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Abstract

Time series data in traffic has been playing an important role in intelligent
transportation systems (ITS) research and applications. However, because
of the sparse, imbalanced, stochastic and highly non-linear natures of traffic
time series data, typical parametric methods or machine learning methods
are unable to learn the representations of data well. This work aims to
develop deep learning methods to gain novel and valuable knowledge from
traffic time series analysis for I'TS. Specifically, deep learning-based methods
are developed for three topics, namely taxi destination prediction, anomalous

traffic patterns detection, and urban traffic low prediction.

The first method is to predict taxi destination using trajectory data.
Accurate and timely destination prediction of taxis is of great importance for
location-based service applications. Over the last few decades, popularization
of vehicle navigation systems has brought the era of big data for the
taxi industry. Existing destination prediction approaches are mainly based
on various Markov chain models or trip matching ideas, which require
geographical information and may encounter the problem of data sparsity.
Other machine learning prediction models are still unsatisfying to provide
favourable results. In this work, firstly, we propose a novel and efficient data
embedding method for time-related features’ pre-processing. The key idea
behind this is to embed the data into a two-dimensional space before features
learning. Secondly, we propose a novel ensemble learning approach for
destination prediction. This approach combines the respective superiorities of

support vector regression and deep learning at different segments of the whole

xXvil



Abstract

trajectory. Our experiments are conducted on two real data sets to exhibit
the superior performance of our ensemble learning model. Comparisons also
confirm the effectiveness of the proposed data embedding method in deep

learning model.

In this thesis, a method based on bus trajectory data is developed for
learning anomalous traffic patterns. Existing data-driven methods for traffic
anomaly detection are modelled on taxi trajectory datasets. The concern
is that the data may contain much inaccuracy about the actual traffic
situations, because taxi drivers often choose optimal routes to evade from the
congestions caused by traffic anomalies. We use bus trajectory data in this
work. Bus trajectories can capture real traffic conditions in the road networks
without drivers’ preference, which are more objective and appropriate for
accurately detecting anomalous patterns for a broad range of insight analyses
on traffics. We propose a deep learning-based feature visualization method
to map 3-dimensional features into a red-green-blue (RGB) color space. A
color trajectory (CT) is then derived by encoding a trajectory with the RGB
colors. With the spatial and temporal properties extracted from the CT,
spatio-temporal outliers are detected by a novel offline detection method.
We then conduct GIS map fusion to obtain insights for better understanding
the traffic anomaly locations, and more importantly the influences on the
road affected by the corresponding anomalies. Extended from the offline
detection, an online detection method is developed for real-time detection of
anomalous patterns. Our proposed methods are tested on 3 real-world bus
trajectory datasets to demonstrate the performance of high accuracies, high

detection rates and relatively low false alarm rates.

This thesis also introduces a novel deep learning-based model for urban
traffic flow prediction. Accurate and reliable traffic flow prediction is
a challenging task due to the highly non-linear and stochastic natures
of traffic flow data, but its solutions are crucial for ITS. In this study,
a novel deep learning approach is proposed to address the problem.

Instead of utilizing grid search, we introduce a differential evolution
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Abstract

algorithm for globally optimizing the hyperparameters of an LSTM network,
and parallel computing and early stopping criteria are implemented to
accelerate the optimization process. The LSTM network with the optimized
hyperparameters is then trained to learn sequential traffic flow features. The
model is named parallel-differential-evolution-based LSTM network (PDE-
LSTM). To the best of our knowledge, this is the first research that uses
evolutionary algorithm to optimize deep learning models for traffic flow
prediction. Experiments on three real-world traffic flow data sets from Dublin
and San Francisco show that PDE-LSTM can achieve a high accuracy of at
least 93% for all of the predictions. Comprehensive performance comparisons
with state-of-the-art methods further confirm the superior performances of

our deep learning approach on these real-world traffic flow data sets.
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Chapter 1
Introduction

This chapter describes the background, research motivations, research
objectives, research contributions and structure of the thesis. In Section
1.1, the backgrounds of traffic time series data, deep learning as well as
some significant applications of traffic time series data analysis are presented.
Section 1.2 introduces the motivations in this research work, including taxi
destination prediction, anomalous traffic patterns detection and traffic flow
prediction. The corresponding research objectives and contributions of each
motivation are specified in Section 1.3. Finally, the structure of this thesis is
detailed in Section 1.4.

1.1 Background

With the rapid deployment of intelligent transportation systems (ITS), huge
amount of data stream from various traffic sensors has been generated and
accumulated continuously. Among these data, traffic time series have been
playing a crucial role in I'TS research and applications (Li, Su, Zhang, Lin &
Li 2015). Mining these traffic time series data can not only produce helpful
information for relieving traffic problems such as congestion, but can also
bring novel functions and services to ITS (Zhang, Wang, Wang, Lin, Xu &
Chen 2011). However, due to the sparse, imbalanced, stochastic and highly

1



Chapter 1. Introduction

non-linear natures of traffic time series data, traditional parametric methods
or machine learning methods are difficult to learn representations of data well.
Recently, deep learning has attracted tremendous attention from researchers
and brought about breakthroughs in image, video, speech, audio and text
data processing (LeCun, Bengio & Hinton 2015). Therefore, considering the
achieved milestones of deep learning techniques, this thesis aims to develop
powerful and reliable deep learning-based data analysis functions to improve

ITS service level and benefit stakeholders.

1.1.1 Traffic Time Series Data

A time series is formed by observations that have been collected over a
fixed sampling interval. Time series data is commonly existed in almost
every application fields in the world, such as business (e.g., sales figure),
economics (e.g., stock prices), official statistics (e.g., census data), natural
sciences (e.g., population size) and environmetrics (e.g., precipitation)
(Dettling 2013). A time series process can be defined as a set of random
variables {z;,t € T}, where random variable z; is distributed according
to some univariate probability distributions function FP,. T is a set of
timestamps with equidistant time intervals, and T'= {1,2,3,- - }.

The time series data is ubiquitous in traffic with the rapid development
of ITS. The methods of traffic time series data collection have also been
evolving considerably. The collecting technologies of traffic time series data
can be dichotomized into two families: the stationary and non-stationary
sensor-based methods (Duan 2019, Leduc et al. 2008). The stationary
sensor-based methods record data via detectors placed along the roadside
or on the roads. This scenario basically includes pneumatic road tubes,
magnetic loops, passive magnetic, microwave radar as well as ultrasonic and
passive acoustic. The non-stationary sensor-based methods collect traffic
data via detectors embedded on floating vehicles over the whole transport
network. This methods include global positioning system (GPS) and cellular

network. In Table 1.1, we give a brief description of the most important
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Chapter 1. Introduction

sensor technologies of traffic time series data collection.

1.1.2 Deep Learning

Before introducing deep learning, we shall start from the simple
linear regression in statistics. Suppose we have N observations
{(z1,y1), -+, (xN,yn)}, variable x = (21,29, ,zx) is considered to be
the independent variable, and y = (y1,%2, - ,yn) is deemed to be the
dependent variable. In linear regression, we assume that a linear relationship
f(x) = xW + b is existed to map each z; to y;, and W and b are the
parameters that determine the linear transformation with aim to minimize
the mean squared error: + |ly — (xW + b)|l3.

In more general cases, inputs X are composed by multiple independent
variables, and so as the outputs Y, where X = (x1,X2,"":,X;,) €
RV Y = (yi,¥2, -, ¥k) € RV*F %, = (Ti1, T, - -+, vv) and y; =
(i1, Yio, -+ ,yin)- The relationship between inputs X and outputs Y may
not be linear, we attempt to find a non-linear function f(X) to map X to
Y. We assume that a non-linear transformation function ¢ is defined. The
inputs are firstly transformed by a linear function with parameters W, and
b;. Then the outputs XW; + by are fed into a non-linear transformation @,
the feature vector is updated by ®(X) = ¢(XW;+Db;). The feature vector via
the non-linear transformation processing is fed again as the inputs of a linear
function, then the model’s outputs are written as f(X) = ®(X)Wy+by. The
parameters W; and W, are matrices, and b; and by are vectors. We can
find the optimal Wy, W5 as well as by, by by minimizing the error between
f(X) and Y (Gal 2016).

A basic deep learning model can be viewed as a hierarchy of multiple non-
linear processing aforementioned (Polson & Sokolov 2018). Each hierarchy
is a level of representation, obtained by non-linearly transforming the
representation at one level into another representation at a higher and more
abstract level (LeCun et al. 2015). With the enough deep structures (enough

such transformations) in a deep learning model, very complex relationship
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Chapter 1. Introduction

could be learned over observations.

1.1.3 Applications of Traffic Time Series Data Analysis

Analysis of large amount of traffic time series data provides a new technical
method for I'TS. Stakeholders related to drivers, riders, traffic managers and
transport service providers can benefit directly from various applications that
provide users of convenience, safety as well as high-efficiency. Based on two
relevant surveys from Zhu et al. (Zhu, Yu, Wang, Ning & Tang 2018)
and Li et al. (Li, Su, Zhang, Lin & ILi 2015), we will emphasize on 4
categories of traffic time series data analysis applications. However, with the
rapid development of sensors, the following aspects cannot cover all those

applications in this domain.

e Location-based Services (LBSs)

LBSs is a broad term that applications which utilize geographic data
and information to provide services to users (Schiller & Voisard 2004).
With the accurate geographic information provided from various
navigation systems, usage of various LBSs has become a more and more
important part in people’s daily lives (Peng, Liu & Wang Mar. 2017).
On one hand, LBSs can obtain the real-time position information of
vehicle via GPS, and deliver real-time information, such as traffic
condition, targeted advertising or activity recommending, to drivers
and riders. On the other hand, instead of utilizing real-time location,
LBSs can also use location further ahead by making prediction based
on the historical movement data, such as the next location prediction
(Chen, Liu & Yu 2014) and destination prediction (Zhang, Zhao, Zheng
& 1i 2019, Rossi, Barlacchi, Bianchini & Lepri 2020).

e Traffic Anomaly Detection
Anomaly detection refers to finding those behaviours that do not
yield expected patterns. Traffic anomaly can be caused by traffic

accidents, special events and loop detector faults (Li, Su, Zhang, Lin
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& 14 2015). These abnormal patterns can also be propagated along
the whole road networks, and they will not disappear automatically
without proper traffic control strategies. Therefore, it is significant
to develop a method to automatically figure out these abnormal
patterns by data-driven techniques (Kong, Song, Xia, Guo, Wang
& Tolba 2018, Xu, Ouyang, Cheng, Yu, Xiong, Ng, Pranata, Shen
& Xing 2018). Detection of anomalous traffic flow pattern from
continuous flow data can enable traffic managers to quickly respond
to this changing situation. Anomalous traffic patterns detection
from vehicles” GPS trajectory data also helps in sensing abnormal
events and analyzing traffic accidents (Liu, Zheng, Chawla, Yuan &
Xing 2011, Zhang, Zhang, Verma, Liu, Blumenstein & Li 2019).

e Traffic Prediction

Traffic prediction aims to characterise the relationship between the
past traffic data and the future traffic data. Such prediction helps
the users get a better understanding of the upcoming situation, and
then prepare in advance. Accurate prediction of traffic speed over the
whole transport network is helpful for route guidance and congestion
avoidance (Asif, Dauwels, Goh, Oran, Fathi, Xu, Dhanya, Mitrovic &
Jaillet 2013). Traffic flow prediction assists the users to make better
travel decision and to guide traffic control strategies (Lv, Duan, Kang,
Li & Wang 2014). Precise travel time prediction helps drivers and
travellers to make decision or plan schedules (Wu, Ho & Lee Dec. 2004).
Real-time prediction of travel time of taxi’s trips is also beneficial for
ridesharing and taxi dispatching in the taxi industry (Wang, Zheng &
Xue 2014).

o Asset Maintenance
Proper maintenance approach of assets is essential to keep assets remain
in a thriving condition and reduce maintenance costs. Analyzing

the continuous performance data collected from vehicles or transport



Chapter 1. Introduction

infrastructures can help target problems at a faster and more accurate
level.  For example, time series data from vehicle or transport
infrastructure, such as temperature, humidity, pressure, etc., can be
collected via various sensors, and be processed and analyzed by the
advanced data analysis methods. Then the current condition indicators
of these assets can be diagnosed for further maintenance decisions
making (Zhu et al. 2018).

1.2 Research Motivations

1.2.1 Taxi Destination Prediction

Taxi plays an important role in modern transport system all over the world
(Bidasca & Townsend 2016, Ding, Liu, Pu & Ni 2013, Liu, Ni & Krishnan Jan.
2014). Over the past few decades, GPS has been widely used in a rapid
increasing number of applications, such as vehicle based navigation system
or smartphone based navigation system, which are broadly operated in the
urban road network. Such a huge amount of movement data can be utilized
in plentiful LBSs (Xu, Wang & Li 2016).

According to the statistics of the mobile searchers at a large software
company, 68% of the searchers happened often in the transits, while 39%
of them want to obtain the information about their destinations or near
these destinations, and 12% of them want the information en route to
their destinations (Teevan, Karlson, Amini, Brush & Krumm 2011). In
the industry of taxi, accurate and timely destination prediction of taxis
is of great importance for LBSs applications. For instance, application of
targeted advertising, e.g., shopping, restaurants or hotels recommending,
can be achieved via recommendation systems. Comparing to the existing
advertising mode in taxi industry, there are significances of pertinence as
well as high-efficiency. Meanwhile, real-time prediction of trips’ destinations
could also be helpful in taxi ride-hailing platforms like Uber, Grab or DiDi in

the cases that the users alter their preset drop-off locations during services.
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Existing methods of destination prediction are mainly based on trip
matching, Markov chain models and machine learning models.  Trip
matching methods may not be efficient for huge volume of historical data.
Markov chain models need supplementary geographical information and may
encounter the data sparsity problem (Xue, Zhang, Zheng, Xie, Huang &
Xu 2013). Other machine learning prediction models are still unsatisfying
to learn features among limited prior knowledge, and are unable to achieve

favourable prediction performances.

1.2.2 Anomalous Traffic Patterns Detection

Anomalous patterns detection from traffic data is of great significance
in transportation. Detecting anomalous traffic patterns is to figure out
unexpected patterns, which are helpful in traffic accidents analysis, fault
detection, congestion management and new infrastructure planning (Li,
Guo, Xia & Xie 2018). The anomalous traffic patterns can be reflected by
investigating the trajectories of moving carriers in the road network (Liu et al.
2011). These patterns are emerged due to various factors including traffic
accidents, traffic controls, parades, sports events, celebrations, disasters or
other events. Existing methods for traffic anomaly detection are mainly
modelled on city-wide taxi trajectory data (Liu et al. 2011, Chawla, Zheng
& Hu 2012, Pang, Chawla, Liu & Zheng 2013, Wang, Lu, Yuan, Zhang
& Van De Wetering 2013, Pang, Chawla, Liu & Zheng 2011, Wang, Wen,
Yi, Zhu & Sun 2017, Mao, Sun, Jin & Zhou 2018, Zhang, Li, Zhou, Chen,
Sun & Li 2011, Chen, Zhang, Castro, Li, Sun & Li 2011, Kuang, An &
Jiang 2015, Yu, Cao, Rundensteiner & Wang 2014, Song, Wang, Xiao, Han,
Cai & Shi 2018, Wu, Sun & Zheng 2017). However, the concern is that the
data may contain much inaccuracy about the real traffic situations, because
taxi drivers often choose optimal routes for themselves to evade from the
congestions caused by various traffic anomalies (Kong et al. 2018). In this
thesis, we will explore a more accessible trajectory data source of bus for

probing the city-wide traffic anomalies. Bus services facilitate commuters
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substantially. Take the city of Beijing as example, by the end of 2019, 23,010
buses have been on the roads everyday, serving 3.134 billion people with
1,162 regular bus routes during the year (Beijing Public Transport 2020).
Bus services are available along the most major roads in metropolitan areas
of city, and major roads are usually possessed with heavier traffic, which
are much more meaningful for traffic research or management (Huang, Song,
Hong & Xie 2014). In contrast to trajectory data of taxi, bus trajectory data
for anomaly detection has the following advantages. Firstly, as a kind of
public transport service, there is not much risk of privacy leakage regarding
bus trajectory data. Secondly, as a result of such advantage, getting access
to the real-time bus trajectory data becomes easy for many cities. This can
be implemented via application programming interface (API) maintained
by the traffic administrators. Thirdly, bus services have their own regular
route, and the bus trajectory is more independent of the drivers’ preference,
reflecting more objectively on the actual road traffic conditions. This is
contrast to taxi trajectory data which may lose much accuracy about traffic
congestion situations, since taxi drivers can choose paths for themselves
(Kong et al. 2018). Especially when a taxi driver gets the traffic information
ahead, the driver very likely chooses an optimal route to avoid a foreseeable

traffic congestion.

