hotspot in recent research. More RFID tags on a tracked object can not
only provide more signal fingerprints for sensing optimization but also eliminate RF
phase periodicity. More importantly, the multi-tag systems could offer an opportu-
nity to estimate the direction of the RFID-tagged object in space. However, when
these RFID tags are deployed very close to each other, the electromagnetic fields
between them will interfere with each other, thereby causing the serious tag mutual
coupling effect. This effect will result in unexpected changes in the reported RSSI
and RF phase of each tag compared to the tag located in space by itself. There-
fore, how to suppress the impact of tag mutual coupling in a multi-tag system is a
challenge.

1.4 Research Contents

This thesis explores how to combine RFID and CV for object recognition, local-
ization and orientation in practical scenarios. This RFID-CV fusion could provide
many potential benefits to improve the sensing reliability and accuracy compared
to purely RFID-based solutions.

1.4.1 CV-assisted Region-of-interest Moving Object Recognition

To minimize the impact of multipath interference, we propose RF-Focus, a CV-
assisted RFID system that recognizes and tracks moving RFID-tagged objects within
the ROI in multipath-prevalent environments. RF-Focus cleans reported RF phase
by removing additional phase shifts caused by multipath interference and frequency-
dependent hardware characteristics. Then it pairs the cleaned RF phase with image
candidate regions that are likely to contain the RFID-tagged objects to be tracked
for recognition and localization. However, we need to address three challenges:

1) Multipath Interference Modeling and Suppression. We build a mul-
tipath propagation model to characterize the impact of multipath interference on
RFID signal fingerprints. On this basis, we further propose a dual-antenna solution
to combat multipath interference by utilizing two tightly-spaced antennas.

2) Frequency-dependent Hardware Characteristic Removal. Different
operating frequencies cause different phase shifts in RF phase. To remove its im-
pact in RF-Focus, we compute the tag-to-antenna distance only using one reader
antenna and several RFID tags by utilizing the changes in RSSI and RF phase due
to multipath interference. In this case, the constant hardware-related phase shifts
can be estimated and then removed at all available frequencies. Before RFID and
CV fusion, we need to remove the phase shift from raw RF phase.

3) RFID-CV Fusion for ROI Moving Object Recognition. We fuse CV
image information with RFID to minimize tag position uncertainty caused by RF
phase periodicity. To realize it, we firstly conduct a series of preliminary works, in-
cluding image candidate region extraction, 2D image to 3D world coordinate trans-
formation, reader antenna localization in the camera-centered world coordinate sys-
tem and sampling synchronization. Then we design an RFID and CV matching
score by associating the cleaned RF phase and image data to recognize each ROI
RFID tag and obtain its corresponding trajectory with real-time performance.
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1.4.2 CV-assisted Stationary Object 3D Localization

To deal with the limitation of acquiring a reader antenna’s position at each
sampling time and improve real-time performance in 3D localization, we propose
RF-MVO, a CV-assisted RFID system for stationary 3D localization. In RF-MVO,
a 2D monocular camera is mounted on one or more reader antennas. As the anten-
nas move across target RFID tags, an RFID reader collects RFID data, including
EPC, RF phase, and reading timestamp. At the same time, the camera captures
a sequence of 2D images. RF-MVO does not require the LOS between the camera
and RFID tags and only relies on the existing monocular visual odometry (MVO)
technique to estimate antenna/camera trajectory in the camera view. By fusing
depth-enabled RF phase, RF-MVO estimates the trajectory in the real-world view
and then pinpoints RFID tag positions in 3D space. To achieve such a system, we
need to cope with three challenges:

1) DOA and Scale Factor Searching for 3D Localization. We emulate
a virtual antenna array following antenna mobility and then build a direction of
arrival(DOA)-based spatial power spectrum to search the spatial directions of the
RFID tag relative to this antenna array, as well as a scale factor for real-world
camera/antenna trajectory recovery. On this basis, we propose a novel algorithm
to calculate the interaction of the spatial lines passing through the tag and antenna
elements in each array as the final tag position in 3D space. Since directly searching
a high-resolution DOA and scale factor in the spatial power spectrum is a time-
consuming process, we only obtain the coarse DOA and fine scale factor as initial
values for the following optimization algorithm that can accelerate our system.

2) Coarse-to-Fine Tag Position and Scale Factor Optimization. An
optimization algorithm is proposed to balance our system’s estimation accuracy
and real-time performance. The algorithm consists of three parts. DOA refinement
is to zoom in the DOA with a higher searching resolution. 3D RFID localization
is to locate the tag position with the refined DOA and scale factor. Nonlinear
optimization is to perform the optimization of the scale factor and tag position,
which then recursively performs scale-factor-dependent DOA refinement and tag
localization.

3) Optimal Tag Position and Scale Factor Selection. We rely on Hori-
zontal Dilution of Precision (HDOP), widely used in satellite positioning systems
to measure the confidence level of tag position and scale factor results due to the
change in tag-antenna geometry. It can help our system output the optimal tag
position and scale factor for trajectory recovery.

1.4.3 CV-assisted Two-RFID-Tag Labeled Object 3D Orientation

To deal with the distortion in RFID signal fingerprint due to tag mutual coupling
when multiple tags are simultaneously attached on an object for orientation track-
ing, we propose RF-Orien3D, a CV-assisted RFID system that enables tracking 3D
object directions (i.e., azimuth and elevation) in multipath-rich scenarios, where the
tracked object is attached with a two-RFID-tag array, and a reader antenna is fixed.
At a high level, when two tags are located closely, the tag mutual coupling effect
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will be strong and thereby result in the change in the radiation pattern (i.e., tag
gains in all spatial directions) of each tag. RF-Orien3D operates by capturing the
variation for orientation tracking. To achieve RF-Orien3D, we need to solve three
challenges:

1) Mutual Coupling Modeling in Multipath Environment. In a sce-
nario with two closely-spaced RFID tags, we model the RFID backscatter signal
of a responding tag in channel transfer functions (CTFs) by taking into account a
mutual signal emitted from its adjacent tag and some reflected signals from sur-
roundings. Then we transform the reported RSSI and RF phase to represent the
signal’s amplitude and phase shift. In this case, we propose the improved RSSI and
RF phase-distance models with additional coupling and multipath terms compared
to most of the existing models.

2) CNN-Powered 3D Orientation Tracking. We design a convolutional
neural network (CNN)-based method for orientation tracking, which consists of two
components: the first is to simulate a large number of RFID fingerprints based on
the extended models in all possible multipath environments to pre-train a CNN; the
second is to collect actual RFID fingerprints to fine-tune this pre-trained CNN. Once
fine-tuning is over, the updated CNN can be applied to predict the RFID-tagged
object direction in space.

3) Radiation Pattern Simulation and Scaled Modulation Factor Esti-
mation. In the RFID fingerprint models, two unknown parameters are required
to be estimated in advance: one is the modified tag radiation pattern, which is
simulated by building a two-tag array model from a 2D image; another is scaled
impedance-dependent modulation factor, which is determined using RFID finger-
prints in the non-coupling and coupling cases.

1.5 Outline

The rest of this report is organized as follows. Chapter 2 reviews some related
works. Chapter 3 describes how to achieve RF-Focus that cleans additional phase
shifts in the reported RF phase caused by multipath interference and hopping fre-
quency, and combines the cleaned RF phase with image proposals to track moving
RFIDs. Chapter 4 describes how to achieve RF-MVO that fuses camera/antenna
trajectory in the camera view outputted by MVO with depth-enabled RF phase
to locate stationary RFIDs. Chapter 5 describes how to achieve RF-Orien3D that
captures the changes in radiation pattern caused by tag mutual coupling for object
orientation tracking in 3D space. The above three chapters are summarized from
my published or submitted papers. Finally, we make a conclusion in Chapter 6.
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Chapter 2

Literature Review

2.1 Single-RFID-Tag Localization

Many previous research works use RSSI to achieve RFID positioning following
the relationship between signal power loss and propagation distance in free space.
In a 2D plane, a tag position is determined by calculating the intersection of the two
circles whose centers are the locations of two antennas and radiuses are the estimated
tag-to-antenna distances. In 3D space, three antennas are required to achieve spatial
positioning. However, RSSI is sensitive to multipath interference and the unknown
radiation pattern of a reader antenna in different directions, which may not be a
reliable metric to indicate the antenna-to-tag distance accurately. To improve RSSI-
based localization accuracy, some works [71, 118, 15, 95] pre-deploy many reference
RFID tags in a surveillance region at known positions and then compare their RSSI
values with that of the tracked tag for localization. The final position accuracy is
subject to the number of reference tags, and not all scenarios can allow people to
conduct this preparation.

Recently, some commercial off-the-shelf (COTS) RFID readers enable outputting
RF phase with higher position resolution than RSSI, which has been paid much
more attention in RFID sensing applications. RF-IDraw [96] and BackPos [61] need
to deploy many reader antennas at given positions to eliminate phase periodicity.
However, they can only locate a tag in a 2D plane. Some motion-based methods
like MobiTagbot [79], RF-Scanner [60], AdaRF [108] and RF-3DScan [17] require
deploying reader antennas on a robot moving along an already-known trajectory
at a predefined speed. They leverage the antenna movement to emulate a set of
virtual reader antennas and build a holography to locate RFID tags. However,
some magnetic tracks the robot moves along are required to be deployed in advance.
Similarly, RFly [64] deploys an antenna relay on a drone and relies on a complicated
camera-based system to capture its fly trajectory in space. Tagoram [110] and
TrackT [104] can track moving RFID tags at cm-level accuracy. They first specify
a surveillance region and then divide it into mm-level grids. On this basis, they
depend on inverse synthetic aperture radar technique to estimate the likelihood of
being an RFID tag at each grid. However, they require moving an RFID tag along
a given trajectory with certain regulations and constraints, which may make these
approaches still far from meeting the requirements of real-life applications. And
as the surveillance region increases in 3D space, huge computation will jeopardize
real-time localization performance. PolarDraw [80] and Pantomime [82] can only
achieve relative position tracking for moving RFID tags by exploiting two linearly
reader antennas polarization mismatch to a tag. RFind [65] powers narrowband
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RFID tags to work over a large virtual bandwidth, without any RFID hardware
modification. By computing the time-of-flight from a reader antenna to an RFID tag,
RFind estimates its absolute tag-to-antenna distance. Then two or more antennas
are exploited for 2D or 3D tag localization, respectively. However, RFind requires
customized devices to produce additional ultra-wideband RF signals. And it also
needs to take a few seconds to hop over specified frequencies for localization. The
latency challenges the accuracy in moving object tracking.

2.2 Multi-RFID-Tag Localization and Orientation

Many recent works start attaching an RFID tag array consisting of two or more
RFID tags on an object for localization and orientation tracking. In particular, the
tag-to-tag spacing is limited within a quarter of wavelength to combat phase peri-
odicity. One-more-tag [106] uses RF phase measurements to calculate the distance
difference of each reader antenna to two RFID tags. Since the geometry relationship
among these tags is known, a pair of RFID tags can produce a hyperbola. Given mul-
tiple reader antennas, all hyperbolas may intersect at a point that a tracked tag may
be present in theory. RF-Dial [18] requires moving the tagged object and depends
on the difference in tag-to-antenna distances to estimate its translation and rotation
matrices. Spin-Antenna [91] leverages the polarization matching/mismatching be-
tween RFID tags and a linearly polarized antenna to track tagged object movement.
However, the sensing accuracy of these systems is subject to tag mutual coupling
interference. Tagyro [105] is the first system to deal with the coupling effect for
orientation tracking. It requires estimating the distorted geometry among RFID
tags in space by rotating the tag array, and then transforms the phase differences
of arrival between RFID tags into an orientation spectrum that can characterize
the likelihood of the object orientation. However, since the impact of tag mutual
coupling on measured RSSI and RF phase is dependent on different tag-to-antenna
orientations, its pre-estimated tag geometry will keep changing. In addition, some
works [22, 109, 38] instead leverage tag mutual coupling for localization. They de-
ploy many RFID tags in the region in advance. Once a tracked tab is close to one
of a reference tag, tag mutual coupling may result in the obvious change in RSSI
or RF phase of the reference tag. Based on this phenomenon, these works could
achieve coarse-resolution position estimation. However, many reference tags require
to be pre-deployed in the surveillance region.

2.3 RFID-CV Fusion Recognition and Localization

Recognizing an object and capturing its location in an image is a general task
in CV fields. Since a series of deep neural network models are proposed by feed-
ing a large-scale annotated dataset, recent works [34, 77, 41, 78, 76] have achieved
high-precision recognition accuracy with real-time performance. When inputting an
image into the detector, the systems enable to determine whether a target object ex-
ists in the image and if so where it occurs in the image. Compared to RFID systems,
however, the image-based solutions exhibit three limitations in some scenarios. First,
it is not practical in ad-hoc scenarios due to lack of labels for training. Second, it is
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difficult to distinguish two objects with the similar appearance in the camera view,
e.g., express parcels with different object inside. Third, such image-based solution
only work well in LOS scenarios, and its estimation accuracy is much sensitive to the
light change. RFID-based systems can read the information of attached RFID tags,
providing accurate object identification, and perform in non-line-of-sight (NLOS)
scenarios as long as the backscatter signals could penetrate through obstacles.

Recently, there is a growing interest in RFID-CV fusion for object recognition
and tracking. RF Vision [62] designs a mobile robot equipped with a stereo cam-
era, RFID devices and a laser range finder scan to infer relative positions among
RFID-tagged objects. RF-ISee [84] and ID-Match [56] find the optimal matching
between RFID tags and detected moving blobs. These works mainly rely on RSSI
measurements, which have been proven a fairly unreliable parameter. TagVision
[25] uses a 2D camera to capture the trajectories of multiple mobile objects and
then differentiates from them according to the correlations between RF phase and
the distance of the camera to motion blobs. However, when multiple objects with
the same appearance move close to each other, CV-based detections may not be
accurately assigned to each track over time. In “Tell me what I see” [107], a Kinect
V2 depth camera and two reader antennas are fixed on a rotation-enabled platform.
By simultaneously rotating them to scan RFID-tagged objects, the system can as-
sociate the depth of camera field with the tag-to-antenna distance calculated by RF
phase for target matching. However, since the system needs to take some time to
continuously sample, identifying moving tagged objects remains challenging.

2.4 RFID-based Device-free Sensing

Device-free sensing has recently received considerable attention. Each object to
be tracked does not carry any sensor devices or RFID tags. Compared to other
existing RF techniques like FMCW [7, 8, 6, 9] and WiFi [74, 97, 98, 101], RFID tags
are regarded as battery-free signal received antennas. These battery-less RFID tags
have a short-range sensing zone, which can effectively avoid unwanted interference
from non-sensing targets. However, the capability of these tags to capture the reflec-
tions off the target will be weaker than FMCW and WiFi. To deal with this issue,
many existing works build a tag array consisting of many tightly-spaced RFID tags
for sensing. Tadar[113] is the first device-free RFID work for localization through
wall by extracting the reflection off the human body. RF-HMS [102] can determine
the forward or backward motion direction in NLOS scenarios. RF-IPad [23], GRfid
[121] and RF-finger [89] track finger movements based on the changes in RSSI and
RF phase for gesture recognition. TagScan [93] is a system that can identify the ma-
terial type and image the target horizontal cut. Compared to RFID-tagged works,
device-free sensing cannot achieve fine-grained distinction among tracked objects.

2.5 RFID Phase Shift Calibration

D-watch [94] calibrates the hardware-related phase shifts by manually measuring
the tag-to-antenna distance. However, this solution cannot provide enough accurate
calibration result. Tagspin [26] locates multiple RFID reader antennas using more
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than two RFID-tagged rotating disks with a constant moving speed, which could
effectively save antenna deployment time. Tagyro [105] can calibrate RF phase over
different operating frequencies to a reference frequency such that the output RF
phase looks like coming from a common frequency. However, it is challenging to
estimate RF phase ambiguity difference by measuring the tag-to-antenna distance
difference between the tag position and the initial position at different times. The
works [10, 65] perform with a well-isolated bistatic antenna configuration to minimize
the effect of the hardware-related phase shifts. However, most COTS RFID readers
can only support the monostatic antenna configuration. The RFID systems [58, 80]
only work at a specific operating frequency to combat the frequency-dependent phase
shifts due to hardware characteristics. In this thesis, our work will introduce how
to accurately estimate the hardware-related phase shift in advance by accurately
measuring the tag-to-antenna distance.

2.6 RFID Tag Radiation Pattern Modeling

Pattern multiplication theorem [14] is used to model the radiation pattern of a
tag array. However, it requires that each antenna is uncoupled, which cannot be
applied in multi-RFID-tag lalebled systems. Some works [12, 66] indicate that tag
mutual coupling may affect the reading performance of stacked RFID tags. However,
they need specialized devices to measure mutual impedances between tags. Feng et
al. [63] demonstrate that tag mutual coupling can enhance the tag gains in some tag-
to-antenna directions while weakening the gains in others. However, the analysis
model ignores the variation in the radiation pattern of each tag element due to
the mutual coupling effect. Stefano et al. [20] designs a two-tag array system for
building crack monitoring based on the fact that mutual impedance is sensitive to
the change in the tag-to-tag spacing. However, the work is unable to calculate the
tag radiation pattern. In the thesis, we generate an RFID tag model from an image
and construct a tag array to simulate each tag’s radiation pattern using antenna
analysis components in Matlab.
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Chapter 3

CV-assisted ROI Moving Object Recognition

Capturing RFID tags in the ROI is challenging. Many issues, such as multipath
interference, frequency-dependent hardware characteristics and phase periodicity,
make RF phase difficult to accurately indicate the tag-to-antenna distance for RFID
tag localization. In this work, we propose a comprehensive solution, called RF-Focus,
which fuses RFID and CV techniques to recognize and locate moving RFID-tagged
objects within ROI. Firstly, we build a multipath propagation model and propose
a dual-antenna solution to minimize the impact of multipath interference on RF
phase. Secondly, by extending the multipath model, we estimate phase shifts due
to hardware characteristics at different operating frequencies. Thirdly, to minimize
the tag position uncertainty due to RF phase periodicity, we leverage CV to extract
image regions of being likely to contain ROI RFID-tagged objects and then associate
them with the processed RF phase after the removal of the phase shifts due to
multipath interference and hardware characteristics for recognition and localization.
Our experiments demonstrate the effectiveness of multipath modeling and hardware-
related phase shift estimation. When five RFID-tagged objects are moving in the
ROI, RF-Focus achieves the average recognition accuracy of 91.67% and localization
accuracy of 94.26% given a false positive rate of 10%.

3.1 Introduction

Passive radio frequency identification is a promising object identification tech-
nique that uses wireless RF signals to read the globally unique identity (i.e., EPC)
of an object from its affixed battery-free RFID tag. Compared to other identity
carriers like one or two-dimensional barcode, passive RFID tags do not require LOS
to communicate with an RFID reader, which has been widely used in automated
inventory management, product anti-counterfeit and real-time retail loss prevention.
In typical RFID applications, a COTS RFID reader is equipped with one or more
directional RFID reader antennas to monitor RFID-tagged objects passing through
a door, gateway or other specific regions. Let us consider an RFID-based belt con-
veyor system shown in Fig. 3.1. Reader antennas are mounted on a gantry to
identify which RFID-tagged objects are moving in the ROI on the conveyor. Un-
fortunately, since a commonly-used antenna has a relatively large reading range,
some RFID tags carried by people, on other nearby belt conveyors or in package
staging areas outside the ROI may be unintentionally read. This phenomenon is
called false positive reading. To avoid the system erroneously consider these false-
positive reading tags as ROI ones, accurately locating ROI RFID tag positions is
of importance for conveyorized applications. For example, in the RFID-assisted
airport sorting systems, accurate ROI RFID tag identification and localization can
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Figure 3.1 : A conveyor belt-based application for automatic ROI RFID tagged-
object recognition.

help sorters improve their sorting efficiency and prevent RFID-tagged baggage from
being transferred to wrong sorting conveyors. In the RFID-assisted quality assur-
ance system, it can help workers more quickly and easily identify defective products
on the assembly line compared to manual checks or barcode systems.

Many previous RFID solutions [24, 54] to address false-positive readings are
achieved by reducing the signal transmission power of an RFID reader in order
to decrease the size of the reading region. However, the lower power may result
in increasing the number of false-negative readings, i.e., the ROI RFID tags are
unable to be identified. Accurately locating RFID tags can be a feasible solution
to distinguish ROI or false-positive reading tags. However, since the reported RF
phase for the tag-to-antenna indicator is repeated every half a wavelength the signal
travels within the range of 0 to 2π (i.e., RF phase periodicity), most of the existing
motion-based RFID localization approaches [110, 79, 81] require moving a tag or
reader antennas along a given trajectory with certain regulations and constraints,
which may make these approaches still far from meeting the requirements of real-
life applications. A recent RFID localization technique, RFind [65], computes the
time-of-flight from a reader antenna to an RFID tag for absolute tag-to-antenna
distance measurement. In [65], two or more antennas are exploited for 2D or 3D
tag localization, respectively. However, RFind needs to take a few seconds to hop
over specified frequencies for localization. The latency makes tracking a moving
RFID-tagged object in real-time very challenging.

Furthermore, in a real environment when an antenna transmitter sends radio
waves to space, the received signal at the antenna receiver is likely to be interfered
with the signal reflections off floor, wall, conveyor components and even RFID-
tagged objects, in addition to the expected reflection off an RFID tag. This phe-
nomenon is called multipath interference. Due to the impact of multipath interfer-
ence, the RF signal fingerprints reported by a COTS RFID reader, such as RSSI
and RF phase, may not accurately indicate the tag-to-antenna distance. More im-
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portantly, RFID localization accuracy can be significantly affected by frequency
hopping, which has not been considered by previous works. In some regions [5],
an RFID reader is required to hop the operating frequency from one to the next
at a predefined rate within a given region’s frequency band, which is used to com-
bat RFID co-channel or adjacent-channel interferences in the case that multiple
RFID readers operate simultaneously at neighboring positions. Since the delay in
propagating through RFID hardware components can not be negligible, different op-
erating frequencies induce different hardware-related phase shifts, especially when a
monostatic RFID reader antenna is used for both signal transmission and reception.
To minimize the phase shift, many RFID systems [65, 21, 11, 10] apply a bistatic
antenna configuration with transmitter-receiver isolation. However, the use of two
antennas involves additional complexity and expense. Moreover, most of COTS
RFID readers only support the monostatic configuration, which makes most of the
bistatic antenna-based solution infeasible for real applications. Therefore, the lo-
calization accuracy of most of the existing RFID solutions is subject to multipath
interference and frequency hopping, which may not be very reliable when dealing
with false-positive reading, especially in multipath-prevalent environments.

As CV-based methods have been proved to be efficient for object detection, some
researchers [107, 25, 56] propose CV-assisted RFID systems to improve localization
reliability. Although CV-based algorithms [83, 40, 50, 42] can obtain entire trajec-
tories of moving objects by analyzing camera sensor data without being affected
by multipath interference, it is difficult (or for some cases, even impossible) to dis-
tinguish multiple trajectories and associate them with individual objects, especially
when multiple objects having the exact same appearance.

In this work, we propose an RFID and CV hybrid system with COTS RFID de-
vices and a 2D monocular camera, called RF-Focus, which can recognize and locate
moving RFID-tagged objects within an ROI in multipath-prevalent environments in
aid of CV techniques. Fig. 3.1 shows a typical system deployment in such convey-
orized systems, which consists of a pair of tightly-spaced antennas and a 2D monocu-
lar camera mounted on a gantry. Our major goals are to 1) remove additional phase
shifts caused by multipath interference and frequency-dependent hardware charac-
teristics from the reported RF phase to obtain the correct tag-to-antenna indicator
and 2) analyze camera sensor data to reduce tag position uncertainty caused by RF
phase periodicity.

Realizing such a hybrid system for ROI RFID tag recognition and localization
has three key challenges discussed as follows:

Challenge 1. The multipath interference is of large importance in determin-
ing the total received signal at the antenna receiver, which will significantly affect
the reported RF phase to correctly indicate the tag-to-antenna distance. However,
previous RSSI and RF phase models [27, 96, 100] expressed by a function of the
tag-to-antenna distance either have not contained any terms to indicate the impact
of multipath interference. Tadar [113], the first RFID work for device-free object
tracking, models RFID signal propagation in line-of-sight to analyze the multipath
interference. However, this work does not provide the estimate of the multipath
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interference in RSSI or RF phase as a function of some possible impacts, making it
much challenging to understand the multipath interference.

