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Abstract

Time series data in traffic has been playing an important role in intelligent

transportation systems (ITS) research and applications. However, because

of the sparse, imbalanced, stochastic and highly non-linear natures of traffic

time series data, typical parametric methods or machine learning methods

are unable to learn the representations of data well. This work aims to

develop deep learning methods to gain novel and valuable knowledge from

traffic time series analysis for ITS. Specifically, deep learning-based methods

are developed for three topics, namely taxi destination prediction, anomalous

traffic patterns detection, and urban traffic flow prediction.

The first method is to predict taxi destination using trajectory data.

Accurate and timely destination prediction of taxis is of great importance for

location-based service applications. Over the last few decades, popularization

of vehicle navigation systems has brought the era of big data for the

taxi industry. Existing destination prediction approaches are mainly based

on various Markov chain models or trip matching ideas, which require

geographical information and may encounter the problem of data sparsity.

Other machine learning prediction models are still unsatisfying to provide

favourable results. In this work, firstly, we propose a novel and efficient data

embedding method for time-related features’ pre-processing. The key idea

behind this is to embed the data into a two-dimensional space before features

learning. Secondly, we propose a novel ensemble learning approach for

destination prediction. This approach combines the respective superiorities of

support vector regression and deep learning at different segments of the whole

xvii



Abstract

trajectory. Our experiments are conducted on two real data sets to exhibit

the superior performance of our ensemble learning model. Comparisons also

confirm the effectiveness of the proposed data embedding method in deep

learning model.

In this thesis, a method based on bus trajectory data is developed for

learning anomalous traffic patterns. Existing data-driven methods for traffic

anomaly detection are modelled on taxi trajectory datasets. The concern

is that the data may contain much inaccuracy about the actual traffic

situations, because taxi drivers often choose optimal routes to evade from the

congestions caused by traffic anomalies. We use bus trajectory data in this

work. Bus trajectories can capture real traffic conditions in the road networks

without drivers’ preference, which are more objective and appropriate for

accurately detecting anomalous patterns for a broad range of insight analyses

on traffics. We propose a deep learning-based feature visualization method

to map 3-dimensional features into a red-green-blue (RGB) color space. A

color trajectory (CT) is then derived by encoding a trajectory with the RGB

colors. With the spatial and temporal properties extracted from the CT,

spatio-temporal outliers are detected by a novel offline detection method.

We then conduct GIS map fusion to obtain insights for better understanding

the traffic anomaly locations, and more importantly the influences on the

road affected by the corresponding anomalies. Extended from the offline

detection, an online detection method is developed for real-time detection of

anomalous patterns. Our proposed methods are tested on 3 real-world bus

trajectory datasets to demonstrate the performance of high accuracies, high

detection rates and relatively low false alarm rates.

This thesis also introduces a novel deep learning-based model for urban

traffic flow prediction. Accurate and reliable traffic flow prediction is

a challenging task due to the highly non-linear and stochastic natures

of traffic flow data, but its solutions are crucial for ITS. In this study,

a novel deep learning approach is proposed to address the problem.

Instead of utilizing grid search, we introduce a differential evolution

xviii



Abstract

algorithm for globally optimizing the hyperparameters of an LSTM network,

and parallel computing and early stopping criteria are implemented to

accelerate the optimization process. The LSTM network with the optimized

hyperparameters is then trained to learn sequential traffic flow features. The

model is named parallel-differential-evolution-based LSTM network (PDE-

LSTM). To the best of our knowledge, this is the first research that uses

evolutionary algorithm to optimize deep learning models for traffic flow

prediction. Experiments on three real-world traffic flow data sets from Dublin

and San Francisco show that PDE-LSTM can achieve a high accuracy of at

least 93% for all of the predictions. Comprehensive performance comparisons

with state-of-the-art methods further confirm the superior performances of

our deep learning approach on these real-world traffic flow data sets.

xix





Chapter 1

Introduction

This chapter describes the background, research motivations, research

objectives, research contributions and structure of the thesis. In Section

1.1, the backgrounds of traffic time series data, deep learning as well as

some significant applications of traffic time series data analysis are presented.

Section 1.2 introduces the motivations in this research work, including taxi

destination prediction, anomalous traffic patterns detection and traffic flow

prediction. The corresponding research objectives and contributions of each

motivation are specified in Section 1.3. Finally, the structure of this thesis is

detailed in Section 1.4.

1.1 Background

With the rapid deployment of intelligent transportation systems (ITS), huge

amount of data stream from various traffic sensors has been generated and

accumulated continuously. Among these data, traffic time series have been

playing a crucial role in ITS research and applications (Li, Su, Zhang, Lin &

Li 2015). Mining these traffic time series data can not only produce helpful

information for relieving traffic problems such as congestion, but can also

bring novel functions and services to ITS (Zhang, Wang, Wang, Lin, Xu &

Chen 2011). However, due to the sparse, imbalanced, stochastic and highly

1



Chapter 1. Introduction

non-linear natures of traffic time series data, traditional parametric methods

or machine learning methods are difficult to learn representations of data well.

Recently, deep learning has attracted tremendous attention from researchers

and brought about breakthroughs in image, video, speech, audio and text

data processing (LeCun, Bengio & Hinton 2015). Therefore, considering the

achieved milestones of deep learning techniques, this thesis aims to develop

powerful and reliable deep learning-based data analysis functions to improve

ITS service level and benefit stakeholders.