1.2.3 Traffic Flow Prediction

Traffic flow prediction is aimed at making a prediction on the number of
vehicles passing a specific observation point/region within a future time
window (Huang et al. 2014, Pan, Sumalee, Zhong & Indra-Payoong 2013).
Traffic flow prediction is a fundamental problem being addressed in ITS or
smart city (Tian & Pan 2015). Accurate, reliable and timely traffic flow
information is of great significance to the efficacy of various I'TS subsystems,
especially advanced transportation management systems, advanced traveler
information systems, business vehicle management, and advanced public

transportation systems, which have been all listed as the fundamental parts
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of ITS (Zhang, Wang, Wang, Lin, Xu & Chen 2011).

Reliable prediction of traffic flow is still a challenge, because of the
highly non-linear and stochastic natures of urban traffic flow data (Tian &
Pan 2015). Recently, state-of-the-art deep learning methods have achieved
superior performances in traffic flow prediction than other traditional
parametric or machine learning methods (Qu, Li, Li, Ma & Wang 2019, Lv
et al. 2014, Huang et al. 2014, Huang, Hong, Li, Hu, Song & Xie 2013, Tian &
Pan 2015). However, hyperparameters optimization remains a tough problem
in deep learning despite of its significant progresses. The deep leaning-based
traffic flow prediction methods mainly utilize grid search or random search
strategies for hyperparameters tuning. However, grid search may lead to poor
performance in practice since it is very computationally expensive, especially
in the case of many hyperparameters or large sized sample data (Bergstra
& Bengio 2012). Random search strategy reduces the computational cost
significantly by scanning over a lower-dimensional subspace. However, the

searched results may not be globally optimized.

1.3 Research Objectives and Contributions

To address above research motivations, this thesis focuses on 3 research
problems: 1) taxi destinations prediction, 2) anomalous traffic patterns
detection, and 3) traffic flow prediction. The research objective of this
thesis is to contribute to I'TS applications by developing novel deep learning-
based approaches that could generate accurate, reliable and robust models
on traffic time series data. The specific objectives of above research problems

are summarized as follows (O1 to O3).

O1: To develop a data-driven ensemble learning approach to accurately

predict taxi destinations.

02: To develop offline and online methods for traffic anomaly detection from
trajectory features extracted by deep architecture, and to develop an

insight analysis method for better understanding traffic anomaly.
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03: To develop an evolutionary algorithm-based deep learning approach for

accurate and robust prediction of traffic flow.

To complete these objectives, we have proposed 3 novel methods as

presented in Chapter 3, Chapter 4 and Chapter 5, respectively. Our

contributions are elaborated as follows (C1 to C3).

C1:

C2:

Taxi destinations prediction from trajectories using a novel
data embedding method and ensemble learning

The contributions include : 1) A novel and efficient data embedding
method is proposed for time-related features embedding. 2) We develop
a data-driven ensemble learning approach for destination prediction,
combining the respective superiorities of support vector regression
(SVR) and deep learning at different segments of the trajectory. 3) We
conduct extensive experiments on two real-world datasets to confirm the
superior prediction performance as well as the effectiveness of proposed
data embedding method.

Offline and online detection of anomalous patterns from bus
trajectories for traffic insight analysis

Our contributions in this research are summarized : 1) We present
a deep neural network architecture to extract deeply hidden features
for generating better features visualization than typical dimensionality
reduction methods, and conduct GIS fusion for getting insights into
the anomalies, for example, the anomaly locations and their impacts
caused to the road traffic. 2) We devise a novel method for an offline
detection of anomalous traffic patterns at bus route level. Particularly,
instead of introducing machine learning models, we design algorithm on
imbalanced data by addressing the discrepancy between different classes
of anomaly. 3) Extended from the feature extraction architecture and
the offline detection method, we propose an online method for real-time
detection of anomalous traffic patterns. 4) We perform comprehensive

experiments on three real-world datasets to confirm the effectiveness
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and superiority of the deep feature extraction architecture, the offline
and online anomaly detection methods and insight analysis of the

anomalous patterns.

C3: Differential evolution based LSTM recurrent neural network
for traffic low prediction
The contributions in this research include : 1) This is the first work to
use evolutionary algorithms to optimize deep learning model for traffic
flow prediction. 2) Parallel computing and early stopping strategy
are implemented in the model to accelerate the optimization process.
3) We conduct experiments on three real-world traffic flow datasets
from different cities to demonstrate the high prediction accuracy of our
proposed model. Comparisons with the state-of-the-art methods further

confirm the superior performances of our deep learning approach.

1.4 Thesis Structure

The structure of this thesis is illustrated in Figure 1.1, and it is briefly
introduced as follows:

Chapter 1 introduces the background of this thesis, the research
motivations and the corresponding research objectives as well as
contributions. Chapter 2 presents the related work of this research,
including taxi trajectory modelling, anomalous patterns detection and traffic
flow prediction. Chapter 3 to Chapter 5 detail the proposed methods on
taxi destination prediction, anomalous traffic patterns detection and traffic
flow prediction, respectively. Details of experimental evaluation, comparison
and analysis are also included. Chapter 6 concludes this thesis and provides

discussions of future work.
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Chapter 1 ] . Background
ducti . Research motivations
Introduction J . Research objectives & contributions
A 4
Chapter 2 w . Review on taxi trajectory modelling
. . . Review on anomalous patterns detection
Literature Review J . Review on traffic flow prediction

v

Chapter 3 Taxi destinations prediction from trajectories using a novel data embedding method and ensemble learning

3 Circular fuzzy embedding Il’ v Efficient for time-related features embedding
. Ensemble learning model 4 Comparable prediction performance

Chapter 4 Offline and online detection of anomalous patterns from bus trajectories for traffic insight analysis

3 Deep sparse autoencoder v Extracts novel features and makes better visualization
. Offline anomalous traffic patterns detection II’ 4 Superior detection performance

. Anomaly insight analysis v' Efficient for location and road influence insights

. Online anomalous traffic patterns detection 4 Efficient for real-time detection

v

Chapter 5 Differential evolution based LSTM recurrent neural network for traffic flow prediction

o N N O Y e W e W

3 Differential evolution (DE) v Efficient to solve optimization problem
. DE based LSTM |l* v Comparable prediction performance
. Parallel computing & early stopping 4 Accelerate optimization process
v
Chapter 6 ]
Conclusion & Future D Conclusion . Future work
work J

Figure 1.1: Thesis structure.
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Chapter 2

Related Work and Literature

Review

This chapter describes the related work and literature review of the work in
this thesis. Section 2.1 reviews the relevant work on taxi trajectory modelling.
Then, the state-of-the-art methods for anomalous patterns detection are
presented in Section 2.2. Following this, the existing methods for traffic
flow prediction are introduced in Section 2.3. Finally, we briefly summarize

the contents in this chapter.

2.1 Taxi Trajectory Modelling

The analysis of taxi trajectory datasets has been considered by a lot of
researches in the subjects of data mining, machine learning or intelligent
transportation systems. Recommendation systems and location prediction

are two popular topics among them that utilize taxi trajectory datasets.

2.1.1 Recommendation Systems

The taxi trajectory-based recommendation systems mainly include routing
recommending (Liu & Qu 2016, Dai, Yang, Guo & Ding 2015, Dai
et al. 2015), passenger-hunting recommending (Ding et al. 2013), taxi-hunting
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recommending (Xu, Zhou, Liu, Xu & Zhao 2014), social recommending (Liu
& Wang 2017) and charging station recommending for electric vehicles (EV)
(Tian, Jung, Wang, Zhang, Tu, Xu, Tian & Li 2016).

Liu et al. (Liu & Qu 2016) proposed a dynamic congestion conditions
prediction framework using topic-aware Gaussian process, then adaptive
routing recommendation algorithm was applied. This framework is not only
limited to GPS trajectory data, it can also be extended to traffic data from
road sensor system. A personalized route recommendation method was
presented by capturing the taxi drivers’ driving preferences from the taxi
trajectories (Dai et al. 2015). It is the first work to use big trajectory data for
personalized route recommendation. Ding et al. (Ding et al. 2013) developed
a passenger-hunting system to recommend a connected trajectory with the
objective to produce higher profit. Study by Xu et al. (Xu et al. 2014)
proposed a taxi-hunting recommendation system to estimate the probability
and waiting time in a particular location. It combines an offline processing
phase and a fast online inquiring phase based on the probability model. Liu
et al. (Liu & Wang 2017) developed a community detection technique based
on mobility trajectory, then an online recommendation method based on
trajectory community was proposed to improve service level. In the study by
Tian et al. (Tian et al. 2016), a real-time charging station recommendation
system was presented for EV taxis by mining large-scale GPS data to save

the most time. This is the first recommendation system for EV taxis.

2.1.2 Location Prediction

Location prediction of a moving objective has been one of the most traditional
problems in trajectory analysis. A common and simple approach is trip
matching, if an on-going trip (i.e., query trip) matches part of a popular
trajectory from the historical trajectories, then the destination of this popular
route will be taken as the destination of the query trip (Xue et al. 2013).
However, trip matching might not be efficient on huge amount of data.

Other methods are mainly based on Markov chain models (Ashbrook &
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Starner Sept. 2003, Li, Ahmed & Smola 2015, Simmons, Browning, Zhang
& Sadekar 2006, Alvarez-Garcia, Ortega, Gonzalez-Abril & Velasco Dec.
2010, Ziebart, Maas, Dey & Bagnell 2008). Firstly, Ashbrook and Starner
introduced Markov chain model to predict the most likely next location in
2003. This model consists of nodes, each node represents a location, which are
used as the states of Markov process. Then, the probabilities can be derived
from the historical locations which have been visited. The transition between
two states represents the probability of the user travelling between these two
locations, which can be trained through the historical trajectories (Ashbrook
& Starner Sept. 2003). Simmons et al. (Simmons et al. 2006) used a hidden
Markov chain model (HMM) to predict the route and destination of the
driver based on an online observation of their GPS position. Several variants
of Markov chain model (Gambs, Killijian & del Prado Cortez 2012, Alvarez-
Garcia et al. Dec. 2010) were also presented in location prediction based on
their past GPS log data. However, these approaches need to be combined
with extra geographical information, such as GIS map database, which aims
to provide road graph consisting of road intersections and linking between
intersections (Simmons et al. 2006). Sometimes they may lead to data
sparsity problem in practice as the historical trajectory data cannot cover
all possible query trajectories (Xue et al. 2013), i.e., the query trajectory
does not match any historical trajectory or the probability of the transition

between two locations approximates zero.

Machine learning methods have also been applied for predicting locations.
Artificial neural network (ANN) with shallow structure was introduced in
taxi destination prediction (De Brébisson, Simon, Auvolat, Vincent & Bengio
2015). The input layer of this model are the initial and last points of the
historical trajectory prefix integrated with some meta-data embedding, such
as client ID, taxi ID, stand ID and time information. The output layer
are the clusters of corresponding destinations. Following this, state-of-the-
art machine learning models like decision tree (Manasseh & Sengupta 2013,

Costa, Fontes, Costa & Dias 2015), bootstrapped decision tree, decision tree
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with pruning (Manasseh & Sengupta 2013), naive Bayes (Costa et al. 2015),
reinforcement learning (Le, Liu & Lau 2016) and recurrent neural network
(RNN) (Rossi et al. 2020) have also been developed in location prediction.

2.2 Anomalous Patterns Detection

Anomalous pattern detection aims to detect the unexpected patterns, which
has been intensively studied in the domain of data mining and knowledge
discovery (Liu et al. 2011). Firstly, the methods for detecting general
anomalies/outliers are reviewed in Section 2.2.1, four basic categories of
methods are presented. Then, Section 2.2.2 conducts a comprehensive review

on anomaly detection in the road traffic domain.

2.2.1 General Anomaly Detection

Anomalous pattern detection aims to detect unexpected patterns, which
has been intensively studied in the domain of data mining and knowledge
discovery (Liu et al. 2011). To our best knowledge, at least four categories of
methods were proposed, including dimensionality reduction-based methods
(Lakhina, Crovella & Diot 2004, Liu, Zhang & Guan 2010, Callegari,
Gazzarrini, Giordano, Pagano & Pepe 2011, Juvonen & Hamalainen 2014,
Fontugne, Abry, Fukuda, Borgnat, Mazel, Wendt & Veitch 2015, Sakurada
& Yairi 2014), unsupervised methods (Miinz, Li & Carle 2007, Leung
& Leckie 2005, Pawling, Chawla & Madey 2007, Li, Huang, Tian &
Xu 2003, Wang, Wong & Miner 2004, Zhang, Song, Chen, Feng, Lumezanu,
Cheng, Ni, Zong, Chen & Chawla 2019, Lv, Yu, Fan, Tang & Tong 2020),
supervised classification-based methods (Hautamaki, Karkkainen & Franti
2004, Song et al. 2018, Malhotra, Ramakrishnan, Anand, Vig, Agarwal &
Shroff 2016, Chauhan & Vig 2015, Kim & Cho 2018) and statistical methods
(Barbard, Domeniconi & Rogers 2006, Fan & Xiong 2013, Rogers, Barbara
& Domeniconi 2009).

Dimensionality reduction method like principal component analysis
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(PCA) has been validated effective in anomalous patterns detection (Lakhina
et al. 2004, Liu et al. 2010). In (Callegari et al. 2011), an improved
PCA by introducing Kullback-Leibler divergence was proposed for network
anomaly detection. Random projection (RP) was used for dimensionality
reduction and to detect internet traffic anomaly (Juvonen & Hamalainen
2014, Fontugne et al. 2015), since it is very fast and can perform even in
real-time. Apart from linear methods, a nonlinear dimensionality reduction

method (autoencoders) has also been presented in (Sakurada & Yairi 2014).

Unsupervised clustering algorithms including k-means (Miinz et al. 2007),
density-based and grid-based clustering (Leung & Leckie 2005) and one pass
clustering (Pawling et al. 2007) were proposed to identify anomalous network
patterns. Besides clustering algorithms, one-class support vector machine
(OneSVM) with novel kernels was introduced to detect malicious intrusion to
computer systems (Li et al. 2003, Wang et al. 2004). Recently, unsupervised
deep learning-based methods have also been presented for modelling large
scale data, and to detect anomalies (Zhang, Song, Chen, Feng, Lumezanu,
Cheng, Ni, Zong, Chen & Chawla 2019, Lv et al. 2020).

Supervised classification-based methods include k-nearest neighbour
(kNN), recurrent neural network (RNN) and long short-term memory
(LSTM). Literature (Hautamaki et al. 2004) sorted the average kNN
distances in ascending orders, and then outliers were defined when
the difference between two nearby distances is greater than a preset
threshold (Hautamaki et al. 2004). Besides the lazy learning approach,
recently, supervised deep leaning-based anomaly detection methods have
also contributed to solve this problem, including RNN-based model (Song
et al. 2018) and LSTM-based model (Malhotra et al. 2016, Chauhan &
Vig 2015, Kim & Cho 2018).

There are also some studies introducing statistical methods for outlier
detection. Barbara et al. (Barbard et al. 2006) proposed to use transductive
confidence machines and hypothesis testing to uncover outliers. It only

has two parameters, and neither of them requires careful tuning. Fan
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et al. (Fan & Xiong 2013) presented a privacy-preserving framework for
anomaly detection based on continual aggregate statistics. It enables real-
time detection and provides privacy guarantee. In (Rogers et al. 2009),
a multi-modal distance measure was defined to evaluate the strangeness.
Furthermore, statistical testing was applied to estimate the probability of

anomaly.

2.2.2 Road Traffic Anomaly Detection

Since the anomalous patterns in road traffic possess their own characteristics,
some particular methods were presented on the top of aforementioned general
anomaly detection methods. Based on the data source utilized, they could
be dichotomized into two families: by using trajectory data sources or by
using other data sources.