Challenge 2. The frequency-dependent hardware characteristics induce propa-
gation delays in RFID hardware at different operating frequencies, which can result
in additional phase shifts in the reported RF phase. In an ideal environment without
any multipath interference, if the tag-to-antenna distance is accurately measured, we
can rely on a standard RF phase-distance model to estimate the hardware-related
phase shifts at different frequencies. However, since a real reader antenna’s position
is located within the antenna casing, the manually-measured distance between an
RFID tag and the center of the antenna casing surface may more or less deviate from
the ground truth. Accurately locating a stationary RFID tag in space using existing
RFID localization systems is still challenging. Since more than one reader antenna
is required in these systems, the final localization accuracy suffers from tag-antenna
geometry [61, 106].

Challenge 3. Due to RF phase periodicity, there may exist multiple candidate
positions of an RFID tag to be located within the ROI. To minimize the tag position
uncertainty, a feasible solution is to rely on CV techniques to exhaustively search
all possible trajectories consisting of a sequence of image candidate regions that are
likely to contain the RFID-tagged object over video frames, and then associate them
with RFID data for object recognition and localization. However, time complexity
will exponentially increase with the number of video frames, which will challenge
the system’s real-time performance.

RF-Focus introduces three innovations to deal with the above challenges:

1) To deal with the first challenge, we start by modelling a channel transfer func-
tion in multipath-prevalent environments to characterize the impact of multipath
interference on RSSI and RF phase, and then derive novel RSSI and RF phase-
distance models with additional multipath interference terms compared to prior
models. On this basis, we demonstrate that the changes in RSSI and RF phase
due to multipath interference for two tightly-spaced antennas can be approximately
equal, which can be used to combat multipath interference in the following RFID
and CV fusion procedure.

2) To address the second challenge, we firstly conduct an experiment to show
the impact of frequency hopping on RSSI and RF phase. Then a novel multipath-
powered algorithm is designed to measure the tag-to-antenna distance only using
one antenna and several RFID tags, which can provide higher accuracy than manual
measurement. After that, the phase shift caused by hardware characteristics at each
operating frequency is estimated by solving an optimization problem. In the RFID
and CV fusion, we remove the hardware-related phase shift from raw RF phase.

3) To deal with the third challenge, we define a matching score by associating
CV image candidate regions with the processed RF phase after removing the phase
shifts due to multipath interference and hardware characteristics only based on three
successive fusion samples. Then the hybrid system can achieve real-time ROI RFID
tag recognition and localization by finding the maximum of the matching score.
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RF-Focus, to our knowledge, is the first CV-assisted RFID system for ROI RFID
tag recognition and localization without pre-capturing the entire trajectory of each
moving object in CV. The technical contributions are summarized as follows:

1) We formulate the multipath interference in RSSI and RF phase as a function
of signal propagation paths and object reflection characteristics, which has not been
presented by previous works. And a dual-antenna solution is proposed to minimize
the impact of multipath interference on RF phase.

2) We proposed a multipath interference-powered method to estimate the phase
shifts caused by frequency-dependent hardware characteristics. Our study reveals
that RSSI is still an available parameter to sense environmental changes with high
resolution and sensitivity like commonly-used RF phase, which is generally ignored
by prior device-free RFID systems.

3) By removing phase shifts due to multipath interference and hardware char-
acteristics from raw RF phase, we fuse CV image data into the RFID system to
minimize tag position uncertainty due to RF phase periodicity. To guarantee real-
time performance, we propose a matching score over three successive fusion samples
to estimate the likelihood of being an RFID tag in each image region.

We implement and evaluate our hybrid system with COTS RFID devices and a
2D monocular camera. The experiments demonstrate the effectiveness of multipath
interference modeling and the hardware-related phase shift estimation. When simul-
taneously differentiating 5 moving RFID-tagged objects within the ROI, RF-Focus
achieves average recognition accuracy of 91.67% and position matching accuracy of
94.26% given a false positive rate of 10%.

3.2 Dealing with Multipath Interference

In the section, we introduce how to characterize the changes in RSSI and RF
phase due to multipath interference. Then we propose a dual-antenna solution to
combat multipath interference, which is a fundamental procedure to clean the raw
RF phase for RFID and CV fusion. The experiments to demonstrate the effectiveness
of the proposed RSSI and RF phase-distance models in multipath LOS and NLOS
are described in Section 3.5.2.

3.2.1 Multipath Signal Propagation in LOS

As shown in Fig. 3.2, when the transmitter AT of a monostatic reader antenna
A emits a continuous wave (CW) signal to a multipath-prevalent environment, there
are generally three categories of reflected signals back to the antenna receiver AR:

Backscatter signal. The transmitted signal that travels along the direct LOS
path from AT to an RFID tag T (i.e., AT → T ) combines with other reflected
signals off each nearby reflector Wi to T (i.e., AT → Wi → T ) at the tag end. Once
T captures the sufficient power to produce a backscatter signal, the signal emitted
from T can be directly delivered back to AR (i.e., T → AR) and again reflected off
Wi to AR (i.e., T → Wi → AR), respectively. In particular, the signal reflection can
significantly induce the loss in power. We ignore each signal reflected off Wi two
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Figure 3.2 : Multipath signal propagation in LOS.

times (i.e., AT → Wi → T → Wi → AR) because it only contains much lower power
than other received signals at AR.

Leakage signal. In a monostatic antenna, a reader transmits a CW signal
and listens for an RFID tag response simultaneously in full-duplex mode. The
transmitted signal travels through the reader circuits and the antenna cable to the
antenna and then back again. The additional signal (i.e., leakage signal) along the
propagation path from AT to AR (i.e., AT → AR) will add up to each received signal.

Self-interference signal. The transmitted signal arrives at Wi and then is
directly reflected to AR (i.e., AT → Wi → AR). Since the self-interference signal is
the same as the original signal, its impact on received signals can be negligible. Let
s (t) be a CW signal emitted from AT at time t, then the total received signal r (t)
at the receiver AR is characterized as follows:
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where h = µeJφ represents the channel transfer function of each propagation path in
a complex number, i.e., hAT→T = hT→AR = µ0e

Jφ0 , hAT→AR = µle
Jφl , hT = µT e

JφT

and hWi
= µWi

eJφWi . The amplitude and phase parameters 〈µl,φl〉, 〈µWi
,φWi

〉 and
〈µT ,φT 〉 are determined by the characteristics of reader circuits, reflector material
and RFID tag circuits, respectively. Here µl, µT and µWi

are also called the trans-
mission gains to measure the loss in transmitted signal power. Specifically, for an
RFID tag with a dipole antenna, the tag oriented along the electric field from the
reader antenna may receive the maximum RF signal while the tag oriented perpen-
dicular to the field may receive no RF signal at all, which can not be read. Hence,
〈µT ,φT 〉 are the angle-dependent parameters, varying with the orientation relative
to reader antennas. Fortunately, a dual-dipole RFID tag (e.g., Impinj H47 RFID
tag) can efficiently minimize the tag-to-antenna orientation sensitivity.

3.2.2 RSSI and RF Phase-distance Models in Multipath LOS

Further, let d0 and di(i ≥ 1) be the distances of the direct path along AT → T
and the i-th reflected path along AT → Wi → T (or T → Wi → AR), where di ≥ d0,
and gA be the antenna gain, so the amplitudes µ0 and µi(i ≥ 1) are represented
by µ0 = gA

d0
and µi =

gA
di

[72]. In addition, let c and f be the speed of light and
the carrier wave frequency, so the phase shifts φ0 and φi(i ≥ 1) are calculated by
φ0 =

2πf
c
d0 and φi =

2πf
c
di. According to Eq. 3.1, the total channel transfer function

HLOS of the received signal r (t) in LOS can be written as

HLOS = µlµT

4

gA
d0

52

eJ(
4πf
c
d0+φl+φT )

6

1 + 2
(

i≥1

µWi

d0
di
eJ(

2πf
c

(di−d0)+φWi)

7

(3.2)

RSSI. The modulus of HLOS (i.e., received signal amplitude (or voltage) Vtotal
in the unit of Volts) is

Vtotal = 'HLOS' = µlµT

4

gA
d0

52

γm (3.3)

where γm =

8

8

8

8

1 + 2
9

i≥1

µWi

d0
di
eJ[

2πf
c

(di−d0)+φWi ]
8

8

8

8

is the multipath term of RSSI. For

simplicity, γm is called multipath RSSI in the rest of the work. The range of µl,µT
and µWi

is [0, 1].

The received signal power Ptotal in the unit of Watts is proportional to the square
of the voltage, which can be represented by Ptotal = η ·(Vtotal)2, where η is a constant.
Since the RFID reader can report RSSI rssi to indicate backscatter signal power
in dBm rather than in Watts, we make the unit conversion of dBm to Watts using

Watts = 10(
dBm
10

−3). Thus, the RSSI-distance model in multipath LOS environments
is

µlµT

4

gA
d0

52

γm =
1
√
η
10(

rssi
20

−1.5) (3.4)
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RF Phase. The argument of HLOS (i.e., phase shift φtotal in unit of radians) is

φtotal = Arg (HLOS) + 2πktotal

= Arg

4

4πf

c
d0 + φl + φT

5

+ φm + 2πktotal
(3.5)

where φm = Arg

4

1 + 2
9

i≥1

µWi

d0
di
eJ[

2πf
c

(di−d0)+φWi ]
5

is the multipath term of RF

phase, i.e., multipath RF phase. The range of the function Arg (·) is in the closed-
open interval (−π, π], so we have φm ∈ (−π, π]. ktotal is an integer to make
Arg (HLOS) ∈ (−π, π]. Suppose that τl and τT are the signal propagation delays
in the RFID reader and RFID tag, then the phase shifts φl and φT are denoted by
φl = 2πfτl and φT = 2πfτT , respectively.

Many COTS RFID readers (e.g., Impinj R420 reader used in our experiment) can
report RF phase φreport, which rotates by 2π for every one-half carrier wavelength.
In the reader-to-tag forward link, the RFID reader generally adopts phase-reversal
amplitude shift keying (PR-ASK) technique to modulate the RF signal in dense in-
terrogator mode, so the reported RF phase of the received signal is opposite to the
true RF phase. In addition, there are two tag backscatter modulation techniques
in the tag-to-reader reverse link, i.e., amplitude shift keying (ASK) and phase shift
keying (PSK). 1) ASK. Most of the previous RFID systems work at ‘MaxThrough-
put’ reader mode with the highest data rate for RFID reading. However, this mode
is significantly susceptible to noise interference and can only be applied in the sce-
nario with a few RFID tags. 2) PSK. According to [45], the ‘AutosetDenseReader’
reader mode is recommended to be configured in most scenarios, which can auto-
matically select a reader mode to adapt for the application scenario. However, the
output RF phase may have π radians of phase ambiguity due to phase reversals in
PSK, meaning that the reported RF phase may be the true RF phase or the true
RF phase plus π radians [43]. In general, this automatic reader mode is generally
implemented. To deal with phase reversal in the received signal and the π jump,
the RF phase φ for use is formulated as

φ = mod (−φreport, π) (3.6)

In the following, the reported RF phase measurement for use is the version after
this transformation by default. Thus, the RF phase-distance model in multipath
LOS environments is

φ+ πk =
4πf

c
d0 + φl + φT + φm (3.7)

where the unknown parameter πk, called integer phase ambiguity, is an integer
multiple of π.

3.2.3 RSSI and RF Phase-distance Models in NLOS

In NLOS cases that the straight-line path between A and T is obstructed by
an obstacle WX but RF signals can still pass through WX to read T , the chan-
nel transfer function of each backscatter signal path needs to additionally multiply
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hWX
= µWX

eJφWX . Thus, the total channel transfer function in NLOS is expressed

as HNLOS = µ2WX
eJ(2φWX )HLOS. The RSSI and RF phase-distance models in NLOS

are
:

;

;

<

;

;

=

1
√
η
10(

rssi
20

−1.5) = µlµTµ
2
WX

4

gA
d0

52

γm

φ+ πk =
4πf

c
d0 + φl + φT + 2φWX

+ φm

(3.8)

In particular, we need to indicate that these NLOS models can be used for device-
free sensing systems. For example, in contrast to relative positioning in Tadar [113],
it provides an opportunity to achieve absolute device-free target localization, which
we will leave for our future work.

3.2.4 The Shortcomings of Prior RSSI and RF Phase-distance Models

Here we present the commonly-used RSSI and RF phase-distance models in most
of existing works [110, 27, 79, 105], i.e.,

:

;

;

<

;

;

=

1
√
η
10(

rssi
20

−1.5) = µlµT

4

gA
d0

52

φreport + 2πk =
4πf

c
d0 + φl + φT

(3.9)

The shortcomings are listed as follows:

1) The changes in RSSI and RF phase due to multipath interference are ignored.

2) The reported RF phase φreport can not be directly applied to estimate the
tag-to-antenna distance. Prior position-based RFID sensing works can perform well
because they only capture the relative change in RF phase to indicate the changes
in tag positions.

3) The reader can only work at “MaxThroughput” reader mode in an appli-
cation scenario with few RFID tags. And in this mode, the reported RSSI and
RF phase measurements are more susceptible to multipath interference than other
reader modes.

4) The phase shifts φl and φT are frequency-dependent parameters, which can
not be easily removed under frequency hopping.

3.2.5 Multipath Interference in Two Tightly-spaced Antennas

Dual-antenna Hypothesis: Given two tightly-spaced reader antennas rela-
tively far away from an RFID tag, multipath interference may induce similar changes
in multipath RSSI and RF phase corresponding to each antenna.

As shown in Fig. 3.3, given two tightly-spaced reader antennas A1 and A2 with
the spacing of D, θ0 (A) and θi (A), i ≥ 1, represent the angle of arrival (AOA)
of the direct path along A → T and the i-th reflected path along A → Wi → T ,
respectively. Since the reflectors besides the RFID tag T may produce dominant
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multipath interference relative to those far away from T , we can assume that θi (A) ≈
θ0 (A) for these nearby reflectors. And the path distance difference between A1 and
A2 is calculated by di (A1)− di (A2) ≈ D cos θi (A), i ≥ 0. Thus, we have

di (A1)− d0 (A1) = di (A2)− d0 (A2) +D cos θi (A)−D cos θ0 (A)

≈ di (A2)− d0 (A2)
(3.10)

And together with di (A2) ≫ D cos θi (A), the ratio of d0 (A1) to di (A1) is ap-
proximated as

d0 (A1)

di (A1)
≈ d0 (A2) +D cos θ0 (A)

di (A2) +D cos θi (A)

≈ d0 (A2)

di (A2)

(3.11)

According to Eq. 3.2 in multipath LOS, we get

(

i≥1

µWi

d0 (A1)

di (A1)
eJ(

2πf
c

[di(A1)−d0(A1)]+φWi) ≈
(

i≥1

µWi

d0 (A2)

di (A2)
eJ(

2πf
c

[di(A2)−d0(A2)]+φWi)

(3.12)

Therefore, we can infer that γm (A1) ≈ γm (A2) and φm (A1) ≈ φm (A2). This
case can be better complied as the tag-to-antenna distance increases and the two
antennas are more tightly spaced. In the processing of RFID and CV fusion, we
depend on this dual-antenna hypothesis to minimize the effect of multipath inter-
ference. Note that in NLOS scenarios, since an obstacle with uncontrolled materials
between an RFID tag and reader antennas can attenuate the received signal power
at the tag end, the reported RSSI and RF phase is more susceptible to multipath
interference compared to LOS cases, which may challenge the proposed hypothesis.
In this work, we mainly focus on the LOS scenarios. The solutions to deal with
NLOS cases are discussed in Section 3.6.
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Figure 3.4 : The impact of frequency-hopping on RSSI and RF phase.

3.3 Dealing with Frequency-dependent Hardware Charac-
teristics

In this section, we firstly conduct an experiment to illustrate the impact of
frequency hopping on RSSI and RF phase. Then we extend the multipath models
in Section 3.2.1 to the case with a dominant multipath signal for hardware-related
phase shift estimation, which is another fundamental procedure for RFID and CV
fusion. The algorithm performs with only one reader antenna and several RFID
tags. The experiments to demonstrate the phase-shift estimation performance are
described in Section 3.5.3.

3.3.1 Preliminary

Here we take an experiment to show the impact of different operating frequencies
on RSSI and RF phase measurements. Without multipath interference, the RSSI
and RF phase over distance are shown in Eq. 3.9. An RFID reader operates in a
fixed transmitted power and in a sequential sequence over 16 frequency channels (i.e.,
920.625∼924.375 MHz with 250kHz frequency spacing in China) to read a stationary
RFID tag in free space with very low multipath noise. The tag-to-antenna manually-
measured distance is 35cm between the antenna casing surface center and the RFID
tag center. As shown in Fig. 3.4, each color of samples corresponds to a frequency
channel and the dwell time per channel is about 2 seconds. Note that in United
States or some other countries, an RFID reader will randomly hop to an available
channel every about 0.2 seconds [44]. We also find that RSSI samples change a little
while there exist many piecewise RF phase samples. The main reasons are explained
as follows:

RSSI. The work [65] indicates that the tag reflection capability (i.e., correspond-
ing to the parameter µT in our work) is related to the operating frequency of the
signal for tag modulation. However, since most COTS RFID readers work within
a very narrow frequency band, the parameter µT will almost keep unchanged. In
addition, µl and gA are frequency-independent parameters. Therefore, RSSI mea-
surements do not change with different frequencies.

RF Phase. Due to unchanged prorogation delays τl and τT , we take the differ-
ence between two RF phase measurements φ (fi) and φ (fj) at operating frequencies
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fi and fj, i.e.,

φ (fi)− φ (fj) +∆kπ =
4πd0
c

(fi − fj) + 2π (τl + τT ) (fi − fj) (3.13)

Ignoring the phase ambiguity ∆kπ (i.e., ∆kπ = 0) and substituting d0 ≈ 35cm into
Equation (3.13), the hardware-related phase-shift difference between Channel 1 and
Channel 16, i.e., the value of 2π (τl + τT ) (f16 − f1), is about 1.2 radians. In the
FCC regions with the band of 902.75∼927.25MHz, the phase difference will become
larger. Unfortunately, the manually-measured distance d0 is inaccurate because
the antenna phase center may be within the plastic casing plane. With even 1cm
measurement error, the estimate of the hardware-related phase shift at Channel 1
will introduce additional 0.385 radians phase-shift error. In the following, we will
introduce how to leverage the proposed multipath RSSI and RF phase models to
accurately estimate the tag-to-antenna distance.

3.3.2 Multipath Interference-powered Phase-shift Estimation

To intuitively introduce our method, we deploy an experiment setup in multipath
LOS shown in Fig. 3.5. Two RFID tags T1 and T2 are deployed very close to a
reader antenna A in 3D space. To combat the coupling effect [105] (i.e., the change
in RF phase and RSSI caused by neighboring RFID tags), the distance between
any two RFID tags requires greater than half a wavelength (i.e., about 16 cm). A
reflector W1 with a strong reflection coefficient is placed in front of these tags at
different positions X each time. Other environmental multipath sources such as the
floor, a distant wall and furniture are relatively far from the tag. In this case, the
backscatter signals reflected off these sources with long propagation distances and
random propagation delays may cancel out each other at the receiver (see Fig. 3.6)
such that the reflected signal off W1 can dominate the multipath signal, i.e.,

(

i≥1

µWi

gA
di
eJ(

2πf
c
di+φWi) ≈ µW1

gA
d1
eJ(

2πf
c
d1+φW1) (3.14)

Then the total channel transfer function HLOS of the received signal r (t) can be
rewritten as

HLOS ≈ µlµT

4

gA
d0

52

eJ(
4πf
c
d0+φl+φT )

>

1 + 2µW1

d0
d1
eJ(

2πf
c

(d1−d0)+φW1)
?

(3.15)

Accordingly, the multipath RSSI and RF phase are formulated as

:

;

;

<

;

;

=

γm =

@

1 + 2xmzm + (zm)
2

φm = 2arctan
ymzm

@

(1 + xmzm)
2 + (ymzm)

2 + 1 + xmzm

(3.16)
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2πf
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>

2πf
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(d1 − d0) + φW1
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zm = 2µW1

d0
d1

(3.17)

Further, if the tag-to-antenna distance d0 be far less than the dominant reflected
path length d1 along A → W1 → T (or A → T → W1), i.e., d0 ≪ d1, we have
2µW1

d0
d1

≪ 1 due to the reflection coefficient µW1 ∈ (0, 1). In this case, two approxi-

mate expressions (1 + x)
1
2 ≈ 1 + x

2
(if |x| ≪ 1) and arctan x ≈ x (if x → 0) can be

used to rewrite Eq. 3.16, i.e.,

:

;

;

<

;

;

=

γm = 1 + 2µW1

d0
d1

cos

>

2πf

c
(d1 − d0) + φW1

?

φm = 2µW1

d0
d1

sin

>

2πf

c
(d1 − d0) + φW1

? (3.18)

3.3.3 Deriving Multipath RSSI and RF Phase Measurements

In absence and presence of W1, the RSSI and RF phase measurements at the
same frequency are 〈rssi,φ〉 and 〈rssi (X) ,φ (X)〉, respectively. Canceling unknown
parameters (i.e., η, φl, φT , µl, µT and gA) based on Eq. 3.4 and Eq. 3.7, the
multipath RF phase and RSSI can be derived as follows:

A

γm = 10
rssi(X)−rssi

20

φm = φ (X)− φ+ πkm
(3.19)

where km is an integer to make φm within (−π, π].
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3.3.4 Calculating Dominant Reflected Path Distance

For the reflector W1 at the positions X1 and X2, the multipath measurements of
an RFID tag T1 are denoted as 〈φm (T1, X1) , γm (T1, X1)〉 and 〈φm (T1, X2) , γm (T1, X2)〉,
respectively. The parameters µW1 and φW1 are independent to the reflector positions.
Substituting them into Eq. 3.18, we can obtain

:

;

;

<

;

;

=

2µW1

d0 (T1)

d1 (T1, X1)
=

@

[γm (T1, X1)− 1]2 + [φm (T1, X1)]
2

2µW1

d0 (T1)

d1 (T1, X2)
=

@

[γm (T1, X2)− 1]2 + [φm (T1, X2)]
2

(3.20)

and
:

;

;

<

;

;

=

2πf

c
[d1 (T1, X1)− d0 (T1)] + φW1 + πk (T1, X1) = arctan

>

φm (T1, X1)

γm (T1, X1)− 1

?

2πf

c
[d1 (T1, X2)− d0 (T1)] + φW1 + πk (T1, X2) = arctan

>

φm (T1, X2)

γm (T1, X2)− 1

?

(3.21)
where k (T1, X1) and k (T1, X2) are unknown integers. Combing with Eq. 3.20 and
Eq. 3.21, we can calculate the dominant reflected path distances d1 (T1, X1) and
d1 (T1, X2) using the following equations,

:

;

;

<

;

;

=

d1 (T1, X2)

d1 (T1, X1)
= α (T1, X1, X2)

2πf

c
[d1 (T1, X1)− d1 (T1, X2)] + π∆k (T1, X1, X2) = β (T1, X1, X2)

(3.22)

where
:

;

;

;

;

;

;

;

;

<

;

;

;

;

;

;

;

;

=

α (T1, X1, X2) =

@

[γm (T1, X1)− 1]2 + [φm (T1, X1)]
2

@

[γm (T1, X2)− 1]2 + [φm (T1, X2)]
2

β (T1, X1, X2) = arctan

>

φm (T1, X1)

γm (T1, X1)− 1

?

− arctan

>

φm (T1, X2)

γm (T1, X2)− 1

?

∆k (T1, X1, X2) = k (T1, X1)− k (T1, X2)

(3.23)

In the following, we give details on how to determine the value of∆k (T1, X1, X2).
Suppose that dA→W1 (X) is the distance between A and W1, and dW1→T1 (X) denote
the distance between W1 and T1. The distances d1 (T1, X1) and d1 (T1, X2) can be
expressed as

A

d1 (T1, X1) = dA→W1 (X1) + dW1→T1 (X1)

d1 (T1, X2) = dA→W1 (X2) + dW1→T1 (X2)
(3.24)

Let D (X1, X2) be the manually-measured distance between the reflector posi-
tions X1 and X2. Based on the triangle inequality theorem |a+ b| ≤ |a| + |b| and
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the triangle rule that the length difference of two sides is smaller than the length of
the third side, we can obtain the following inequation,

|∆d1 (T1, X1, X2)| = |d1 (T1, X1)− d1 (T1, X2)|
= |dA→W1 (X1)− dA→W1 (X2) + dW1→T1 (X1)− dW1→T1 (X2)|
≤ |dA→W1 (X1)− dA→W1 (X2)|+ |dW1→T1 (X1)− dW1→T1 (X2)|
< 2D (X1, X2)

(3.25)

According to Eq. 3.18, we have

|β (T1, X1, X2)− π∆k (T1, X1, X2)| <
4πf

c
D (X1, X2) (3.26)

Thus, ∆k (T1, X1, X2) can be determined as follows:

∆k (T1, X1, X2) =

:

;

;

<

;

;

=

−κ, β (T1, X1, X2) ∈ [0, π) ,∆d1 (T1, X1, X2) ≥ 0
− (κ+ 1) , β (T1, X1, X2) ∈ [−π, 0) ,∆d1 (T1, X1, X2) ≥ 0
κ+ 1, β (T1, X1, X2) ∈ (0, π] ,∆d1 (T1, X1, X2) ≤ 0
κ, β (T1, X1, X2) ∈ (−π, 0] ,∆d1 (T1, X1, X2) ≤ 0

(3.27)
where κ is an integer, which is calculated by

∀κ ∈
>

0,
4f

c
D (X1, X2)

5

:
4πf

c
|∆d1 (T1, X1, X2)| ∈ [κπ, (κ+ 1) π] (3.28)

Similarly, we can also depend on above steps to calculate dominant reflected
path distances of T2, i.e., d1 (T2, X1) and d1 (T2, X2).