1.1.1 Traffic Time Series Data

A time series is formed by observations that have been collected over a

fixed sampling interval. Time series data is commonly existed in almost

every application fields in the world, such as business (e.g., sales figure),

economics (e.g., stock prices), official statistics (e.g., census data), natural

sciences (e.g., population size) and environmetrics (e.g., precipitation)

(Dettling 2013). A time series process can be defined as a set of random

variables {xt, t ∈ T}, where random variable xt is distributed according

to some univariate probability distributions function Pt. T is a set of

timestamps with equidistant time intervals, and T = {1, 2, 3, · · · }.
The time series data is ubiquitous in traffic with the rapid development

of ITS. The methods of traffic time series data collection have also been

evolving considerably. The collecting technologies of traffic time series data

can be dichotomized into two families: the stationary and non-stationary

sensor-based methods (Duan 2019, Leduc et al. 2008). The stationary

sensor-based methods record data via detectors placed along the roadside

or on the roads. This scenario basically includes pneumatic road tubes,

magnetic loops, passive magnetic, microwave radar as well as ultrasonic and

passive acoustic. The non-stationary sensor-based methods collect traffic

data via detectors embedded on floating vehicles over the whole transport

network. This methods include global positioning system (GPS) and cellular

network. In Table 1.1, we give a brief description of the most important

2
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Chapter 1. Introduction

sensor technologies of traffic time series data collection.

1.1.2 Deep Learning

Before introducing deep learning, we shall start from the simple

linear regression in statistics. Suppose we have N observations

{(x1, y1), · · · , (xN , yN)}, variable x = (x1, x2, · · · , xN) is considered to be

the independent variable, and y = (y1, y2, · · · , yN) is deemed to be the

dependent variable. In linear regression, we assume that a linear relationship

f(x) = xW + b is existed to map each xi to yi, and W and b are the

parameters that determine the linear transformation with aim to minimize

the mean squared error: 1
N
‖y − (xW + b)‖2

2.

In more general cases, inputs X are composed by multiple independent

variables, and so as the outputs Y, where X = (x1,x2, · · · ,xm) ∈
RN×m, Y = (y1,y2, · · · ,yk) ∈ RN×k, xi = (xi1, xi2, · · · , xiN) and yi =

(yi1, yi2, · · · , yiN). The relationship between inputs X and outputs Y may

not be linear, we attempt to find a non-linear function f(X) to map X to

Y. We assume that a non-linear transformation function ø is defined. The

inputs are firstly transformed by a linear function with parameters W1 and

b1. Then the outputs XW1 + b1 are fed into a non-linear transformation ø,

the feature vector is updated by Φ(X) = ø(XW1+b1). The feature vector via

the non-linear transformation processing is fed again as the inputs of a linear

function, then the model’s outputs are written as f(X) = Φ(X)W2+b2. The

parameters W1 and W2 are matrices, and b1 and b2 are vectors. We can

find the optimal W1, W2 as well as b1, b2 by minimizing the error between

f(X) and Y (Gal 2016).

A basic deep learning model can be viewed as a hierarchy of multiple non-

linear processing aforementioned (Polson & Sokolov 2018). Each hierarchy

is a level of representation, obtained by non-linearly transforming the

representation at one level into another representation at a higher and more

abstract level (LeCun et al. 2015). With the enough deep structures (enough

such transformations) in a deep learning model, very complex relationship
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Chapter 1. Introduction

could be learned over observations.

1.1.3 Applications of Traffic Time Series Data Analysis

Analysis of large amount of traffic time series data provides a new technical

method for ITS. Stakeholders related to drivers, riders, traffic managers and

transport service providers can benefit directly from various applications that

provide users of convenience, safety as well as high-efficiency. Based on two

relevant surveys from Zhu et al. (Zhu, Yu, Wang, Ning & Tang 2018)

and Li et al. (Li, Su, Zhang, Lin & Li 2015), we will emphasize on 4

categories of traffic time series data analysis applications. However, with the

rapid development of sensors, the following aspects cannot cover all those

applications in this domain.

• Location-based Services (LBSs)

LBSs is a broad term that applications which utilize geographic data

and information to provide services to users (Schiller & Voisard 2004).

With the accurate geographic information provided from various

navigation systems, usage of various LBSs has become a more and more

important part in people’s daily lives (Peng, Liu & Wang Mar. 2017).

On one hand, LBSs can obtain the real-time position information of

vehicle via GPS, and deliver real-time information, such as traffic

condition, targeted advertising or activity recommending, to drivers

and riders. On the other hand, instead of utilizing real-time location,

LBSs can also use location further ahead by making prediction based

on the historical movement data, such as the next location prediction

(Chen, Liu & Yu 2014) and destination prediction (Zhang, Zhao, Zheng

& Li 2019, Rossi, Barlacchi, Bianchini & Lepri 2020).

• Traffic Anomaly Detection

Anomaly detection refers to finding those behaviours that do not

yield expected patterns. Traffic anomaly can be caused by traffic

accidents, special events and loop detector faults (Li, Su, Zhang, Lin
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& Li 2015). These abnormal patterns can also be propagated along

the whole road networks, and they will not disappear automatically

without proper traffic control strategies. Therefore, it is significant

to develop a method to automatically figure out these abnormal

patterns by data-driven techniques (Kong, Song, Xia, Guo, Wang

& Tolba 2018, Xu, Ouyang, Cheng, Yu, Xiong, Ng, Pranata, Shen

& Xing 2018). Detection of anomalous traffic flow pattern from

continuous flow data can enable traffic managers to quickly respond

to this changing situation. Anomalous traffic patterns detection

from vehicles’ GPS trajectory data also helps in sensing abnormal

events and analyzing traffic accidents (Liu, Zheng, Chawla, Yuan &

Xing 2011, Zhang, Zhang, Verma, Liu, Blumenstein & Li 2019).

• Traffic Prediction

Traffic prediction aims to characterise the relationship between the

past traffic data and the future traffic data. Such prediction helps

the users get a better understanding of the upcoming situation, and

then prepare in advance. Accurate prediction of traffic speed over the

whole transport network is helpful for route guidance and congestion

avoidance (Asif, Dauwels, Goh, Oran, Fathi, Xu, Dhanya, Mitrovic &

Jaillet 2013). Traffic flow prediction assists the users to make better

travel decision and to guide traffic control strategies (Lv, Duan, Kang,

Li & Wang 2014). Precise travel time prediction helps drivers and

travellers to make decision or plan schedules (Wu, Ho & Lee Dec. 2004).

Real-time prediction of travel time of taxi’s trips is also beneficial for

ridesharing and taxi dispatching in the taxi industry (Wang, Zheng &

Xue 2014).