Apart from trajectory data sources, other data sources used for road
traffic anomaly detection are mainly non-structured, which include social
media data (Nguyen, Liu, Rivera & Chen 2016), video surveillance data (Li
et al. 2018, Barria & Thajchayapong 2011, Li, Liu & Huang 2016, Zhao, Yi,
Pan, Zhao, Zhao, Su & Zhuang 2019) or heterogeneous traffic data (Riveiro,
Lebram & Elmer 2017). Literature (Nguyen et al. 2016) used text data from
Twitter for real-time traffic incident detection. Li et al. (Li et al. 2018, Barria
& Thajchayapong 2011, Li et al. 2016, Zhao et al. 2019) employed video
data collected from traffic surveillance cameras to detect or classify traffic
anomalies. In addition to using single data source, study by Riveiro et al.
(Riveiro et al. 2017) explored the heterogeneous data sources from various
vehicle embedded sensors for traffic anomaly detection.

Trajectory-based road traffic anomaly detection has been intensively
investigated by many studies, while most of which are based on city-wide taxi
trajectories. Studies by (Chawla et al. 2012, Kuang et al. 2015) used PCA or
wavelet transform technique to identify traffic anomalies from taxi trajectory
data. In (Pang et al. 2013) and (Pang et al. 2011), likelihood ratio test was

introduced to represent traffic patterns and to detect anomalous patterns.
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It has demonstrated accurate and fast detection on real data sets. Liu et
al. (Liu et al. 2011) constructed an anomaly detection model by building a
region graph, where a node represents a region and the link between every two
nodes denotes the traffic flow, and then the extreme outliers could be detected
from the graph links. In (Wang et al. 2017), tensor decomposition technique
was employed for learning dynamic context features from taxi traces data,
and then anomalous degrees for road segments were calculated. Authors
in (Yu et al. 2014) proposed neighbor-based trajectory outlier definitions,
and designed an optimized strategy to detect new outlier classes from
massive-scale trajectory streams. In (Mao et al. 2018), a feature grouping-
based anomaly detection framework was proposed to identify outliers from
distributed trajectory streams. Study work by Wang et al. (Wang et al. 2013)
estimated traffic flow speed on the road, and then traffic jam events were
automatically detected based on relative low road-speed detection. Research
(Zhang, Li, Zhou, Chen, Sun & Li 2011) demonstrated a method to group
taxi trajectories crossing the same source destination cell-pair, then isolation
mechanism was employed to detect abnormal trajectory. Wu et al. (Wu
et al. 2017) developed a novel outlier detection approach by modeling the
human driving behavior from historical taxi trajectories. This is the first

work that combines human driving behavior modelling into outlier detection.

2.3 Traffic Flow Prediction

Traffic flow prediction has been intensively investigated in many studies,
because of its importance to I'TS implementation. Overall, based on the
methods utilized, the literature work can be dichotomized into two families:
the parametric methods (Section 2.3.1) and nonparametric methods (Section
2.3.2).
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2.3.1 Parametric Methods

The auto-regressive integrated moving average (ARIMA), a traditional
parametric method, has been employed to construct models for short-term
forecasting of traffic flow (Ahmed & Cook 1979). Many upgraded models
based on ARIMA were also proposed to improve the performances of flow
prediction, including the seasonal ARIMA model (Kumar & Vanajakshi
2015), the space-time ARIMA model (Lin, Huang, Zhu & Wang 2009, Ding,
Wang, Zhang & Sun 2011), the subset ARIMA (Lee & Fambro 1999),
the vector auto-regressive moving average (VARMA) approach (Min &
Wynter 2011) and so on. Integration studies of ARIMA with exponential
smoothing (ES) for traffic flow forecasting were investigated by (Van
Der Voort, Dougherty & Watson 1996) and (Tan, Wong, Xu, Guan &
Zhang 2009). Apart from the ARIMA-based parametric methods, Kalman
filtering (Guo, Huang & Williams 2014) and chaotic time series analysis (Jieni
& Zhongke 2008) have been developed in traffic flow prediction applications

as well.

2.3.2 Non-parametric Methods

Due to the highly non-linear stochastic natures of urban traffic flow,
parametric methods cannot depict it precisely with the quite limited
distributional assumptions. Therefore, nonparametric methods have gained
more attentions over the recent decades. Literature work by Davis et al.
(Davis & Nihan 1991) used kNN for freeway traffic flow regression and
conjectured that larger datasets might get better performances using this
method. Literature works (Yang, Tan, Wang, Tian & Pan 2010, Hong, Dong,
Zheng & Lai 2011, Castro-Neto, Jeong, Jeong & Han 2009) have proposed
to employ supervised learning method of SVR for traffic flow forecasting.
Besides SVR, another kind of kernel-based machine learning model, Gaussian
process (GP), was used in studies (Xie, Zhao, Sun & Chen 2010, Sun &
Xu 2010, Zhao & Sun 2016) for traffic flow regression. Sun et al. (Sun, Zhang
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& Yu 2006) provided a Bayesian network for modelling traffic flows, by which
the joint probability distribution between the cause nodes (flow data utilized
for prediction) and the effect node (flow to be predicted) is formulated as a
Gaussian mixture model (GMM). A Bayesian combination method (BCM)
was proposed to integrate three individual predictors to improve the short-

term traffic flow forecasting performance (Wang, Deng & Guo 2014).

Besides these non-neural models aforementioned, various neural network
(NN) based models (Dougherty & Cobbett 1997, Hodge, Krishnan, Austin,
Polak & Jackson 2014, Zhu, Cao & Zhu 2014) and fuzzy neural network
(FNN) based models (Yin, Wong, Xu & Wong 2002, Li 2016, An, Fu, Hu,
Chen & Zhan 2019) have been developed for forecasting traffic flow.

Recently, deep leaning has been intensively involved in the field of traffic
data analysis due to its remarkable representation capability. Lv et al.
(Lv et al. 2014) employed a stacked autoencoder (SAE) model for traffic
flow features learning and achieved a significant improvement it terms of
forecasting accuracy. An SAE Levenberg-Marquardt (SAE-LM) model was
proposed to further improve the performance using the Taguchi method to
optimize the network structure (Yang, Dillon & Chen 2016). As suggested by
the literature (Huang et al. 2014, Huang et al. 2013), a deep belief network
(DBN) is able to learn features very well from limited prior knowledge for
accurate traffic flow forecasting. The work by Qu et al. (Qu et al. 2019)
developed a long-term traffic flow prediction model by training a deep neural
network (DNN) with historical traffic flow data and contextual factor data.
The study (Tian & Pan 2015, Kang, Lv & Chen 2017) trained an LSTM
network for traffic flow prediction, and it has been demonstrated that the
model can outperform most of the nonparametric models aforementioned on
real-world datasets. Recently following similar ideas, the work by Luo et
al. (Luo, Li, Yang & Zhang 2019) presented a hybrid model from kNN and
LSTM for spatio-temporal traffic flow forecasting. Besides, various novel
deep learning models based on LSTM and convolutional neural network

(CNN) were proposed to learn the spatio-temporal characteristics of traffic
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flow (Wu & Tan 2016, Mihaita, Li, He & Rizoiu 2019). Another useful work
(Tian, Zhang, Li, Lin & Yang 2018) concentrates on traffic flow prediction
with missing data which takes a novel LSTM-based method to deal with
the missing patterns. Very recently, the research (Yang, Sun, Li, Lin
& Tian 2019) provided an attention-mechanism-based LSTM network by

enhancing traffic flow features to capture the high-impact flow values.

2.4 Summary

In this chapter, a comprehensive literature review has been conducted with
respect to the research motivations of taxi destination prediction, anomalous
traffic patterns detection and traffic flow prediction. More precisely, relevant
studies on recommendation systems and location prediction modelled on taxi
trajectory data are described, followed by the methods of anomalous patterns
detection, including general anomaly detection methods and methods
specialized on road traffic anomaly detection. Finally, typical parametric

and non-parametric methods for urban traffic flow prediction are reviewed.
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Chapter 3

Taxi Destinations Prediction

from Trajectories Using a
Novel Data Embedding Method

and Ensemble Learning

In this chapter, we attempt to unite multiple machine learning methods for
destination prediction that learns features among limited prior knowledge.
More specifically, an ensemble learning model (ELM) based on support vector
regression (SVR) and deep learning (deep belief network (Hinton, Osindero
& Teh May 2006)) is proposed. Specifically, these two models perform better
than others at different segments of the whole trajectory. For the architecture
in deep learning, we propose a novel data embedding technique named
circular fuzzy embedding (CFE) for time-related features representation,
which maps high-dimensional data into a two-dimensional space. Finally,
experiments conducted on two independent real-world datasets demonstrate
that our proposed ensemble learning model for destination prediction has

superior performance comparing with the existing methods.

The organization of this chapter is structured as follows. Section 3.1

elaborates the proposed method of CFE and ELM for destination prediction.
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Section 3.2 presents the experiments and analysis of the results. Section 3.3

summarizes this chapter.

3.1 Methods

In this section, we first introduce a novel data embedding technique called
circular fuzzy embedding (CFE) for representing time-related features before
features learning. It maps higher dimensional feature into a two-dimensional
space, and fuzzy membership is introduced to avoid the instability between
the adjacent sections. Then, an ensemble learning model (ELM) based on
SVR and deep belief network (DBN) for destination prediction is proposed.
SVR is an efficient supervised learning method that has been applied widely
in pattern recognition. The basic principle is to transform the training data
from the input space into a hyper feature space by a kernel function, and then
to find an optimal regression function by minimizing the regression loss (Wu
et al. Dec. 2004, Smola & Schélkopf Aug. 2004). DBN is a stack of restricted
Boltzmann machine, each one has one layer of hidden units and one layer of
visible units, where unsupervised pre-training is employed before fine-tuning
(Huang et al. 2014, Hinton Mar. 2002). A restricted Boltzmann machine is
an undirected graphical model that visible units are connected with hidden
unit via undirected weighted connections (Teh & Hinton 2001), while there
is no visible-visible units or hidden-hidden units connection (Mohamed, Dahl
& Hinton Jan. 2012).

3.1.1 Circular Fuzzy Embedding (CFE)

In the domain of transportation, some types of time-related data are discrete,
such as date, days of the week, day type. For discrete data processing method
in machine learning, the most common one is one-hot embedding technique,
which converts discrete features into binary vectors. For example, supposing
we have a three-categorical feature comprising of “Holiday”, “Weekday” and

“Weekend”, the feature of “Holiday” can be converted into binary vector
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Figure 3.1: Circle constructed for feature of hour of day.

of (1, 0, 0). Similarly, (0, 1, 0) and (0, 0, 1) correspond to categories
of “Weekday” and “Weekend”, respectively. However, such embedding

technique might have the following drawbacks:

1. May lead to data sparsity and curse of dimensionality (Wang, Xu, Xu,
Tian, Liu & Hao Jan. 2016);

2. Occupy large memory usage if the size of category is huge;
3. Slow down training of network with large number of category;

4. Consider little about similarities between observations. As it turns
into binary vector, the similarities between any two observations are

the same.

To avoid these phenomenons, we propose a novel technique named CFE

for time-related date embedding. The ideas of CFE technique comes from
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Figure 3.2: (a) Circle constructed for feature of day type. (b) Circle

constructed for feature of week of year.

Word2vec, which is a frequently used model to generate word embeddings
(Mikolov, Chen, Corrado & Dean 2013).

The first step is to construct a circle centred on (0, 0) to embed all
the categories of feature. The reason for using a circle is because it not
only represents the unique identity but also measures the similarities easily.
However, for those continuous variables, firstly, we convert them into discrete
sections. For instance, we embed feature of hour of day on a circle averagely.
Firstly, we divide a whole day (24 hours) into 12 discrete and disjoint
ranges, from (23, 1] to (21, 23], which has been demonstrated in Fig. 3.1.
Supposing the radius denotes R, the radian from each category to the X-axis
represents 6, then each category could be represented by a coordinate in a
two-dimensional space. Compared with the twelve-dimensional space of one-
hot embedding, it reduces the dimensionality significantly. In addition, it
also considers about the difference of similarities between categories, because
traffic in the adjacent time periods are more likely to have similar patterns in
the domain of transport (Peng, Jin, Wong, Shi & Lio Apr. 2012, Liu, Gong,
Gong & Liu Feb. 2015). For example, in Fig. 3.1, the travelling pattern
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Figure 3.3: Linear combined membership function of hour of day feature.

in the range of (23, 1] is more likely to be similar with periods between
(1, 3] or (21, 23] than range (11, 13]. Similarly, as shown in Fig. 3.2, we
embed features of day type and week of year (52 weeks) on other two circles,
respectively. In Fig. 3.2 (a), we address the issue that the differences between

> and “Weekend” are not the same.

categories of “Holiday”, “Weekday’

As shown in Fig. 3.1, different sections of time are embedded into two-
dimensional space with unique vectors. However, time around the bounds
of the adjacent sectors may be embedded with quite different vectors, while
there may be little difference between them in fact. For instance, time range
(1, 5] is divided into two sectors, (1, 3] and (3, 5], each with two-hour interval.

Sector (1, 3] is embedded into vector of g2 and sector (3, 5] into qs,

gz = (Rcos(n/3), Rsin(r/3)) € R? (3.1)

qs = (Rcos(n/6), Rsin(r/6)) € R? (3.2)

Supposing we have time points of 02:59:00 and 03:01:00, they are
embedded into two totally different vectors because they are located in
different sectors. However, the difference between them is very tiny. In order
to avoid such unstable situation, we introduce the membership function in
fuzzy set theory (Zadeh June 1965). The membership function (Fy ) of hour
of day (h) is illustrated in Fig. 3.3, Vi, V4, -+, Vi3 denote the time sectors
(21,1}, (1,3], - - -, (21,23], respectively.
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The membership functions Fy, (h), Fy,(h) and Fy,(h) for hour sectors
(23,1], (1,3] and (3, 5] can be written as Eq. (3.3), Eq. (3.4) and Eq. (3.5),

respectively.

(h—225, 225<h <235

1, 0<h<05o0r235<h<24

Fy(h) = (3.3)
15—h, 05<h<15

0, others

(h—05, 05<h<15
1 15<h<25
35—h, 25<h<35

0, others

h—25 25<h<35
1, 35<h<45
55—h, 45<h<55

0, others

In the same way, the membership functions for the rest sectors can also
be derived. Then, we can get the final embedding vectors (by(h)) of the hour

of day feature, as shown by

by (h) = Z Fy,(h) - q; (3.6)

where q; represents the ith embedding vector before introducing fuzzy
membership, Fy,(h) denotes the membership of time point h corresponding
to V;. With our proposed CFE method aforementioned, we can also get the

embedding vectors of day type feature by and week of year feature bs.
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3.1.2 Ensemble Learning Model (ELM)

The key idea behind ELM is to construct a knowledge base, and apply
different models in the knowledge base under different conditions to get
a superior prediction. In this work, the knowledge base is formed by
models of SVR and DBN, as they perform better than others in different
proportions of the whole trajectory of taxi. Specifically, it gets better
prediction performance with DBN (classification) when the taxi is currently
located in the initial part of the whole trip, otherwise, SVR does better.
The elaborate experimental results can be referred to Fig. 3.6, Table S1 and
Table S2 in Supplementary file 1. Therefore, the key of ensemble mechanism
turns into how to detect which proportion of the whole on-going trajectory
the taxi is currently located at. So that the best model could be allocated

accurately.

Algorithm 3.1 Algorithm of ELM

Constant Parameters: Ogyr, Opgy, A, k.

Input: input trajectory for training X = (a;) € R”, a; € R*&*(%)  output
target for training set Y, input trajectory for prediction X* = (x,) € R',
x, € Rlength(zr),
Output: predicted GPS coordinate o.
1= ()T, label = (0) x T}
Train a SVR model S using X, Y and hyperparameters fgy g;
Train a DBN model D using X, Y and hyperparameters 0ppy;

m=—1;

for i =0;i < T;i++ do //construct a classifier to estimate the current
proportion of the whole trajectory

m + +;
7: for j =0.1; j <= 0.95; j+ = 0.05 do //extract input trajectory with
the proportion from 10% to 95%

8: s = round(0.5 * length(a;) * 7) * 2;
9: 1(m) = a;[0: s];
10: if 7 > A then
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11: label(m) = 1; //binary labelling for this trajectory
12: end if

13: end for

14: end for

15: for p=0;p<T;p++ do
16: p = kNN(llabel,x,.k); //apply kNN to estimate the current

proportion
17: if p =1 then
18: o = S5(x,);
19: else
20: o= D(x,);
21: end if
22: end for

Algorithm 3.1 illustrates our ELM algorithm. Define X and Y as the
input trajectory data and target data. X* denotes the input trajectories for
prediction and o is the predicted output. Step 2 and Step 3 train each model
with hyperparameters fsyr and 0ppy, respectively. Steps from 4 to 14 is
the key component of our proposed ELM, it constructs the training data
and corresponding labels for segment estimation classifier, which provides
basis for model selection. From step 4 to 9, the input trajectory prefix X
is extracted with the prior proportions (from 10% to 95%, with increment
of 5%) of the whole trajectory. Steps 10 to 12 set the corresponding target
label = 1 only if the prior proportion of the extracted trajectory exceeds
A, which is a constant parameter based on the performance of SVR and
DBN, otherwise, label = 0. Steps from 15 to 22 elaborate the mechanism
of proposed ELM. In step 16, a lazy supervised learning approach k-nearest
neighbor (kNN) algorithm is applied to predict the segment proportions of
the current position with query trajectory X*, as it is a simple and fast
algorithm that performs well on large sized training data. Finally, SVR and
DBN can be applied based on the binary label of p. Fig. 3.4 gives the brief
workflow of ELM.
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Figure 3.4: Workflow chart of ELM.