3.3.5 Calculating Tag-to-antenna Distance

When the reflector W1 locates at X1, the multipath measurements of T2 are
denoted as 〈φm (T2, X1) , γm (T2, X1)〉. Then we can calculate the tag-to-antenna
distances d0 (T1) and d0 (T2) by

:

;

;

<

;

;

=

d0 (T1)

d0 (T2)
=
d1 (T1, X1)

d1 (T2, X1)
α (T1, T2, X1)

2πf

c
[d0 (T2)− d0 (T1) +∆d1 (T1, T2, X1)] + π∆k (T1, T2, X1) = β (T1, T2, X1)

(3.29)
where

:

;

;

;

;

;

;

;

;

;

;

<

;

;

;

;

;

;

;

;

;

;

=

α (T1, T2, X1) =

@

[γm (T1, X1)− 1]2 + [φm (T1, X1)]
2

@

[γm (T2, X1)− 1]2 + [φm (T2, X1)]
2

β (T1, T2, X1) = arctan

>

φm (T1, X1)

γm (T1, X1)− 1

?

− arctan

>

φm (T2, X1)

γm (T2, X1)− 1

?

∆d1 (T1, T2, X1) = d1 (T1, X1)− d1 (T2, X1)

∆k (T1, T2, X1) = k (T1, X1)− k (T2, X1)

(3.30)
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Here we introduce how to determine the value of ∆k (T1, T2, X1). Let D (T1, T2)
be the manually-measured distance between the tags T1 and T2, then we can con-
struct the following inequation to determine ∆k (T1, T2, X1),
B

B

B

B

β (T1, T2, X1)−
2πf

c
∆d1 (T1, T2, X1)− π∆k (T1, T2, X1)

B

B

B

B

<
2πf

c
D (T1, T2) (3.31)

And ∆k (T1, T2, X1) can be determined as follows:

∆k (T1, T2, X1) =

:

;

;

<

;

;

=

−κ, β (T1, T2, X1)− 2πf
c
∆d1 (T1, T2, X1) ∈ [0, π) ,∆d0 (T1, T2) ≥ 0

− (κ+ 1), β (T1, T2, X1)− 2πf
c
∆d1 (T1, T2, X1) ∈ [−π, 0) ,∆d0 (T1, T2) ≥ 0

κ+ 1, β (T1, T2, X1)− 2πf
c
∆d1 (T1, T2, X1) ∈ (0, π] ,∆d0 (T1, T2) ≤ 0

κ, β (T1, T2, X1)− 2πf
c
∆d1 (T1, T2, X1) ∈ (−π, 0] ,∆d0 (T1, T2) ≤ 0

(3.32)
where ∆d0 (T1, T2) = d0 (T1)− d0 (T2). κ is an integer, which is calculated by

∀κ ∈
>

0,
2f

c
D (T1, T2)

5

:
2πf

c
|∆d0 (T1, T2)| ∈ [κπ, (κ+ 1) π] (3.33)

3.3.6 Refining Hardware-related Phase Shifts

When we collect RSSI and RF phase measurements over all available channels
at different reflector positions, each RFID tag will have multiple tag-to-antenna
distance estimates. Suppose that d0 (Ti, fj, Xk) denotes the tag-to-antenna distance
estimate of the tag Ti at the frequency fj and the reflector position Xk, and φ (Ti, fj)
represents the RF phase measurement at fj in absence of the reflector. The opti-
mal hardware-related phase shift at fj can be estimated by solving the following
maximization problem,

φh
∗ (fj) = argmax

φh(fj)∈[0,π]

(

i,j,k

|cos∆φ (Ti, fj, Xk)| (3.34)

where
:

<

=

φh (fj) = mod [φl (fj) + φT (fj) , π]

∆φ (Ti, fj, Xk) = φ (Ti, fj)−
4πfj
c

d0 (Ti, fj, Xk)− φh (fj)
(3.35)

And the function |cos (·)| is to remove RF phase periodicity, so the phase-shift
estimate is the true phase-shift modulo π. Finally, the hardware-related phase shifts
at all available channels can be estimated. Note that since the ground-truth antenna
position (i.e., antenna phase center) is typically a point on the centerline of the
antenna [35], we deploy an RFID tag well-aligned with the antenna casing surface
center to estimate this point by substituting the estimated hardware-related phase
shift.

3.4 Fusing RFID and CV for Region-of-interest RFID Tag
Recognition and Localization

So far, we have introduced how to deal with multipath interference and frequency-
dependent hardware characteristics. In this section, we give details on RFID and
CV fusion for ROI RFID tag recognition and localization by cleaning raw RF phase
measurements.
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Figure 3.7 : Extract object proposals of moving toy trains.

3.4.1 Candidate Region Extraction from 2D Image

Recall that the RF phase for use is a periodic function with the period π radians,
which repeats at every quarter of the wavelength of the tag-to-antenna distance. In
this case, RFID localization accuracy is subject to RFID tag position uncertainty
coming from RF phase periodicity. Instead of recognizing and locating stationary
RFID-tagged objects in the ROI, we mainly focus on moving objects in our convey-
orized scenario of this work.

Here we extract the candidate region of each moving object in the field of camera
view to minimize the RFID tag position ambiguity. At first, a Gaussian Mixture
Models (GMMs)-based foreground detector [83] is exploited to detect the absence or
presence of moving objects and segment the foreground mask of the moving objects
from a video frame. Then we map the foreground mask into the video frame to
ignore the background image information. Finally, we adopt purely image-based
Edged Boxes [119] to extract the candidate regions highlighted by enclosing a series
of bounding boxes (called object proposals), without pre-training any object detector
like CNN-based algorithms [70]. Apart from providing faster computation (about 0.2
seconds per frame) and higher detection accuracy than other image-based methods
like Selective Search [88], Edged Boxes also offers an additional objectness score for
each object proposal to indicate the likelihood of an object being present. Hence, we
choose those object proposals with high scores to reduce the effect of invalid object
proposals containing more than one object. For example, Fig. 3.7a shows that a
video frame in which many stationary objects are deployed within the track and
two moving toy trains are moving on the track. Fig. 3.7b shows that Edge Boxes
algorithm can effectively extract multiple candidate regions (i.e., object proposals)
from the image that only contains the moving foreground.

3.4.2 2D Image to 3D World Coordinate Transformation

To associate image information with RFID reports, a fundamental procedure is
to perform the perspective transformation from a 2D image coordinate system to a
3D world coordinate system, which can be achieved by Zhang’s camera calibration
algorithm [116]. The main steps are summarized as follows:

Prepare calibration images. A typical camera calibration pattern is an asym-
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metric checkerboard, where one side contains an even number of black and white
squares, and the other contains an odd number of squares. The checkerboard is
affixed on a flat surface. Our fixed 2D monocular camera captures the checkerboard
images from different orientations and distances.

Estimate camera parameters. The checkerboard corners can be automati-
cally detected in each image to estimate intrinsic and extrinsic camera parameters
and lens distortion coefficients.

Transform 2D image coordinates to 3D world coordinates. In the camera
filed, we place a checkerboard in the same plane as RFID-tagged objects to be
tracked. Then we capture the checkerboard image to compute the rotation matrix
and the translation matrix of the camera relative to the checkerboard. On this basis,
each pixel in the 2D ROI image can be transformed into the 3D world coordinate
in the camera-centered coordinate system. In particular, we specify the centroid of
each object proposal as its location in the 2D ROI image, so the corresponding 3D
world coordinate can also be obtained.

3.4.3 Reader Antenna Localization in Camera-centered Coordinate Sys-
tem

Due to an unknown camera view angle relative to each reader antenna, it is
unable to directly measure the antenna position relative to the camera lens center
in 3D space as its 3D world point in the camera-centered coordinate system. As
mentioned above, the coordinate of each corner in the checkerboard with the same
plane as tracked objects can be calculated. And the distance of each corner to
the casing surface center of each reader antenna can be manually measured with a
tapeline or laser range-finder. Let (xCi , yCi , zCi) be the known 3D world coordinate
of the i-th corner Ci in the camera-centered coordinate system, d (Ci, Aj) be the
manually-measured distance between Ci and Aj, and

C

xAj , yAj , zAj
D

be the 3D world
coordinate of the antenna Aj to be calculated. Thus, we build a sphere equation
with the center at Ci and the radius d (Ci, Aj) as follows:

C

xCi − xAj
D2

+
C

yCi − yAj
D2

+
C

zCi − zAj
D2

= [d (Ci, Aj)]
2 (3.36)

Note that since d (Ci, Aj) is much larger than the distance difference between
the ground-truth and the casing surface center, the impact of antenna position
measurement error can be ignored. In this case, the closet point to all spheres
corresponding to different corner coordinates is regarded as the position of Aj, which
can be solved by least-squares minimization [28].

3.4.4 RFID and CV Sampling Synchronization

In our experiment, an RFID reader and a 2D camera both connect to a router
with Network Time Protocol (NTP) server, which can provide a common time base-
line for RFID and CV systems, respectively. The camera frame rate is fixed over
time. However, since an RFID reader employs a slotted-aloha inventory scheme, the
sampling time between successive inventories of the same RFID tag is unpredictable
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[43] for each antenna, which is mainly determined by tag population and environ-
mental change. To achieve RFID and CV synchronization, the CV sampling times-
tamp is regarded as the baseline. Given a CV sample

E

Iℓ, tℓc
F

(i.e., 2D image and
timestamp) and a sequence of RFID samples 〈EPC (Ak) ,φ (Ak) , f (Ak) , t

r (Ak)〉
(i.e., EPC, RF phase, operating frequency and reading timestamp) corresponding
to the reader antennas A1 and A2, the RF phase measurements of an RFID tag at
the sampling synchronization time tℓc can be calculated by

:

;

<

;

=

φℓ (A1) = argmin
tir(A1)

B

Btir (A1)− tℓc
B

B

φℓ (A2) = argmin
tir(A2)

B

Btir (A2)− tℓc
B

B

s.t.

A

EPC (A1) = EPC (A2)

f (A1) = f (A2)
(3.37)

3.4.5 RFID-CV Fusion for ROI RFID Tag Recognition and Localization

1) RFID and CV Matching Scoring. For an RFID tag to be identified,
let F ℓ =

G

φℓ, P ℓ
H

denote a pair of RFID-CV fusion data at the sampling synchro-
nization time tℓc, which consists of RF phase measurements φℓ =

G

φ
C

Aℓ
1

D

,φ
C

Aℓ
2

DH

of two RFID reader antennas and object proposals P ℓ =
G

P ℓ
1 , P

ℓ
2 , ...

H

of an image.
Here we define an RFID and CV matching score Γ

C

P ℓ
i

D

to estimate the likelihood
of containing the target RFID tag in the object proposal P ℓ

i as follows:

:

;

;

;

<

;

;

;

=

Γ
C

P ℓ
i

D

= max
φm(Aℓ)∈[−π,π]

1

2

2
(

k=1

B

Bcos∆ϑ
C

Aℓ
k, P

ℓ
i

DB

B

∆ϑ
C

Aℓ
k, P

ℓ
i

D

= φ
C

Aℓ
k

D

− 4πf

c
d0

C

Aℓ
k, P

ℓ
i

D

− φm
C

Aℓ
D

− φh
∗ (Ak, f)

(3.38)

where φh
∗ (Ak, f) is the known hardware-related phase shift of the antenna Ak at

the frequency f . d0
C

Aℓ
k, P

ℓ
i

D

is the distance of the antenna Aℓ
k to the object proposal

P ℓ
i .

Analysis: 1) Matching Principle. According to the dual-antenna hypothesis,
the multipath RF phase relative to the antennas A1 and A2 may be approximately
equal to each other, i.e., φm

C

Aℓ
1, P

ℓ
i

D

≈ φm
C

Aℓ
2, P

ℓ
i

D

, so we denote the multipath
RF phase as φm

C

Aℓ
D

. Due to
B

Bcos∆ϑ
C

Aℓ
k, P

ℓ
i

DB

B ∈ [0, 1], the range of the matching
score Γ

C

P ℓ
i

D

lies between 0 to 1. If the RFID tag locates at the object proposal P ℓ
i ,

Γ
C

P ℓ
i

D

will have the maximum close to 1; otherwise, the value of Γ
C

P ℓ
i

D

may be
close to 0. Thus, we can search an optimal multipath RF phase φm

C

Aℓ
D

within the
range of (−π, π] to solve the maximization problem. 2) Antenna Spacing. There
is a tradeoff between increasing the matching resolution and reducing the multi-
path RF phase difference. As the antenna spacing increases, the difference between
B

Bcos∆ϑ
C

Aℓ
1, P

ℓ
i

DB

B and
B

Bcos∆ϑ
C

Aℓ
2, P

ℓ
i

DB

B accordingly increases. However, it will com-
bat our tightly-spaced antenna hypothesis mentioned above. Therefore, in practice,
when the tracked RFID tags are close to the antenna pair, the small antenna spacing
is required. Otherwise, the spacing can be appropriately increased. Due to the 8dBi
gain antenna size of 26cm×26cm in our experiment, the minimum spacing between
their casing surface centers is 26cm.
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2) Recognition and Localization Based on Matching Score. Due to RF
phase periodicity, there may exist one or more object proposals with approximate
matching scores. To balance between minimizing the position ambiguity and im-
proving the real-time performance, three successive fusion data F ℓ−1, F ℓ and F ℓ+1

are employed to calculate the optimal object proposal P ℓ of the tag being present
in F ℓ by finding the maximum of the average matching scores as follows:

P ℓ = argmax
P ℓ−1
i ∈P ℓ−1

P ℓ
j ∈P ℓ

P ℓ+1
k ∈P ℓ+1

1

3

(

i,j,k

I

Γ
C

P ℓ−1
i

D

+ Γ
C

P ℓ
j

D

+ Γ
C

P ℓ+1
k

DJ

s.t.

A
8

8X
C

P ℓ−1
D

−X
C

P ℓ
D8

8 ≤ δP
8

8X
C

P ℓ
D

−X
C

P ℓ+1
D8

8 ≤ δP

(3.39)

where
8

8X
C

P ℓ−1
D

−X
C

P ℓ
D8

8 is the distance between the centroid coordinates of
object proposals P ℓ−1 and P ℓ in the world coordinate system. δP is the maximum
reachability distance. Here we set δP as λ/4 (about 8cm) by default to eliminate the
position ambiguity due to RF phase periodicity. In our experiment, the sampling
rate of the RFID system (i.e., the reading times of an RFID tag per second) is about
0.08 seconds/reading when 40 RFID tags exist in the reading zone. The setting of
δP can be applied in the scenarios that the tag moves at the maximum speed of 1
m/s, which can meet most the practical applications.

To ensure the system recognition accuracy, RF-Focus performs over an RFID-
CV fusion data sequence with the number of N fusion samples. The possible tag
trajectory can be represented by an object proposal sequence,

Trajectory
C

Fℓ
D

=
G

P ℓ+1, P ℓ+1, ..., P ℓ+N−2
H

(3.40)

And its average matching score is computed as follows,

Γ
C

Fℓ
D

=
1

N − 2

N−2
(

k=1

Γ
C

P ℓ+k
D

(3.41)

If the value of Γ
C

Fℓ
D

is larger than a predefined threshold δROI , we consider that
the tracked RFID tag locates within the ROI and its trajectory is Trajectory

C

Fℓ
D

;
otherwise, it is a false-positive reading RFID tag outside the ROI.

Analysis : Given M object proposals in each object proposal set, exhaustively
searching the tag trajectory with the maximum average matching score has exponen-
tial time complexity O

C

MN
D

, which will seriously jeopardize the system’s real-time
performance. Instead, since RF-Focus performs only using three successive fusion
data, the time complexity drops to O [M3 × (N − 2)] and the localization error will
not accumulate over time.

3.5 Evaluation

In this section, we introduce the implementation of RF-Focus. Then we conduct
a series of RFID-related experiments to evaluate the performance of dealing with
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Figure 3.8 : Experiment setup.
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Figure 3.9 : Measured and simulated results in LOS and NLOS.

multipath interference and frequency-dependent hardware characteristics. Finally,
we evaluate the performance of RFID and CV fusion for ROI RFID tag recognition
and localization.

3.5.1 Implementation

Hardware Implementation. We build a prototype using an Impinj R420
RFID reader, two circularly polarized 8dBi-gain reader antennas, dual-dipole Impinj
H47 RFID tags, anti-metal RFID tags and a 2D monocular camera. The 2D camera
costs about 70 US dollars while the RFID system costs about 2000 US dollars. Thus,
the increase in the RFID and CV fusion system cost compared to previous purely
RFID systems can be ignored. The RFID reader is configured to work at ‘AutoSet
Dense’ mode over all operating frequencies from 920.625 MHz to 924.375MHz. The
frame rate of the camera is set to 30 fps. A reader antenna with a size of 26cm ×
26cm× 4.5cm can achieve about 6∼10m reading range. The size of an Impinj H47
RFID tag is 4.4cm × 4.4cm. The packaged anti-metal RFID tag with the size of
10cm × 3.3cm consists of the Alien Higgs 9630 RFID tag and 0.5cm thick foam
material affixed on the back of the tag.

Backend Implementation. The proposed RFID and CV fusion approach is
implemented in C# and Matlab 2016b. We exploit Impinj Software Developer’s Kit
and OpenCV library to record RFID reports (i.e., EPC, RF phase, RSSI, Times-
tamp) and 2D images. The programs for data collection and performance evaluation
both run on a laptop with a 2.3 GHz CPU (Intel i5-6200U) and 4 GB memory.
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3.5.2 Effectiveness of Multipath RSSI and RF Phase Modelling

Default Experiment Setup. In Fig. 3.8, a reader antenna A, an Impinj H47
RFID tag T and a reflector W1 (i.e., 5cm thick hardcover book) are sequentially
deployed in a straight line in LOS between the RFID tag and the antenna. We
align the position centers of T and W1 with the center of A such that we have
d1 = d0 + 2∆d. We vary the reflector-to-tag distance ∆d from 0 to 55cm at 1cm
step. RF phase and RSSI measurements are collected in the absence and presence of
the reflector W1 to calculate multipath terms using Eq. 3.19. To intuitively observe
the changes in multipath RSSI and RF phase, the reader works at a fixed frequency
(920.625MHz).

Metrics. The parameters µW1 , φW1 , d0 and d1 are substituted into Eq. 3.16 to
simulate multipath RF phase and RSSI. We observe whether the actual measure-
ments can comply with our simulation.

Simulation Fitting in LOS and NLOS. An RFID tag is placed at the distance
of about 52cm to the antenna, i.e., d0 = 52cm. In the NLOS scenario, we use a 3cm
thick wood board to block the tag-to-antenna LOS path. Here we set µW1 = 0.45
and φW1 = 2.1. In Fig. 3.9, we can see that the actual measurements deviate far
from the simulated values when the reflector-to-tag distance ∆d is less than about
3cm. In this case, the actual multipath RSSI is very close to 0. The main reason
is that the surface of the book W1 can produce a strong reflected signal in the
opposite direction to the incident signal. Since W1 is very close to the tag T , the
reflected signal is of the approximate amplitude as the incident signal, which can
cancel the signal power at the tag end. The RFID-active power for tag demodulation
falls rather rapidly to 0 and RF phase follows the abrupt change in received power.
With the increase of ∆d, the amplitude of the reflected signal off W1 is accordingly
reduced such that the multipath measurements in LOS and NLOS comply with the
simulated results. Therefore, this experiment can validate the effectiveness of our
multipath models.

Dealing with Strong Reflected Signal. An anti-metal RFID tag with a
magnetic isolator sheet can be used to combat the strong reflected signal [51] when
an RFID tag approaches metal or non-metallic objects with high density materials
(such as hardcover book, thick glass, wood). In our experiment, the reflector-to-
tag distance starts from 0.5cm due to a 0.5cm thick spacer. The tag-to-antenna
distance is about 35cm. Figure 3.10 shows that when the reflector is very close to
the anti-metal tag, there are no abrupt changes in multipath RSSI and RF phase
measurements because the magnetic material can effectively suppress the reflected
signal strength. However, the actual measurements deviate far from the simulations
given µW1 = 0.45 and φW1 = 2.5. As the reflector-to-tag distance increases, the
actual measurements are well-matched to the simulations. The impact of magnetic
material on backscatter signals is substantially complicated, which we leave in our
future work. To guarantee good tag readability, a magnetic sheet is suggested to be
inserted between an RFID tag and its tagged object in practice.

Impact of Reflector Material. Three different reflector materials are used,
including 3cm thick wood board (M1), 6cm thick softcover book (M2) and 3cm
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Figure 3.10 : Impact of Magnetic Materials for RFID Tag Antenna Isolation.
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(b) Multipath RF Phase.
Figure 3.11 : Impact of three reflector materials.

thick softcover book (M3). The tag-to-antenna distance remains unchanged. The
empirical ranking of reflection coefficients is µW1 (M1) > µW1 (M2) > µW1 (M3).
Figure 3.11 shows that the larger the reflection coefficients, the larger amplitudes
the multipath RF phase and RSSI curves have. And the curve periodicities are
relatively different from each other. The observations are in accord with the impact
of µW1 and φW1 in our multipath models.

Impact of Tag-to-antenna Distance. Figure 3.12 and Figure 3.13 show
the impact of tag-to-antenna distances at about 100cm and 200cm. We can see
that the curve amplitude does increase with the larger tag-to-antenna distance,
following the proposed multipath models. And when the reflector-to-tag distance
ranges from 2cm to about 15cm in multipath RF phase (10cm in multipath RSSI),
the measured results can accurately match with the simulation. With the increase
of the reflector-to-tag distances, however, the actual measurements deviate far from
the simulated results. Recall that we assume that the reflected signal off the reflector
dominates multipath signals. However, the longer tag-to-antenna distance weakens
the strength of the reflected signal, so the effect of other environmental interference
sources (mainly from the desk in our experiment) will accordingly increase. To
better comply with the dual-antenna solution to combat multipath interference, the
tracked RFID tags should not be too far away from reader antennas.

3.5.3 Hardware-related Phase Shift Estimation Performance

Experiment Setup. Based on the above multipath model discussions, we ob-
tain that 1) to improve the robustness to noise, a reflector with high reflection coef-
ficient should be used; 2) to reduce the effect of other multipath sources, RFID tags
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Figure 3.12 : Impact of tag-to-antenna distance at d0 = 100cm.
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(b) Multipath RF Phase (d0 = 200cm).
Figure 3.13 : Impact of tag-to-antenna distance at d0 = 200cm.

should be placed as close as possible to the antenna, but these tags must locate out-
side the near-filed region to avoid inductive coupling effect, i.e., d0 >

2D2

λ
≈ 42.25cm,

where D is the antenna plane diameter (about 26cm) and λ is the wavelength (about
32cm). Three Impinj H47 dual-dipole RFID tags are deployed in the main beam
of the directional antenna. The distances of each tag to the antenna casing surface
center are 45.8cm, 43cm and 45.8cm, respectively. The spacing between adjacent
tags is 16cm, which is enough to remove the coupling effect. The reflector is a metal
plane, which locates at a distance of 70cm to the antenna position at the initial.
Since the reflector-to-tag distance is relatively large, the tags can capture enough
radiated power for demodulation. Then we randomly move the reflector away from
the antenna each time.

Baseline. We compare our method with two baselines, i.e., manual measurement
(used in D-watch [94]) and automic reader antenna localization Tagspin [26]. A
total of 10 persons are invited to measure the distance of each RFID tag to the
antenna casing surface center with a tape. Tagspin depends on angle of arrival-
based technique to locate RFID reader antennas using two or more RFID-tagged
rotating disks moving at a constant speed.