• Asset Maintenance

Proper maintenance approach of assets is essential to keep assets remain

in a thriving condition and reduce maintenance costs. Analyzing

the continuous performance data collected from vehicles or transport
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infrastructures can help target problems at a faster and more accurate

level. For example, time series data from vehicle or transport

infrastructure, such as temperature, humidity, pressure, etc., can be

collected via various sensors, and be processed and analyzed by the

advanced data analysis methods. Then the current condition indicators

of these assets can be diagnosed for further maintenance decisions

making (Zhu et al. 2018).

1.2 Research Motivations

1.2.1 Taxi Destination Prediction

Taxi plays an important role in modern transport system all over the world

(Bidasca & Townsend 2016, Ding, Liu, Pu & Ni 2013, Liu, Ni & Krishnan Jan.

2014). Over the past few decades, GPS has been widely used in a rapid

increasing number of applications, such as vehicle based navigation system

or smartphone based navigation system, which are broadly operated in the

urban road network. Such a huge amount of movement data can be utilized

in plentiful LBSs (Xu, Wang & Li 2016).

According to the statistics of the mobile searchers at a large software

company, 68% of the searchers happened often in the transits, while 39%

of them want to obtain the information about their destinations or near

these destinations, and 12% of them want the information en route to

their destinations (Teevan, Karlson, Amini, Brush & Krumm 2011). In

the industry of taxi, accurate and timely destination prediction of taxis

is of great importance for LBSs applications. For instance, application of

targeted advertising, e.g., shopping, restaurants or hotels recommending,

can be achieved via recommendation systems. Comparing to the existing

advertising mode in taxi industry, there are significances of pertinence as

well as high-efficiency. Meanwhile, real-time prediction of trips’ destinations

could also be helpful in taxi ride-hailing platforms like Uber, Grab or DiDi in

the cases that the users alter their preset drop-off locations during services.
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Existing methods of destination prediction are mainly based on trip

matching, Markov chain models and machine learning models. Trip

matching methods may not be efficient for huge volume of historical data.

Markov chain models need supplementary geographical information and may

encounter the data sparsity problem (Xue, Zhang, Zheng, Xie, Huang &

Xu 2013). Other machine learning prediction models are still unsatisfying

to learn features among limited prior knowledge, and are unable to achieve

favourable prediction performances.

1.2.2 Anomalous Traffic Patterns Detection

Anomalous patterns detection from traffic data is of great significance

in transportation. Detecting anomalous traffic patterns is to figure out

unexpected patterns, which are helpful in traffic accidents analysis, fault

detection, congestion management and new infrastructure planning (Li,

Guo, Xia & Xie 2018). The anomalous traffic patterns can be reflected by

investigating the trajectories of moving carriers in the road network (Liu et al.

2011). These patterns are emerged due to various factors including traffic

accidents, traffic controls, parades, sports events, celebrations, disasters or

other events. Existing methods for traffic anomaly detection are mainly

modelled on city-wide taxi trajectory data (Liu et al. 2011, Chawla, Zheng

& Hu 2012, Pang, Chawla, Liu & Zheng 2013, Wang, Lu, Yuan, Zhang

& Van De Wetering 2013, Pang, Chawla, Liu & Zheng 2011, Wang, Wen,

Yi, Zhu & Sun 2017, Mao, Sun, Jin & Zhou 2018, Zhang, Li, Zhou, Chen,

Sun & Li 2011, Chen, Zhang, Castro, Li, Sun & Li 2011, Kuang, An &

Jiang 2015, Yu, Cao, Rundensteiner & Wang 2014, Song, Wang, Xiao, Han,

Cai & Shi 2018, Wu, Sun & Zheng 2017). However, the concern is that the

data may contain much inaccuracy about the real traffic situations, because

taxi drivers often choose optimal routes for themselves to evade from the

congestions caused by various traffic anomalies (Kong et al. 2018). In this

thesis, we will explore a more accessible trajectory data source of bus for

probing the city-wide traffic anomalies. Bus services facilitate commuters
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substantially. Take the city of Beijing as example, by the end of 2019, 23,010

buses have been on the roads everyday, serving 3.134 billion people with

1,162 regular bus routes during the year (Beijing Public Transport 2020).

Bus services are available along the most major roads in metropolitan areas

of city, and major roads are usually possessed with heavier traffic, which

are much more meaningful for traffic research or management (Huang, Song,

Hong & Xie 2014). In contrast to trajectory data of taxi, bus trajectory data

for anomaly detection has the following advantages. Firstly, as a kind of

public transport service, there is not much risk of privacy leakage regarding

bus trajectory data. Secondly, as a result of such advantage, getting access

to the real-time bus trajectory data becomes easy for many cities. This can

be implemented via application programming interface (API) maintained

by the traffic administrators. Thirdly, bus services have their own regular

route, and the bus trajectory is more independent of the drivers’ preference,

reflecting more objectively on the actual road traffic conditions. This is

contrast to taxi trajectory data which may lose much accuracy about traffic

congestion situations, since taxi drivers can choose paths for themselves

(Kong et al. 2018). Especially when a taxi driver gets the traffic information

ahead, the driver very likely chooses an optimal route to avoid a foreseeable

traffic congestion.

1.2.3 Traffic Flow Prediction

Traffic flow prediction is aimed at making a prediction on the number of

vehicles passing a specific observation point/region within a future time

window (Huang et al. 2014, Pan, Sumalee, Zhong & Indra-Payoong 2013).

Traffic flow prediction is a fundamental problem being addressed in ITS or

smart city (Tian & Pan 2015). Accurate, reliable and timely traffic flow

information is of great significance to the efficacy of various ITS subsystems,

especially advanced transportation management systems, advanced traveler

information systems, business vehicle management, and advanced public

transportation systems, which have been all listed as the fundamental parts
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of ITS (Zhang, Wang, Wang, Lin, Xu & Chen 2011).