3.1.3 Input and Output Layers

As ELM is derived from SVR and DBN, we need to determine the inputs and
outputs for training each model. The inputs of SVR model are the initial
m points and last m points (except the final destination) of the trajectory
prefix, which give us a total of 2m coordinates or 4m numerical values. When
the prefix of the trajectory contains less than 2m points, overlap the initial
and last m points. When the prefix contains less than m points, repeat the
first or last point. The outputs include the predicted longitudinal value and

latitudinal value, which in fact acts as the function of regression.

Fig. 3.5 shows the inputs and outputs of the constructed model of
DBN. Firstly, we apply k-means clustering algorithm to partition trip
destinations of the training data into n clusters, denote the centre of the
1th cluster as ¢;, 1 < ¢ < n. The inputs of DBN model are 2m points of
trajectory prefix integrated with time-related embedding vectors by, by and

bs aforementioned, which are derived by our proposed CFE technique. The

32



Chapter 3. Taxi Destinations Prediction from Trajectories Using a Novel
Data Embedding Method and Ensemble Learning

P P Ps Dy Pu3 Pnz Pw1l Pu

X1 X2 X3 Xam+4 Xdam+5 X am+6

Figure 3.5: Architecture of DBN model.
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outputs are the probabilities p; corresponding to the ith cluster, which can

be implemented with a Softmax layer on the top layer, as shown in Eq. (3.7).

b= exp(e;) (3.7)

> j—1€xp(e;)
where e; is the ith activation of the previous layer. Then, the predicted

destination can be calculated by Eq. (3.8).

y=>_pci (3.8)
1=1

3.2 Experiments and Results

3.2.1 Datasets and Evaluation Metrics
The Porto Dataset

It is a real-world large-scale dataset of taxis in Porto, Portugal (Kaggle 2015).
It was collected from 442 taxis running from 1st July 2013 to 30th June
2014. Fach observation contains a list of GPS coordinates with longitude
and latitude, timestamp and day type (holiday, workday or weekend). The
last item of the list represents the destination of this trajectory while the first
one corresponds to this trip’s pickup location. The time interval between two

consecutive GPS coordinates is 15 seconds.

The Chengdu Dataset

This dataset is also a real-world dataset collected from more than 14 thousand
taxis in the city of Chengdu, China (DataCastle 2016). The period is
from 3rd to 30th August 2014. Each observation comprises taxi identity,
GPS coordinates, activity (carrying passenger or not) and corresponding
timestamp. The GPS data point is recorded with the frequency of every 10

seconds.
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Evaluation Metrics

To evaluate the performance of the proposed models, we use these indices:
mean absolute error (MAE) and root mean square error (RMSE). On top
of that, for the overall performance evaluation, we define the average MAE
(AMAE) and average RMSE (ARMSE). These indexes are defined as

) 69)

di; = 2r arcsin(\/siHQ(W) + €08 (py; cos ; sin’(

1 n
MAE; = — > dy (3.10)

=1

(3.11)
™ MAE,
AMAE = 2 MAE, (3.12)
m
™ RMSE,
ARMSE = 21 ’ (3.13)
m

where d;; denotes the Haversine distance between the predicted GPS
coordinate (g;;, A;;) and real coordinate (¢;, A;). r is the radius of the earth

sphere, we set r = 6371km in this research.

3.2.2 Experimental Settings

To validate the superiority of our proposed ensemble learning model, we
conducted extensive experiments on two real dataset: the Porto dataset and
the Chengdu dataset. Our experiments were carried out on a sever with
Intel Xeon CPU E5-2680 v2 of 2.8GHz. Some models are subdivided into
classification and regression with the postfix of “C” and “R”, respectively.
To examine the effects of the proposed ELM within different segments of the
whole trajectory, we extract the initial 10% ~ 90% (with increment of 10%)

of the whole trajectories for both validation and test sets.
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Data Pre-processing

As the time interval in the Chengdu dataset is only 10 seconds, we convert
it into 20 seconds by extracting separated coordinates from the previous
trajectory prefix. After dropping some abnormal trajectories, we get a
dataset of Porto with totally 1,566,798 trajectories and a dataset of Chengdu
with 792,781 trajectories in total. As a practical matter, we always
predict destination of current trajectory based on the historical trajectories.
Therefore, we arranged the trips by ranking their start time in ascending
order, and took the initial 80% and the last 20% as training and test set,
respectively. As these datasets are very large, it is quite challenging to train
when feeding the whole data. We randomly select 30% candidates for training
and 10% of the training data as validation set. Table 3.1 gives the sample

sizes of training, test and validation sets.

Table 3.1: Sizes of training, test and validation sets

Quantity of Trip

Dataset
Training Set Test Set Validation Set
Porto 376031 313360 37603
Chengdu 190268 158556 19027

Architecture of the Learning Model

There are some parameters m, 0sy g, 0ppy and A which should be set before
training the models. In our experiment, we take m = 5 for both models. For
determining fgy g, after having tried several combinations of parameters on
validation set, we choose the radial basis function (RBF) as kernel, and set
constant C' = 100 and € = 0.1 for the insensitive-loss function. For 0pgy, the
determination of parameters, such as the layer size, neurons in output layer,
nodes in each hidden layer, are elaborated later. For A in ELM, the MAE of
different segments in the Porto dataset with SVR and DBN are calculated in
Fig. 3.6 (a). It is shown that the overall performance of SVR without CFE
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is better, while the DBN-C model with CFE performs best within the initial
30% of the whole trajectory. They perform similarly when the extracted
percentage is around 30%, therefore the parameter of A in our ELM can be

set to 0.30. In a similar way, we set A = 0.25 for the dataset of Chengdu.
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Figure 3.6: Determination of A with validation sets. (a) on the Porto dataset.
(b) on the Chengdu dataset.

Structure of DBN

To find the best architecture for the DBN model, we test the performance
on validation sets with several different architectures, and we choose the
structure with the best performance. There are some hyperparameters
need to be allocated for DBN. The first is the number of neurons in
the output layer. It is chosen from {1800,2000,2200,2400,2600,2800}
in the Porto dataset, while for the Chengdu dataset, we choose from
{600, 800, 1000, 1200, 1400, 1600}. The second is the layer size of network,
where layer size from two to seven are chosen to be tested. The third
hyperparameter is the number of nodes in each layer, for simplicity, the
number of nodes in each layer is set to be the same, and it is chosen from
200 to 1000 for Porto and 50 to 500 for Chengdu.
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Table 3.2: Effect of different structures on validation set (on the Porto dataset)

ClusterAMAE (km) ARMSE (km) Node AMAE (km) ARMSE (km) Layer AMAE (km) ARMSE (km)
1800 2.60 3.34 200 2.59 3.29 2 2.56 3.29
2000 2.68 3.38 300 2.72 3.47 3 2.84 3.59
2200 2.68 3.41 400 2.60 3.31 4 2.80 3.61
2400 2.59 3.29 500 2.56 3.29 5 2.94 3.69
2600 2.67 3.45 600 2.62 3.33 6 2.77 3.53
2800 2.70 3.42 1000 2.69 3.42 7 3.06 3.84

Table 3.3: Effect of different structures on validation set (on the Chengdu dataset)

ClusterAMAE (km) ARMSE (km) Node AMAE (km) ARMSE (km) Layer AMAE (km) ARMSE (km)
600 2.51 3.08 50 2.51 3.06 2 2.50 3.03
800 2.50 3.03 100 2.50 3.03 3 2.47 2.99
1000 2.61 3.17 200 2.55 3.11 4 2.61 3.14
1200 2.68 3.22 300 2.50 3.05 4 3.04 3.68
1400 2.76 3.30 400 2.57 3.13 6 3.37 4.04
1600 3.03 3.54 500 2.60 3.14 7 3.61 4.20
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Figure 3.7: Network error with epoch in DBN. (a) on the Porto dataset. (b)
on the Chengdu dataset.

Regarding the performances of AMAE and ARMSE on the validation
sets, the best structure of DBN for the Porto dataset can be found from
Table 3.2: layer size = 2, nodes in layer = 500 and cluster number in output
layer = 2400. With Table 3.3, the best structure for Chengdu dataset: layer

size = 3, nodes in layer = 100 and cluster number in output layer = 800.

3.2.3 Evaluation on the Constructed Classifier

When applying kNN classifier to ELM, we set k = 23 for Porto dataset and
k = 25 for Chengdu dataset. Fig. 3.8 shows the accuracy of model for
estimating the current segment, which performs as a classifier to allocate the
model with the best performance from knowledge base. From Fig. 3.8, we
can find that the overall accuracy of the constructed kNN classifier is high,
while it performs relatively worse when the percentage of the whole trajectory
is around A. However, this does not make much sense, since the performances
of both SVR and DBN-C models are similar when the percentage is near A
(as shwon in Fig. 3.6).

We compare the performance of our proposed ELM with SVR, DBN,

39



Chapter 3. Taxi Destinations Prediction from Trajectories Using a Novel
Data Embedding Method and Ensemble Learning

artificial neural network (ANN) [14], kNN and naive Bayes (NB) models.
Among these models, some are subdivided into classification and regression
models, with the postfix of 7C” and "R”, respectively. In addition, to
evaluate the performance of our proposed CFE technique, each model is

also tested with and without CFE technique, respectively.

I Porto
B Chengdu

100 %

80 % —

60 % —

Accuracy

40 % -

20 % —

0% —

10%  20%  30% 40% 50% 60% 70%  80%  90%

Percentage of the whole trajectory completion

Figure 3.8: Accuracy of kNN classifier for estimating current segment.

3.2.4 Comparison with Baseline Methods

Generally, as shown in Table S1 and Table S2 of Supplementary file 1, with
the taxi getting closer to the destination, all the prediction models can get
higher accuracies. ELM improves the overall performance, and it performs
best among all these baselines. Model of SVR outperforms DBN-C when
the whole trajectory completion proportion approximates 1, one reason is
probably that SVR performs as a regression task to learn the real numerical
destinations from training data, while DBN-C is a classification task to

learn the probability distributions of destination clusters. However, DBN-
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C performs best at the initial proportions, because the pre-trained DBN-C
has better generative ability (Gao, Gao, Gao & Wang 2014). Moreover,
it can learn invariant features and generate invariant representations from
training data, which is insensitive to some transformations and exhibits
better classification invariance (Ji, Zhang, Zhang & Wang Aug. 2014, David
& Netanyahu 2015). As ELM is derived from SVR mostly, compared with
SVR, ELM improves the overall accuracy and it significantly enhances the
prediction performance at the initial parts of the whole trajectory. Compared
with models of DBN, ANN, kNN and NB, ELM increases the overall

performance significantly.

3.2.5 Evaluation on the Proposed CFE

In order to evaluate the effectiveness and efficiency of our proposed CFE
technique in features representation, we conduct experiment and compare
it with the most commonly used one-hot embedding technique (denotes as
One-Hot-E) in our deep learning models. From Table S3 and Table S4
in Supplementary file 1, CFE requires much lower dimensionality for the
feature representation compared with the One-Hot-E (26 versus 48 in these
experiments), which derives a network with less parameters to be learned
from training data. As a result, CFE takes less computational time for
training the whole network, especially with complex networks (like deep
learning), which has been proved in both the Porto and Chengdu taxi
experiments. In addition, CFE employs a fuzzy membership and can well
address the similarity issues between the observations, leading to a better
prediction performance compared with the similarity-equal One-Hot-E. The
proposed ELM is an ensemble model of SVR and DBN, which need to be
trained prior to feeding into the segment detection classifier. Table 3.4

demonstrates the time cost of model training and trip’s destination prediction
for ELM method.
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Table 3.4: Time costs by the our proposed model

Training Time Prediction Time

SVR  DBN-C 1trip 10% trips 103 trips 10* trips  10° trips
Porto 12.03h 16.16 h 1594s 122.05s 126.65s 160.10s 294.25 s

Chengdu  3.80 h 1.38h 16.39s 82.21s 111.39s 125.71s  223.34 s

Dataset
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Figure 3.9: Comparison of ELM and other models with a case study (on
Porto dataset).
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3.2.6 Case Study

As presented in Fig. 3.9, assume that a taxi picked up passengers at a location
(@), the current location of the taxi is labeled as @. The real destination of
this trip is denoted by A. Then, the input of our proposed ELM model is the
selected 2m points (the initial m points counted from pickup location and the
last m points from current location, m = 5 in this experiment) between the
pickup location (@) and current location (@). The output is the geographical
coordinates of the predicted drop-off location. The predicted destination via
ELM, NB, ANN-R, ANN-C, DBN-R, SVR and kNN-R are marked as B, V,

, [, @, @ and K, respectively. The distance of each predicted destination to
the real destination is shown in Table 3.5. ELM gets the predicted coordinate
at M. which is the most close to the real drop-off location of this trip. Then
various kinds of LBSs based on position B can be delivered for taxi riders or
driver. Compared with the predicted coordinates derived from other models,
the surroundings of the real destination (A) is more relevant to those around
the coordinate predicted via ELM, which is also reasonable and efficient for
giving guidelines to taxi riders. While if the predicted destination is too far
away from the groundtruth coordinate, it might result in misunderstandings

and confusions to users.

Table 3.5: Distances between the real and predicted destinations with

different models (unit: km)
ELM SVR DBN-R ANN-R ANN-C kNN-R NB

1.44 3.53 2.25 3.57 3.99 3.66  3.80

3.3 Summary

In this chapter, an ensemble learning model is proposed for taxi destinations
prediction. In this model, the advantages of SVR and DBN models are

incorporated to render a more accurate prediction. A novel data embedding
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method named CFE is presented for time-related features embedding in
deep learning model. We evaluated the prediction performances and made
comparisons with baseline methods of SVR, DBN, ANN, kNN and naive
Bayes. Comprehensive experiments on real datasets demonstrate that our
ensemble learning model outperforms other baselines in terms of the overall
performance. Comparison experiments also confirm that our proposed data
embedding method outperforms traditional one-hot embedding in terms of

accuracy as well as computational cost.
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Chapter 4

Offline and Online Detection of
Anomalous Patterns from Bus
Trajectories for Traffic Insight
Analysis

The work in this chapter utilizes deep learning architecture for feature
extraction from bus trajectory data sources and develops visualization for
both offline and online discoveries of anomalous traffic patterns. We also
develop methods for detecting the anomaly locations to provide insights of
the corresponding anomalies for understanding the influences caused by the

anomaly to the road traffic.

The rest of this chapter is organized as follows. In Section 4.1, we
elaborate on the methods of feature extraction and visualization, offline and
online algorithms for anomalous patterns detection and insight analysis on
anomalies. Section 4.2 presents experimental results and analyses. Section

4.3 makes a summary of this work.
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4.1 Methods

This section introduces the preliminary definitions, and presents our method
for feature extraction and trajectory visualization through deep learning.
Then, details of our proposed offline and online methods are described to
detect anomalous trajectory and to obtain insights into the anomaly based
on the visualized trajectories. A basic workflow of our method is illustrated
in Fig. 4.1. An important step of the method is to feed the bus trajectory
data and meteorological data into a well trained deep sparse autoencoder
(DSAE) to generate the color trajectory (CT), which provides the basis for
trajectory visualization, offline and online detection of anomalies. Another
key sector is to produce a color trajectory map (CTM) by GIS fusion for

anomaly insight analysis.