Metrics. We open the antenna’s plastic casing to measure the distance between
a metal patch center (i.e., the mechanical antenna phase center) and the RFID tag
center as the tag-to-antenna reference distance, which is very close to the ground
truth. Note that not all reader antennas can be easily opened in practice. We
adopt the error distance, i.e., the Euclidean distance between the estimate and the
reference distance, as our basis metric. We remove the outliers that deviate far from
the reference distance from our algorithm.
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Accuracy Comparison. Figure 3.14 shows the average tag-to-antenna distance
error of three RFID tags over 16 frequency channels. The experiment results are close
to each other, which can demonstrate that the antenna phase center does not change
with different operating frequencies. Figure 3.15 shows that for our method powered
by the multipath model, the average tag-to-antenna distance error is 0.764cm with
the standard deviation of 1.76cm, outperforming manual measurement and Tagspin
by 2.54 times and 6.61 times, respectively. The localization accuracy of Tagspin is
subject to tag-antenna geometry. In our experiment, the estimate of the hardware-
related phase shift at Channel 1 is about 1.172 radians.

Effectiveness of Phase Shift Estimation Algorithm. To further verify the
effectiveness of our algorithm, we collect 5-minute RF phase measurements of an
RFID tag affixed on the rotating disk at the fixed-frequency and hopping-frequency
modes, respectively. We firstly measure an initial tag-to-antenna distance at the
beginning of rotating the disk and then use the AOA model in [26] to calculate the
tag-to-antenna distance at different time when rotating the disk. After that, we can
leverage the beamforming technique for AOA estimation [94] to calculate the average
power of the aligned received signal. Note that the function |cos (·)| is to eliminate
π radians RF phase periodicity instead of a complex exponential function in our
experiment. The maximum average power is 1. We repeat the experiment 30 times
with different antenna positions. Figure 3.16 shows that under the fixed-frequency
case, the hardware-related phase shifts can be fully removed and the average power
error is 0.306. Under the hopping-frequency case, the average power error without
any phase-shift compensation is 0.589. Then we use the estimate of hardware-related
phase shifts to compensate the non-uniformity effect and the corresponding average
power error drops to 0.316 close to the fixed-frequency case.

3.5.4 RFID and CV Fusion for ROI RFID Tag Recognition and Local-
ization

Default Experiment Setup. 1) Reader Antenna and 2D Camera Deployment.
In Figure 3.17, a pair of reader antennas and a 2D camera are all fixed on the drop
ceiling. The antenna spacing is set to 35cm. The height of the reader antennas to
the desk is about 180 cm. The size of the ROI in the field of 2D camera view is about
63cm×63cm. The system performance is free from the camera’s view angle because
the corresponding rotation and the translation matrices of the camera relative to
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the ROI plane can be determined in the process of camera calibration. The ROI is
located within the main beams of the two directional antennas. 2) ROI RFID Tag.
An Impinj H47 RFID tag (with a 2-cm-thick foam spacer) and an anti-metal RFID
tag are affixed on the top of a toy train, respectively. Our prior test demonstrates
that the 2cm reflector-to-tag distance is enough to avoid the abrupt change in RF
phase. The RFID-tagged toy train moves on the circular track at a speed of about
18cm/s to emulate a conveyorized scenario. The experiment is conducted in LOS
between RFID tags and reader antennas. 3) False-positive Reading RFID Tag. We
randomly moves ten false-positive reading RFID tags outside the ROI but in the
RFID reading zone. 4) The Number of Object Proposals. In a video frame, top 10
scoring object proposals are input into our system. In practice, we should depend on
the number of target objects in different application scenarios to adjust the number
of object proposals.

Multiple ROI RFID Tag Data Simulation. Here we introduce how to sim-
ulate multiple RFID-tagged toy trains that move on the track simultaneously. In
each experiment, we collect about 30 seconds of data during which the toy train
moves along the track 3 laps anticlockwise. Then we divide RFID and CV fusion
data of each tag (including the ROI tag on the toy train and ten false-positive read-
ing tags) into the number of K non-overlapping successive segments, just like there
are a total of K tagged objects simultaneously moving with different trajectories
in the ROI. Each segment has a length of N samples. We set K = 5 and N = 30
by default. We repeat the experiment 30 times at different starting points of the
toy train. Note that unless specifically mentioned, we depend on the above default
parameters for system performance evaluation. Metrics. 1) Recognition perfor-
mance. To characterize RF-Focus’s recognition performance, we mainly focus on
Receiver Operating Characteristic (ROC) curve by plotting the True Positive Rate
(TPR) against the False Positive Rate (FPR), where TPR and FPR may change
with different recognition thresholds. 2) Localization performance. To character-
ize RF-Focus’s localization performance, we leverage Kernelized Correlation Filters
(KCF) algorithm [42] to obtain a ground-truth bounding box PGT of the moving toy
train in each video frame. Note that the algorithm needs to specify the object image
template to be tracked in the first frame. Then we calculate the Intersection over
Union (IoU) between the output object proposal P ∗ and the ground truth PGT , i.e.,
IoU = P ∗∩PGT

P ∗∪PGT . If the value of IoU is higher than 0.5, we consider that the object
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Figure 3.17 : RF-Focus Experiment Setup.

proposal P � is a desired one correctly containing the ROI RFID tag. Thus, the lo-
calization error is defined as ErrorP = 1� |{IoU(P �)�0.5}|

N�2
, where |{IoU (P �) � 0.5}|

represents the number of correct matching object proposals.

Baseline. We compare our system RF-Focus with three methods, i.e., TagVision
[25], “Tell me what I see” [107] and RSSI-di�erencing.

TagVision. TagVision calculates the matching score by subtracting the measured
RF phase di�erence from the theoretical RF phase di�erence between the current
and initial motion blobs, where each blob is detected by the camera.

Tell me what I see. “Tell me what I see” needs to simultaneously rotate two
reader antennas binding with a Kinect V2 depth camera to remove position ambi-
guity coming from RF phase periodicity. To match our experiment setup with the
fixed devices, we leverage its RF phase-based RFID tag localization component to
calculate the matching score by subtracting the measured RF phase di�erence from
the theoretical RF phase di�erence between two reader antennas.

RSSI-Di�erencing. The RSSI-di�erencing is to subtract RSSI measurements
between two successive RFID readings, which can be formulated as follows by using
our multipath RSSI-distance model in Equation (3.4):
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Figure 3.18 : ROI RFID tag recognition
performance.
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Figure 3.19 : ROI RFID tag localization
performance.

Here we instead use the function of |cos (·)| to eliminate the RF phase ambiguity
πk. Based on the corresponding matching scores of TagVision, “Tell me what I see”
and RSSI-differencing, the possible ROI tag trajectory is recovered by our proposed
method.

ROI RFID Tag Recognition and Localization Performance. In the de-
fault experiment setup, we first evaluate the accuracy of ROI RFID tag recognition
over different methods. Figure 3.18 shows the ROC results of RF-Focus, TagVi-
sion, “Tell me what I see” and RSSI-differencing. Given a FPR of about 0.1, our
system RF-Focus can achieve the TPRs of 0.9167 for H47 tag and 0.798 for anti-
metal tag, while TagVision, “Tell me what I see” and RSSI-differencing achieve the
TPRs of 0.7, 0.7 and 0.176. Therefore, an appropriate recognition threshold εROI
in RF-Focus can be chosen to effectively differentiate ROI RFID tags. Figure 3.19
shows the CDF (Cumulative Distribution Function) of localization errors, which can
achieve the average localization errors of 5.74%, 8.01%, 31.62%, 14.31% and 51.72%
in RF-Focus (H47 tag), RF-Focus (anti-metal tag), TagVision, “Tell me what I see”
and RSSI-Differencing.

The recognition and localization performance of RF-Focus is much better than
other methods. And the dual-dipole H47 tag can achieve higher localization ac-
curacy than the anti-metal tag. The anti-metal tag is a single-port tag using a
dipole antenna configuration, while the Impinj H47 RFID tag is an omni-directional
tag, which can capture more stable RF signal energy and reduce tag-to-antenna
orientation sensitivity. In the following experiments, the H47 RFID tag is used for
evaluation. In TagVision, multipath interference at the initial position may be dif-
ferent from that at other positions, such that TagVision is subject to the changes
in multipath interference. In “Tell me what I see”, although it enables to com-
bat multipath interference and frequency-dependent hardware characteristics, RF
phase periodicity will result in more number of object proposals with the approx-
imate matching scores than RF-Focus. In RSSI-differencing, RSSI is sensitive to
the tag-to-antenna orientation, antenna polarization and multipath interference. A
comprehensive experiment in [75] is conducted to measure RSSI of an Impinj H47
tag from XY, YZ and XZ planes over different tag-to-antenna distances. The result
shows that the RFID tag has an RSSI deviation of 5.75 dB in the main beam because
different tag-to-antenna orientations may induce different tag reflection coefficients.
However, since the dual-dipole H47 tag can capture enough power for backscatter
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Figure 3.20 : Impact of ROI RFID tag number.
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Figure 3.21 : Impact of fusion sample
number.
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Figure 3.22 : Impact of false-positive
reading RFID tag number.

modulation from different orientations, the impact of the tag-to-antenna orientation
on RF phase can be ignored. Thus, the RSSI-based performance is worse than RF
phase-based systems.

Impact of ROI RFID Tag Number. More RFID-tagged objects within
the ROI weaken our system’s recognition and localization performance. We run the
experiment by varying the number of ROI RFID tags, i.e., 5, 10, 20. Accordingly, the
number of object proposals is 50, 100 and 200 due to multiple tag simulation. The
number of samples in each fusion data sequence is N = 10 such that the simulated
object trajectories will be different from each other. Figure 3.20a shows that the
TPRs drop from 0.918 for 5 ROI tags to 0.336 for 20 ROI tags given a FPR of 0.1.
And Figure 3.20b shows that the average localization error increases from 12.33%
for 5 ROI tags to 32.24% for 20 ROI tags. Due to the RF phase periodicity, there
may exist more object proposals with approximate matching scores. To minimize
the impact of positional ambiguity, a feasible solution is to calculate the average
matching score using more successive fusion data. However, it may increase the
computation delay.

Impact of RFID and CV Fusion Sample Number. More fusion data sam-
ples can improve our system’s recognition performance. Here we mainly focus on the
impact of sample number on recognition accuracy. Since we leverage three succes-
sive fusion samples for tag position estimation each time, the localization accuracy
is independent of sample number. We vary the sample number in a sequence over
10, 30 and 50. Figure 3.21 shows that the TPR increases from 0.92 for 10 samples
to 0.98 for 50 samples, given a FPR of 0.1. More samples can give more distinc-
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tive difference in average matching scores. However, our system has to consume
much more time to collect the fusion samples, which affects the real-time recogni-
tion performance. Therefore, we can rely on actual application scenarios to set an
approximate sample number.

Impact of False-positive Reading RFID Tag Number. More false-positive
reading RFID tags outside the ROI slightly decreases our system’s recognition ac-
curacy. We run the experiment by varying the number of false-positive reading
tags, i.e., 10, 20 and 30. In each experiment, we randomly move part of these tags.
The ROC curves are shown in Figure 3.22. Since the average sampling rate of each
ROI RFID tag will decrease with more false-positive RFID tags, the time interval
between successive inventories of the same tag for two RFID reader antennas will
accordingly increase. Consequently, the multipath RF phase difference between the
two antenna readings may be magnified. To deal with this issue, more fusion samples
are required to guarantee the fine-grained recognition accuracy.

3.6 Conclusion

In this work, we present RF-Focus, which relies on COTS RFID devices and a
2D monocular camera for ROI RFID tag recognition and localization in multipath-
prevalent environments. One key innovation is to formulate multipath interference
in RSSI and RF phase to deal with phase shifts due to multipath interference and
frequency-dependent hardware characteristics. Another is to associate image infor-
mation with the cleaned RF phase after the unwanted phase shift removal to reduce
tag position ambiguity due to RF phase periodicity. Experimental results demon-
strate the effectiveness of multipath interference modeling, hardware-related phase
shift estimation and RFID-CV fusion. We believe that RF-Focus can be applied
in many practical scenarios, including but not limit to baggage sorting and quality
assurance.
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Chapter 4

CV-assisted Stationary Object 3D Localization

In most RFID localization systems, acquiring a reader antenna’s position at each
sampling time is challenging, especially for those antenna-carrying robot or drone
systems with unpredictable trajectories. In this work, we present RF-MVO that
fuses RFID and computer vision for stationary RFID localization in 3D space by
attaching a light-weight 2D monocular camera to two reader antennas in parallel.
Firstly, the existing monocular visual odometry only recovers a camera/antenna
trajectory in the camera view from 2D images. By combining it with RF phase, we
design a model to estimate a scale factor for real-world trajectory transformation,
along with spatial directions of an RFID tag relative to a virtual antenna array
due to the mobility of each antenna. Then we propose a novel RFID localization
algorithm that does not require exhaustively searching all possible positions within
the pre-specified region. Secondly, to speed up the searching process and improve
localization accuracy, we propose a coarse-to-fine optimization algorithm. Thirdly,
we introduce the concept of HDOP to measure the confidence level of localization
results. Our experiments demonstrate the effectiveness of proposed algorithms and
show RF-MVO can achieve 6.23 cm localization error.

4.1 Introduction

Utilizing battery-free RFID for stationary object localization is of importance
for a variety of applications. For example, since RFID tags have been widely used
in many libraries for automatic book identification, accurate stationary RFID local-
ization would help librarians easily obtain the order of RFID-tagged books on the
shelves and find out those misshelved books. Another example is object recognition
for pick-and-place robots. The fundamental process behind the task is to accurately
identify and locate the objects to be picked up. Since RFID uses wireless signals
to capture the globally unique identity (i.e., EPC) of an object from its affixed tag,
accurate stationary RFID localization would match the EPCs to the correspond-
ing objects based on position information even in NLOS cases where the objects of
interest are occluded.

At present, instead of deploying many high-cost RFID readers around regions
of interest for low-cost RFID tag localization like [96, 110, 61, 106], many solutions
[95, 79, 60, 93, 19] build a series of virtual antennas by moving a robot binding with
multiple reader antennas along a linear trajectory or a pre-deployed magnetic track
at a uniform speed. These systems can easily determine the antenna position at
each sampling time. However, RFID localization accuracy is subject to uncertainty
in antenna position estimation. In dynamic environments, the mobile robot might
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rely on its self-adaptive trajectory planning algorithm to avoid obstacles, which will
inevitably produce an unpredictable trajectory. And for most of the commonly-
used low-cost robots (e.g., about 200 US dollars iRobot Create 2 [46]), they employ
wheel odometry [16] to track the robot movement, which cannot provide sufficiently
accurate trajectory estimates due to wheel slip in uneven terrain or other adverse
conditions [31]. Recently, some researchers [64] explore the potential of a drone
equipped with a fisheye camera and a customized RFID signal relay for indoor
RFID localization. In indoor environments, the drone cannot depend on its GPS
sensor or other sensors to obtain an accurate flight trajectory. Instead, the system
deploys a complicated and expensive CV-based tracker consisting of many infrared
cameras pre-mounted on a ceiling for flight trajectory tracking.

As the first attempt, we present RF-MVO, a CV-assisted RFID hybrid system for
stationary RFID localization in 3-dimensional (3D) space by attaching a light-weight
2-dimensional (2D) monocular camera to COTS reader antennas. 1) Basic Idea.
Our basic idea is to fuse 2D images and RFID data to recover the antenna/camera
trajectory and then locate RFID tags. Camera-based visual odometry (VO) (See
Section 4.2 for details) would allow us to obtain more accurate camera/antenna
trajectory estimates than wheel odometry [31]. However, without additional depth
information for the monocular camera, the existing MVO [68, 69] only recovers the
camera trajectory in the camera view from 2D images. To transform it to the real-
world version, we need to know the relationship between distances in the camera
view and the real world, which is called scale factor. Fortunately, RF phase is a
function of tag-to-antenna distance, providing an opportunity to estimate the scale
factor. As the antenna moves across the region of interest, RF-MVO relies on the
its mobility to build a series of virtual antenna arrays. In each array, it transforms
a piece of the camera/antenna trajectory in the camera view and depth-enabled
RF phase into a spatial power spectrum that characterizes the likelihood of each
scale factor and spatial DOA (i.e., azimuth and elevation angles) of an RFID tag
relative to the antenna array in space. Then the scale factor and DOA can be
estimated by searching the peak of the proposed spectrum. After recovering the
real-world camera/antenna trajectory using the estimated scale factor, RF-MVO
would then determine a stationary RFID tag position. 2) RFID-CV Fusion Advan-
tage. At a high level, RF-MVO would perform accurate localization without specific
robot platforms that could carry reader antennas to move with a known trajectory
compared to RFID-only solutions. A benefit is that, for example, it may help the ex-
isting drone-based RFID localization systems reduce the cost of capturing the flight
trajectory of a drone. Also, based on position matching, RF-MVO associates the
collected EPCs with the corresponding objects for object recognition. Compared
to CV-only technique, RF-MVO would provide information-rich recognition among
multiple objects with the same appearance without any pre-training, and deal with
NLOS cases.

To realize RF-MVO, we need to address three challenges:

Challenge 1: To our knowledge, most of the existing motion-based localization
methods perform with the holographic technique that pre-specifies the region of in-
terest in 3D space where the target RFID tag may exist, partitions the spatial region
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Table 4.1 : Terms used in the description of RF-MVO

Term Definition
L, M , λ Number of elements in an antenna array, Number of reader antennas, RF signal wavelength
αA, βA, γ Azimuth angle, Elevation angle, Scale factor

αA, βA Averaged azimuth and elevation angles
γmin, γmax Minimum and maximum of scale factor

∆α, ∆β, ∆γ Searching spacings of azimuth angle, elevation angle and scale factor
∆αopt, ∆βopt Searching spacings of azimuth and elevation angles for optimization algorithm

γ∗, µ Optimized scale factor, Searching threshold for optimization algorithm
∆XA Displacement between adjacent antenna positions in the real world
∆XC Displacement between adjacent camera positions in the camera view

∆XA,C , ∆XAref Displacement of antenna relative to camera, Displacement of antenna relative to reference one
XT , XA RFID tag and antenna coordinates in the local world coordinate system before optimization
XC Camera coordinate in the camera view calculated by MVO

KXT , KX
∗
T RFID tag coordinates in the global world coordinate system before and after optimization

X∗
T RFID tag coordinate in the local world coordinate system after optimization

dA, ∆dA Tag-to-antenna distance, Tag-to-antenna distance difference
ϕA, ∆ϕA, ϕh RF phase reported by an RFID reader, RF phase difference, Phase shift caused by RFID hardware
NA, ∆NA Phase ambiguity (i.e., an unknown integral multiple of 2π), Phase ambiguity difference

into many cuboids with the centimeter-level size and then calculates the likelihood
of containing the target in each cuboid based on RF phase. The localization accu-
racy depends on the resolution in the cuboid size. And as the surveillance region of
interest increases in 3D space, huge computation will affect the system’s real-time
performance. To deal with this issue, we propose a novel DOA-based RFID localiza-
tion algorithm that builds a series of spatial lines passing through antenna positions
in an antenna array and whose direction vectors are estimated by DOAs, and then
calculates the interaction of these lines as the final RFID tag position.

Challenge 2: To obtain a more accurate scale factor and DOA, we require set-
ting smaller searching granularities in the proposed spatial power spectrum. How-
ever, it will inevitably jeopardize the real-time performance. To address this issue,
we propose a coarse-to-fine optimization algorithm to accelerate our task, including
the following steps: (1) the step of DOA refinement is to refine the low-resolution
DOA given the high-resolution scale factor; (2) the step of 3D RFID localization
is to locate the tag position given the refined DOA; (3) the step of nonlinear opti-
mization is to simultaneously refine the 3D tag position and scale factor that are
interrelated with each other. The algorithm recursively takes iterations before it
converges.

Challenge 3: As we move the antennas across RFID tags, our system will obtain
multiple tag position candidates over antenna arrays. And in an antenna array, since
multiple RFID tags may be simultaneously read, our system will produce multiple
scale factor candidates. It is still challenging to select out an optimal tag position
and scale factor. To deal with it, a key intuition is that the tag localization error
is sensitive to the change in tag-antenna geometry, which means antenna elements
widely separated can provide higher estimation accuracy than those closely spaced.
Hence, we present HDOP, widely used in Global Positioning System (GPS) [55], to
measure the confidence level of the estimated tag position and scale factor due to
the effect of tag-antenna geometry.
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This work makes the following contributions:

1) To the best of our knowledge, RF-MVO is the first CV-assisted RFID system
for stationary RFID localization in 3D space. Unlike RFID-only systems, RF-MVO
works without driving reader antennas along a pre-defined trajectory. And RF-MVO
can also overcome the NLOS problem in CV-only object recognition by associating
the reported EPCs with the corresponding objects based on the position information.

2) This work introduces a novel 3D RFID localization algorithm, without ex-
haustively searching each divided region (e.g., a cuboid) of being likely to contain a
target RFID tag in the pre-specified region of interest.

3) This work introduces HDOP to determine the effect of tag-antenna geometry
on estimation accuracy in order to find out the optimal localization result.

4) We build a prototype using COTS RFID devices and a 2D monocular camera
to demonstrate that when only using two reader antennas, RF-MVO can achieve
the average of 6.23 cm tag localization error in 3D space and the average of 0.0158
scale-factor estimation error.

4.2 Visual Odometry Background

VO technique [31, 68, 69] is to estimate camera poses (i.e., positions and orien-
tations) with respect to its surroundings by analyzing a sequence of images.

1) Visual Odometry Types. According to different camera types, there are
monocular VO, stereo VO, and RGB-D VO. Compared to MVO, stereo and RGB-
D VO can recover a camera trajectory in the real world with the help of depth
information. However, large-size stereo or RGB-D cameras are unsuitable for small
robots or drones. And in the scene where the distance from a stereo camera to a
working region is much higher than the distance between two camera lens, stereo
VO will degenerate to the monocular case. For an RGB-D camera (e.g., Kinect
V2), it suffers from the measurement distance limit and errors in depth estimation.
Hence, we mainly focus on MVO in this work.

2) MVO Workflow. The steps to estimate camera trajectory are summarized
as follows: 1) Estimate Camera Pose of the Second Image. MVO extracts 2D image
features from the second image, and then matches them to the first image. The
geometric relation of rotation and translation between the two images is calculated
from the 2D-to-2D feature correspondences. MVO only obtains the camera pose of
the second image relative to the first image up to an unknown scale factor in the
real world.(2) Recover Remaining Camera Trajectory. The transformation between
two different images induces different scale factors from 2D-to-2D feature correspon-
dences. To unify the scale factor for camera trajectory recovery, MVO then finds
the 3D-to-2D correspondences between feature points triangulated from the previ-
ous two images and the current image. 3) Bundle Adjustment. The errors in camera
pose estimation will accumulate over time. MVO uses windowed bundle adjustment
[32, 86] to optimize the camera poses over the last L images. This process will not
change the initial scale factor.
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3) Camera Trajectory Recovery Accuracy. In VO, the estimated trajectory
error is defined as the difference between the ground truth provided by the dataset
and estimated trajectory. Many existing stereo or RGB-D VO systems (e.g., ORB-
SLAM2 [69]) can achieve centimeter- or millimeter-level trajectory error following
different datasets. Hence, it is possible to transform a camera trajectory in the
camera view estimated by MVO to the real-world version with such high precision
as long as an accurate scale factor is provided.

4.3 DOA and Scale Factor Searching for 3D RFID Localiza-
tion

In this section, we first utilize the mobility of reader antennas to emulate a
sequence of virtual antenna arrays. In each antenna array, we then combine tag-to-
antenna path differences of two adjacent antennas calculated by DOA estimation
theory and RF phase measurements to build a DOA-based spatial power spectrum.
It can simultaneously search the spatial DOA (i.e., azimuth and elevation angles) of
an RFID tag relative to an antenna array and the scale factor of the camera/antenna
trajectory transformation from the camera view to the real world. After that, we
construct the spatial line passing through the RFID tag and each antenna element
based on estimated DOA and real-world antenna trajectory. By calculating the
interaction of all spatial lines, the system can locate stationary tags in 3D space.

4.3.1 DOA and Scale Factor Searching

Two Basic Assumptions for DOA Estimation. At first, we present two
essential preconditions that enable DOA estimation of RFID tags:

1) Narrowband assumption means that the bandwidth inverse is much larger
than the signal propagation time across an antenna array. In the backscatter com-
munication, suppose that the Miller-modulated subcarrier coding performs with the
subcarrier cycles of Mcycle and the backscatter link frequency of BLF Hz. The time
duration of receiving the length of LEPC bits EPC packet from an RFID tag is
calculated by

Mcycle×LEPC
BLF

, which is equal to the bandwidth. For example, given a
LLRP GEN 2 mode ‘3’ configuration (i.e., Dense Reader, Mcycle = 8, BLF = 170.6
kHz) in our RFID reader, the time duration for a 128-bits EPC packet is about
6× 10−3s. If the length of the antenna array is D = 0.5 meters, the signal will take
the time of about 1.67× 10−9s to travel through the array, which is far less than the
bandwidth. Thus, the signal arriving at each antenna element can be regarded as a
narrow signal.