Reliable prediction of traffic flow is still a challenge, because of the

highly non-linear and stochastic natures of urban traffic flow data (Tian &

Pan 2015). Recently, state-of-the-art deep learning methods have achieved

superior performances in traffic flow prediction than other traditional

parametric or machine learning methods (Qu, Li, Li, Ma & Wang 2019, Lv

et al. 2014, Huang et al. 2014, Huang, Hong, Li, Hu, Song & Xie 2013, Tian &

Pan 2015). However, hyperparameters optimization remains a tough problem

in deep learning despite of its significant progresses. The deep leaning-based

traffic flow prediction methods mainly utilize grid search or random search

strategies for hyperparameters tuning. However, grid search may lead to poor

performance in practice since it is very computationally expensive, especially

in the case of many hyperparameters or large sized sample data (Bergstra

& Bengio 2012). Random search strategy reduces the computational cost

significantly by scanning over a lower-dimensional subspace. However, the

searched results may not be globally optimized.

1.3 Research Objectives and Contributions

To address above research motivations, this thesis focuses on 3 research

problems: 1) taxi destinations prediction, 2) anomalous traffic patterns

detection, and 3) traffic flow prediction. The research objective of this

thesis is to contribute to ITS applications by developing novel deep learning-

based approaches that could generate accurate, reliable and robust models

on traffic time series data. The specific objectives of above research problems

are summarized as follows (O1 to O3).

O1: To develop a data-driven ensemble learning approach to accurately

predict taxi destinations.

O2: To develop offline and online methods for traffic anomaly detection from

trajectory features extracted by deep architecture, and to develop an

insight analysis method for better understanding traffic anomaly.
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O3: To develop an evolutionary algorithm-based deep learning approach for

accurate and robust prediction of traffic flow.

To complete these objectives, we have proposed 3 novel methods as

presented in Chapter 3, Chapter 4 and Chapter 5, respectively. Our

contributions are elaborated as follows (C1 to C3).

C1: Taxi destinations prediction from trajectories using a novel

data embedding method and ensemble learning

The contributions include : 1) A novel and efficient data embedding

method is proposed for time-related features embedding. 2) We develop

a data-driven ensemble learning approach for destination prediction,

combining the respective superiorities of support vector regression

(SVR) and deep learning at different segments of the trajectory. 3) We

conduct extensive experiments on two real-world datasets to confirm the

superior prediction performance as well as the effectiveness of proposed

data embedding method.

C2: Offline and online detection of anomalous patterns from bus

trajectories for traffic insight analysis

Our contributions in this research are summarized : 1) We present

a deep neural network architecture to extract deeply hidden features

for generating better features visualization than typical dimensionality

reduction methods, and conduct GIS fusion for getting insights into

the anomalies, for example, the anomaly locations and their impacts

caused to the road traffic. 2) We devise a novel method for an offline

detection of anomalous traffic patterns at bus route level. Particularly,

instead of introducing machine learning models, we design algorithm on

imbalanced data by addressing the discrepancy between different classes

of anomaly. 3) Extended from the feature extraction architecture and

the offline detection method, we propose an online method for real-time

detection of anomalous traffic patterns. 4) We perform comprehensive

experiments on three real-world datasets to confirm the effectiveness
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and superiority of the deep feature extraction architecture, the offline

and online anomaly detection methods and insight analysis of the

anomalous patterns.

C3: Differential evolution based LSTM recurrent neural network

for traffic flow prediction

The contributions in this research include : 1) This is the first work to

use evolutionary algorithms to optimize deep learning model for traffic

flow prediction. 2) Parallel computing and early stopping strategy

are implemented in the model to accelerate the optimization process.

3) We conduct experiments on three real-world traffic flow datasets

from different cities to demonstrate the high prediction accuracy of our

proposed model. Comparisons with the state-of-the-art methods further

confirm the superior performances of our deep learning approach.

1.4 Thesis Structure

The structure of this thesis is illustrated in Figure 1.1, and it is briefly

introduced as follows:

Chapter 1 introduces the background of this thesis, the research

motivations and the corresponding research objectives as well as

contributions. Chapter 2 presents the related work of this research,

including taxi trajectory modelling, anomalous patterns detection and traffic

flow prediction. Chapter 3 to Chapter 5 detail the proposed methods on

taxi destination prediction, anomalous traffic patterns detection and traffic

flow prediction, respectively. Details of experimental evaluation, comparison

and analysis are also included. Chapter 6 concludes this thesis and provides

discussions of future work.
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Figure 1.1: Thesis structure.
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Chapter 2

Related Work and Literature

Review

This chapter describes the related work and literature review of the work in

this thesis. Section 2.1 reviews the relevant work on taxi trajectory modelling.

Then, the state-of-the-art methods for anomalous patterns detection are

presented in Section 2.2. Following this, the existing methods for traffic

flow prediction are introduced in Section 2.3. Finally, we briefly summarize

the contents in this chapter.

2.1 Taxi Trajectory Modelling

The analysis of taxi trajectory datasets has been considered by a lot of

researches in the subjects of data mining, machine learning or intelligent

transportation systems. Recommendation systems and location prediction

are two popular topics among them that utilize taxi trajectory datasets.

2.1.1 Recommendation Systems

The taxi trajectory-based recommendation systems mainly include routing

recommending (Liu & Qu 2016, Dai, Yang, Guo & Ding 2015, Dai

et al. 2015), passenger-hunting recommending (Ding et al. 2013), taxi-hunting
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recommending (Xu, Zhou, Liu, Xu & Zhao 2014), social recommending (Liu

& Wang 2017) and charging station recommending for electric vehicles (EV)

(Tian, Jung, Wang, Zhang, Tu, Xu, Tian & Li 2016).