4.1.1 Preliminaries

Definition 1 Trajectory: A trajectory T of a moving objective is a set
of time-ordered data points, T = (ti,to, - ty_1,ty) € RPN ¢, =
(i, \iyv;)T € R3, where each data point consists of latitude p;, longitude

i and velocity v; at the ith timestamp.

Definition 2 Class A Anomaly: Given a trajectory €;, if the extracted
spatial feature (7;,T) and temporal feature Nor, are both very different from
the spatial and temporal features of its spatio-temporal neighbors, we termed

it as Class A Anomaly.

Definition 3 Class B Anomaly: Given a trajectory €;, if the extracted spatial
feature (1;,7) is very different from the spatial features of its temporal

neighbors, it is defined as Class B Anomaly.
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4.1.2 Feature Extraction and Trajectory Visualization

Using Deep Learning

The method employs a nonlinear dimensionality reduction method (DSAE)
to extract hidden features from bus trajectory data to characterize the
trajectories for trajectory visualization.

As mentioned in Definition 1, a trajectory is a time series of data points
with the same time interval, each data point is typically consisted of latitude
¢, longitude A and velocity v (unit: km/h). The speed information is
popularly available in many existing GPS devices. However, it can also
be approximated by algorithm in literature (Feng & Timmermans 2013) in
some cases of speed data lack.

Rainfalls, especially heavy rains, can significantly affect traffic flow
characteristics and may lead to traffic congestions or even accidents (Jia, Wu
& Xu 2017). We integrate the bus trajectory data with local precipitation
data r (unit: mm/h). Thus, t; is updated as z; denoted by

Z; = (Spla )\ia Uivri)T € R4 (41)
and T is updated as Z denoted by
7 = <Z1,Z2, o AN—1, ZN> € R(D+1)XN (42)

Data normalization is conducted to normalize the data in each dimension

into range [—1, 1]. For example, the dimension of longitude A is normalized

by Eq. (4.3).

>\max - >\mm

A= 2( )—1 (4.3)

where A\,.: and A\, are the maximum and minimum values of the
longitudinal feature in training set.

Windowing operations is performed as it has been validated that
windowing processing could smooth the noise in a relevant study (Liu,

Taniguchi, Tanaka, Takenaka & Bando 2017). Suppose a time window size
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w is set to move z; along the time axis. The windowed data point x; and

time series X are denoted by

/ / / NT Akw
(Sol 7)\1 77)1 ,7’1 s Pitw—1 7)\i+w71 y Vitw—1 5 Titw—1 ) S R (44)

and

X = (Xl,XQ, N XNX_l,XNX> c R(4*w)XNX (45)

where Ny = N —w + 1, w is an integer and 0 < w < N.

X is then fed into DSAE, which is a deep neural network stacked by many
single sparse autoencoders (SSAE). Each SSAE is layer-wise pre-trained
before fine-tuning of the whole network. Suppose the visible layer’s vector
in the /th SAE is denoted by v(! € RPv*Nx then the hidden layer’s vector

h® and the reconstruction vector r¥ are defined as
h® = tanh(W . v 4 b)) € RDH <N (4.6)
and
0 _ OREN0) ©) DWx Ny
r') =tanh(W,, -h" + b, ) € R"r (4.7)

where W) and Wge) are the weights of the [th layer of the encoder and
decoder, respectively. b and bde are the biases of the [th layer of the
encoder and decoder, respectively.

Then, the reconstruction error is calculated by

i 20 = 2 10 - 1) 4 0 (ng53|¢§+ [we ) +BZKL (oll")
(4.8)
and
KL (p||ﬁj(l)> plOg (l) + (1 - p) log _AZ) (49)
p; 1 —p;

where the L2-norm penalty item is used to prevent over-fitting, and the
Kullback-Leibler (KL) divergence is mainly for obtaining a sparse hidden

layer to generate more outstanding features. «, S and p are the preset
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hyperparameters to control the corresponding penalty items, and ﬁgl) is the
average activation of the units in the [th hidden layer.

A 3-neuron layer is embedded as the output of DSAE to get 3-dimensional
hidden features for better visualization, representing the red, green and blue

channel in the rgb color space, which is denoted by
Y = (0,,0,,0,)" € R¥>M (4.10)

where Ny = N —w + 1.
The red channel o, is normalized into range [0, 255 using Eq. (4.11).

R = Round ( o —min(o,) 255> (4.11)

max(0,) — min(o,)

and similarly for the green channel (G) and blue channel (B).
Then the color trajectory (CT) of the trip T is denoted by

CT = (R,G,B)" ¢ R¥*Ner (4.12)

where Nor = N —w + 1.

4.1.3 Offline Anomalous Traffic Patterns Detection

For the ith complete trajectory, we define 7; as
7 = (Ner,, OT;) = (Nor,, (Ri, Gi, B)") (4.13)

where Nep, = N; —w + 1 is a temporal feature that highly depends on the
trajectory duration N;. A larger Nepr indicates that traffic anomaly might
have occurred with higher confidence. However, a trip even with a normally
ranged Nop, might also be affected by traffic anomalies. Here, 7; is referred
to as a trajectory representation.

We choose a trajectory representation 7 as exemplar. We recommend to
choose one with a relatively small N¢or, as it is more unlikely to be anomaly.
We denote s (74, ) to represent the similarity between CT; and CT}, (i.e.,

the color trajectory of the exemplar). If s(7;,7%) is lower, then it is more
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similar between CT; and CT}. To compute the similarity, there is a pre-
condition that Ner, = Ner,. If Ner, < Ner,, we append Ner, — Ner,
number of points of white color (rgh(255, 255, 255)) to CT}, to construct a
new trajectory representation 7; to make Ncr, = Ner,, while the temporal

feature Ner, stays the same.
7 = (New,, CT;) = (NCTk7 (Ry, Gj,Bj)T) (4.14)

Similarly, if Ner, > Ner, we do the same processing on CT;, and then
get .
T = (Nex,, CTyn) = (Nez,, (R, G, Bi)” ) (4.15)

Then, the similarity between CT; and CT}, can be derived by Eq. (4.16),
when Neq, = Ner, or Eq. (4.17), when Neor, # Ner, -

Ncr, ) 2 2
(R —=RE)” + (G} — GE)” + (BY — B})
) = i i i 41
s(rm) = ) ( 92552 + 2552 + 2552 (4.16)

n=1

5 (T, T; ifNer, > N
s (73, k) = (73 73) “r e (4.17)

s (Tk, )  fNer, < Ner,

2 2 2

Lot d — (R;-Rp) +(Gr-Gy) +(Br-B})
ab — 2552425524-2552

g, if the similarity between two color points is smaller than e, we ignore the

. Given a small positive threshold

nuance and redefine the similarity as 0. Therefore, we have Eq. (4.18) in Eq.
(4.17).

dr, it dl, > e

0 it dy, <e

For the ith complete trajectory, we have
€ = (Nery, s (T3, 78)) (4.19)

where s(7;,7;) is a spatial feature since it is mainly extracted from
buses’ GPS spatial positional information, and it can capture the spatial

distribution of the moving object.
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By mapping all € to a two-dimensional space which is referred to as a
spatio-temporal plane here, we are able to detect those two classes of traffic
anomalies defined in Section 4.1.1: class A anomaly and class B anomaly.

The major differences between class A anomaly and class B anomaly lies
in their neighbors definition and the measurement of similarities between
their neighbors. Class A anomaly considers both spatial and temporal
features to define its neighbors and to measure their similarities. However, if
the temporal difference between its neighbors is not significant, there might
also be abnormal patterns among them. Therefore, class B anomaly reveals
this abnormal patterns by addressing the spatial differences from its temporal
neighbors. Specifically, if there are several bus trajectories possessed the same
or similar temporal features (same or similar trajectory durations), we take
them as mutual temporal neighbors. However, if the spatial distribution of
one of them is significantly different from the rest, it is understandable that
there might be some anomalous events that changed the spatial distribution
of this trajectory. Such spatial distribution could be reflected by the spatial
feature s(7;, 1) aforementioned.

Spatio-temporal outliers’ co-ordinate points can be detected using our
proposed offline anomalous traffic patterns detection (OFF-ATPD) algorithm
(Algorithm 4.1), where steps 1 to 11 divide the whole training set into
different subsets for class A anomaly detection (€;qin_c1) and class B anomaly
detection (€;rqin.c2) by adopting a threshold Ng. For class B anomaly
detection (i.e, €; < N¢), we employ the Boxplot rule with a parameter d
to identify anomalous observations by aggregating all the spatial features of
€; as well as its forward and backward temporal neighbors within 7 steps (i.e.,
temporal feature located in Nor, £1) to form S (steps 12 to 25). On the other
hand, class A anomaly can be detected by computing the Euclidean distance
from the nearest spatio-temporal neighbor under a threshold 7 (steps 26 to
31).

Algorithm 4.1 OFF-ATPD algorithm

Parameters: Ng, 0, r, n.
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Input: €y4in, €. // € is for test

Output: C;. // True denotes anomaly

1: m<+ 0,n < 0;

2: for €; € €44, do

3:

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:

Ner; < Get the temporal feature of €;;
if Nor, > N then
m <4 m + 1;
€train.c1(M) < €5;
else
n < n+1;
€train.c2(N) < €;;
end if

end for
if €; < N¢o then

TN <« Search the forward and backward temporal neighbors of €;

from €qin_c2 Within steps of ;

S < Aggregate all the similarities of €; and members in TN;
)1 < Compute the first quartile of S;
3 < Compute the third quartile of S;
IQR < Q3 — Qy;
U<+ Q3+ 0*IQR;
L+ Q1 —0xI1IQR,
if S(e;) > U or S(¢;) < L then

C; < True;
else

C; < False;
end if

else

D <+ Compute the distance between €; and its nearest spatio-

temporal neighbor in €;.4in c1;

if D > r then
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28: C; < True;
29: else

30: C; « False;
31: end if

32: end if

4.1.4 Insight Analysis Using Anomalous Patterns

We combine the trajectory T and the color trajectory (CT) in Eq. (4.12) to
construct a color trajectory map (CTM) through conducting GIS fusion with
CT. Note that we have Nor < N after a window size w was introduced in
the windowing process. Then we construct a location vector 1; and a location

matriz L:
L= (o5, )" €R? (4.20)

and

2X N,
L= <1|”T*1|+1’1|”T*1I+2""’IIWT*|+N7w71|wa1|+N7wH> e R*Ne - (4.21)

where N, = Nor = N —w + 1.

We also combine the location matrix L with CT to generate L'
L' =(L,CT) (4.22)

For each L., map the color with the value of (Ri,Gi,Bi)T to coordinate
(i, A)T on the GIS map, so as to generate the CTM of a whole trajectory.

L; = ((¢i M), (R, Gi, B;)") (4.23)

The color trajectory (i.e., CT in Eq. (4.12)) and CTM are linked via the
conjunct rgb values. By comparing the CT of an anomalous trajectory with
those non-anomalous trajectories, the most significant difference between
them can be found, and the corresponding sector of these colors can be
regarded as anomalous. Then, the anomaly occurring location as well as the
road influence sector are estimated, by locating the coordinate (¢;, A;)” on

the CTM via the anomalous colors (R;, G;, B;)T obtained from last step.
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4.1.5 Online Detection of Anomalous Traffic Patterns

The proposed OFF-ATPD method in Section 4.1.3 takes the complete bus
trajectories as input. It is an offline detection mechanism because the data
is ready only after the bus completes the whole trip from the origin place
to the terminal stop. In this section, we propose an online anomalous
traffic patterns detection (ON-ATPD) algorithm (Algorithm 4.2), which is a
substantial extension to the OFF-ATPD algorithm.

By Algorithm 4.2, X is the real-time input at timestamp ¢, derived from
Eq. (4.5). Step 1 computes the color trajectory of input X; with DSAE (see
details in Section 4.1.2). Step 2 tests whether the bus has arrived at the
terminal of the trip or not. Steps 3 and 4 go to the OFF-ATPD algorithm
when the bus reaches the terminal stop. While the bus is still on the way to
the terminal stop, steps 6 to 13 append or remove segments from the current
color trajectory CT; by comparing with the most similar color trajectory
from the training set €;.4;,. Steps 14 and 15 calculate €,» with the newly
constructed color trajectory CTy and apply the OFF-ATPD algorithm for
anomaly detection. Since we have defined the nearest neighbor (the most
similar) color trajectory of the real-time CT; (by step 6), there might be a
situation that patterns of the nearest neighbor are quite different from the
original complete color trajectory. In order to improve the reliability of online
anomaly detection, we introduce an integer parameter n to decide whether
all abnormal patterns adjudged from the the previous n — 1 detections and

the current detection can yield an anomaly report (steps 16 to 20).

Algorithm 4.2 ON-ATPD algorithm

Parameters: Ng, 9, r, n, n.

Input: €/4in, Xi,t = n.
Output: Cy,t > n. // True denotes anomaly
1: CT; <Get the color trajectory of X; with DSAE;
2: if t is the end timestamp of the trip then
3: €; < Compute the temporal and spatial features of CT, by Eq. (4.19)
and go to OFF-ATPD algorithm,;
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4: Cy < OFF-ATPD(N¢, d,7,1, €train, €);

5: else

6: CT; + Get the most similar color trajectory of CT; from €;4in;

7: Ner, < Get the temporal feature of CTy;

8: Ner,, < Get the temporal feature of CTy;

9: if Nor, < Ner, then

10: CTy < Append CT; with the last Nor, — Ner, color points of
CTy;

11: else

12: CTy» < Remove the last Nor, — Ner, color points of CTy;

13: end if

14: €+ < Compute the temporal and spatial features of CTy and go to
OFF-ATPD algorithm;

15: Cy < OFF-ATPD(N¢, 6,7,1, €train, € );

16: if C;_41,...,Cy_1,Cy are all True then

17: C; < True;
18: else
19: C; + False;

20: end if
21: end if

4.2 Experiments and Results

We have performed comprehensive experiments to answer the following
research questions:

RQ1: Is OFF-ATPD effective and sensitive to detect all anomalies (i.e.,
with a high detection rate)?

RQ2: Is our developed feature visualization method useful for capturing
anomaly locations and traffic impacts with the detected anomalies?

RQ3: How does our proposed ON-ATPD perform in real-time traffic
anomaly detection?

RQ4: How well do our proposed feature extraction deep architecture and
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anomaly detection methods perform in comparison with the state-of-the-art

methods?

4.2.1 Datasets and Evaluation metrics
Datasets

We use trajectory datasets from 3 bus routes in Guiyang (China) with
a duration of 4 months in the year of 2016. All the data (including
the local hourly precipitation data) is officially provided by the Guiyang
Open Government Data Platform '. The first two datasets are collected
on weekends, while the last one is form the off-peak hours (except the
morning peak from 06:00 to 09:00 and afternoon peak from 17:00 to 19:30)
on weekdays. Each dataset is divided into a training set (the first 3 months)
and a test set (the following month). All datasets are naturally unbalanced,
since traffic anomalous event rarely occurs along the same bus route. The
imbalanced ratios (minority/majority) are 0.025, 0.014 and 0.007 for the
test sets of Route 66, Route 50 and Route 18, respectively. Table S1 in

Supplementary file 2 provides a detailed description about these datasets.

Evaluation Metrics

In the performance evaluation, we use measurements accuracy (Acc),
detection rate (DR), false alarm rate (FAR) (Tsai & Lin 2010) and area
under the ROC curve (AUC). Criteria of Acc, DR and FAR are defined as

follows:

TP+ TN
Acc = 4.24
“CTTPYTN+FP+FN (4.24)
TP
DR= "~ 4.2
R TP+ FN (4.25)
FP
FAR = 5p 7N (4.26)

lhttp://www.gyopendata.gov.cn/city/index.htm
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e True Positive (TP): the number of anomalous trajectory correctly

detected as anomaly;

e True Negative (T'N): the number of non-anomalous trajectory correctly

identified as non-anomaly;

e False Positive (FP): the number of non-anomalous trajectory

incorrectly identified as anomaly:;

e False Negative (FN): the number of anomalous trajectory falsely

identified as non-anomaly.