2) Far-field assumption means the signals transmitting from an RFID tag in a
given direction to each antenna element are approximately parallel. To satisfy that,
the distance between the tag and each antenna element is required to be larger than
2D2

λ
, where λ is the signal wavelength. Again, given D = 0.5 meters, the minimum

working distance for our system is 2D2

λ
≈ 2×0.52

0.32
≈ 1.56 meters. Increasing the tag-to-

antenna distance can make the far-field assumption be better complied. However,
it will accordingly reduce the sampling rate and increase the effect of multipath
interference on RF phase. Hence, we need to choose an appropriate antenna array
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Figure 4.1 : DOA estimation model.

length to ensure the DOA estimation accuracy, which will be discussed for detail in
Section 4.7.5.

Obtain Tag-to-Antenna Path Difference based on DOA Theory. To
intuitively introduce our basic idea, a geometric model in 3D space is shown in
Fig. 4.1. As a reader antenna A moves over time, it reads a stationary RFID
tag at different positions just like deploying multiple virtual antennas at each of
these positions. We assume that the virtual antenna array contains the length of L
elements and two successive antenna arrays have (L− 1) overlapping elements. Each
antenna array corresponds to a local world coordinate system whose origin is located
at the position of the first element. In this coordinate system, a reported RF phase
for fusion use is measured at an antenna position XA [i], where XA [1] = 0. The
displacement between two adjacent antenna positions is ∆XA [i] = XA [i+ 1] −
XA [i], where ∆XA [i] = (∆xA [i] ,∆yA [i] ,∆zA [i]). Suppose that the DOA (i.e.,
azimuth and elevation angles) of RFID backscatter signals arriving at the antenna
array are denoted as αA and βA, and the tag-to-antenna distance from a target RFID
tag at XT to the antenna element at XA [i] is denoted by dA [i]. According to DOA
theory[87], the path difference ∆dA [i] between dA [i] and dA [i+ 1] is approximately,

∆dA [i] =dA [i+ 1]− dA [i]

≈∆xA [i]× cosαAcosβA+

∆yA [i]× sinαAcosβA+

∆zA [i]× sinβA

(4.1)

Since MVO can output the camera position XC [i] in the camera view and
XC [1] = 0, the camera displacement is ∆XC [i] = XC [i+ 1] − XC [i], where
∆XC [i] = (∆xC [i] ,∆yC [i] ,∆zC [i]). In the real world, the antenna displacement
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is the same as the camera displacement. Given a scale factor γ [k], we have

∆XA [i] = γ ×∆XC [i] (4.2)

Note that once receiving an RFID and CV fusion sample to build a new antenna
array, MVO estimates the corresponding camera trajectory in this array. Due to
different different geometric relationship of the first two images, the scale factor in
each antenna array might not be the same.

Obtain Tag-to-Antenna Path Difference based on RF Phase. According
to the standard phase-distance model in an ideal environment [43, 105, 18, 112], if
the measured RF phase is ϕA [i] at the antenna position XA [i], we have

ϕA [i] +NA [i] =
4π

λ
dA [i] + ϕh (4.3)

where ϕh represents the phase shift caused by RFID hardware (i.e., RFID tag cir-
cuits, reader antenna reflections, feed cables, and reader circuits). The unknown
parameter NA, called phase ambiguity, is an integral multiple of 2π to make ϕA fall
within [0, 2π].

By taking a difference between RF phase ϕA [i] and ϕA [i+ 1], we can remove the
phase shift due to the hardware characteristics and then obtain the path difference,

∆dA [i] =
λ

4π
(∆ϕA [i]+∆NA [i]) (4.4)

where
A

∆ϕA [i] = ϕA [i+ 1]− ϕA [i]

∆NA [i] = NA [i+ 1]−NA [i]
(4.5)

Determine the Range of Scale Factor. We assume all of the antenna dis-
placements in an antenna array is within [0,λ/4], i.e., |∆dA [i]| < λ/4 (about 8 cm).
Due to ∆ϕA [i] ∈ [−2π, 2π], ∆NA [i] can be determined as follows:

∆NA [i] =

:

<

=

2π, −2π ≤ ∆ϕA [i] < −π
0, |∆ϕA [i]| ≤ π

−2π, π < ∆ϕA [i] ≤ 2π
(4.6)

According to the triangle rule that the absolute difference between the lengths
of two sides is less than the length of the third side, we combine Eq. 4.2 with Eq.
4.4 to obtain

γ >
λ

4π

|∆ϕA [i]+∆NA [i]|
'∆XC [i]'

(4.7)

Thus, the minimum scale factor is calculated by

γmin = max
i∈[1,L−1]

L

λ

4π

|∆ϕA [i]+∆NA [i]|
'∆XC [i]'

M

(4.8)

In addition, when the speed at which the camera captures images is set to 30
frames per second (FPS) and |∆dA [i]| < λ/4, the maximum motion speed of the
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reader antenna can achieve as high as 240 cm/s, which can meet the requirement for
most of applications. However, previous work [115] indicates that when an RFID
tag moves at high speed, most RFID systems may miss a lot of reported packets
from the tag. And the RFID system will suffer from serious Doppler frequency shift
[100], thereby producing a non-negligible phase shift in RF phase measurement.
To minimize the effect of Doppler frequency shift and guarantee that RFID tags
can be read at a sufficiently high sampling rate (i.e., 10 times/s at least), we move
the antennas with a relatively low speed (i.e., about 20 cm/s ∼ 35 cm/s in our
experiment). Here, we set the maximum speed at 40 cm/s. Due to '∆XA [i]' ≤
40/10, the maximum scale factor is

γmax = min
i∈[1,L−1]

L

4

'∆XC [i]'

M

(4.9)

Build Spatial Power Spectrum for DOA and Scale Factor Searching.
Given a scale factor γ ∈ (γmin, γmax) in an antenna array, the spatial power spectrum
of backscatter signals along an azimuth angle αA ∈ [0◦, 180◦] and an elevation angle
βA ∈ [0◦, 180◦] is a 2D intensity graph in which each pixel characterizes the likelihood
of DOA (i.e., azimuth and elevation angles) under a scale factor,

P (αA, βA, γ) =
1

L− 1

L−1
(

i=1

cos

4

∆ϕA [i]−
4π

λ
∆dA [i]

5

(4.10)

where ∆dA [i] is computed by Eq. 4.1 and Eq. 4.2,

∆dA [i] ≈γ ×∆xC [i]× cosαAcosβA+

γ ×∆yC [i]× sinαAcosβA]+

γ ×∆zC [i]× sinβA

(4.11)

The purpose of introducing the cosine function is described as follows. According
to Eq. 4.6, we can rely on the RF phase difference ∆ϕA [i] to estimate the phase
ambiguity difference ∆NA [i]. However, when the ground-truth of ∆ϕA [i] is close to
±π or ±2π, measurement error in RF phase may make ∆NA [i] deviate far from the
ground truth. To deal with this problem, the cosine function is used here to remove
unknown phase ambiguity. Also, this searching model is imperfect and will be
mainly affected by multipath interference [72], Doppler frequency shift, tag mutual
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Figure 4.4 : DOA averaging.

coupling [105, 38], and accumulation error in camera pose estimation. In this case,
the closer the parameters αA, βA and γ to the ground truth, the closer the pixel
intensity maximum is to 1. Otherwise, the minimum is close to 0.

Given M physical reader antennas on the cart, the estimated DOA and scale
factor are:

:

;

;

;

;

;

;

;

<

;

;

;

;

;

;

;

=

S (αAi , βAi , γ) = max
αAi ,βAi∈[0,180

◦]
P (αAi , βAi , γ)

γ = argmax
γ∈(γmin,γmax)

1

M

M
(

i=1

S (αAi , βAi , γ)

(αAi , βAi) = argmax
αAi ,βAi∈[0,180

◦]
P (αAi , βAi , γ)

(4.12)

Here we take an example to intuitively introduce above equations. Suppose that
the searching spacings of DOA and scale factor searching are ∆α = 1◦, ∆β = 1◦

and ∆γ = 0.1, respectively. The range of the scale factor is within [0.2, 1.5]. In
Fig. 4.2, the highest power peak corresponds to γ = 0.6, while the ground-truth
scale factor is 0.568. Then we substitute the estimated scale factor to calculate
P (αA, βA, γ) over all possible azimuth and elevation angles. In Fig. 4.3, the spatial
power spectrum shows that the DOA corresponding to the maximum power are
αA = 88◦ and βA = 38◦ while the ground-truth angles are 80.54◦ and 31.08◦.

4.3.2 RFID Tag Localization in 3D Space

Take the average of DOAs. As shown in Fig. 4.4, a reader antenna is involved
in multiple overlapping antenna arrays. To obtain the DOA of an RFID tag relative
to each antenna, we take the average of DOAs over each overlapping antenna array
that contains the antenna. For the kth reader antenna, its averaged DOA (i.e., αA [k]
and βA [k]) is calculated by
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1) If 1 ≤ k < L, we have
:

;

;

;

;

;

<

;

;

;

;

;

=

αA [k] =
1

k

k
(

l=1

αA [l]

βA [k] =
1

k

k
(

l=1

βA [l]

(4.13)

2) If k ≥ L, we have
:

;

;

;

;

;

<

;

;

;

;

;

=

αA [k] =
1

L

k
(

l=k−L+1

αA [l]

βA [k] =
1

L

k
(

l=k−L+1

βA [l]

(4.14)

Locate RFID Tag in a Local Coordinate System. In the local coordinate
system, the equation of a spatial line ℓ [k, i] passing through the target RFID tag
coordinate XT [k] and the antenna element coordinate XA [k, i] is given by

xT [k]−xA [k, i]
uA [k, i]

=
yT [k]−yA [k, i]

vA [k, i]
=
zT [k]−zA [k, i]

wA [k, i]
(4.15)

where
A

XT [k] = (xT [k] , yT [k] , zT [k])

XA [k, i] = (xA [k, i] , yA [k, i] , zA [k, i])
(4.16)

According to Eq. 4.2, we have

XA [k, i] = γ [k]× (XC [k, i]−XC [k, 1]) (4.17)

The spatial direction vector(uA [k, i] , vA [k, i] , wA [k, i]) is calculated by:
:

;

<

;

=

uA [k, i] = cosαA [k + i− 1] cos βA [k + i− 1]

vA [k, i] = sinαA [k + i− 1] cos βA [k + i− 1]

wA [k, i] = sinβA [k + i− 1]

(4.18)

As shown in Fig. 4.5, we construct a total of M × L spatial lines to solve their
intersection. In practice, however, there might exist multiple non-intersecting lines
and even parallel lines in 3D space. We regard the point nearest to these lines as
the optimal result, which can be solved using Singular Value Decomposition (SVD)
algorithm [39].

Transform to a Global Coordinate System. To obtain the position rela-
tionship among all RFID tags for application use, we transform the tag position in
this local coordinate system to that in a global coordinate system whose origin is
at the initial reference antenna position when the cart starts moving. Hence, the
RFID tag position KXT [k + 1] (k ≥ 1) in the global world coordinate system is

KXT [k + 1] =XT [k + 1] +
k

(

l=1

γ [l]×∆XC [l, 1] (4.19)
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Figure 4.5 : RFID tag localization.

4.4 Coarse-to-Fine Tag Position and Scale Factor Optimiza-
tion

In the spatial power spectrum, exhaustively searching the high-resolution DOA
from 0◦ to 180◦ and scale factor from γmin to γmax is a time-consuming process. The

time complexity is O
N

180
∆α

× 180
∆β

× γmax−γmin
∆γ

O

, where ∆α, ∆β and ∆γ represent the

corresponding searching granularities. In this section, a coarse-to-fine optimization
algorithm is proposed to speed up our system. Initially, the algorithm starts by
obtaining a coarse-resolution DOA and fine-resolution scale factor based on the
proposed spatial power spectrum. It then zooms in the DOA with smaller searching
granularity to refine the tag position based on the proposed DOA-based localization
algorithm. After that, it performs a joint optimization of the scale factor (as well
as tag position) over RFID and CV fusion data in an antenna array, which can
recursively refine the DOA and tag position with the optimized scale factor. In the
following, we introduce the coarse-to-fine optimization algorithm in detail.

1) Initialization. To reduce the searching computation, we firstly obtain a
high-resolution scale factor γ1 and low-resolution DOA (α1

A and β1
A) given a small

searching granularity of ∆γ and a relatively large searching granularity of ∆α and
∆β, instead of simultaneously searching DOA and a scale factor with fine granular-
ities.

2) DOA Refinement. A coarse-to-fine DOA refinement is to refine the DOA
using small searching granularities of∆αopt and∆βopt. The angular searching ranges
are

C

αlA ± µ
D

∈ [0◦, 180◦] and
C

βlA ± µ
D

∈ [0◦, 180◦], where µ is the predefined search-

ing threshold. In the lth iteration, αl+1
A and βl+1

A are updated given γl:

C

αl+1
A , βl+1

A

D

= argmax
αA∈[αlA−µ,αlA+µ]
βA∈[βlA−µ,βlA+µ]

P
C

αlA, β
l
A, γ

l
D

(4.20)

We update the averaged DOA according to Eq.(13) and (14), so we can obtain αl+1
A
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andβ
l+1

A .

3) 3D RFID Localization. In the lth iteration, the 3D tag position X l
T is

calculated given γl and averaged DOAs
P

αl+1
Aj
, β

l+1

Aj

Q

(j = 1, ...,M) corresponding to

M reader antennas (refer to Section 4.3.2):

X l
T = SV D

i∈[1,L]
j∈[1,M ]

P

ℓ
N

αl+1
Aj

[i] , β
l+1

Aj
[i] , γl

OQ

(4.21)

4) Joint Optimization. In the lth iteration, the tag position X l+1
T and scale

factor γl+1 are both updated by minimizing the distance error given XT
l and γl:

C

X l+1
T , γl+1

D

=argmin
Xl
T ,γ

l

L−1
(

i=1

M
(

j=1

8

8

8
∆dlAj [i]−∆dlCj [i]

8

8

8
(4.22)

where
:

;

;

;

;

<

;

;

;

;

=

∆dlAj [i]=
λ

4π

N

∆ϕAj [i]+∆N l
Aj
[i]
O

∆dlCj [i]=
8

8

8
X l

Aj
[i+ 1]−X l

T

8

8

8
−
8

8

8
X l

Aj
[i]−X l

T

8

8

8

X l
Aj
[i]=∆XAref [j]+γl × (XC [i]−XC [1])

(4.23)

Due to
B

B

B
∆dlAj [i]

B

B

B
< λ

4
, ∆N l

A [i] can be determined according to Eq. 4.6. And

∆XAref [j] is the displacement of an antenna Aj relative to a reference one, which
can be manually measured in advance. The nonlinear optimization problem is solved
by Levenberg-Marquardt algorithm [67]. Once the estimates of tag position and
scale factor are updated, we repeat the optimization from step 2 until it converges.
The optimized RFID tag position KX∗

T in the global world coordinate system can be
calculated according to Eq. 4.19.

Analysis: The pseudocode of our joint optimization algorithm is presented in
Algorithm 1. For a non-linear optimization problem, a good initial guess closer to
the ground truth can achieve faster convergence so that the tag position refinement
can speed up the optimization process. Given ∆αopt = 1◦, ∆βopt = 1◦ and µ = 20◦

in our experiment, the number of updating the scale factor and tag position is 4
times on average, taking the average of 16 milliseconds in our platform. Also, the
proposed algorithm just provides a local optimum in each antenna array and can not
achieve a global optimum over all antenna arrays. Due to adjacent antenna arrays
with (L− 1) overlapping samples, our algorithm can still achieve high-precision
estimation results shown in the following experiments.

4.5 Optimal Tag Position and Scale Factor Selection from
Multiple Antenna Arrays

As the cart moves across an RFID tag, our system will produce a series of antenna
arrays and output the corresponding tag positions. As shown in Fig. 4.6, when the
average distance from the tag to each antenna element becomes larger and/or the
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Algorithm 1 Coarse-to-Fine Tag Position and Scale Factor Optimization Algorithm

1: α1
A, β

1
A, γ

1 ⊲ Initial DOA and scale factor estimated from Spatial Power
Spectrum

2: ξ ← 10−6 ⊲ Stopping threshold
3: ρ1 ← 0.01 ⊲ Initial damping factor
4: L← 30 ⊲ Maximum loop count
5: N← M × (L− 1) ⊲ M : Number of reader antennas, L: Number of RFID-CV

fusion data in an antenna array
6: J1 ← 1 ⊲ Select nonlinear optimization algorithm, 0: Gradient-Descent, 1:

Gauss-Newton
7: for l ← 1 : L do
8: if J = 1 then
9:

C

αl+1
A , βl+1

A

D

← DOARefinement
C

αlA, β
l
A, γ

l
D

10: X l
T ← 3DRFIDLocalization

C

αl+1
A , βl+1

A , γl
D

11:
C

∆Dl
A

D

1×N ← λ
4π

C

∆ϕA +∆N l
A

D

⊲ Update distance difference matrix
based on phase measurements

12:
C

∆Dl
C

D

1×N ←
8

8X l
A [2 : L]−X l

T

8

8−
8

8X l
A [1 : L− 1]−X l

T

8

8 ⊲ Update
distance difference matrix based on tag position and scale factor

13: H l
4×4 ←

C

J l
N×1

DT
J l
N×1 ⊲ J is the Jacobian matrix of ∆Dl

C

14: if l = 1 then
15: e1 ← '∆D1

A −∆D1
C' ⊲ Initial distance error

16: end if
17: end if
18: RH l

4×4 ←H l
4×4 + ρl × I ⊲ Update Hessian matrix, I: 4× 4 identity matrix

19: hl1×4 ← −RH l ×
S

C

J l
DT C

∆Dl
A −∆Dl

C

D

T

⊲ Update lth descent direction

20: X l+1
T ←X l

T + hl [1 : 3] ⊲ Update tag position
21: γl+1 ← γl + hl [4] ⊲ Update scale factor
22: el+1 ←

8

8∆Dl+1
A −∆Dl+1

C

8

8 ⊲ Update distance error
23: if el+1 < el then
24: if el+1 ! ξ then
25: return;
26: else
27: X l+1

T ←X l
T , γ

l+1 ← γl

28: ρl+1 ← ρl/10, J← 1, el+1 ← el

29: end if
30: else
31: ρl+1 ← ρl × 10, J← 0
32: end if
33: end for
34: return refined scale factor γ∗ and tag position X∗

T .

average spacing between consecutive antenna elements becomes smaller, the size
of the shaded region (called uncertainty region) will become larger, and the tag
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Figure 4.6 : Uncertainty region of RFID tag localization.

localization accuracy will be reduced (without considering the measurement error
in RF phase). Inspired by this observation, the concept of HDOP to measure the
relative satellite-receiver geometry in GPS [55] is introduced into our system. By
measuring the size of the uncertainty region, we can select the optimal tag position
and scale factor.

According to the definition of HDOP, we linearize a tag-to-antenna distance dA [i]
in the local coordinate system by expanding a Taylor series at the calculated tag
coordinate X∗

T . Ignoring second and higher order terms, we have

dA [i] ≈
∂dA [i]

∂x
∆xT +

∂dA [i]

∂y
∆yT+

∂dA [i]

∂z
∆zT + d∗A [i]

(4.24)

where ∆XT = (∆xT ,∆yT ,∆zT ) represents the tag position’s measurement error
relative to the ground truth. The distance d∗A [i] of the estimated tag position to the
ith antenna element is

d∗A [i] = 'γ∗ × (XC [i]−XC [1])−X∗
T' (4.25)

And ∂dA[i]
∂X

represents the first partial derivatives, i.e.,
:

;

;

;

;

;

;

;

<

;

;

;

;

;

;

;

=

∂dA [i]

∂x
=
xA [i]− x∗T
d∗A [i]

∂dA [i]

∂y
=
yA [i]− y∗T
d∗A [i]

∂dA [i]

∂z
=
zA [i]− z∗T
d∗A [i]

(4.26)

Given the number of M antennas, we group M × L equations together and
represent them in matrix form,

D = G∆XT + UD (4.27)
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Since the antennas move along the horizontal plane, we mainly focus on horizontal
position errors. G is a matrix of the partial derivatives in X-Y dimension withM×L
rows and 2 columns,

G =
I

GA1 · · · GAM

JT
(4.28)

and the matrix corresponding to the jth reader antenna is

GAj =

,

-

-

.

∂dAj [1]

∂x

∂dAj [1]

∂y
...

...
∂dAj [L]

∂x

∂dAj [L]

∂y

1

2

2

3

(4.29)

We construct the covariance matrix Q for localization error analysis,

Q =
I

GTG
J−1

=

>

σ2
x σxy

σyx σ2
y

?

(4.30)

Since σ2
x and σ2

y are the variances of X and Y-axis components of the tag position
estimates, HDOP is

HDOP =
@

σ2
x + σ2

y (4.31)

Lower HDOP means better tag localization accuracy due to strong tag-antenna
geometry. We select the estimated tag position in the antenna array with the mini-
mum HDOP as the optimal one. Since there might be many RFID tags to be located,
our system will output multiple scale-factor candidates in an antenna array. The
optimal scale factor corresponds to the RFID tag with the minimum HDOP. Addi-
tionally, we need to indicate that given a more accurate initial guess of tag position,
the proposed coarse-to-fine optimization algorithm can output a more accurate scale
factor.

4.6 Implementation

Hardware: The settings of an Impinj R420 RFID reader without any hardware
or firmware modification are shown in Table. 4.2. Since no reader collision interfer-
ence exists, the ‘Max Throughput’ reading mode is selected to provide the highest
sampling rate. The reader works in the operating frequency band of 920∼926 MHz
with 500 kHz channel spacing. Two 8dBi circular polarization antennas with about
6∼10m reading range connect to the reader. Dual-dipole Impinj H47 battery-free
RFID tags are used by default, which can minimize tag-antenna orientation sensitiv-
ity. Single-dipole Impinj E51 and Alien AZ-9640 RFID tags are also used to evaluate
system performance. Also, we configure a Microsoft Kinect V2 at the frame rate
of 30 FPS to capture images. Note that we only input 2D images into RF-MVO.
The depth information of Kinect V2 is used to calculate the ground-truth camera
trajectory. These devices are all deployed on a mobile utility cart.

Software: According to Impinj LLRP Toolkit (LTK) [2], we program an RFID
data collection application in C#. Each RFID data contains EPC, RF phase, an-
tenna port number, operating frequency and reading timestamp. We adopt the
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Table 4.2 : Impinj R420 RFID Reader Settings

Settings Values
Operating Frequency All Channels

Reader Mode Max Throughput
Search Mode Dual Target

Session Session 0
RF Phase Reporting Enabled
LastSeen Timestamp Enabled

phase calibration mechanism [105] to eliminate the effect of frequency hopping on
RF phase. Also, ORB-SLAM2 is a real-time simultaneous localization and mapping
(SLAM) system to estimate camera trajectory and 3D reconstruction for monocu-
lar, stereo and RGB-D cameras [3, 13]. It can achieve loop closure detection and
camera re-localization, which is of essential importance in visual SLAM systems to
reduce accumulated errors over time. We run the RGB-D component on Ubuntu
and save the camera trajectory as ground truth. However, ORB-SLAM2 can only
save keyframe camera poses for a monocular camera rather than all frames. Hence,
we record a video stream to a file by running ROS tool [4] and then calculate the 2D
monocular poses (i.e., position and orientation) in Matlab [1] by analyzing these 2D
images. Finally, the system performance of tag localization and trajectory recovery
are all evaluated in Matlab, running on our laptop with 2.3 GHz CPU (Intel Core
i5-6200U) and 4G memory.

Sampling Synchronization: According to Gen2 standard [33], RFID readers
rely on a slotted-aloha access scheme to randomly read RFID tags. The sampling
time between consecutive inventories of the same tag is determined by reader settings
(i.e., reader mode, search mode, and session), tag population, and environment
interference. We synchronize the reader clock with an Internet time server and then
match RFID data to 2D images by minimizing the sampling time difference like [25].

Antenna Position Calibration. To evaluate our system’s localization perfor-
mance, we use Kinect V2 to capture the ground-truth tag position. However, recall
from our system, the estimated tag positions are located in the antenna-centered
coordinate system rather than in the camera-centered one. In this case, we need
to conduct a coordinate system transformation. Due to an unknown camera view
angle relative to each reader antenna, it is unable to directly measure antenna posi-
tions in the camera-centered coordinate system. In CV field, camera calibration is
a fundamental step to estimate camera parameters and remove lens distortion. The
commonly-used camera calibration method [116] performs with many 2D images of
an asymmetric checkerboard with black and white squares under different positions
and angles relative to the fixed camera. We calculate the coordinates of checker-
board corners in the camera-centered coordinate system and manually measure the
distance of each corner to the casing surface center of each reader antenna. By build-
ing more than three sphere equations, we rely on least squares method to obtain the
optimal antenna position. Note that measuring tag-to-antenna distance based on
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Figure 4.7 : Experiment setup.