Liu et al. (Liu & Qu 2016) proposed a dynamic congestion conditions

prediction framework using topic-aware Gaussian process, then adaptive

routing recommendation algorithm was applied. This framework is not only

limited to GPS trajectory data, it can also be extended to traffic data from

road sensor system. A personalized route recommendation method was

presented by capturing the taxi drivers’ driving preferences from the taxi

trajectories (Dai et al. 2015). It is the first work to use big trajectory data for

personalized route recommendation. Ding et al. (Ding et al. 2013) developed

a passenger-hunting system to recommend a connected trajectory with the

objective to produce higher profit. Study by Xu et al. (Xu et al. 2014)

proposed a taxi-hunting recommendation system to estimate the probability

and waiting time in a particular location. It combines an offline processing

phase and a fast online inquiring phase based on the probability model. Liu

et al. (Liu & Wang 2017) developed a community detection technique based

on mobility trajectory, then an online recommendation method based on

trajectory community was proposed to improve service level. In the study by

Tian et al. (Tian et al. 2016), a real-time charging station recommendation

system was presented for EV taxis by mining large-scale GPS data to save

the most time. This is the first recommendation system for EV taxis.

2.1.2 Location Prediction

Location prediction of a moving objective has been one of the most traditional

problems in trajectory analysis. A common and simple approach is trip

matching, if an on-going trip (i.e., query trip) matches part of a popular

trajectory from the historical trajectories, then the destination of this popular

route will be taken as the destination of the query trip (Xue et al. 2013).

However, trip matching might not be efficient on huge amount of data.

Other methods are mainly based on Markov chain models (Ashbrook &
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Starner Sept. 2003, Li, Ahmed & Smola 2015, Simmons, Browning, Zhang

& Sadekar 2006, Alvarez-Garcia, Ortega, Gonzalez-Abril & Velasco Dec.

2010, Ziebart, Maas, Dey & Bagnell 2008). Firstly, Ashbrook and Starner

introduced Markov chain model to predict the most likely next location in

2003. This model consists of nodes, each node represents a location, which are

used as the states of Markov process. Then, the probabilities can be derived

from the historical locations which have been visited. The transition between

two states represents the probability of the user travelling between these two

locations, which can be trained through the historical trajectories (Ashbrook

& Starner Sept. 2003). Simmons et al. (Simmons et al. 2006) used a hidden

Markov chain model (HMM) to predict the route and destination of the

driver based on an online observation of their GPS position. Several variants

of Markov chain model (Gambs, Killijian & del Prado Cortez 2012, Alvarez-

Garcia et al. Dec. 2010) were also presented in location prediction based on

their past GPS log data. However, these approaches need to be combined

with extra geographical information, such as GIS map database, which aims

to provide road graph consisting of road intersections and linking between

intersections (Simmons et al. 2006). Sometimes they may lead to data

sparsity problem in practice as the historical trajectory data cannot cover

all possible query trajectories (Xue et al. 2013), i.e., the query trajectory

does not match any historical trajectory or the probability of the transition

between two locations approximates zero.

Machine learning methods have also been applied for predicting locations.

Artificial neural network (ANN) with shallow structure was introduced in

taxi destination prediction (De Brébisson, Simon, Auvolat, Vincent & Bengio

2015). The input layer of this model are the initial and last points of the

historical trajectory prefix integrated with some meta-data embedding, such

as client ID, taxi ID, stand ID and time information. The output layer

are the clusters of corresponding destinations. Following this, state-of-the-

art machine learning models like decision tree (Manasseh & Sengupta 2013,

Costa, Fontes, Costa & Dias 2015), bootstrapped decision tree, decision tree
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with pruning (Manasseh & Sengupta 2013), naive Bayes (Costa et al. 2015),

reinforcement learning (Le, Liu & Lau 2016) and recurrent neural network

(RNN) (Rossi et al. 2020) have also been developed in location prediction.

2.2 Anomalous Patterns Detection

Anomalous pattern detection aims to detect the unexpected patterns, which

has been intensively studied in the domain of data mining and knowledge

discovery (Liu et al. 2011). Firstly, the methods for detecting general

anomalies/outliers are reviewed in Section 2.2.1, four basic categories of

methods are presented. Then, Section 2.2.2 conducts a comprehensive review

on anomaly detection in the road traffic domain.

2.2.1 General Anomaly Detection

Anomalous pattern detection aims to detect unexpected patterns, which

has been intensively studied in the domain of data mining and knowledge

discovery (Liu et al. 2011). To our best knowledge, at least four categories of

methods were proposed, including dimensionality reduction-based methods

(Lakhina, Crovella & Diot 2004, Liu, Zhang & Guan 2010, Callegari,

Gazzarrini, Giordano, Pagano & Pepe 2011, Juvonen & Hamalainen 2014,

Fontugne, Abry, Fukuda, Borgnat, Mazel, Wendt & Veitch 2015, Sakurada

& Yairi 2014), unsupervised methods (Münz, Li & Carle 2007, Leung

& Leckie 2005, Pawling, Chawla & Madey 2007, Li, Huang, Tian &

Xu 2003, Wang, Wong & Miner 2004, Zhang, Song, Chen, Feng, Lumezanu,

Cheng, Ni, Zong, Chen & Chawla 2019, Lv, Yu, Fan, Tang & Tong 2020),

supervised classification-based methods (Hautamaki, Karkkainen & Franti

2004, Song et al. 2018, Malhotra, Ramakrishnan, Anand, Vig, Agarwal &

Shroff 2016, Chauhan & Vig 2015, Kim & Cho 2018) and statistical methods

(Barbará, Domeniconi & Rogers 2006, Fan & Xiong 2013, Rogers, Barbará

& Domeniconi 2009).

Dimensionality reduction method like principal component analysis
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(PCA) has been validated effective in anomalous patterns detection (Lakhina

et al. 2004, Liu et al. 2010). In (Callegari et al. 2011), an improved

PCA by introducing Kullback-Leibler divergence was proposed for network

anomaly detection. Random projection (RP) was used for dimensionality

reduction and to detect internet traffic anomaly (Juvonen & Hamalainen

2014, Fontugne et al. 2015), since it is very fast and can perform even in

real-time. Apart from linear methods, a nonlinear dimensionality reduction

method (autoencoders) has also been presented in (Sakurada & Yairi 2014).