We also define an index named averaged moving standard deviation
(AMSD) to evaluate the concentration of the majority samples (negative
samples), which is also a criterion for evaluating the hidden feature extraction
architecture. A lower AMSD indicates that those non-anomalies are closer to
their neighbors. However, from an overall perspective, a higher AMSD value
shows that those non-anomalies are more dissimilar to each other. Method
with a higher AMSD might make more false detections, which we should try
to avoid in this study. The definition of AMSD can be referred to Eq. (4.27).
Firstly, a window size x for the windowing operation along the horizontal
axis Ner is employed here. Then we compute the sample standard deviation
of all the normalized s(7;;, 7;) (denoted as §(7;;, 7)) within each k-sized
Ner. Following this, we get the mean standard deviation of all k-sized Nor
for AMSD.

m ng

1 1
BT 5 (7ijy k) — 5 4.2
S m ; n; — 1 ; (3 (’sza Tk) Sl) ( 7)

4.2.2 Parameters

The parameters are set as: (w, «, 8, p, €) = (10, 1075, 1074, 0.05, 0.01)
for all the bus routes. The window size w cannot be set with either too big
or too small value, we choose 10 as suggested by the literature work (Liu,
Taniguchi, Tanaka, Takenaka & Bando 2017). We set p with a value near 0
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because the centre of each RGB space axis is 0. In addition, the values of «,
[ and € are set empirically, but without using a specific parameters tuning
method. Parameter ¢ is a key parameter for detection performance, since too
high or too low ¢ will result in a low detection rate or a high false alarm rate
(as illustrated by Fig. 4.2). The default value range to determine the upper
and lower fences is 1.5 in Boxplot rule. We fine tune the value of § around
1.5. The parameters in both algorithms OFF-ATPD and ON-ATPD are set
as the same: (N¢, 0, r, n) = (450, 2.0, 50, 2) for Bus Route 66, (Ng, 4, ,
n) = (500, 1.7, 50, 2) for Route 50 and (Ng, 0, r, n) = (350, 0.9, 40, 2) for
Route 18, with the understandings and trials from the training set. The Bus
Route 18 utilizes a smaller value of N¢ as its route is shorter. The setting
of the other parameters in algorithm ON-ATPD is discussed in Subsection
4.2.5. Moreover, we employ a DSAE of four encoding layers with dimensions

40 — 20 — 10 — 3 to identify the 3-dimensional hidden features?.

4.2.3 Offline Detection Results about Anomalous

Patterns

The performance comparisons between our proposed OFF-ATPD versus the
state-of-the-art baselines are listed in Table 4.3 (note that we have transferred
the anomalous observations from the training set to the test set to enlarge the
positive sample size for performance evaluation). The proposed OFF-ATPD
detects all known anomalies with a high accuracy and a low false alarm
rate. The spatio-temporal planes for Bus Routes 66, 50 and 18 are shown
in Fig. S1 of Supplementary file 3, where those points distributed along the
tick (v') sign exhibit a trend that the s similarity increases with Neop when
Ner > Nery,, while it decreases with Nop when Nop < Ner,. Also in Fig.
S1 (a) of Supplementary file 3, anomalies #1 and #2 are categorized as class
A anomalies as their spatial and temporal features are both far away from

their spatio-temporal neighbors, and similarly for anomalies #1, #2, and #3

2The layer number and neuron number can be changed. However, the network should

be a deep learning architecture.
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Figure 4.2: Performance comparisons under different settings of parameter

J.

in Fig. S1 (b) of Supplementary file 3.

However, anomalies #3, #4 in Fig. S1 (a), #4, #5 in Fig. S1 (b) and #1,
#2 in Fig. S1 (c) of Supplementary file 3 were detected as class B anomalies,
because only their spatial features are far away from their temporal neighbors.
In general, class A anomaly has more serious impact on traffics than class B
anomaly does, while class B anomaly is more difficult to uncover. Fig. S2 of
Supplementary file 3 illustrates the processes of detecting class B anomalies,
with steps 14 to 26 in Algorithm 4.1. Fig. 4.2 presents the performance on all
the datasets under different settings of parameter . With the increase of 9,
a higher accuracy and lower false alarm rates were achieved for all datasets.
However, when § rises above a threshold (e.g., § > 2.8 for Bus Route 66),
the detection rate decreases, while it remains high when ¢ is located within
the threshold.

The detected anomalies shown in Table 4.1 are all coincided with the
known traffic anomalous events, which are elaborated as follows:

Known event 1: A sedan bumped a car at Shachong East Road in the
late afternoon of 14 August 2016, the driver of the sedan escaped after the
accident resulting in serious traffic congestion®. It was raining at that time

and this event only affected services for Bus Route 50.

3http://www.gywb.cn/content/2016-08/16/content_5188212.htm
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Known event 2: A severe car crash (an SUV and a truck) occurred on
the West No.2 Ring Road in the morning of 18 September 2016. Two men
died on site and one got injured*. This event imposed impacts on Bus Route
66 and Route 50 bus services.

Known event 3: Two cars crashed on the facilities of a bus station near
the Guizhou Cancer Hospital (West Beijing Road) around the noon on 26
November 2016. A pedestrian died®. This event affected Bus Route 66
service.

Known event 4: An SUV crashed an electric motorcycle on the North
Wenchang Avenue in the morning of 14 December 2016. Two riders on the
electric motorcycle got injured while trapping under the vehicle®. Only Bus

Route 18 service was influenced by this crash.

4.2.4 Results about Feature Visualization and

Anomaly Insight Analysis

Fig. 4.3 (a), (e) or (i) depicts the CT of a real-world trajectory in Bus
Route 66, 50 or 18, respectively. It is evident from Fig. 4.3 (a) that the
bus trajectory starts at the color of yellow ; the color changes gradually
and finally gets to blue B when the bus is approaching to the destination.
The horizontal axis indicates the temporal feature (Nor, 1 unit equals 10
seconds, each row contains 100 units).

The CTM of anomalous trajectory is obtained by fusion of the color
trajectory (CT) with the GIS map (via Eq. (4.22) and Eq. (4.23)). Here we
illustrate an anomalous trajectory by taking the anomaly #1 in Bus Route
66 as example. As shown in Fig. 4.4 (a), subfigure (i) is the CTM of #1,
and () denotes the actual event site. By contrasting the CT of anomaly #1

(i.e., subfigure (ii)) and non-anomalies (i.e., subfigure (iii) and (iv)), we can

“http://www.sohu.com/a/114567218_398062
Shttps://m.sohu.com/n/474230721/7wscrid=53843_3&_smuid=

BnKG38irJV6gorGDw jyzS0&mv=2
Shttp://gz.sina.com.cn/news/sh/2016-12-15/detail-ifxytqav9265554.shtml
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Table 4.1: Detected anomalies for each bus route

Bus Route Anomaly Service Date Running Time Event  Anomaly Category
#1 18 Sept. 2016  07:30-09:01 Event 2 Class A anomaly

66 #2 18 Sept. 2016  07:00-08:23  Event 2  Class A anomaly
#3 26 Nov. 2016 12:43-13:55  Event 3  Class B anomaly

#4 26 Nov. 2016 12:07-13:09  Event 3  Class B anomaly

#1 18 Sept. 2016  06:58-09:25  Event 2  Class A anomaly

#2 18 Sept. 2016 07:22-09:40  Event 2  Class A anomaly

50 #3 18 Sept. 2016 07:34-09:48 Event 2  Class A anomaly
#4 14 Aug. 2016 19:41-21:01  Event 1  Class B anomaly

#5 14 Aug. 2016 17:32-18:51 Event 1  Class B anomaly

8 #1 14 Dec. 2016 09:31-10:28  Event 4  Class B anomaly
#2 14 Dec. 2016 09:50-10:48  Event 4  Class B anomaly

62



Chapter 4. Offline and Online Detection of Anomalous Patterns from Bus

Trajectories for Traffic Insight Analysis

“1S91[}00WS O}
aIe Jepowl HyS( pesodoid mo Aq pojelouss suorjezifensia ) Y], 'S}osejep a9soy} Jo [[e Uo suroyjed uoryeziensia

IRIWIS S$9JRIOUDS POYIoW Yoey HVSS 10 Y ‘VOd ‘HVS Aq poreIousd sor103osler) 10700 jo sojdurexyy ¢ 2Insig

(8T @3noy sng) AVSS (1) (81 om0y sng) JY () (81 ooy sng) vpd (f) (81 om0y sng) Avsa (1)

08 09 oy 0z

°

08 09 ov

(0g @m0y sng) AVSS () (0g @m0y sng) JY (8) (0g ooy sng) vOd (3) (0g @m0y sng) AVSA (9)

08 09 or oz 0

o8 09 or

0 o8 09 o 0z 0 o8 09 o 0z

°

I
et

€
z
T

(99 ooy sng) HvSS (p) (99 om0y sng) 44 (0) (99 ooy sng) vod (q) (99 ooy sng) AvSd ()

o8 09 o 0z [ o8 09 o 0z 08 09 or 0z [

°

63



Chapter 4. Offline and Online Detection of Anomalous Patterns from Bus
Trajectories for Traffic Insight Analysis

[ O Real anomaly location |

T

(a) Anomaly #1 in Bus Route 66
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(b) Anomaly #4 in Bus Route 50
Figure 4.4: Insight analyses for anomaly #1 in Bus Route 66 and anomaly
#4 in Bus Route 50. (i) CTM of the anomalous trajectory. (ii) CT of the
anomalous trajectory. (iii) CT of a non-anomalous trajectory. (iv) CT of

another non-anomalous trajectory.
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Figure 4.5: Comparison of concentration performance on the training sets.

have an intuitive perspective that the anomaly might have occurred around
light yellow I, because the part with such color is very different from those
of the non-anomalies. However, when it proceeds to the color of grey M, the
rest part of CT turns to be similar to those of non-anomalies. It means that
the anomaly happened at the locations highlighted between locations = and
M in Fig. 4.4 (a), which is in line with the real location (O)) of event 2.
Apart from location detection, our method also provided insights to
understand implications of the car crash on the road by highlighting the
road section between ' and M (at the left bottom of Fig. 4.4 (a)). Similarly,
Fig. 4.4 (b) visually illustrates another example of anomaly #4 in Bus Route
50 that happened between the color of bright red M and dark red M, which

also coincides with the real site (()) of event 1.

4.2.5 Online Detection Results about Anomalous

Patterns

We conducted online detection simulation experiments for all of the
trajectories in test sets. The online anomaly report is carried out every
3 minutes. The parameters N¢, d, r and K set for ON-ATPD are the same
as those used by OFF-ATPD. Only parameter n is tested with different
values from 1 to 3. Table 4.2 shows the performance of our proposed online
detection algorithm. All of the known anomalies are detected correctly. In

particular with the increase of n, higher accuracies and lower false alarm
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Table 4.2: Performance of proposed online anomaly detection method (ON-

ATPD)

Route Parameter Acc (%) DR (%) FAR (%) Time

n=1 94.51 100 5.63 3.2s
66 n=2 95.12 100 5.00 3.2s
n=3 97.56 100 2.50 3.2s
n=1 91.92 100 8.19 12.1s
20 n=2 92.76 100 7.34 12.0s
n=3 95.26 100 4.80 12.3s
n=1 74.40 100 25.77 6.5s
18 n=2 76.45 100 23.71 6.5s
n=3 87.71 100 12.37 6.6s

Notes: Time is the mean computational time for one
detection. Our experiments were conducted on the server
with Intel Xeon Gold 6150 of 2.7GHz.

rates can be achieved on all datasets. On average for each detection, the
method needs about 3 seconds of computational time for each detection in
Bus Route 66, while needs about 7 and 12 seconds in Bus Routes 18 and 50

detection, respectively.

Fig. 4.6 illustrates some sequential steps of the online detection for
anomaly #1 in the Bus Route 66 dataset, where the real-time color
trajectories with an interval of 3 minutes are displayed at corresponding
timestamp. A detection result of ‘Anomaly’ or ‘No anomaly’ indicates
whether there exists any anomaly for the current trajectory. For anomaly
#1, the detection system is alarmed around 08:07 AM with an anomaly
reporting, when the bus is located at the color ®. Comparing with the real
anomaly location shown in Fig. 4.4 (a), the detected site at color ¥ is quite

close to the real anomaly location
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4.2.6 Comparison with Baseline Methods

Feature Extraction and Visualization

Our deep learning-based feature extraction method DSAE is compared with
other popular baseline methods including PCA, random projection (RP) and
single sparse autoencoder (SSAE) to understand the quality of our color
trajectories (CT). From Fig. 4.3, it is apparent that our DSAE-based model
can generate the smoothest color distributed trajectories. In Fig. 4.3 (a)(e)
and (i), with the trajectory moves on, it gradually changes from one color to
another distinct color. While the trajectories by the rest baselines sometimes
switch back to the previous color at certain parts of the CT. This conflict
will make it difficult for anomaly insight analyses when they are overlapped
on the GIS map. Furthermore, on the spatio-temporal planes derived by the
above baseline methods, none of them can get better detection performance
than the DSAE-based method for all the datasets (Fig. S3 of Supplementary
file 3). The distribution of some known anomalies (especially the class B
anomalies) yields a similar pattern with that of non-anomalies (#3, #4 in Bus
Route 66 with PCA and SSAE, #4, #5 in Bus Route 50 with RP and SSAE,
#1, #2 in Bus Route 18 with PCA, RP and SSAE), which makes difficulties
to clearly distinguish between anomalies and non-anomalies. Moreover, many
of the known non-anomalies are obviously mapped as isolated outlier points
(labeled () in Fig. S3 of Supplementary file 3), which do not exhibit the

characteristics of the expected patterns.

We also calculated the AMSD values (see Subsection 4.2.1) for all of the
non-anomalies, under every window size x from 2 to 10. DSAE-based model
achieved the best performance on the datasets of Bus Route 66 and Route 18,
as shown in Fig. 4.5. RP obtained fairly good performance on Bus Route 50;
however, its performance in anomaly detection is sensitive as it made false
predictions on quite a number of points in Bus Route 50. SSAE performed

the worst on all of the datasets.
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Table 4.3: Performance comparison on the test sets with the baseline methods
Route Metric OFF-ATPD OneSVM BiSVM LSTM HDBSCAN kNN

Acc (%) 99.39 40.24 98.78  98.17 98.17 98.78
66 DR (%) 100 100 50.00  25.00 75.00 50.00
FAR (%) 0.63 61.25 0 0 1.25 0
AUC (%) 99.61 75.63 99.53  75.00 97.19 75.00
Acc (%) 98.33 5292  99.44  98.89 99.44  99.44
50 DR (%) 100 100 60.00  20.00 60.00 60.00
FAR (%) 1.69 47.74 0 0 0 0
AUC (%) 99.66 79.52 100 60.00 97.12 80.00
Acc (%) 96.93 48.12 — — 99.32 —
18 DR (%) 100 100 — — 0 —
FAR (%) 3.09 52.23 — — 0 —
AUC (%) 97.25 75.60 — — 99.14 —

Notes: Supervised learning method BiSVM, LSTM or kNN cannot be applied to Bus
Route 18 dataset since there is no positive sample in the training set. AUC is computed

by the ‘sklearn’ package in Python.

Comparison on Anomalous Traffic Patterns Detected by Our

Offline Approach

We compare the anomaly detection performance by our offline detection
approach (OFF-ATPD) with those by the commonly used methods in
outlier/anomaly detection (Chandola, Banerjee & Kumar 2009), including
classification-based methods (one-class SVM (OneSVM) (Li et al. 2003, Wang
et al. 2004), binary SVM (BiSVM) and LSTM network), a clustering-based
method (HDBSCAN clustering (Campello, Moulavi & Sander 2013)) and
a nearest-neighbor-based method (kNN). The same features extracted via
DSAE are used for these baseline methods. Our approach is implemented
by Python and Tensorflow, the code of our algorithms is publicly available
in GitHub repositories”. OneSVM and BiSVM use the ‘1071’ package in R.
LSTM network is implemented by the ‘rnn’ package in R. While baselines of
HDBSCAN and kNN use the R packages of ‘dbscan’ and ‘FNN’, respectively.