RF phase is an effective way to reduce time cost and minimize measurement error
in manual calibration, which is not discussed here due to the space limit.

4.7 Evaluation

In this section, we first introduce the experiment setup and metrics, followed by
the detailed experiment results.

4.7.1 Experiment setup

Methodology: The experiment setup is shown in Fig. 4.7. We print the same
checkerboards for camera calibration on both sides of a work, where the size of each
square is 2.9 cm. Four double-sided checkerboards are affixed on the flat wood wall,
two of which have 4 RFID tags (dual-dipole Impinj H47 RFID tags by default) to
be located at specified corners on its back. The cart moves across the checkerboards
with a speed of about 20 cm/s∼35 cm/s. The length of each cart movement tra-
jectory along the x-axis (referring to the xyz axes in Fig. 4.1) is about 2.3 m. The
distances of the wall to reader antennas vary within about 0.7 m∼1 m. Since the
cart moves on the floor, the distance deviation along the z-axis is relatively small.
The default algorithm parameters are: the number of antenna elements in an an-
tenna array is L = 60; the spacings for initial DOA and scale-factor searching are
∆α = 5◦, ∆β = 5◦ and ∆γ = 0.1; the searching granularities for DOA refinement
are ∆αopt = 1◦ and ∆βopt = 1◦; the searching threshold is µ = 20◦.

Metrics: To verify RF-MVO performance, we focus on the errors in the tag
localization and scale-factor estimation by comparing the estimates with ground-
truth. To evaluate HDOP performance, we refer to the average distance of an RFID
tag to antenna elements in an antenna array. Recall from Section 4.5, when an
antenna moves close to an RFID tag, the average of tag-to-antenna distances is
lower, which means the size of the tag position uncertainty region is smaller. Due
to stronger tag-antenna geometry, the HDOP value is lower, and the corresponding
tag localization accuracy is higher. In contrast, when the antenna becomes far away
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from the tag, the HDOP value is higher, and the tag localization accuracy is lower.

1) Tag Position Error. In the ith antenna array (corresponding to the ith

image), the ground-truth position XT [i] of an RFID tag attached on the specified
corner can be measured in the world coordinate system whose origin is at the RGB
camera center of Kinect V2. Given the antenna-to-camera displacement ∆XA,C

and the optimized tag position X∗
T [i], the tag position error is

Terr [i] = 'XT [i]− (∆XA,C +X∗
T [i])' (4.32)

2) Scale-factor Error. Let XC [i] and XC [i+ 1] be the ground-truth camera
positions corresponding to the ith and (i+ 1)th 2D images measured by Kinect V2-
powered ORB-SLAM2 in the real world view. Recall that XC [i, 1] and XC [i, 2] are
the first two camera positions output by MVO technique in the camera view in the
ith antenna array, then the ground-truth scale factor Γ [i] is calculated by

Γ [i] =
XC [i+ 1]− XC [i]

XC [i, 2]−XC [i, 1]
(4.33)

And the scale-factor error Ferr [i] is

Ferr [i] = |Γ [i]− γ∗ [i]| (4.34)

3) Average Distance. In the camera-centered world coordinate system, the ith

antenna position is (XC [i]−∆XA,C) while the tag position is (XT [i]−∆XA,C).
Thus, we can calculate the average distance D [i] by

D [i] =
1

L

L
(

l=1

'XT [i+ l − 1]− XC [i+ l − 1]− 2∆XA,C)' (4.35)

4.7.2 HDOP Performance

In this experiment, we evaluate the impact of tag-antenna geometry. We move
the cart at almost the same speed across RFID tags to make the displacement
between consecutive antennas close to each other. Fig. 4.8a and Fig. 4.8b show that
the trend between the average distance and HDOP curves is basically the same and
the antenna array indexes with the minimum value are also close to each other.
This experiment demonstrates the proposed HDOP is an effective indicator for tag
localization error. However, Fig. 4.8c shows that the lowest HDOP value does not
always mean the highest localization accuracy because the error level in camera pose
estimation and RF phase measurement determines the final localization accuracy.

Also, Fig. 4.8d shows that when the tag localization result is close to the ground
truth, our joint optimization algorithm can achieve better scale-factor estimation
accuracy due to better initial guesses. We can see that the tag-antenna geometry
has little impact on scale-factor error, and the overall error keeps at a very low level.
As long as we provide enough RFID and CV fusion samples for the proposed spatial
power spectrum, our system can output a high-precision scale factor in each antenna
array.
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Figure 4.8 : HDOP performance

Table 4.3 : Tradeoff between accuracy and latency

Angular
Granularity

Scale-factor
Granularity

Position
Error

Scale-factor
Error

Latency

1◦ 0.1 7.769 cm 0.01594 20.722 s
2◦ 0.1 7.707 cm 0.01599 5.962 s
10◦ 0.1 8.047 cm 0.01636 0.629 s
5◦ 0.05 5.752 cm 0.01486 2.549 s
5◦ 0.1 7.737 cm 0.01595 1.376 s
5◦ 0.2 9.875 cm 0.01935 0.787 s

4.7.3 Tag localization performance

We move reader antennas across the RFID tags with different speeds and trajec-
tories each time. For each RFID tag, the tag position with minimum HDOP value
over all antenna arrays is selected as the optimal one. We repeat the experiment
30 times. At first, we perform with exhaustive searching (i.e., RF-MVO without
optimization) under the spacings of ∆α = 5◦, ∆β = 5◦, ∆γ = 0.1 and ∆α = 2◦,
∆β = 2◦, ∆γ = 0.05, respectively. Fig. 4.9a and Fig. 4.9b show that the average
tag position errors are 8.198 cm and 4.1339 cm in xyz combined dimension. With
smaller searching granularities, exhaustive searching can improve estimation accu-
racy while it will consume much more computations. We discuss the impact of the
searching granularities in detail in Section 4.7.5.

Fig. 4.9c shows that the overall average tag position error of RF-MVO under the
same searching granularities drops from 8.198 cm to 6.23 cm in xyz combined di-
mension after optimization. When we exploit RF-MVO to detect mis-shelved books
in a dense book library environment, the improvement of about 2cm is meaningful
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Figure 4.9 : 3D tag localization performance.

(See Section 4.7.6).

In RF-MVO, the tag localization performance is subject to the scale-factor es-
timation accuracy. To purely compare RF-MVO’s localization performance with
previous methods, i.e., Tagoram [110] and MobiTagbot [79], we input the real-world
camera trajectory into RF-MVO. Fig. 4.9d shows that RF-MVO achieves the overall
average localization error of 4.1 cm, which can achieve 1.52 times accuracy improve-
ment than the case with the estimated scale factors. In Tagoram, an RFID tag is
required to move along an already-known trajectory. To match our experiment, we
view the tag is fixed at the initial position and the antennas move in the opposite
direction. Its enhanced version MobiTagbot has a stronger capability of multipath
suppression than Tagoram by exploiting frequency hopping technique. To perform
Tagoram and MobiTagbot, we partition the pre-specified region in 3D space into
the 60×60×25 cuboids with a width of 1cm around the ground-truth tag positions.
Fig. 4.10 shows the overall localization accuracy comparison. Tagoram and Mo-
biTagbot achieve average localization errors of 5.41 cm and 3.64 cm, respectively.
Compared to our method, the existing methods need to pre-specify the surveillance
region of interest where a target RFID tag is the most likely to exist. And as the re-
gion of interest increases, huge searching computations will seriously affect real-time
performance.

Fig. 4.11 shows the overall tag position error of 2.322 cm, 3.919 cm and 2.995
cm in x-axis, y-axis, and z-axis with optimization and the estimated trajectory. The
localization error along the x-axis is lower than that along the y-axis and z-axis
because the tag-antenna geometry along the x-axis in each antenna array is better
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than other axes.

4.7.4 Trajectory recovery performance

We further verify the scale-factor estimation accuracy. Since eight RFID tags
may produce multiple candidates, the scale factor with the minimum HDOP in each
antenna array is selected as the optimal one. Fig. 4.12 plots the CDF of scale-
factor error. Without optimization, the average estimation error is 0.0501, with a
standard deviation of 0.0188. After applying the joint optimization, the average is
reduced by 3.17 times, down to 0.0158 with a standard deviation of 0.0124. To better
show the trajectory recovery performance, we choose an experiment data and plot
the corresponding camera trajectory in Fig. 4.13. The estimated trajectory with
optimization can better match the ground truth. However, estimating the camera
poses and scale factors will inevitably generate accumulated errors over time, making
the trajectory increasingly deviate from the ground truth.

4.7.5 Microbenchmarks

Next, we evaluate RF-MVO performance with different experiment settings.

Impact of array element size. Given a utility cart trajectory, we vary the
number of elements in an antenna array from 20 to 80 at 10 steps. Fig. 4.14a and
Fig. 4.14b show that more antenna elements can effectively reduce the estimation
errors when the element size increases from 20 to 60 (70 in Fig. 4.14b). When an
antenna element is involved in more antenna arrays, the estimates of incident angles
also become more accurate. However, when the element size increases from 60 (70
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Figure 4.14 : Array element size.

1 2 5 10
0

5

10

15

Ta
g 

Po
sit

io
n 

Er
ro

r(c
m

)

Incident Angle Spacing

Without Optimization
With Optimization

(a) Tag Position error.

1 2 5 10
Incident Angle Spacing

0

0.02

0.04

0.06

0.08

Sc
al

e-
fa

ct
or

 E
rro

r Without Optimization
With Optimization

(b) Scale factor error.

Figure 4.15 : Angular spacing.

in Fig. 4.14b) to 80, increasingly accumulated errors in camera pose estimation will
reduce our system’s estimation accuracy. We suggest setting the size of about 60∼70
elements in an antenna array.

Impact of angular and scale-factor spacings. At first, we vary the DOA
searching spacing at 1◦, 2◦, 5◦ and 10◦, respectively, while fixing the scale-factor
spacing at 0.1. Fig. 4.15a shows the tag localization error at the angular granularity
of 10◦ without optimization is much larger than other cases. However, Fig. 4.15b
shows it has very little impact on scale-factor estimation performance. We consider
that the proposed spatial power spectrum can find out the optimal scale factor if we
could provide enough samples for our system. After optimization, the estimation
errors are very similar to each other, which is mainly attributed to DOA refinement
in the coarse-to-fine optimization. However, the larger angular spacing requires to
set a larger search threshold µ, which will inevitably increase the computational
load.

Then we vary the scale-factor spacing at 0.05, 0.1, 0.2, respectively, while the
angular spacing is fixed at 5◦. Fig. 4.16a and Fig. 4.16b show that the smaller
scale-factor spacing is helpful for improving estimation accuracy. However, it will
inevitably incur much more computations. Table. 4.3 shows a tradeoff between
estimation accuracy and response latency. RF-MVO under the angular and scale-
factor spacings of 0.05 and 5◦ will take the runtime of 2.357s and 0.192s (2.549s in
total) on our experiment platform for searching and optimization, while the estima-
tion accuracy is higher than other cases. In our experiment, the scale-factor and
angular spacings are set to 0.1 and 5◦ to reduce response latency.
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Figure 4.16 : Scale-factor spacing.
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Figure 4.17 : RFID tag type.

Impact of RFID tag type. In general, there are two types of RFID tag
antennas, i.e., single-dipole and dual-dipole. We use dual-dipole Impinj H47, single-
dipole Impinj E51, and single-dipole Alien AZ-9640 to study the impact of different
RFID tag types. Fig. 4.17a and Fig. 4.17b show that dual-dipole RFID tag can
achieve a little higher accuracy of tag localization and scale-factor estimation than
single-dipole tags. The weaker tag backscatter signal power results in a lower tag
sampling rate, thereby degrading our system performance. A single-dipole RFID
tag is more sensitive to the change in tag-antenna orientation than a dual-dipole
tag. Tag-antenna orientation mismatch can reduce the backscatter power observed
at the reader antenna. In the extreme case, the single-dipole tag oriented along the
electric field from the reader antenna may receive the maximum RF signal while the
tag oriented perpendicular to the field may receive no RF signal at all, which can
not be read. Fortunately, the dual-dipole tag can efficiently minimize tag-antenna
orientation sensitivity.

Impact of Multipath Interference. In actual environments, the signal emit-
ted from a reader antenna will be reflected off the floor, walls, furniture and other
objects besides an RFID tag back to the antenna, in addition to the expected tag
backscatter signal. These reflected signals will induce a change in the measured
RF phase. This experiment is to evaluate the impact of multipath interference on
localization accuracy. Two checkerboards with eight RFID tags are attached to a
door. To simulate a rich-multipath scenario, we ask two people to move behind
the door randomly. The distance of the door to the moving persons is about 1
m∼1.5 m, while the tag-to-antenna distance is about 1 m. Note that the moving
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Figure 4.20 : Experiment setup.
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Figure 4.21 : Ordering error.

persons can not appear in the camera view because the ORB-SLAM2 system only
performs well in a static environment. Many existing VO studies [120, 53] can deal
with motion interference in a dynamic environment by segmenting these moving
objects. However, this is beyond the scope of our work. We repeat this experiment
30 times. Fig. 4.18 shows the average localization error under the tag-to-antenna
distance of 1m is about 19.50 cm. Compared to previous cases in the absence of dy-
namic interference (about 6.23cm localization error), the error is increased by more
than 3 times. Fortunately, when we shorten the tag-to-antenna distance to about
0.5 m, Fig. 4.18 shows the error is reduced to about 8.41 cm. Since the shorter
tag-to-antenna distance will increase the strength of the tag backscatter signal at
the antenna receiver, the effect of dynamic interference will accordingly decrease.

Impact of Tag Mutual Coupling. In a dense RFID tag deployment, a re-
sponded RFID tag will combine the direct signal from a reader antenna to the tag
with additional coupling signals emitted from other nearby RFID tags to produce its
backscattered signal. This phenomenon is called tag mutual coupling effect, which
will also affect the measured RF phase. In this experiment, six closely-spaced RFID
tags are used. We vary the spacing between two adjacent tags, i.e., 5.8 cm, 11.6 cm,
and 17.4 cm, to evaluate the impact of tag mutual coupling on localization accuracy.
Fig. 4.19 shows as the tag-to-tag spacing increases, the average localization error is
reduced from 12.36 cm to 7.82 cm. The closer two RFID tags are placed to each
other, the larger the change in RF phase due to tag mutual coupling will be. In
practical applications, we should consider the impact of tag mutual coupling.
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4.7.6 Case Study for Mis-shelved Book Detection

Here we apply RF-MVO into a case study, i.e., a library scenario where the
system detects RFID-tagged book order on a shelf to discover mis-shelved books.
The experimental scenario is shown in Fig. 4.20. Twenty RFID-tagged books are
placed on the desk for ordering. In a low-multipath scenario, no other reflectors
are placed close to these books. In contrast, to generate a rich-multipath scenario,
we place some reflectors on the desk and ask two people to randomly move around
the RFID-tagged books (they do not occur in the camera view). The thickness of
these books ranges from about 2cm to 5cm. The tag-to-antenna distance is about
60 cm∼80 cm. Here we need to indicate that if an RFID tag is directly attached to
the spine of each hardcover book, the book surface may produce a strong reflected
signal in the opposite direction to the incident signal. RFID-active power for tag
demodulation will fall rather rapidly to 0, so RF phase follows the abrupt change
in received power and the reading rate will decrease to a very low level. Instead,
an RFID tag (i.e., dual-dipole Impinj H47) is clipped on a page in a book in our
experiment. In practice, we suggest using an anti-metal RFID tag with a magnetic
isolator sheet. We repeat the experiment 30 times. To evaluate book ordering
performance, we define the ordering error, i.e., the number of RFID-tagged books
ordered incorrectly out of the total book number. Recall from Section 4.3, since the
average tag position error along the x-axis is much smaller than that along the y-axis
and z-axis, we rely on Eq. (19) to obtain x-axis coordinates of these RFID tags in the
global coordinate system for ordering. Fig. 4.21 shows that compared to the cases
without optimization, RF-MVO can effectively lower ordering error, which is mainly
attributed to the improvement of about 2cm in tag localization after optimization.
And the average ordering error of RF-MVO sightly increases from 6.83% in a low-
multipath scenario to 9% in a rich-multipath scenario. According to Section 4.7.5,
we can further reduce tag-to-antenna distance to improve our system’s capability of
combating multipath interference.

In addition, recall from Section 4.3 that the average localization error in the x-
axis is about 2cm in our default experiment setup. When two adjacent RFID-tagged
items are separated by less than 2cm, it could be very challenging to correctly
associate the collected EPCs with the corresponding items. To further improve
localization accuracy, we can appropriately increase the element size in each antenna
array (or deploy more reader antennas), reduce the scale-factor searching spacing,
or shorten the tag-to-antenna distance according to our previous experiments. And
the computational cost and real-time performance also need to be considered.

4.8 Conclusion

In this work, we present a CV-assisted RFID system to achieve stationary RFID
localization in 3D space by introducing a 2D monocular camera. We fuse depth-
enabled RF phase and a piece of camera trajectory in the camera view for RFID
localization and real-world trajectory recovery. Novel algorithms are proposed to im-
prove real-time performance and localization precision. Experimental results demon-
strate the effectiveness of our hybrid system.
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Chapter 5

CV-assisted Two-RFID-Tag Labeled Object 3D

Orientation

State-of-the-art battery-free RFID systems can achieve orientation tracking by at-
taching multiple tags on an object. However, the tag signal fingerprints may be
distorted by mutual coupling interference. Also, multipath interference in actual
environments is another challenge for such systems. In this work, we propose RF-
Orien3D that performs 3D orientation tracking in multipath-rich environments only
using two tags and one fixed reader antenna. Since the mutual coupling changes the
radiation pattern of each tag, the signal fingerprint carries orientation-dependent
features. Our basic idea is to translate their fingerprints into spatial orientation.
To achieve RF-Orien3D, we introduce additional multipath terms in the existing
RSSI/phase-distance models under the coupling effect, where two variables need to
be pre-estimated: one is tag radiation pattern, which is obtained by simulating a
two-tag array from a 2D image; another is modulation factor, which is calculated
using signal fingerprints in non-coupling and coupling cases. On this basis, we sim-
ulate all possible multipath impacts on signal fingerprints to pre-training a CNN,
and then collect very few actual data to fine-tune the CNN for orientation tracking.
The experiments show RF-Orien3D achieves median azimuth and elevation errors
of about 29◦ and 11◦ in low/rich multipath scenarios.

5.1 Introduction

RFID is becoming a promising technology for wireless sensing, where an RFID
tag is generally regarded as a battery-free sensor attached to an object. As the
sensor indicator, i.e., backscatter signal fingerprint (i.e., RSSI and RF phase), varies
with its distance to a reader antenna, many systems have been proposed for high-
precision RFID localization [110, 65, 64, 106, 108]. In addition to location informa-
tion, the orientation estimation of this RFID-tagged object is also of importance for
Internet-of-Things applications. For example, a product (e.g., liquid) is packaged
in a cardboard box marked ”This Side Up” to call attention to its orientation in
shipment and storage. Another is for a robotic pickup task. To achieve that, 6D
pose (i.e., location and orientation) of an object is required to be estimated. In this
case, the robotic arm can adjust its grip to grasp the target. This work is to design
a ubiquitous solution for object orientation tracking with low-cost and battery-free
RFID, even when the tracked object is blocked by some obstructions in an NLOS
scenario.

Most computer vision-based solutions [52, 85, 73] require large-scale labeled im-
age data. And it is very challenging to address the issues about light and occlusion
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Figure 5.1 : Illustration of RF-Orien3D design. Due to the impact of tag mutual
coupling in a two-RFID-tag array, each tag’s original radiation pattern is modified,
and their backscatter signal fingerprints carry orientation-dependent features, which
can be captured by RF-Orien3D for spatial orientation estimation.

and achieve target-specified orientation tracking when multiple objects (e.g., card-
board box) with the same appearance appear in the camera view. Recent works
have demonstrated the feasibility of RFID-based solutions. Some single-tag systems
[59, 49] a�x only one tag on an object and exploit linearly-polarized (for RSSI) or
circularly-polarized (for RF phase) antennas to sense the variation of tag-to-antenna
polarization for tracking. However, such systems require moving the tagged object
along a known trajectory or rotating it at a constant speed, which may not be suit-
able for ubiquitous applications. Some multi-tag systems [105, 18] require attaching
many tags on an object but also deploying multiple reader antennas around the
region of interest. By calculating the spatial position relationship among these tags,
they infer the tagged object orientation. However, mutual coupling interference
[63, 24, 103] is inevitably induced in the multi-tag deployment, which will distort
reported RFID fingerprints and thereby challenge orientation tracking accuracy.

In this work, we propose RF-Orien3D, a system that estimates the 3D orientation
(i.e., azimuth and elevation) of a two-RFID-tag array relative to a reader antenna
(shown in Fig. 5.1, even in multipath-rich scenarios. In the tag array, the tag
spacing is fixed, and two tags are deployed in parallel. The system performs with
the reported RSSI and RF phase of each tag from a COTS RFID reader. When
tracking, it does not require moving a RFID-tagged object or reader antenna like
previous works. The key novelty of this work is to leverage the ”bad” mutual
coupling e�ect between two tags. For an RFID tag located in space by itself, its
radiation pattern (i.e., tag antenna gains in all directions) can be approximately
symmetric around the tag. However, when another tag appears near the tag, its
original radiation pattern will be changed. In some directions, the tag gains will
be strengthened while weakened in others. Correspondingly, its reported signal
fingerprint will also be changed. RF-Orien3D would estimate 3D orientation by
analyzing the orientation-dependent signal fingerprints. To realize such a system,
we need to deal with three challenges:

Challenge 1. Multipath Interference Suppression: Multipath interference is a
fundamental challenge in wireless signal-based sensing works. Since the surrounding
can reflect an emitted signal to an RFID tag and then reflect its modulated backscat-
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ter signals back to an antenna receiver, these unexpected and unpredictable reflected
signal may result in the distortion in RFID signal fingerprint. To combat multipath
interference, we update the existing RSSI/RF phase-distance models under the mu-
tual coupling effect [103] by introducing multipath items and then propose a convo-
lutional neural network (CNN) based architecture with transfer learning technique.
One component is to pre-train a CNN by simulating a large-scale dataset of the
two-tag array in all possible multipath cases based on the updated RFID fingerprint
models. Another component is to fine-tune the CNN by providing a small number
of measured RFID fingerprints in actual scenarios. Due to the strong generalization
ability in CNN, multipath interference could be significantly suppressed.

Challenge 2. Radiation Pattern Simulation: In our updated RFID fingerprint
models, the modified radiation pattern of each tag is required to be pre-estimated.
We firstly build an RFID tag model from an 2D image and then create a two-tag
array for radiation pattern simulation in the case of tag impedance matching. In
this way, their radiation patterns can be simulated for use.

Challenge 3. Scaled Modulation Factor Estimation: Another variable in the
models to be determined is impedance-dependent modulation factor [36] (actually
scaled by impedance-dependent tag antenna radiation efficiency), which also suffers
from the mutual coupling effect. We design an estimation method only using RFID
fingerprints of each tag in the non-coupling and coupling cases.

We build a prototype with an Impinj R420 RFID reader, a circularly-polarized
8dBi antenna and two Impinj E51 single-dipole tags. RF-Orien3D can estimate
the spatial orientation of a tagged object, even in multipath-rich and/or NLOS
environments. When tag separation distance is fixed at 4 cm in our experiment
setup, RF-Orien3D can achieve median azimuth and elevation errors of about 29◦

and 11◦ in low or rich multipath cases.

Contributions: This work proposes RF-Orien3D, the first system that captures
the change in radiation pattern caused by the mutual coupling effect for object
orientation tracking in 3D space. Our design introduces three key innovations:

1) It introduces a CNN-based solution with transfer learning technique to deal
with multipath interference, without manually collecting a large number of RFID
signal fingerprints in different scenarios;

2) It presents a new way to understand the performance of an RFID tag array
in the multi-tag based sensing research that simulates a tag array from a 2D image
for tag characteristic analysis;

3) It proposes an approach to analyze the scaled modulation factor of the tag ele-
ment with a slight impedance mismatch in practice in a tag array only using reported
RFID fingerprints in non-coupling and coupling cases, without using specialized RF
network analyzers.
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5.2 Formulating Mutual Coupling Between Two RFID Tags
in Multipath Environment

In realistic environments, the transmitted RF signal from a reader antenna will
be reflected off some reflectors (such as tagged objects, walls, and furniture) to an
RFID tag, in addition to the signal traveling along the direct tag-to-antenna path.
This phenomenon is called multipath effect. And when the mutual coupling occurs,
the tag will also receive some signals emitting from other nearby RFID tags. In this
way, the tag combines all received signals to produce its backscatter signal, thereby
sending back to the reader antenna. Compared to a tag located in free space by
itself, the multipath and coupling effects both result in unexpected changes in RSSI
and RF phase. In this section, we extend the mutual coupling models in [103] by
introducing additional multipath interference.