Unsupervised clustering algorithms including k-means (Münz et al. 2007),

density-based and grid-based clustering (Leung & Leckie 2005) and one pass

clustering (Pawling et al. 2007) were proposed to identify anomalous network

patterns. Besides clustering algorithms, one-class support vector machine

(OneSVM) with novel kernels was introduced to detect malicious intrusion to

computer systems (Li et al. 2003, Wang et al. 2004). Recently, unsupervised

deep learning-based methods have also been presented for modelling large

scale data, and to detect anomalies (Zhang, Song, Chen, Feng, Lumezanu,

Cheng, Ni, Zong, Chen & Chawla 2019, Lv et al. 2020).

Supervised classification-based methods include k-nearest neighbour

(kNN), recurrent neural network (RNN) and long short-term memory

(LSTM). Literature (Hautamaki et al. 2004) sorted the average kNN

distances in ascending orders, and then outliers were defined when

the difference between two nearby distances is greater than a preset

threshold (Hautamaki et al. 2004). Besides the lazy learning approach,

recently, supervised deep leaning-based anomaly detection methods have

also contributed to solve this problem, including RNN-based model (Song

et al. 2018) and LSTM-based model (Malhotra et al. 2016, Chauhan &

Vig 2015, Kim & Cho 2018).

There are also some studies introducing statistical methods for outlier

detection. Barbará et al. (Barbará et al. 2006) proposed to use transductive

confidence machines and hypothesis testing to uncover outliers. It only

has two parameters, and neither of them requires careful tuning. Fan
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et al. (Fan & Xiong 2013) presented a privacy-preserving framework for

anomaly detection based on continual aggregate statistics. It enables real-

time detection and provides privacy guarantee. In (Rogers et al. 2009),

a multi-modal distance measure was defined to evaluate the strangeness.

Furthermore, statistical testing was applied to estimate the probability of

anomaly.

2.2.2 Road Traffic Anomaly Detection

Since the anomalous patterns in road traffic possess their own characteristics,

some particular methods were presented on the top of aforementioned general

anomaly detection methods. Based on the data source utilized, they could

be dichotomized into two families: by using trajectory data sources or by

using other data sources.

Apart from trajectory data sources, other data sources used for road

traffic anomaly detection are mainly non-structured, which include social

media data (Nguyen, Liu, Rivera & Chen 2016), video surveillance data (Li

et al. 2018, Barria & Thajchayapong 2011, Li, Liu & Huang 2016, Zhao, Yi,

Pan, Zhao, Zhao, Su & Zhuang 2019) or heterogeneous traffic data (Riveiro,

Lebram & Elmer 2017). Literature (Nguyen et al. 2016) used text data from

Twitter for real-time traffic incident detection. Li et al. (Li et al. 2018, Barria

& Thajchayapong 2011, Li et al. 2016, Zhao et al. 2019) employed video

data collected from traffic surveillance cameras to detect or classify traffic

anomalies. In addition to using single data source, study by Riveiro et al.

(Riveiro et al. 2017) explored the heterogeneous data sources from various

vehicle embedded sensors for traffic anomaly detection.

Trajectory-based road traffic anomaly detection has been intensively

investigated by many studies, while most of which are based on city-wide taxi

trajectories. Studies by (Chawla et al. 2012, Kuang et al. 2015) used PCA or

wavelet transform technique to identify traffic anomalies from taxi trajectory

data. In (Pang et al. 2013) and (Pang et al. 2011), likelihood ratio test was

introduced to represent traffic patterns and to detect anomalous patterns.
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It has demonstrated accurate and fast detection on real data sets. Liu et

al. (Liu et al. 2011) constructed an anomaly detection model by building a

region graph, where a node represents a region and the link between every two

nodes denotes the traffic flow, and then the extreme outliers could be detected

from the graph links. In (Wang et al. 2017), tensor decomposition technique

was employed for learning dynamic context features from taxi traces data,

and then anomalous degrees for road segments were calculated. Authors

in (Yu et al. 2014) proposed neighbor-based trajectory outlier definitions,

and designed an optimized strategy to detect new outlier classes from

massive-scale trajectory streams. In (Mao et al. 2018), a feature grouping-

based anomaly detection framework was proposed to identify outliers from

distributed trajectory streams. Study work by Wang et al. (Wang et al. 2013)

estimated traffic flow speed on the road, and then traffic jam events were

automatically detected based on relative low road-speed detection. Research

(Zhang, Li, Zhou, Chen, Sun & Li 2011) demonstrated a method to group

taxi trajectories crossing the same source destination cell-pair, then isolation

mechanism was employed to detect abnormal trajectory. Wu et al. (Wu

et al. 2017) developed a novel outlier detection approach by modeling the

human driving behavior from historical taxi trajectories. This is the first

work that combines human driving behavior modelling into outlier detection.

2.3 Traffic Flow Prediction

Traffic flow prediction has been intensively investigated in many studies,

because of its importance to ITS implementation. Overall, based on the

methods utilized, the literature work can be dichotomized into two families:

the parametric methods (Section 2.3.1) and nonparametric methods (Section

2.3.2).
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2.3.1 Parametric Methods

The auto-regressive integrated moving average (ARIMA), a traditional

parametric method, has been employed to construct models for short-term

forecasting of traffic flow (Ahmed & Cook 1979). Many upgraded models

based on ARIMA were also proposed to improve the performances of flow

prediction, including the seasonal ARIMA model (Kumar & Vanajakshi

2015), the space-time ARIMA model (Lin, Huang, Zhu & Wang 2009, Ding,

Wang, Zhang & Sun 2011), the subset ARIMA (Lee & Fambro 1999),

the vector auto-regressive moving average (VARMA) approach (Min &

Wynter 2011) and so on. Integration studies of ARIMA with exponential

smoothing (ES) for traffic flow forecasting were investigated by (Van

Der Voort, Dougherty & Watson 1996) and (Tan, Wong, Xu, Guan &

Zhang 2009). Apart from the ARIMA-based parametric methods, Kalman

filtering (Guo, Huang & Williams 2014) and chaotic time series analysis (Jieni

& Zhongke 2008) have been developed in traffic flow prediction applications

as well.