"https://github.com/Xiaocai-Zhang/Anomalous-Traffic-Patterns-Detection
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The output probabilities of our approach to calculate AUC are linearly
scaled by the similarity (i.e., S(€;) in Algorithm 4.1). While the output
probabilities via OneSVM and BiSVM are estimated by Platt scaling (Lin,
Lin & Weng 2007). The performances are shown in Table 4.3. Because there
is no positive sample in the training set of Bus Route 18, the supervised
learning methods of BiSVM, LSTM and kNN are not applicable. Overall,
OFF-ATPD achieved better performances with high accuracies, the 100%
detection rates, low false alarm rates and high AUC scores on all of these
datasets. OneSVM is also a competitive method that detected all anomalies
correctly; however, its high false alarm rates (61.25%, 47.74% and 52.23%)
make it less efficient. BiSVM and HDBSCAN also demonstrated low false
alarm rates and high AUC scores; nevertheless, they are unable to identify
all the anomalies accurately. None of the rest machine learning baseline
methods could detect all of the anomalies correctly. One reason is probably
that the real-world datasets for traffic anomaly detection as we utilized in
this experiment are extremely imbalanced. Machine learning on imbalanced
datasets might produce unsatisfactory classifiers (Provost 2000, Zhu, Lin &
Liu 2020). Instead of taking machine learning ideas for pattern recognition,
our developed algorithm explores the ideas of spatio-temporal neighborhood
and Boxplot rules to identify anomalous traffic patterns in class A task
and in class B task, respectively. Because these anomalous patterns have
distinct spatial and temporal characteristics, our approach can achieve
better performance on imbalanced data than the baseline machine learning

approaches.

4.3 Summary

The work in this chapter mainly consists of four parts. First, deep learning-
based method is proposed to extract novel features from bus trajectory data,
and the method can make good visualization of this features as well. Second,

we have termed class A anomaly and class B anomaly to better address
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the discrepancy issues between these diversified anomalous patterns. Offline
detection algorithm is designed by using the Boxplot rule or the nearest
neighborhood for detecting different classes of anomalous patterns. Third,
we fused the visualized color trajectories with GIS map to generate a color
trajectory map, and developed methods that are able to conduct insights
analysis on the locations of anomalies as well as on the traffic influences to
the road. Last, we also developed an online detection method extending
from the offline method for a real-time detection of anomalous traffic
patterns. Extensive experiments on three real-world datasets confirmed the
effectiveness and superiority of our deep feature extraction method, offline
and online detection methods, and anomaly insight analysis method.
Infrastructure plans for some cities have adopted the ‘Bus Lane’ strategy
for some major roads during certain periods to improve the efficiency of
bus services. In that case, our approach may not be efficient to detect the
incident-based anomaly, as the situation that some incidents affecting other
vehicles on the road might not affect buses. However, from the perspective
of bus service operation or management, that situation does not affect the
decision making, since those anomalies that impose little impact on bus

service will not be taken into account.
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Chapter 5

Differential Evolution based
LSTM Recurrent Neural
Network for Traffic Flow

Prediction

Deep learning has drawn large amount of attention and has made great
progresses in traffic flow prediction. State-of-the-art deep learning algorithms
like DNN (Qu et al. 2019), SAE (Lv et al. 2014),DBN (Huang et al. 2014,
Huang et al. 2013) and LSTM (Tian & Pan 2015) have achieved much
better performances in traffic flow prediction than the traditional parametric
methods or other machine learning methods. However, global optimization
of the network’s hyperparameters is still a tough problem in deep learning
despite of remarkable improvements. The aforementioned deep learning
models in traffic flow prediction or even in other relevant domains (Tang,
Liu, Zou, Zhang & Wang 2017, Zhang, Zhao, Zheng & Li 2019, Zhang,
Liu, Zheng, Zhao, Li & Liu 2018) all employ a grid search strategy or a
random search strategy for hyperparameters tuning. Grid search considers
all of the possible combinations of the hyperparameters with specified grid

gaps. Such an exhaustive strategy is computationally expensive in the case
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of many hyperparameters or large numbers of training samples, which has
led to poor performance in practice (Bergstra & Bengio 2012). On the other
hand, random search scans over a low-dimensional subspace of all possible
combinations with the notion that not all hyperparameters are equally
important. Previous study (Bergstra & Bengio 2012) has demonstrated that
random search could obtain satisfactory models in most cases while with low

computational cost.

We propose to use a differential evolution algorithm (Storn & Price 1997)
for deep learning hyperparameters optimization and in particular to obtain
optimal hyperparameters of LSTM recurrent neural network (RNN). LSTM
is specially capable of learning long-term interdependencies (Liu, Shahroudy,
Xu, Kot & Wang 2017) to overcome the gradient vanishing problem in
RNN. This advantage makes LSTM effective and efficient in processing
sequence data including traffic flow time series data. The differential
evolution algorithm is good at optimizing the hyperparameters in LSTM
to achieve high accuracy and robustness for traffic low prediction. The
LSTM network of the optimal hyperparameters is then trained to learn
important sequential traffic flow features. To accelerate the convergence
of the differential evolution algorithm, we design parallel computing and
early stopping programs. Our new deep learning method is termed PDE-
LSTM, standing for parallel-differential-evolution-based LSTM for traffic
flow prediction. This is the first work that employs evolutionary algorithms to
optimize the deep learning architecture and hyperparameters in the problem

of traffic flow prediction.

The rest of this chapter is structured as follows. Section 5.1 presents
details of PDE-LSTM. Section 5.2 describes the datasets collected by Dublin
and San Francisco, reports and analyzes the results of the newly proposed
PDE-LSTM. Section 5.3 summarizes this chapter.
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5.1 Methods

The workflow of our proposed model for traffic flow prediction is illustrated by
Fig. 5.1. The workflow contains 3 main components: data processing, PDE-
LSTM and prediction. First, the preprocessed dataset is split into training
data, validation data and test data. Second, PDE-LSTM is performed on
the training and validation data to optimize the hyperparameters of LSTM.
Third, the traffic flow for a near future time interval is predicted by the
optimized LSTM model. In this section, we give a brief introduction to the
differential evolution algorithm. Then, details of our proposed traffic flow
prediction model, including parallel computing and early stopping steps, are
described. Finally, an example is provided to illustrate the steps for a better

understanding of the details.
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Figure 5.1: The workflow of PDE-LSTM in traffic flow prediction.
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5.1.1 Differential Evolution

Differential evolution (DE) is proposed by Storn and Price (Storn & Price
1997), which is an efficient population-based stochastic search technique to
solve optimization problems (Wu, Shen, Li, Chen, Lin & Suganthan 2018). A
standard DE algorithm consists of 4 steps: initialization, mutation, crossover

and selection.

Initialization

Suppose there are D parameters to be optimized in a problem. For the jth
parameter, 5 = 1,2,..., D, let its corresponding range be [bL].,ij}, where
the subscripts L and U denote the lower and upper bounds. The initialized
population with a size P is generated by Eq. (5.1).

zy; = by, +rand(0,1) * (by, — by,) (5.1)

where i = 1,2, ..., P; rand(0, 1) is the function to generate a random number

valued between 0 and 1 with a uniform probability distribution.

Mutation

The purpose of mutation is to add a scaled vector difference between two
randomly sampled individuals to a third individual vector (Hamza, Essam &

Sarker 2015). The mutation is conducted using Eq. (5.2) and Eq. (5.3).

varl — Zij + FP « (zl(]; —2z8) (5.2)

7 - mj

and

FE = random(Fy, Fyy) (5.3)

where 1 < i # k # [ # m < P; FF is the mutation factor produced randomly
from the uniform distribution on the interval [Fy,, Fy; superscript G denotes

the Gth generation of the algorithm.
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Crossover

The step of crossover is to cross the initialized and mutated vectors to
generate new trail vectors. The DE algorithm crosses each vector using Eq.
(5.4) and Eq. (5.5).

G+l ¢ G
wort = Vi e > G (5.4)
Y ziGj, 1 fcg < C,
and
i = rand(0,1) (5.5)
where u& is the new trail vector after crossover; C, € [0,1] is the crossover

ij
factor; rand(0,1) generates a random value uniformly distributed on the

interval between 0 and 1.

Selection

The selection operation aims to select the best genes for offsprings. The

selection is carried out by comparing the fitness values of the trail vector

uétt G+l
K2 (2

and the target vector z&. If the fitness value of trail vector u is

better than that of target vector z&, then replace the target vector with trail
G+1

vector ui ™! for the offspring; otherwise keep target vector z{ to the next

generation until the algorithmic terminal condition is met.

Gl _ {u?“, iff(uf) < f(2f)

: 26, ifFuE) > f(2) >0

5.1.2 Differential Evolution based LSTM under
Parallel Computing

Suppose at time t + m, we have the historical traffic flow at time intervals
(t+1,t42,--- ,t+m), the task is to predict the traffic low at time interval
t +m + 1. The input X of the model can be represented by Eq. (5.7) and
Eq. (5.8).

X; = (Tj1, i, Tjm)" €R™ (5.7)
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and
X = (Xl,XQ7 .. ',XN_l,XN) € RmXN (58)

where m is the sequence length and N is the number of observations.
The yz¢ denotes the output via the LSTM model under the

hyperparameters from the ith target vector at the Gth iteration z{. Similarly,

yuiGJrl is the corresponding output with hyperparameters derived from the
ith trail vector ud**.

yz$ = grsrm(X, z5) (5.9)

yz¢ = (yzﬁ, Y25, yzﬁN_l),yng) e RV (5.10)

yui ™ = grora (X, uf™*!) (5.11)

yui = (yUﬁ+l,yug+l,- YU ) YU 1) €R" (5.12)

where X stands for the input data; grsra represents the LSTM model
with the hyperparameters vector z or u; yz and yu denote the corresponding
outputs. We use mini-batch stochastic gradient decent (SGD) together with
the RMSProp (Tieleman & Hinton 2012) optimizer to train the LSTM model.

Suppose the groundtruth of traffic flow is denoted by Eq. (5.13).

y:(:&lag%'” ag)N—lagN) GRN (513)

We employ the criterion of mean absolute percentage error (MAPE) for
measuring the fitness values. The fitness values of target vector and trail

vector are defined by Eq. (5.14) and (5.15), respectively.

Z 5 V] - 100% (5.14)
|y]
and N
1 qu—H . @ ‘
G+1 zg J
=5 Z - 100% (5.15)
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Since training a deep leaning model is a time-consuming process, we
introduce parallel computing for training the LSTM models and calculating

the fitness values of target and trail vectors, as illustrated by the selection
G+1
7

(5.6). The best fitness value of this generation is defined by Eq. (5.16).

procedure in Fig. 5.1. Then, the offsprings z could be determined by Eq.

fEet = minf (z811) (5.16)

In order to improve the time efficicy of hyperparameter optimization
process, we propose to integrate a criterion of early stopping into our
algorithm. Firstly, a parameter n is defined, if the best fitness of the Gth
generation (i.e., fE¢) is the same with the best fitness values of the previous
n — 1 generations, the early stopping mechanism will be triggered, as shown
by Eq. (5.17).

Best __ pBest __ _ rBest
G+1 — JG — T = JG—n+2 (517)

where G > n — 1 and G < mazG — 1.
The global optimal hyperparameters vector z* are determined using Eq.

(5.18).

z* = arg min f(z8 ) (5.18)

zeRD

where G* denotes the generation that the terminal condition is applied.

5.1.3 PDE-LSTM: An Illustrative Example

A simplified example of PDE-LSTM is illustrated at Table 5.1 to Table 5.6.
Suppose there are 5 hyperparameters for optimization: sequence length (SL),
hidden unit (HU), maximum epoch (ME), batch size (BS) and learning rate
(LR); and assume they are in the ranges [1,50], [1,75], [10,1000], [1,500] and
[0.001,0.1], respectively. If the population size is set as P = 4, then the

initialized population is the numbers shown in Table 5.1.
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Table 5.1: Population with the step of initialization

SL HU ME BS LR
15.62 31.56 286.48 111.46 0.0902
45.55 3.62 967.34 332.06 0.0611
36.47 31.67 450.11 457.8 0.0077
22.10 45.11 786.58 144.83 0.0442

For the step of mutation, we assume F; = 0.5 and Fyy = 1 to generate

the mutation factor. Table 5.2 lists the mutated population.

Table 5.2: Population with the step of mutation

SL HU ME BS LR
16.80 61.46 485.20 218.07 0.0130
11.21 61.62 806.02 12.06 0.0471
27.19 44.97 494.86 332.16 0.0132
16.75 52.81 811.18 73.01 0.0472

In the step of crossover, if the crossover factor is set as C,. = 0.7, then
the population can be updated by Eq. (5.4) and (5.5), as listed in Table 5.3.

Table 5.3: Population with the step of crossover

SL HU ME BS LR
15.62 61.46 286.48 111.46 0.0902
45.55 3.62 967.34 12.06 0.0611
27.19 31.67 450.11 457.76 0.0132
22.10 45.11 786.58 73.01 0.0472

For the selection step, all the hyperparameters’ values in the population
are rounded to integers, and parallel computing is employed for the parallel
training of LSTM network with the corresponding hyperparameters vector.
The fitness values (MAPE) of the target vectors and trail vectors are shown

in Table 5.4 and 5.5, respectively.
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Table 5.4: Fitness values of initialized population (target vectors)

SL HU ME BS LR Fitness (MAPE)
16 32 286 111 0.0902 6.95%
46 4 967 332 0.0611 6.68%
36 32 450 458 0.0077 6.27%
22 45 787 145 0.0442 6.53%

Table 5.5: Fitness values of crossovered population (trail vectors)

SL HU ME BS LR Fitness (MAPE)
16 61 286 111 0.0902 6.63%
46 4 967 12 0.0611 6.99%
27 32 450 458 0.0132 6.41%
22 45 787 73 0.0472 6.72%

Table 5.6 shows the rounded numbers of offspring population after the
step of selection. If the algorithm terminates at this iteration, then the vector
z* = (36,32,450,458,0.0077)7 with the minimum fitness are regarded as the
optimal hyperparameters. If not, the initialized population in step 1 will be

updated by the offspring for the next iteration.

Table 5.6: Offspring population with the step of selection

SL HU ME BS LR Fitness (MAPE)
16 61 286 111 0.0902 6.63%
46 4 967 332 0.0611 6.68%
36 32 450 458  0.0077 6.27%
22 45 787 145  0.0442 6.53%
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5.2 Experiments and Results

5.2.1 Datasets and Evaluation Metrics

Datasets

The proposed method was tested on three real-world road traffic flow
datasets. Two of them are about the traffic flow of two roads in Dublin,
Ireland, and the third one is about a main road in San Francisco, USA.
We choose three roads of dense traffic flow for study because they have
been given much attentions in both traffic management and research (Huang
et al. 2014). The two Irish datasets were download from the official traffic
data site maintained by Transport Infrastructure Ireland (TII) (Transport
Infrastructure Ireland 2019). The San Francisco dataset was download
from the Caltrans Performance Measurement System (PeMS) database
(PeMS 2019) maintained by the California Department of Transportation
(Caltrans).  All the flow data were collected at a 15-minute interval
continuously spanning one year from April 1 2018 to March 31 2019, using
the average of all the inductive loop detectors in the corresponding road. The
15-min format of data can be transformed into a 30-min, 45-min or 60-min
interval format for different tasks of prediction.

The dataset for each road is divided into a training set, a validation set
and a test set. In particular, the flow data of the first 9 months is reserved
as the training set, the 10th month’s data for validation, and the last two
months’ for test. Table 5.7 provides more details about these datasets. The
average traffic flow of 15 minutes interval during a typical week is depicted in

Fig. 5.2. All the data and code are publicly available in GitHub repositories®.

Evaluation Metrics

The prediction performance of the proposed method and existing methods

are evaluated using three metrics: mean absolute error (MAE), root mean

8https://github.com/Xiaocai-Zhang/Traffic_flow_prediction_based_DE-LSTM
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Figure 5.2: Average traffic flow of the M50-N, M1-N and I280-S roads during

a typical week.
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Table 5.7: Dataset description

Dataset Road Segment Direction  Detector No
M50-N M50 Balinteer to Finglas Northbound 8
MI1-N M1 Airport to Swords Northbound 2
1280-S 1280 Bernal Heights to Ingleside Southbound 7

square error (RMSE) and mean absolute percentage error (MAPE). They

are defined as

1 n
" ; lyi — il (5.19)
1 & 5
w2 =) (5.20)
1 |?Jz - ?Qz|
MAPE = — ~——.100 5.21
" ; W %0 (5.21)

where y; denotes the ith predicted traffic flow value, and g; indicates the

corresponding groundtruth flow value.

5.2.2 Hyperparameters

For a deep learning model, there are two categories of hyperparameters:
model hyperparameters and optimizer hyperparameters. In this study, we
choose to use 5 hyperparameters that have heavy impact on the performance
of the LSTM regression model. These hyperparameters are: sequence length,
hidden unit, maximum epoch, batch size and learning rate. Sequence length
and hidden unit are model hyperparameters applicable to determine the
structure of LSTM network. The maximum epoch, batch size and learning
rate are optimizer hyperparameters that have effects on the training process.