In this work, we focus on the case that two RFID tags are attached to an object
in parallel, where such parallel deployment could remove the polarization impact
between each tag and a reader antenna. We use the reported RSSI and RF phase
of a COTS RFID reader to represent the total channel characteristic between a
transmitter and receiver. Let Rt and Rr

T1
be the transmitted and received power

measurement in dBm (take a tag T1 in the two-tag array for example), and let PT1

be the RF phase measurement in radians. The total channel characteristic is
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where τ is a constant factor; ρl and φl represent the amplitude and phase shift of
the leakage signal from the read antenna transmitter to its receiver; ρ∆T1 (and ρ∆T2) is
the modulation factor, i.e., the difference in reflection coefficients when T1 (and T2)
switches its chip impedance between the non-reflective and reflective states, which
is dependent on tag type, operating frequency, and material property of a tagged
object [36]; φT1 (and φT2) is called tag phase shift determined by the propagation
delay between the incident and reflected signals on the tag antenna of T1 and T2;
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gA is the voltage gain of the reader antenna; gT1 and gT2 are the voltage gains of
the tag antennas in the directions of T1 and T2 relative to the reader antenna; gT12
(and gT21) is the voltage gain of the tag antenna in the direction of T1 towards T2
(and T2 towards T1); gT1,oi is the voltage gain of the tag antenna in the direction
of the ith object; µA,T1 and θA,T1 are the polarization terms in amplitude and phase
shift between the reader antenna and T1; dT1 and dT2 are the distances of T1 and T2
to the reader antenna; doi is the propagation distance of the reflected signal off the
ith object, traveling along the reader antenna to the object and then back to the
RFID tag T1; ρoi and φoi represent the reflection coefficient and phase shift of the
ith reflection object; N is the number of surrounding reflectors.

RSSI- and RF Phase-distance Models with Mutual Coupling and Mul-
tipath Effects. We extract the amplitude and phase shift from Eq. 5.1 to obtain
RSSI- and RF phase-distance models,
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The function '·' is to calculate the modulus, and the function ∠ is to calculate the
phase shift.

RSSI- and RF Phase-distance Models without Coupling andMultipath
Effects. Compared to Eq. 5.3, the models free from the mutual coupling and
multipath effect can be denoted as
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where
E

Rr

T1
,PT1

F

are the RSSI and RF phase in the non-coupling and non-multipath
case. The modulation factor ρ∆T1 and tag gain gT1 are different from ρ∆T1 and gT1 due
to the coupling effect.

Based on above analysis, it is easy to derive the channel characteristic in the
case where the responding tag is T2. In particular, for the RFID tags with the same
type, we assume that ρ∆T1 = ρ∆T2 , ρ

∆
T1

= ρ∆T2 , and φT1 = φT2 . In addition, once a
circularly polarized antenna and single-dipole RFID tags are used, the amplitude
polarization terms are constant [24], i.e., µA,T1 = µA,T2 (Note that the phase-shift
polarization terms θA,T1 and θA,T2 changes with different directions with respect to the
reader antenna.). In the rest of this work, we use ρ∆T , ρ

∆
T , φT and µA,T to separately

represent the corresponding variables for simplicity.
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Figure 5.2 : Azimuth and elevation angles in tag-array-centric coordinate system.

5.3 Tracking Object Orientation in 3D Space

In this section, we firstly introduce a simple case without considering the multi-
path impact for orientation estimation, which is achieved by building an orientation
spectrum. It could clearly explain the key principle of RF-Orien3D. After that, we
consider the multipath e�ect and propose a CNN-based method to deal with it.

5.3.1 Orientation Estimation in Low Multipath

At first, we assume that transmitted signals from a reader antenna are radiated
far enough from a two-tag array such that the received signals at each tag end exhibit
a planar wavefront. As shown in Fig. 5.2, let � and � (in units of degrees) be the
azimuth and elevation angles of the reader antenna relative to the two-tag array in
the array-centric coordinate system, where � � [0�, 180�] and � � [0�, 90�] due to
the symmetrical radiation patterns (described in Section 5.4). The voltage gains of
RFID tags in the direction of � and � can be denoted as gT1 (�, �) and gT2 (�, �).

In a very low-multipath environment, we ignore the e�ect of multipath interfer-
ence and then set hmul

Ti
= 0 in the proposed model in Equation. 5.1. RF-Orien3D

performs by building an orientation spectrum of which pixel indicates the likelihood
of � and � being the ground truth by

P (�, �) =

�

�

�

�

�

�hdir
T1,T2

(�, �)�href
T1,T2

(�, �)

�hT1,T2

� 1

�

�

�

�

�

(5.6)
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where
:

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

<

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

=

∆hdirT1,T2 (α, β) =

>

gT1 (α, β)

gT2 (α, β)

?2

e−J(
4π
λ
D cosα cosβ)

∆hrefT1,T2
(α, β) =

1 + hrefT1
(α, β)

1 + hrefT2
(α, β)

hrefT1
(α, β) = ρ∆T gT12gT21

gT2 (α, β)

gT1 (α, β)
e−J[

2π
λ
D(1−cosα cosβ)+φT ]

hrefT2
(α, β) = ρ∆T gT12gT21

gT1 (α, β)

gT2 (α, β)
e−J[

2π
λ
D(1+cosα cosβ)+φT ]

∆hT1,T2 = 10
RrT1

−RrT2
20 e

J
%#

P ′
T1

−P ′
T2

$
+π(kT1−kT2)

&

(5.7)

Among them, we need to indicate that:

1) Due to the parallel deployment of T1 and T2, they have the same polarizations,
i.e., θA,T1 = θA,T2 , which are removed in Eq. 5.6.

2) The gains gT1 (α, β), gT2 (α, β) as well as gT1,T2 and gT2,T1 are obtained by
simulating an RFID tag from an 2D image, which will be detailed in the following
Section 5.4.

3) The details of how to estimate the tag phase shift φT and modulation factor
ρ∆T are described in the following Section 5.5.

4) When D ≪ dT1 , dT2 , we ignore tag-to-antenna distance ratios in calculating
hrefT1

(α, β) and hrefT2
(α, β).

5) According to direction of arrival estimation theory, the difference in the dis-
tances of the reader antenna to each RFID tag can be denoted by

dT1 − dT2 ≈ D cosα cos β (5.8)

6) The integer difference ∆k = kT1 − kT2 can be determined as follows. Ac-
cording to Eq. 5.4b, we calculate the difference in measured RF phase of T1 and
T2,

∆Λ (α, β)− π∆k ≈ 4π

λ
D cosα cos β (5.9)

where ∆Λ (α, β) = P ′
T2

− P ′
T1

+ ∠∆hrefT1,T2
(α, β). If |dT1 − dT2 | ≈ |Dcosα cos β| <

λ
4
≈ 8cm, we have

∆k =

:

;

;

;

;

;

;

;

;

;

;

<

;

;

;

;

;

;

;

;

;

;

=

−2, ∆Λ (α, β) ∈ [−2π,−π) , cosα cos β > 0
−1, ∆Λ (α, β) ∈ [−2π,−π) , cosα cos β < 0
−1, ∆Λ (α, β) ∈ [−π, 0) , cosα cos β > 0
0, ∆Λ (α, β) ∈ [−π, 0) , cosα cos β < 0
0, ∆Λ (α, β) ∈ [0, π) , cosα cos β > 0
1, ∆Λ (α, β) ∈ [0, π) , cosα cos β < 0
1, ∆Λ (α, β) ∈ (π, 2π] , cosα cos β > 0
2, ∆Λ (α, β) ∈ (π, 2π] , cosα cos β < 0

(5.10)



73

Thus, the optimal results α∗ and β∗ are estimated by finding the minimum,

(α∗, β∗) = argmin
α∈[0◦,180◦]
β∈[0◦,90◦]

P (α, β) (5.11)

5.3.2 Convolutional Neural Network-assisted Orientation Estimation in
Rich Multipath

To deal with the multipath impact, a CNN-based solution is proposed for spatial
orientation prediction. The CNN architecture for our regression task is illustrated
in Fig. 5.3. At first, we represent object orientation features along with multipath
interference using an RGB image. Then to avoid manually collecting a large number
of RFID signal fingerprints in coupling in all possible environments for training, we
simulate these data to pre-train a CNN and then use only a few actual measurements
to fine-tune the CNN. Finally, RF-Orien3D performs with this fine-tuned CNN for
orientation tracking.

Building an Image for CNN. By introducing the multipath item,∆hrefT1,T2
(α, β)

can be rewritten as

∆hrefT1,T2
(α, β) =

1 + hrefT1
(α, β) + hmulT1

1 + hrefT2
(α, β) + hmulT2

(5.12)

Since the two tags are very close to each other, we assume that the impact of
multipath interference on their signal fingerprints is the same, i.e., hmulT1

≈ hmulT2
=

ρmT e
JφmT , where ρmT ∈ (0, 1) and φmT ∈ [−180◦, 180◦].
Given a pair of the angle guesses α and β, we use Eq. 5.11 to search the optimal

ρmT |α,β and φmT |α,β ,

(ρm,∗T ,φm,∗T ) |α,β = argmin
ρmT ∈(0,1)

φmT ∈[−180◦,180◦]

P (ρmT ,φmT ) |α,β (5.13)

After searching all possible angles, we use the following rule to build an RGB
image that are fed into a CNN,

I (α, β) =

:

<

=

norm (cosφm,∗T |α,β ), Channel 1
norm (sinφm,∗T |α,β ) , Channel 2
norm (ρm,∗T |α,β ) , Channel 3

(5.14)

where the function norm (·) is to normalize a value to the range of 0∼255.
Simulating RFID Fingerprints for CNN Pretraining. Here the angle

spacing for searching is set to 4◦, so the image size is 46 × 23 pixels. And the
searching spacings of ρmT and φmT are set to 0.05 and 20◦, respectively. For a pair
of spatial angles and multipath variables, we firstly depend on Eq. 5.7 to calculate
∆hdirT1,T2 (α, β) and ∆hrefT1,T2

(α, β, ρmT ,φ
m
T ), thereby obtaining the corresponding RSSI

and phase difference in coupling, i.e., 10
RrT1

−RrT2
20 and P ′

T1
− P ′

T2
. Then an image
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Figure 5.3 : CNN architecture with transfer learning.

I (�, �) is simulated to represent a multipath case under the spatial orientation.
Hence, a total number of images inputted into the CNN is 46 � 23 � 21 � 19 =
422, 142 samples, and the CNN responses are specified azimuth and elevation angles
normalized to 0�1 by �

180�
and �

90�
.

Collecting Actual RFID Fingerprints for CNN Fine-Tuning. Di�erent
application scenarios may produce di�erent multipath interference. For example, in
free space, the main multipath interference may come from the floor and a distant
wall. In a dynamic environments where some people walk around, the dominant
interference may be from the human body reflections. In this case, the pre-trained
CNN can be fine-tuned for di�erent multipath impacts, just like fine-tuning a pre-
trained AlexNet or GoogLeNet to perform image classification on a new task. To
achieve that, we need to collect a small number of actual RFID fingerprint mea-
surements by varying the tag-to-antenna direction and/or distance. To label each
sample, we adopt the camera-assisted method in Section 5.6 to calculate the azimuth
and elevation angles, instead of manual measurement each time.

Performing Orientation Tracking using Fine-tuned CNN. Once the fine-
tuning is over, our system only uses RFID fingerprints of a two-tag array measured
in practice to generate a feature image I (�, �) as the input of the fine-tuned CNN,
without the help of the camera. In particular, our system can perform orientation
tracking even in NLOS scenarios where the direct propagation path between a reader
antenna and a two-tag array is blocked.

5.4 Simulating Radiation Pattern of Each Element in Two-

RFID-Tag Array

In this section, we simulate an RFID tag from an image and then build a two-
tag array to observe the changes in the radiation pattern of each element under
the mutual coupling e�ect. The following simulation is conducted in Matlab 2020a
using its antenna and image processing components:

Segment RFID tag from an image. We firstly capture a photo of the checker-
board with an RFID tag to be modeled (a single-dipole Impinj E51 tag with the
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(a) Undistorted image (b) Foreground image
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Figure 5.4 : Building two-RFID-tag array for radiation pattern analysis from a 2D
photo.
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size of 8mm×95mm is used here). After camera calibration [116], we rely on the
estimated camera parameters to remove lens distortion from the photo (Fig. 5.4a).
After that, we use a foreground segmentation tool in Matlab to segment the tag
antenna out (Fig. 5.4b) for the following use.

Build an RFID tag model. We extract boundary points from the segmented
foreground and downsample to reduce the computation. By obtaining the rotation
and translation metrics of the undistorted image relative to the camera, we map
the extracted points in pixel space into the real-world coordinates (Fig. 5.4c). In
the real world view, the simulated tag size is 8.02mm×94.05mm, which is very close
to the ground truth. Then we create an antenna feed to excite a voltage. In our
experiments, the operating frequency is configured at 920.625Mhz, so the simulation
result shows the antenna impedance at this frequency is Zant = 9.04Ω+ J182.23Ω.
Suppose that the RFID chip impedance is matched to the tag antenna impedance
here. A tag chip load with the reactance of −J182.23Ω is added to the antenna, so
the antenna source impedance is 9.04Ω. Thus, this tag model for MoM analysis is
constructed (Fig. 5.4d). Compared to an existing work [48], it maps the boundary
points in the image view to those in the real-world view by extracting top-left,
top-right, bottom-left and bottom-right pixel points of the foreground and then
scaling the tag dimension in the image relative to the actual tag size. However, it
is challenging to ensure that the antenna boundary is completely parallel to image
coordinate axes, especially after removing the lens distortion, which may introduce
more error in obtaining a tag geometry.

Simulate each element pattern in a two-tag array. Based on above tag
model, we create a linear array consisting of two mirror-symmetric tag elements with
a given tag separation (e. g., 4cm shown in Fig. 5.4e). In RFID systems, an RFID
reader communicates with the tags separately to avoid inventory collision. In this
case, when a tag is responding, another tag element does not radiate its backscatter
signal at the moment. We excite each tag in the array while terminating another
one using a resistance of 9.04Ω to obtain each tag pattern (shown in Fig. 5.4f for
element 1 and Fig. 5.4g for element 2. For comparison, Fig. 5.4h shows the radiation
pattern of a tag placed in space by itself.

The radiation pattern simulation shows that:

1) The radiation pattern of each element in a two-RFID-tag array is modified
when a nearby tag occurs. And their radiation patterns are fairly mirror-symmetric
as long as the tag deployment underlies the geometry of mirror symmetry. If not,
the radiation patterns will be no longer symmetrical (due to the space limit, the
patterns are not plotted in this work). And the tag gains are enhanced in some
directions while being weakened in others. When a tag is inventoried, another
adjacent tag works just like an obstacle blocks the signal from the reader antenna
to the responding tag.

2) The actual tag gain is actually equal to the tag antenna directivity multiplied
by its radiation efficiency. Let ε be a tag antenna’s radiation efficiency, and let D be
its directivity, so we have gT1 = εDT1 , gT2 = εDT2 , gT12 = εDT12 , and gT21 = εDT21 .
In our simulation, this efficiency ε is assumed to be 1. In this case, the simulation
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enables to output lossless tag antenna gains (equal to tag antenna directivity) in all
directions, including the tag gains gT1 and gT2 in all azimuth and elevation angles,
as well as gT12 (and gT21) in the direction of T1 (and T2) towards T2 (and T1). The
simulated results are the power gainsGdBi in units of dBi. To convert them to voltage

gains, we use g = 10
GdBi
20 . In fact, the mutual coupling results in tag impedance

mismatch so that the real efficiency is less than 1. Fortunately, we can remove
this unknown antenna efficiency in our system. Recall from Eq. 5.7, ε is canceled

in calculating
gT1 (α,β)

gT2 (α,β)
and

gT2 (α,β)

gT1 (α,β)
. And the orientation-independent constant value

ρ∆T gT12gT21 is estimated using actual RFID signal fingerprint measurements, not from
this simulation.

5.5 Calculating Scaled Modulation Factor

Recall from Section 5.5 that the tag phase shift is a constant value and the
modulation factor is dependent on the tag spacing between two tags. In this section,
we discuss how to determine them using RFID fingerprints measured in non-coupling
and coupling cases.

5.5.1 Tag Phase Shift Estimation

Without considering the multipath effect, Eq. 5.4 can be rewritten as (take T1
for example)

:

;

;

<

;

;

=

ΓT1 =

@

1 + 2UT1 cosVT1 +UT1
2

ΘT1 = arctan

4

−UT1 sinVT1
1 +UT1 cosVT1

5

(mod (−π, π])

(5.15a)

(5.15b)

where
:

;

;

<

;

;

=

UT1 =
ρ∆T gT2gT12gT21dT1
gT1 (dT2 +D)

VT1 =
2π

λ
(dT2 +D − dT1) + φT

(5.16a)

(5.16b)

Given a guess of φT ∈ [0, 2π], we rely on Eq. 5.3 to build a function J (φT ) that
determines the likelihood of φT being the ground truth based on RSSI and RF phase
of T1 and T2 collected in the non-coupling and coupling cases,

J (φT ) =

B

B

B

B

B

>

gT1 (φT ) dT2
gT2 (φT ) dT1

?2
ΓT1 (φT )

ΓT2 (φT )
− 10

RrT1
−RrT2
20

B

B

B

B

B

(5.17)

where
4

dT2
dT1

52

= 10
RrT1−R

r
T2

20 (5.18)

And the methods of calculating
gT1 (φT )

gT2 (φT )
and

ΓT1 (φT )

ΓT2 (φT )
are described in the following.

When the guess φT approaches the ground truth, J (φT ) will be close to 0; otherwise,
J (φT ) will be far larger than 0.
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Calculate Tag Gain Ratio. At first, the coupling phase shift of Ti, i = 1, 2,
is calculated based on Eq. 5.3 and Eq. 5.5,

ΘTi =
N

P ′

Ti
− P

′

Ti

O

(mod [−π, π]) (5.19)

Then, the tag separation D is a known value (where D ≤ λ
4
≈ 8cm), and the

tag-to-antenna distance difference can be determined by RF phase measurements
without coupling. Thus, VTi (φT ) in Eq. 5.16b is computed by

:

;

<

;

=

VT1 (φT ) =
2π

λ
(dT2 +D − dT1) + φT

VT2 (φT ) =
2π

λ
(dT1 +D − dT2) + φT

(5.20)

Given the calculated ΘTi and VTi (φT ), we use Eq. 5.15 to obtain UTi (φT ),

UTi (φT ) =
− tanΘTi

sinVTi (φT ) + cosVTi (φT ) tanΘTi

(5.21a)

s.t.

A

UT1 (φT ) ∈ (0,max (gT2) gT12gT21)

UT2 (φT ) ∈ (0,max (gT1) gT12gT21)
(5.21b)

Here the phase periodicity of π radians in ΘTi is removed by the tangent function.
The term max (gT1) (and max (gT2)) represents the maximum tag gain of T1 (and
T2). Here (max (gT2) gT12gT21) and (max (gT1) gT12gT21) are calculated based on our
simulated radiation patterns.

Since D ≪ dT1 , dT2 , the tag gain ratio of T1 to T2 is approximately

>

gT1 (φT )

gT2 (φT )

?2

=
UT2 (φT )dT1(dT1 +D)

UT1 (φT )dT2(dT2 +D)

≈ UT2 (φT )

UT1 (φT )

4

dT1
dT2

52
(5.22)

Calculate Coupling Term of RSSI. The coupling term ΓTi (φT ), i = 1, 2, is
determined by

ΓTi (φT ) =

@

1 + 2UTi (φT ) cosVTi (φT ) + [UTi (φT )]
2 (5.23)

Through above steps, the optimal tag phase shift is estimated by searching the
minimum of J (φT ),

φ∗
T = argmin

φT∈(0,2π)
J (φT ) (5.24)

Here we conduct an experiment in free space with negligible multipath interfer-
ence by varying the tag separation D from 3cm to 8cm. The reading frequency is
fixed at 920.625 Mhz. The RFID tag positions relative to the reader antenna are
changed each time. Fig. 5.5a plots the experiment setup. Fig. 5.5b and Fig. 5.5c
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Figure 5.5 : Tag phase shift over di�erent tag separations.

depict the absolute di�erence in RSSI and RF phase before and after tag mutual
coupling occurs for Tag #1 and Tag #2, respectively, which shows the coupling
e�ect results in the unexpected changes in RSSI and RF phase. Based on these
collected data, Fig. 5.5d shows the median values of the calculated tag phase shift
at di�erent tag separations are 3.019 radians, 3.098 radians, 3.089 radians, 3.063
radians, 3.1245 radians and 3.0280 radians, respectively, which all approaches � ra-
dians. In the reflective state of an RFID tag, a short circuit is presented to the tag
antenna and no power is delivered to the tag chip. In this case, the RFID tag acts
just like a transmission line without carrying any load. Compared to the incident
signal, the backscatter signal from the tag is a version with 180� out of phase. Thus,
the tag phase shift �T is equal to � radians.

5.5.2 Scaled Modulation Factor Estimation

First of all, let us consider a scenario without the coupling e�ect. Suppose that
�A
T
and �B

T
are the the reflection coe�cients of the RFID tag in the absorptive and

reflective states (i.e, State A and State B), respectively. The antenna impedance
is Zant = Ra + JXa, where the real part Ra is a resistance and the image part Xa

is a reactance. In the absorptive state, the chip impedance is ZA

chip
= RA

c
+ JXA

c
.

In the reflective state for the short-circuit load chip, the chip impedance is ZB

chip
=

RB

c
+ JXB

c
� 0. The modulation factor ��

T
in the non-coupling case is

��
T
=
�

��A
T
� �B

T

�

�

2
(5.25)
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Table 5.1 : Modulation factor over tag spacing

D ρ∆T ε2ρ∆T (Median) ε2ρ∆T (Std.)
3 cm 0.582 1.341 0.225
4 cm 0.683 1.027 0.134
5 cm 0.784 0.866 0.109
6 cm 0.905 0.775 0.162
7 cm 1.042 - -
8 cm 1.180 - -

where
:

;

;

;

<

;

;

;

=

ρAT =
ZA
chip − Z∗

ant

ZA
chip + Zant

ρBT =
ZB
chip − Z∗

ant

ZB
chip + Zant

(5.26)

For example, at 920.625 Mhz, the simulated antenna impedance of the E51 tag is
Zant = 9.26Ω+ J185.06Ω and ZA

chip = Z∗
ant, so the modulation factor is ρ∆T = 1.

When the mutual coupling occurs in the two-tag array, each tag will produce
an additional mutual impedance on another one’s antenna. The impedance is inde-
pendent of the direction of a two-tag array relative to a reader antenna and is only
determined by its tag spacing. The modified tag antenna impedances are

A

Z
′

ant,1 = Zant + Z12

Z
′

ant,2 = Zant + Z21

(5.27)

where Z12 and Z21 are mutual impedances, and Z12 = Z21 for the same tag type,
so we have Z

′
ant = Z

′
ant,1 = Z

′
ant,2. In particular, Z12 and Z21 can be obtained by

calculating the S-parameters of our simulated two-tag array. Then we substitute
them into Eq. 5.27 to calculate the modulation factor ρ∆T in the coupling case.
Table. 5.1 shows the simulated modulation factor over 3cm∼8cm tag spacings,
which changes with different tag separations.

However, the antenna-chip impedance matching cannot be satisfied for all fre-
quencies, so accurately estimating the modulation factor by simulation is very chal-
lenging. Instead, since UT1 and UT2 can be calculated by substituting φT = π
radians back to Eq. 5.21, the scaled modulation factor ε2ρ∆T is calculated as follows
by considering the tag antenna radiation efficiency,

ρ∆T =
1

gT12gT21

V

UT1UT2 (dT1 +D) (dT2 +D)

dT1dT2

≈
W

UT1UT2

gT12gT21
=

W

UT1UT2

ε2DT12DT21

(5.28)

where ρ∆T cannot be directly estimated due to the unknown ε2.
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Figure 5.6 : Experiment setup for orientation labelling.

Table. 5.1 also shows the modulation factors multiplied by �2 (i. e., �2��
T
) at

3cm�6cm tag spacing calculated based on the experiment data in Section 4.6.1.
For the separations of 7cm and 8cm, we find the corresponding estimates are weakly
trusted because they are sensitive to the measurement noise in RFID fingerprints
amplified by the tangent function and thereby result in a fairly large standard devia-
tion. The proposed system performs orientation tracking using these measurements
so as to avoid the unknown �. In addition, compared to simulated modulation fac-
tors, we infer that as the tag separation decreases, the mutual impedance value will
correspondingly increase, resulting in the lower antenna e�ciency � in the coupling
case.