2.3.2 Non-parametric Methods

Due to the highly non-linear stochastic natures of urban traffic flow,

parametric methods cannot depict it precisely with the quite limited

distributional assumptions. Therefore, nonparametric methods have gained

more attentions over the recent decades. Literature work by Davis et al.

(Davis & Nihan 1991) used kNN for freeway traffic flow regression and

conjectured that larger datasets might get better performances using this

method. Literature works (Yang, Tan, Wang, Tian & Pan 2010, Hong, Dong,

Zheng & Lai 2011, Castro-Neto, Jeong, Jeong & Han 2009) have proposed

to employ supervised learning method of SVR for traffic flow forecasting.

Besides SVR, another kind of kernel-based machine learning model, Gaussian

process (GP), was used in studies (Xie, Zhao, Sun & Chen 2010, Sun &

Xu 2010, Zhao & Sun 2016) for traffic flow regression. Sun et al. (Sun, Zhang
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& Yu 2006) provided a Bayesian network for modelling traffic flows, by which

the joint probability distribution between the cause nodes (flow data utilized

for prediction) and the effect node (flow to be predicted) is formulated as a

Gaussian mixture model (GMM). A Bayesian combination method (BCM)

was proposed to integrate three individual predictors to improve the short-

term traffic flow forecasting performance (Wang, Deng & Guo 2014).

Besides these non-neural models aforementioned, various neural network

(NN) based models (Dougherty & Cobbett 1997, Hodge, Krishnan, Austin,

Polak & Jackson 2014, Zhu, Cao & Zhu 2014) and fuzzy neural network

(FNN) based models (Yin, Wong, Xu & Wong 2002, Li 2016, An, Fu, Hu,

Chen & Zhan 2019) have been developed for forecasting traffic flow.

Recently, deep leaning has been intensively involved in the field of traffic

data analysis due to its remarkable representation capability. Lv et al.

(Lv et al. 2014) employed a stacked autoencoder (SAE) model for traffic

flow features learning and achieved a significant improvement it terms of

forecasting accuracy. An SAE Levenberg-Marquardt (SAE-LM) model was

proposed to further improve the performance using the Taguchi method to

optimize the network structure (Yang, Dillon & Chen 2016). As suggested by

the literature (Huang et al. 2014, Huang et al. 2013), a deep belief network

(DBN) is able to learn features very well from limited prior knowledge for

accurate traffic flow forecasting. The work by Qu et al. (Qu et al. 2019)

developed a long-term traffic flow prediction model by training a deep neural

network (DNN) with historical traffic flow data and contextual factor data.

The study (Tian & Pan 2015, Kang, Lv & Chen 2017) trained an LSTM

network for traffic flow prediction, and it has been demonstrated that the

model can outperform most of the nonparametric models aforementioned on

real-world datasets. Recently following similar ideas, the work by Luo et

al. (Luo, Li, Yang & Zhang 2019) presented a hybrid model from kNN and

LSTM for spatio-temporal traffic flow forecasting. Besides, various novel

deep learning models based on LSTM and convolutional neural network

(CNN) were proposed to learn the spatio-temporal characteristics of traffic
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flow (Wu & Tan 2016, Mihaita, Li, He & Rizoiu 2019). Another useful work

(Tian, Zhang, Li, Lin & Yang 2018) concentrates on traffic flow prediction

with missing data which takes a novel LSTM-based method to deal with

the missing patterns. Very recently, the research (Yang, Sun, Li, Lin

& Tian 2019) provided an attention-mechanism-based LSTM network by

enhancing traffic flow features to capture the high-impact flow values.

2.4 Summary

In this chapter, a comprehensive literature review has been conducted with

respect to the research motivations of taxi destination prediction, anomalous

traffic patterns detection and traffic flow prediction. More precisely, relevant

studies on recommendation systems and location prediction modelled on taxi

trajectory data are described, followed by the methods of anomalous patterns

detection, including general anomaly detection methods and methods

specialized on road traffic anomaly detection. Finally, typical parametric

and non-parametric methods for urban traffic flow prediction are reviewed.
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Chapter 3

Taxi Destinations Prediction

from Trajectories Using a

Novel Data Embedding Method

and Ensemble Learning

In this chapter, we attempt to unite multiple machine learning methods for

destination prediction that learns features among limited prior knowledge.

More specifically, an ensemble learning model (ELM) based on support vector

regression (SVR) and deep learning (deep belief network (Hinton, Osindero

& Teh May 2006)) is proposed. Specifically, these two models perform better

than others at different segments of the whole trajectory. For the architecture

in deep learning, we propose a novel data embedding technique named

circular fuzzy embedding (CFE) for time-related features representation,

which maps high-dimensional data into a two-dimensional space. Finally,

experiments conducted on two independent real-world datasets demonstrate

that our proposed ensemble learning model for destination prediction has

superior performance comparing with the existing methods.

The organization of this chapter is structured as follows. Section 3.1

elaborates the proposed method of CFE and ELM for destination prediction.
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Section 3.2 presents the experiments and analysis of the results. Section 3.3

summarizes this chapter.

3.1 Methods

In this section, we first introduce a novel data embedding technique called

circular fuzzy embedding (CFE) for representing time-related features before

features learning. It maps higher dimensional feature into a two-dimensional

space, and fuzzy membership is introduced to avoid the instability between

the adjacent sections. Then, an ensemble learning model (ELM) based on

SVR and deep belief network (DBN) for destination prediction is proposed.

SVR is an efficient supervised learning method that has been applied widely

in pattern recognition. The basic principle is to transform the training data

from the input space into a hyper feature space by a kernel function, and then

to find an optimal regression function by minimizing the regression loss (Wu

et al. Dec. 2004, Smola & Schölkopf Aug. 2004). DBN is a stack of restricted

Boltzmann machine, each one has one layer of hidden units and one layer of

visible units, where unsupervised pre-training is employed before fine-tuning

(Huang et al. 2014, Hinton Mar. 2002). A restricted Boltzmann machine is

an undirected graphical model that visible units are connected with hidden

unit via undirected weighted connections (Teh & Hinton 2001), while there

is no visible-visible units or hidden-hidden units connection (Mohamed, Dahl

& Hinton Jan. 2012).