More details of these hyperparameters include:

e Sequence length: it refers to the input length of LSTM network,
corresponding to m in Eq. (5.7). An appropriate input length can
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capture the most critical information of the data while excluding

unnecessary input data;

e Hidden unit: it stands for the number of units in the hidden layer of
LSTM network. An over-set number of hidden units may significantly
increase the time cost for training and sometimes the process may fail

to converge (Ling 1995);

e Maximum epoch: it refers to the maximum number of training epochs
that completely pass through the training dataset. A small maximum
epoch might result in underfitting, whereas a larger maximum epoch
takes more time for training. While training the LSTM network with
a maximum setting of epoch, we choose the best model at the epoch

that the lowest MAPE is witnessed on the validation set;

e Batch size: alarge batch size can speed up the network training process.
However, a large batch size requires a huge memory. On the other hand,
a small batch size may cause the process difficult to converge (Dai &
Zhu 2018);

e Learning rate: the learning rate is an important hyperparameter for
SGD algorithm. It controls how fast the learning model is adapt to the
problem. Too large learning rate can lead the model to a suboptimal
solution, while a learning with too small value may make the training

process become permanently stuck.

5.2.3 Parameter Settings
Hyperparameter Ranges

As required, we have 5 hyperparameters for optimization (i.e, D = 5).
In order to enhance the practical applicability of our proposed method in
practice, we avoid using parameter tuning technique because it is a time-
consuming procedure, especially for tuning a deep learning model on large-

scale data. Instead, we assign higher upper bounds to all hyperparameters
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Table 5.8: Lower and upper bounds of each hyperparameter
Sequence Length Hidden Unit Maximum Epoch Batch Size Learning Rate

bL1 bU1 bL2 bU2 bL3 bU3 bL4 bU4 bL5 bU5
1 50 1 75 10 1000 10 500  0.001 0.1

to test the searching ability of DE algorithm. Thus, the ranges of “sequence
length” and “hidden unit” are all set as [1,50] and [1, 75], respectively. The
bounds of the “maximum epoch” are all set as [10,1000]. All “batch size” are
generated between 10 and 500. Note that “batch size” below 10 are suggested
to be avoided in order to speed up the training process. Hyperparameter of
“leaning rate” for all prediction tasks are produced in the interval [0.001, 0.1].

Table 5.8 gives the bounds of each hyperparameter.

Other Settings

Other  important  parameters for PDE-LSTM  are set as:
(P, Fp, Fy,Cy,n,mazxG) = (40,0.5,1,0.7,3,10) for all of the datasets.

5.2.4 Prediction Performances Comparison

The prediction results on the 3 test sets by our proposed PDE-LSTM model
are shown in Table S1, Table S2 and Table S3 in Supplementary file 5. Its
mean accuracy (1-MAPE) is exceeding 93% for the four tasks on all of the
test datasets (two thirds of them exceeding 94%). These results suggest that
the forecasting accuracy obtained by PDE-LSTM is high, stable and robust.

Comparisons between the groundtruth flow and the predicted flow on the
15-min prediction task are presented in Fig. 5.3. The predicted traffic flow
and trends by PDE-LSTM closely match with the groundtruth for all of the
test sets.

We also compare the performance of our proposed PDE-LSTM model
with state-of-art baseline models in the field of traffic flow forecasting,
including seasonal ARIMA (SARIMA), Gaussian process (GP), back-
propagation neural network (BPNN) (Dougherty & Cobbett 1997), SVR
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Figure 5.3: Comparison between the predicted flow and the groundtruth flow
on the 15-min prediction task. The predicted traffic flow and trends (denoted
by red dash line) by our PDE-LSTM closely match with the groundtruth
traffic flow (denoted by blue solid line) for all of the test sets.
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(Yang et al. 2010) and deep-learning-based models like DNN (Qu et al. 2019),
DBN (Huang et al. 2013, Huang et al. 2014), SAE (Lv et al. 2014), RNN,
traditional LSTM (Tian & Pan 2015) and the LSTM under a random search
strategy (denoted by LSTM (RSS)). To evaluate the effects of differential
evolution algorithm on LSTM model, random search in a fixed set (Huang
et al. 2014) is employed for LSTM (RSS) to make comparisons with PDE-
LSTM. The fixed set is formed by the same hyperparameters of sequence
length (i.e., @ = 1), hidden unit (i.e., i = 2), maximum epoch (i.e., i = 3),
batch size (i.e., i = 4) and learning rate (i.e., i = 5), ranging from 5, 5,
100, 50 and 0.001 to the corresponding upper bounds (by, in PDE-LSTM as
shown in table 5.8) with 5, 5, 100, 50 and 0.01 as gaps, respectively.

PDE-LSTM achieved the best performance in terms of MAE, RMSE or
MAPE for all the prediction tasks on each dataset (see Table S1, Table S2
and Table S3 in Supplementary file 5). Methods such as SAE, DBN, RNN
and LSTM exhibit a quite competitive accuracy to each other. SVR performs
well in short-term predictions (e.g., 15-min prediction). However, its errors
surge when conducting longer-term predictions (e.g., 30-min, 45-min and
60-min predictions). Overall, the deep learning models can achieve better
performances than the other methods. The LSTM-based models can improve
the accuracy in comparison with the other deep learning models. One reason
is probably that LSTM is capable of learning long-term interdependencies
(Liu, Shahroudy, Xu, Kot & Wang 2017), which makes it perform even better

when modelling sequential time series data of traffic flow.

5.2.5 Residual and Correlation Analyses

Taking the 15-min prediction for example, Fig. 5.4 demonstrates the plot and
distribution of residual errors on the test sets by PDE-LSTM. The residual
errors are calculated using Eq. (5.22).
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Figure 5.4: Residual error analysis for the 15-min prediction by PDE-LSTM model. (a)(b)(c) plot of residual error.
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where y; is the ith groundtruth flow and y; is the corresponding predicted
flow. For the residuals in the M50-N dataset, 86.81% of them are distributed
between [—50,50), and further 98.62% are covered by the interval of
[—100, 100) (see Fig. 5.4 (d)). For the M1-N dataset, 81.37% of the residuals
are located between [—50,50), and 97.09% of them are spanned between
[—100, 100) (see Fig. 5.4 (e)). In a similar pattern, 70.71% and 92.09% of
them are in [—50,50) and [—100, 100), respectively, for the residuals in the
1280-S dataset (see Fig. 5.4 (f)).

Fig. S1 in Supplementary file 6 presents correlation plots between the
groundtruth flow and the predicted flow by PDE-LSTM on the I280-S
dataset (i.e., subfigures (a) (g) (m) and (s)). These correlations are also
compared with those competitive and well-performed baselines, like LSTM
(RSS), DBN, SVR, BPNN and SAE (see other subfigures in Fig. S1 of
Supplementary file 6). The comparison shows that PDE-LSTM can cover
more points inside the blue-lined area and less points outside for all of the
four prediction tasks. This is another perspective to demonstrate that PDE-

LSTM outperformed the baseline models.

5.2.6 Runtime Comparison

Parallel computing and early stopping strategy are implemented for PDE-
LSTM to speed up the optimization process. The time costs by PDE-LSTM
for all the prediction tasks are listed in Table 5.9. Overall, the required
time for optimization increases with the increase of training data volume.
The 15-min prediction takes the most amount of time (it was trained on the
largest volume of training data). The computational costs by LSTM under
the random search strategy (i.e., LSTM (RSS)) are also listed in Table 5.9.
The optimization time for LSTM (RSS) may vary greatly even for the same
prediction task (e.g., 19.78h vs 8.13h vs 6.97h for the 30-min prediction).
One reason is probably that a large sequence length (or hidden units) or a
small batch size are derived during the tuning phase. Overall, PDE-LSTM
outperforms LSTM (RSS) in most of these prediction tasks in terms of time
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efficiency. Even in the cases that PDE-LSTM takes more running time, the
time costs by these two models have no significant differences (e.g., 9.93h vs
8.13h and 7.50h vs 6.97h in the 30-min prediction task).

Table 5.9: Computational time cost comparison
Optimization Time Cost (h)

Dataset Model

15-min  30-min 45-min 60-min
LSTM (RSS) 17.97 19.78 11.03 9.57

M50-N
PDE-LSTM  11.02 5.77  5.35  2.42
vy LSTM(RSS) 2068 813 747 10.2
PDE-LSTM 16.25 993  3.28  3.30
LSTM (RSS) 2225 6.97  7.62  12.38
1280-S

PDE-LSTM  12.83 7.50 4.63 3.17

Notes: Our experiments were run on the server with 2.2GHz
Intel Xeon Gold CPU 6238R with 26 cores enabled.

5.3 Summary

In this chapter, we developed a deep learning approach for urban traffic
flow prediction. Unlike adopting traditional grid search or random search
strategies, we use a differential evolution algorithm to determine the globally
optimized hyperparameters for an LSTM network. Parallel computing is
implemented in the approach to accelerate the optimization process. Our
proposed method is named PDE-LSTM (parallel-differential-evolution-based
LSTM). Experimental results evaluating on 3 real-world datasets show that
PDE-LSTM has achieved at least 93% accuracies for all of the prediction
tasks, and it has better performances than the state-of-the-art baseline
methods: seasonal ARIMA, GP, BPNN, SVR, DNN, DBN, SAE, RNN and
LSTM.
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Conclusion and Future Work

6.1 Conclusion

In this thesis, we have mainly addressed three research problems on traffic
time series data analysis, namely taxi destination prediction, anomalous
traffic patterns detection and urban traffic flow prediction. The proposed
methods for solving these problems are detailed in Chapters 3-5. In the
following content, the results and findings of each research problem are

summarized.

We proposed a data-driven ensemble learning approach for the taxi
destination prediction problem, which incorporates the advantages of SVR
and DBN models for dealing with different segments of the trajectories. A
novel data embedding technique named CFE was applied in deep learning
model. We evaluated the individual and overall prediction performances
and made comparisons with baselines of SVR, DBN, ANN, kNN and naive
Bayes. From the experimental results on two real-world taxi GPS trajectory
datasets collected from two independent urban cities, we demonstrated that
our ensemble learning approach performs better than other models in terms
of the overall performance. In general, it can get more accurate predictions,
when the taxi is getting closer to the drop-off location. Experiments also

showed the effectiveness of our proposed CFE technique in deep learning.
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We developed novel methods for online and offline detections of
anomalous traffic patterns from bus trajectory datasets. Our methods have
explored deep learning ideas to extract novel features and the methods
can make good visualization of the features as well. Based on the spatial
and temporal characteristics of the anomalies, we have termed class A
anomaly and class B anomaly to better address the discrepancy issues
between these diversified anomalous patterns. The key idea behind our
algorithms is to use the Boxplot rule or the nearest neighborhood for different
detection tasks of anomalous patterns. Our methods are able to conduct
insights analysis on the locations of anomalies as well as on the traffic
influences to the road caused by the corresponding anomalies, after the
visualized color trajectories are fused with GIS map to generate a color
trajectory map. We also developed an online detection method extending
from the offline method for a real-time anomalous traffic patterns detection.
Comprehensive experiments on three real-world bus route datasets confirmed
the effectiveness and superiority of our deep feature extraction method and

anomaly detection approaches while comparing with the baseline methods

PCA, RP, SSAE, one-class SVM, binary SVM, LSTM, HDBSCAN and kNN.

The thesis presented an improved deep learning approach for urban traffic
flow prediction. The key idea is to use a differential evolution algorithm to
determine globally optimized hyperparameters for an LSTM network, and the
parameter search is implemented by parallel computing and early stopping to
accelerate the optimization process. This search strategy for hyperparameter
optimization is advanced to grid search or random search commonly adopted
by other deep learning models. Our method is named PDE-LSTM (parallel-
differential-evolution-based LSTM). The proposed PDE-LSTM model was
evaluated on three real-world flow datasets to confirm its superior prediction
performance in comparison with the baseline methods of seasonal ARIMA,
GP, BPNN, SVR, DNN, DBN, SAE, RNN and LSTM. PDE-LSTM has
achieved at least 93% accuracy for all of the prediction tasks. This result is

expected, as an LSTM-based model with optimized hyperparameters is more
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capable of learning sequential features than other deep learning models.

6.2 Future Work

In addition to the encouraging results and findings, there are still some
problems as well as challenges need to be addressed in the future work.

Firstly, for the problem of taxi destination prediction, we have constructed
a classifier based on a simple lazy learning algorithm kNN to estimate the
current segment of the whole trajectory. Although the kNN classifier can
achieve a high overall accuracy on large-scale data, it delivered unsatisfactory
performances when the percentage of the whole trajectory is around 20%,
30% or 40%. It would be interesting to investigate other promising
methods, such as the state-of-the-art deep learning methods, to improve
the generalization ability of classifier for providing a more accurate result.
Furthermore, prediction of the arrival time of taxi would be also of great
significance for this problem.

Secondly, the proposed online anomaly detection method leads a
relatively high false alarm rate when tested on some datasets. One reason is
probably that we chose the most similar color trajectory from the training set
as the reference to construct a new color trajectory. Under the circumstances,
it might be not robust to get a color trajectory that follows a similar pattern
with the original trajectory. In this case, we will focus on developing a
more effective and reliable method to measure the similarity between two
color trajectories. Besides, we will explore the possibility of transferring our
proposed methods to other trajectory data sources, such as the city-wide
taxis or trains trajectory data.

Thirdly, the proposed PDE-LSTM model is designed for processing
continuous variables, however, some discrete variables in LSTM network
such as the loss function, the normalization function and time features
embedding cannot be optimized directly via the proposed model. As future

work, we will investigate how to make our proposed algorithm adapt to
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discrete hyperparameters optimization. On the other hand, exploring other
kinds of optimization methods in this problem and making comparisons with

differential evolution will also be the next stage of this research.
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Appendix A

Appendix: List of

Supplementary Files

The supplementary file list and the corresponding download links

name chapter description link
Supplementary file 1 3 supplementary tables for chapter 3  link
Supplementary file 2 4 supplementary tables for chapter 4  link
Supplementary file 3 4 supplementary figures for chapter 4 link
Supplementary file 4 4 data and code for chapter 4 link
Supplementary file 5 5 supplementary tables for chapter 5  link
Supplementary file 6 5 supplementary figures for chapter 5  link
Supplementary file 7 5 data and code for chapter 5 link

Notes: If there are any issues with the links, please visit
https://github.com/Xiaocai-Zhang/Thesis_backup to download the

above supplementary tables and figures.
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Appendix B

Appendix: List of

Abbreviations

The following list is neither exhaustive nor exclusive, but may be helpful.

ITS Intelligent transportation systems
GPS Global positioning system
LBSs Location-based services
SVR Support vector regression
RGB Red-green-blue
GIS Geographic information systems
HMM Hidden Markov chain model
PCA Principal component analysis
SVM Support vector machine
kNN k-nearest neighbour
RNN Recurrent neural network
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LSTM

ARIMA

VARMA

ES

NN

FNN

SAE

DBN

DNN

CNN

GMM

BCM

ELM

CFE

MAE

RMSE

AMAE

ARMSE

RBF

EV

ANN

Long short-term memory
Auto-regressive integrated moving average
Vector auto-regressive moving average
Exponential smoothing

Neural network

Fuzzy neural network

Stacked autoencoder

Deep belief network

Deep neural network
Convolutional neural network
Gaussian mixture model
Bayesian combination method
Ensemble learning model
Circular fuzzy embedding
Mean absolute error

Root mean square error
Average mean absolute error
Average root mean square error
Radial basis function

Electric vehicle

Artificial neural network

97



Chapter B. Appendix: List of Abbreviations

NB

One-Hot-E

API

DSAE

CT

CTM

KL

Acc

DR

FAR

ROC

AUC

TP

TN

FP

FN

AMSD

SUV

RP

SSAE

OneSVM

Naive Bayes

One-hot embedding

Application programming interface
Deep sparse autoencoder

Color trajectory

Color trajectory map
Kullback-Leibler

Accuracy

Detection rate

False alarm rate

Receiver operating characteristic
Area under the ROC curve

True positive

True negative

False positive

False negative

Averaged moving standard deviation
Sport utility vehicle

Random projection

Single sparse autoencoder
One-class support vector machine
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BiSVM

DE

SGD

MAPE

TII

PeMS

GP

BPNN

RSS

Binary SVM

Differential evolution

Stochastic gradient decent

Mean absolute percentage error
Transport infrastructure Ireland
Performance measurement system
Gaussian process
Back-propagation neural network

Random search strategy
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