5.6 Generating Spatial Orientation Labels for CNN

Annotating a two-RFID-tag array orientation relative to a fixed reader antenna
in 3D space is very challenging. A time-consuming solution is to manually measure
the tag positions in the antenna-centric coordinate system for orientation estima-
tion. And its measurement accuracy may not be high enough. In this work, a
camera-based solution is proposed to address this challenge. A commonly-used 2D
camera binds with an RFID reader antenna. The two-tag array is attached to the
back of checkerboard, and each RFID tag center is aligned with the corresponding
corner point. The checkerboard pattern is then attached to a cardboard box. The
experiment setup is shown in Fig. 5.6. After camera calibration [116], when a new
checkerboard image (along with RFID fingerprints of two RFID tags) is obtained,
we firstly undistort the image and then compute the rotation matrix R3�3 and the
translation matrix t1�3 of the checkerboard relative to the camera in the camera-
centric coordinate system. The antenna coordinate is denoted by XA = �X, where
�X = (�x,�y,�z) is the manually-measured position displacement of the antenna
relative to the camera (the plastic radome center of the antenna with the size of
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Table 5.2 : Impinj R420 Reader Configuration

Settings Values
Reader Mode Dense Reader M4
Search Mode Dual Target

Session Session 0
Transmitted Power 32.5 dBm
Operating Frequency 920.625 Mhz

26cm×26cm×4.5cm is considered as its physical location). The antenna coordinate
Xw

A = (xwA, y
w
A, z

w
A) in the checkerboard-centric coordinate system is

Xw
A = (∆X − t1×3)R

′

3×3 (5.29)

whereR
′
3×3 is the transpose matrix ofR3×3. Thus, the azimuth and elevation angles

are
:
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(5.30)

5.7 Implementation & Evaluation

5.7.1 Implementation

RFID Reader. We adopt an Impinj R420 RFID reader. The operating con-
figuration is described in Table. 5.2. Note that the phase ambiguity is caused by
PR-ASK modulation when an RFID reader is configured at the operating mode of
‘Hybrid’, ‘Dense Reader M4’, ‘Dense Reader M8’, ‘Max Miller’ or ‘Dense Reader
M4 Two’. Although the commonly-used mode ’Max Throughput‘ using double
sideband-amplitude shift keying (DSB-ASK) modulation can avoid the phase am-
biguity and provide a much faster reading rate, some RFID tags would fail to be
read in the surveillance zone due to worse robustness of the forward and backward
communications links.

RFID Reader Antenna. A circularly-polarized antenna is linked to the port
1 of the RFID reader. The antenna gain is 8dBi, which can achieve 6∼10m reading
range.

RFID Tag. Two Impinj E51 RFID tags are adopted to construct a tag array.
The tag has a single dipole. Note that the radiation pattern of a dual-dipole tag
(e.g., Impinj H47) is almost isotropic with the same gain in all directions in a non-
coupling scenario. When the coupling effect occurs in a two-tag array, the modified
pattern has little difference in the azimuth angle. We only use single-dipole tags in
our system for spatial orientation tracking.

Camera. A Microsoft Kinect V2 is mounted on the reader antenna. We only
use its color camera to capture 2D checkerboard images for labeling.
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Figure 5.7 : Actual RFID fingerprint collection in di�erent scenarios.

5.7.2 Evaluation

Tag-to-Tag Spacing. By default, the tag spacing in a two-tag array is set
to 4 cm, because such separation distance can achieve a better balance between
tag responding distance and orientation tracking error, which will be discussed in
Section 5.8.3. Correspondingly, the values of �2��

T
= 1.027 and �T = � radians are

adopted.

Convolutional Neural Network Architecture. Since the constructed RGB
image is 46�23�3, the first image input layer is created with the same size as the
image. The CNN then creates 4 two-dimensional convolutional layers with 8, 16,
32 and 32 filters, respectively, of size 3�3 and ’same’ padding. We use a batch
normalization layer followed by a ReLU layer after every layer. We also connect an
average pooling layer with pool size 2�2 and stride 2�2 to each of the first two ReLU
layers. Finally, a dropout layer with dropout probability 0.2 is created, followed by
a fully connected output layer of size 2 (i.e., azimuth and elevation angles) and a
regression layer. The network is implemented in Matlab 2020a.

Training Details. The CNN is pre-trained using a batch size of 64 and Adam
optimizer with an initial learning rate of 1� 10�3. When fine-tuning, we freeze the
weights of the first 9 layers in the pre-trained network by setting the learning rates
to zero. And its batch size is reduced to 16 and the initial learning rate is 1� 10�4.

Measured RFID Fingerprints for Fine-tuning and Validation in Di�er-
ent Scenarios. As shown in Fig. 5.7, RFID fingerprint measurement is conducted
in the scenarios of low-multipath LOS, low-multipath NLOS, medium-multipath
LOS and rich-multipath LOS, respectively. The corresponding sample size is 1001,
667, 1460 and 2140. In the low-multipath case, many reflection objects are far from
the tag array. The medium-multipath case includes tables and chairs located not
too far away from the tag array. The rich-multipath case contains some objects with
strong reflection ability (such as chairs, tables, computer screen, wall, etc.) around
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the tag array. For the NLOS scenario, we use a cardboard box to block the path
between the tag array and the antenna when collecting the RFID fingerprints. To
capture the orientation by the camera, the box is removed, but the tag-antenna
geometry keeps unchanged.

Baseline. We conduct five baselines to compare to our system RF-Orien3D
(with simulated data for pre-training and with actual measured data for fine-tuning).

Naive method. The included angle between two sides of Antenna-to-Tag#1 and
Tag#1-to-Tag#2 in a 2D plane is directly calculated by

θ2D ≈ arccos

>

λ

4πD

N

P
′

T1
− P

′

T2
+ π∆k

O

?

(5.31)

Tagyro[105]. The system needs to pre-estimate the virtual geometry of these
tags to deal with tag mutual coupling. For a two-tag array used in our experiment,
we rely on its approach to obtain a virtual tag spacing D

′
= 6.6 cm. Then we

substitute it into Eq. 5.31 for estimation.

Orientation-spectrum. Recall from Section 5.2 that an orientation spectrum is
proposed to directly track orientation in 3D space.

RF-Orien3D only with simulated data for CNN training (RF-Orien3D W. S.).
Only simulated dataset is fed into a CNN for training. Once the training is over, we
directly validate our system performance using actual measurements.

RF-Orien3D only with measured data for CNN training (RF-Orien3D W. M.).
We directly use actually measured samples to train a CNN for tracking. Then we
test our system using validation datasets.

In particular, since both Naive method and Tagyro can only achieve 2D-plane
orientation tracking when using a two-tag array, the angle θ2D in a 2D plane for
RF-Orien3D can be calculated by substituting the estimated azimuth and elevation
angles,

θ2D ≈ arccos (cosα cos β) (5.32)

And the orientation-spectrum and RF-Orien3D based solutions output 3D-space
angles for performance comparison.

Metric and Ground Truth. The angular error in azimuth and elevation is
defined as the absolute difference between the estimate and ground truth. The
ground-truth orientation is captured by a camera system.

5.8 Results

5.8.1 Orientation Tracking Performance

We start by evaluating RF-Orien3D performance in different scenarios. The
samples in each case is randomly divided into only 5% of the samples for fine-tuning
and 95% for validation in each case. After that, we combine the fine-tuning data
(about 250 samples) from different scenarios together to fine-tune the pre-trained
CNN. The experiment is repeated 50 times. Fig. 5.8a plots the CDF of orientation
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Table 5.3 : Median errors in azimuth and elevation in di�erent scenarios

Low-Multipath
LOS

Low-Multipath
NLOS

Medium-Multipath
LOS

Rich-Multipath
LOS

RF-Orien3D
(5% of Fine-tuning Samples)

(28.630�, 11.093�) (28.193�, 10.938�) (30.923�, 12.297�) (29.574�, 11.758�)

RF-Orien3D
(80% of Fine-tuning Samples)

(25.668�, 10.533�) (25.477�, 10.463�) (28.357�, 12.334�) (27.858�, 11.195�)

RF-Orien3D W. M.
(80% of Training Samples)

(25.901�, 10.520�) (25.248�, 10.350�) (28.997�, 11.964�) (28.557�, 11.059�)
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(c) RF-Orien3D W. M. with 80% of samples
Figure 5.8 : Orientation tracking performance in di�erent scenarios.

tracking errors in azimuth and elevation for each case. Also, Fig. 5.8b and Fig. 5.8c
plot the results for RF-Orien3D with 80% fine-tuning samples and RF-Orien3D W.
M. with 80% training samples. Table. 5.3 shows the median angular errors. The
experiment reveals the following findings:

1) When 5% of samples are fed, the angular errors of RF-Orien3D are slightly
lower than other two cases with the large sample dataset by about 2� � 3� in az-
imuth and 1� in elevation, respectively. It could illustrate that RF-Orien3D can
be driven for orientation tracking without collecting large-scale samples in actual
environments. In addition, we claim that RF-Orien3D can deal with most of multi-
path scenarios due to our multipath simulation. However, RF-Orien3D W. M. can
also use 80% samples to achieve the similar tracking errors. This means that our
orientation spectrum itself has already been equipped with the capability to combat
multipath interference. Since the two tags are close to each other, the multipath
e�ect has the same impact on each tag’s signal fingerprint and thereby can be sup-
pressed by the di�erencing method in Eq. 5.6. Even so, RF-Orien3D can achieve
better performance than RF-Orien3D W. M. when smaller samples are used (see
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Figure 5.9 : 2D orientation error.
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Figure 5.10 : 3D orientation error.

Section 5.8.3).

2) The median errors of RF-Orien3D in di�erent scenarios are very close to
each other, which means the impact of multipath interference could be significantly
suppressed. And the errors in medium and rich-multipath cases are just slightly
higher than in the low-multipath cases. Such an experiment result is expected due
to the multipath diversity in the medium and rich multipath cases. Two potential
solutions could further improve accuracy. One is to collect more RFID fingerprints
in actual application scenarios. Another is to simulate more multipath impacts on
RFID fingerprints. However, a tradeo� between the amount of simulated data and
pre-training cost should be considered.

3) In low-multipath LOS and NLOS, the average errors are very close, so it could
demonstrate that RF-Orien3D can perform even in NLOS. Since the impact of an
obstruction on forward and backward communication links of the two tags are the
same, our di�erencing method can completely remove its impact.

4) The tracking error in azimuth is about 2.5 times higher than that in elevation.
This is due to the fact that the mutual coupling e�ect results in a relatively smaller
variation of tag gain in azimuth (i.e., X-Y plane in Fig. 5.12) than that in elevation
(i.e., X-Z plane in Fig. 5.13). To reduce the azimuth error, we can introduce more
RFID tags to build a planar tag array instead of a linear two-tag array. However,
accurately calculating the modulation factor in the planar array is very challenging,
which is left for our future work.

5.8.2 Performance Comparison

To compare our system RF-Orien3D with RF-Orien3DW. M. that is trained only
using actual RFID measurements, we randomly extract 2.5% of samples (about 133
samples) to fine-tune the pre-trained CNN for RF-Orien3D and directly train a new
CNN for RF-Orien3DW. M. And the remaining sample are used for validation. Also,
we depend on these validation dataset to evaluate the tracking accuracy of Naive
method and Tagyro in 2D plane, and that of Orientation-spectrum and RF-Orien3D
W. S. in 3D space. The experiment is repeated 50 times. Fig. 5.9 plots the 2D
orientation error for Naive method, Tagyro and RF-Orien3D, while Fig. 5.10 plots
the 3D orientation errors in azimuth and elevation for Orientation-spectrum and
RF-Orien3D based methods. From the experimental results, we have the following
conclusion:
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1) For 2D direction estimation, Fig. 5.9 shows that RF-Orien3D outperforms
Naive method and Tagyro by about 2.61 times and 1.77 times, respectively. In dif-
ferent multipath scenarios, these methods have the similar results due to the fact that
multipath interference induces the similar distortion in RFID signal fingerprints of
the two closely-spaced tags. However, the Naive method completely ignores mutual
coupling interference. And Tagyro has a little improvement in accuracy. However,
the virtual tag separation may be changed in different directions of a two-tag array
relative to a reader antenna. RF-Orien3D can achieve better performance of com-
bating coupling and multipath interference than the method of purely differencing
phase in Naive method and Tagyro.

2) For 3D direction estimation, Fig. 5.10 shows RF-Orien3D can achieve lower
estimation errors and standard deviations in azimuth and elevation than other meth-
ods. For Orientation-spectrum, it ignores the impact of multipath interference and
cannot accurately differentiate possible directions from the tiny variation in tag
radiation pattern. Recall from Section 5.8.1 that given enough training samples,
RF-Orien3D W. M. can achieve similar performance to RF-Orien3D. However, when
only a smaller number of samples are used to train in this experiment, its estimation
accuracy is relatively lower, especially in azimuth estimation, because most of the
divided RFID fingerprints in the validation dataset are relatively new relative to the
training dataset. This experiment could demonstrate that the pre-trained CNN can
help our system deal with new multipath cases that never occur in training samples.

3) Surprisingly, RF-Orien3D W. S. just has a little lower accuracy than RF-
Orien3D, but higher than RF-Orien3D W. M. It could reveal the effectiveness of
our RSSI/phase-distance models with mutual coupling and multipath terms, and
thereby the simulated data may be similar to actual measurements. Unfortu-
nately, the estimated modulation factor and the simulated radiation pattern un-
der impedance matching may more or less deviate from the ground truth. After
fine-tuning using a few numbers of samples, RF-Orien3D could achieve better per-
formance.

5.8.3 Microbenchmarks

Next, we evaluate RF-Orien3D performance with two key settings: tag-to-tag
separation and tag-to-antenna distance.

Impact of tag-to-tag separation. At first, we deploy the centers of a reader
antenna and two tags on the same line. A tag (e.g., T1) is located between the reader
antenna and another shadowed tag (e.g., T2). Here we observe the impact of the tag
separation on RSSI of T2, because it has a lower RSSI than T1 and thereby cannot
be read sometimes. For our system, however, it is required to keep reading both
of them for tracking. We adjust the position of T1 to change the spacing between
them in each experiment. Also, we vary the distance of T2 to the reader antenna
from 100cm to 500cm with a spacing of 50cm. Fig. 5.11 and Fig. 5.12 plot tag
radiation patterns in the X-Y and X-Z planes under the tag separation distances of
3cm∼8cm. The variation in RSSI over different tag-to-antenna distances are shown
in Fig. 5.13. Fig. 5.14 shows the angular errors as the tag spacing increases from
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Figure 5.11 : X-Y plane.
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Figure 5.12 : X-Z plane.
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Figure 5.14 : Impact of tag separation.

3cm to 6cm. We can see that:

1) The tag array with a smaller spacing has a substantial decrease in reported
RSSI. As the tag separation increases, the change in the radiation pattern of each tag
due to tag mutual coupling is correspondingly weakened. And if we ignore the loss in
antenna e�ciency due to impedance mismatching, the variations in measured RSSI
and tag radiation pattern are very similar (2 times loss in tag gain due to forward
and backward communication). For example, the RSSI is increased by about 7.5dB
from the tag separation of 3cm to 4cm, while the tag gain is increased by about
5dB. It could validate the e�ectiveness of our radiation pattern simulation.

2) Given the tag spacings of 3cm to 6cm, we obtain each pre-trained model
and then test the impact of tag separation based on the simulated data in the
same array-to-antenna directions for fairness. Note that the training samples do not
contain these data. The sample size is about 1000 for each case. We evaluate the
azimuth angle error given the elevation angle of 0� and the elevation angle error given
the azimuth angle of 0�, respectively. Fig. 5.14 shows that as the tag separation
increases, the azimuth error slightly reduces. However, the elevation error has a
slight increase. This result also follows the variation in tag radiation pattern.

3) Our system needs to collect RFID fingerprints of two tags for estimation. A
smaller tag spacing results in a larger mutual impedance, thereby decreasing the
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Figure 5.15 : Impact of tag-antenna distance.

power transfer coe�cient and modulation factor in forward and backscatter links,
respectively. In this case, the shadowed tag will be more di�cult to be read in some
directions or at longer tag-to-antenna distances. We need to look for a balance
between tracking accuracy and responding distance. In our system, we select a
4-cm tag spacing for use.

Impact of tag-to-antenna distance. In this experiment, 5% of samples are
used for fine-tuning. The remaining validation dataset is split into di�erent tag-to-
antenna distance ranges with a spacing of 25cm. The ground-truth distances can
be obtained by the above camera-based solution. Fig. 5.15 shows that the angular
errors are almost independent of the change in the tag-to-antenna distance. At first
glance, a larger tag-to-antenna distance will diminish backscatter signal power and
then increase the impact of multipath interference on signal fingerprints. However,
RF-Orien3D can e�ectively suppress the multipath impact.

5.9 Conclusion

In this work, we present RF-Orien3D that estimates RFID-tagged object ori-
entation in 3D space only with a two-tag array and one reader antenna. The key
novelty is to leverage the ‘bad’ mutual coupling e�ect when two tags are located
closely. It induces the variation in the radiation pattern of each tag in di�erent
directions, thereby providing us an opportunity to find out the spatial angles of the
tag array relative to the reader antenna. A novel CNN-assisted method is proposed
to deal with strong multipath interference. The experiments have demonstrated the
e�ectiveness of our system. We hope that the techniques of leveraging the change
in tag radiation pattern and combating multipath could provide new thoughts for
RFID sensing research.
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Chapter 6

Conclusion

6.1 Contributions

In this thesis, some existing CV-related techniques are introduced to address
a series of challenges in purely battery-free RFID sensing systems. In Table. 6.1,
we summarize the proposed computer vision-assisted battery-free RFID systems
from the aspects of tasks, challenges, novel algorithms, application scenarios, system
performance and key improvements compared to the existing methods. And the
detailed contributions of this thesis are described as follows:

1) To reduce the impact of multipath interference and frequency hopping, the
proposed RF-Focus is the first CV-assisted RFID system for moving RFID tag
recognition and localization within the region of interest, without pre-capturing
the entire trajectory of each moving object in CV. Novel RSSI/RF phase-distance
models with multipath terms are proposed. On this basis, a dual-antenna solution
is adopted in RF-Focus to combat multipath interference, and the tag-to-antenna
distance can be extracted from the multipath terms so as to estimate the frequency-
dependent phase shifts caused by frequency hopping. RF-Focus achieves about
91.67% recognition accuracy and 94.26% position matching accuracy when tracking
5 moving RFID-tagged objects within the ROI.

2) To deal with the issues of acquiring a reader antenna’s position at each sam-
pling time and improving real-time performance in 3D localization, RF-MVO is the
first CV-assisted RFID system for stationary RFID localization in 3D space, with-
out driving a robot along a pre-defined trajectory or pre-deployed track. A novel
DOA-based 3D localization is designed to avoid exhaustively searching all possible
positions. And the HDOP referring to GPS can help RF-MVO output the optimal
tag position. RF-Focus achieves about 6.23cm 3D localization accuracy.

3) To cope with the impact of tag mutual coupling and multipath interference,
RF-Orien3D is the first CV-assisted RFID system for two-RFID-tag labeled object
orientation using CNN with transfer learning technique, without manually collect-
ing large-scale RFID fingerprint measurements. In RF-Orien3D, an RFID tag array
is simulated in Matlab for radiation pattern analysis, and an approach based on
reported RFID fingerprints in non-coupling and coupling cases is proposed to char-
acterize the variation in practical modulation factor under different tag spacing.
RF-Orien3D achieves median errors in azimuth and elevation of about 29◦ and 11◦

in both low and rich multipath cases.
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Table 6.1 : Summary of computer vision-assisted battery-free RFID systems

RF-Focus RF-MVO RF-Orien3D

Task Region-of-interest moving object recognition Stationary object 3D localization Multi-tag labeled object 3D orientation

Challenges

1) Unpredictable multipath interference;

2) Frequency-dependent hardware diversity;

3) High matching latency in CV and RFID fusion

1) Moving reader antennas on a pre-defined trajectory;

2) Vast computation complexity in 3D localization;

3) Selection of multiple tag position candidates

1) Unknown tag mutual coupling interference;

2) The change in tag radiation pattern and modulation factor

Algorithms

1) Dual-antenna setup for multipath suppression;

2) Multipath-powered hardware diversity removal;

3) Novel matching algorithm for low-latency searching

1) RFID fingerprint and MVO fusion for 3D localization;

2) Coarse-to-fine tag position and scale factor optimization;

3) HDOP-based optimal position and scale-factor selection

1) Transfer learning-based 3D direction estimation;

2) Tag radiation pattern simulation from a 2D image;

3) Impedance-dependent modulation factor estimation

Applications
Conveyor belt-based applications, e.g.,

parcel sorting, defective product identification
Robotic pick-up task, mis-shelved book detection in library

Direction-required applications, e.g,

liquid shipment and storage

Performance ROI object recognition accuracy: 91.67% 3D localization accuracy: 6.23cm 3D Orientation accuracy: 29◦ for azimuth and 11◦ for elevation

Improvement

1) Reducing multipath interference impact;

2) Compensating frequency-dependent phase offset;

3) Fusing 2D images to minimize position uncertainty

1) Fusing 2D images to estimate unknown antenna trajectory;

2) Reducing computation delay in 3D-space position searching;

3) Introducing HDOP to evaluate localization accuracy

1) Leveraging deep learning to deal with multipath interference;

2) Simulating a tag array from a 2D image for tag characteristic analysis;

3) Only using RFID fingerprints to estimate impedance-dependent modulation factor,

without specialized RF network analyzers
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6.2 Future Work

The future work will further improve the proposed CV-assisted RFID systems:

CV-assisted ROI Moving Object Recognition. In RF-Focus, a potential
problem is how to deal with those ROI RFID tags which are blocked by obstructions.
In practice, the placement of each RFID-tagged object may be uncontrolled on the
conveyor, so not all ROI RFID tags are in LOS scenarios. For example, in the airport
baggage transport, an ROI RFID tag may be located on the bottom of baggage
on the conveyor. In this case, the effectiveness of the dual-antenna hypothesis to
combat multipath interference in the NLOS will weaken as the lower transmit power
arrives at the tag end. And the matching score of an object proposal containing the
ROI tag may keep at a low level. As a result, our system may regard this tag as
a false-positive reading one located outside the ROI. To minimize the effect of the
NLOS issue, our future work is to design a scheme to detect those ROI RFID tags in
NLOS, i.e., if the matching scores of an object proposal corresponding to all RFID
tags read are all lower than a threshold, it indicates the presence of an ROI RFID
tag in NLOS and the corresponding object proposal is the position where the tag is
located at. Instead of directly determining the tag as a false-positive reading one,
our system is to report the anomalous events and ask sorters to manually deal with
the NLOS issue of the tag. In addition, we would deploy multiple reader antenna
pairs mounted on a gantry with different positions and directions and select RF
phase measurements reported by the antenna pair with the maximum RSSI values
for fusion use.

CV-assisted Stationary Object 3D Localization. In RF-MVO, two prob-
lems should be considered. 1) Sampling Rate of RF Phase. To guarantee high-
precision tag localization, RF-MVO requires enough fusion samples. However, it is
very challenging in a dense tag deployment. One feasible solution is to move reader
antennas at a lower speed. Another is to reduce the size of the reading region by
using a relatively low transmitted power or a small-size reader antenna like [60].
Moreover, our future work is to design a reading method that improves the tag sam-
pling rate in the main beam of a reader antenna and reduce that in the side beam. 2)
Error in Camera Trajectory Recovery. RF-MVO demonstrates the feasibility of fus-
ing depth-enabled RF phase to estimate scale factors for MVO. However, the RFID
tag localization accuracy is subject to the camera trajectory recovery performance
(i.e., scale-factor estimation accuracy). In some indoor application scenarios, our
future work is to directly recover the trajectory using a stereo or RGB-D camera,
which will improve tag localization accuracy but also reduce response latency.

CV-assisted Two-RFID-Tag Labeled Object 3D Orientation. In RF-
Orien3D, one drawback is that the azimuth error is around 2.5 times higher than
the elevation one. To address this issue, a potential solution is to deploy other
parallel tags both horizontally and vertically to build a planar tag array. Then
the variation of the tag radiation pattern in azimuth would be similar to that in
elevation. Unfortunately, accurately obtaining the modulation factor in this case
using the proposed estimation method will be a time-consuming process. In our
future work, we would design a faster and more convenient solution without sepa-
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rately measuring the RFID fingerprint of each element in a planar tag array in the
non-coupling and coupling scenarios.
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