3.1.1 Circular Fuzzy Embedding (CFE)

In the domain of transportation, some types of time-related data are discrete,

such as date, days of the week, day type. For discrete data processing method

in machine learning, the most common one is one-hot embedding technique,

which converts discrete features into binary vectors. For example, supposing

we have a three-categorical feature comprising of “Holiday”, “Weekday” and

“Weekend”, the feature of “Holiday” can be converted into binary vector
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Figure 3.1: Circle constructed for feature of hour of day.

of (1, 0, 0). Similarly, (0, 1, 0) and (0, 0, 1) correspond to categories

of “Weekday” and “Weekend”, respectively. However, such embedding

technique might have the following drawbacks:

1. May lead to data sparsity and curse of dimensionality (Wang, Xu, Xu,

Tian, Liu & Hao Jan. 2016);

2. Occupy large memory usage if the size of category is huge;

3. Slow down training of network with large number of category;

4. Consider little about similarities between observations. As it turns

into binary vector, the similarities between any two observations are

the same.

To avoid these phenomenons, we propose a novel technique named CFE

for time-related date embedding. The ideas of CFE technique comes from
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(a) (b)

Figure 3.2: (a) Circle constructed for feature of day type. (b) Circle

constructed for feature of week of year.

Word2vec, which is a frequently used model to generate word embeddings

(Mikolov, Chen, Corrado & Dean 2013).

The first step is to construct a circle centred on (0, 0) to embed all

the categories of feature. The reason for using a circle is because it not

only represents the unique identity but also measures the similarities easily.

However, for those continuous variables, firstly, we convert them into discrete

sections. For instance, we embed feature of hour of day on a circle averagely.

Firstly, we divide a whole day (24 hours) into 12 discrete and disjoint

ranges, from (23, 1] to (21, 23], which has been demonstrated in Fig. 3.1.

Supposing the radius denotes R, the radian from each category to the X-axis

represents θ, then each category could be represented by a coordinate in a

two-dimensional space. Compared with the twelve-dimensional space of one-

hot embedding, it reduces the dimensionality significantly. In addition, it

also considers about the difference of similarities between categories, because

traffic in the adjacent time periods are more likely to have similar patterns in

the domain of transport (Peng, Jin, Wong, Shi & Liò Apr. 2012, Liu, Gong,

Gong & Liu Feb. 2015). For example, in Fig. 3.1, the travelling pattern
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Figure 3.3: Linear combined membership function of hour of day feature.

in the range of (23, 1] is more likely to be similar with periods between

(1, 3] or (21, 23] than range (11, 13]. Similarly, as shown in Fig. 3.2, we

embed features of day type and week of year (52 weeks) on other two circles,

respectively. In Fig. 3.2 (a), we address the issue that the differences between

categories of “Holiday”, “Weekday” and “Weekend” are not the same.

As shown in Fig. 3.1, different sections of time are embedded into two-

dimensional space with unique vectors. However, time around the bounds

of the adjacent sectors may be embedded with quite different vectors, while

there may be little difference between them in fact. For instance, time range

(1, 5] is divided into two sectors, (1, 3] and (3, 5], each with two-hour interval.

Sector (1, 3] is embedded into vector of q2 and sector (3, 5] into q3,

q2 = (R cos(π/3), R sin(π/3)) ∈ R2 (3.1)

q3 = (R cos(π/6), R sin(π/6)) ∈ R2 (3.2)

Supposing we have time points of 02:59:00 and 03:01:00, they are

embedded into two totally different vectors because they are located in

different sectors. However, the difference between them is very tiny. In order

to avoid such unstable situation, we introduce the membership function in

fuzzy set theory (Zadeh June 1965). The membership function (FV ) of hour

of day (h) is illustrated in Fig. 3.3, V1, V2, · · · , V12 denote the time sectors

(21,1], (1,3], · · · , (21,23], respectively.
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The membership functions FV1(h), FV2(h) and FV3(h) for hour sectors

(23, 1], (1, 3] and (3, 5] can be written as Eq. (3.3), Eq. (3.4) and Eq. (3.5),

respectively.

FV1(h) =



h− 22.5, 22.5 ≤ h < 23.5

1, 0 ≤ h < 0.5 or 23.5 ≤ h < 24

1.5− h, 0.5 ≤ h < 1.5

0, others

(3.3)

FV2(h) =



h− 0.5, 0.5 ≤ h < 1.5

1, 1.5 ≤ h < 2.5

3.5− h, 2.5 ≤ h < 3.5

0, others

(3.4)

FV3(h) =



h− 2.5, 2.5 ≤ h < 3.5

1, 3.5 ≤ h < 4.5

5.5− h, 4.5 ≤ h < 5.5

0, others

(3.5)

In the same way, the membership functions for the rest sectors can also

be derived. Then, we can get the final embedding vectors (b1(h)) of the hour

of day feature, as shown by

b1(h) =
12∑
i=1

FVi
(h) · qi (3.6)

where qi represents the ith embedding vector before introducing fuzzy

membership, FVi
(h) denotes the membership of time point h corresponding

to Vi. With our proposed CFE method aforementioned, we can also get the

embedding vectors of day type feature b2 and week of year feature b3.
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3.1.2 Ensemble Learning Model (ELM)

The key idea behind ELM is to construct a knowledge base, and apply

different models in the knowledge base under different conditions to get

a superior prediction. In this work, the knowledge base is formed by

models of SVR and DBN, as they perform better than others in different

proportions of the whole trajectory of taxi. Specifically, it gets better

prediction performance with DBN (classification) when the taxi is currently

located in the initial part of the whole trip, otherwise, SVR does better.

The elaborate experimental results can be referred to Fig. 3.6, Table S1 and

Table S2 in Supplementary file 1. Therefore, the key of ensemble mechanism

turns into how to detect which proportion of the whole on-going trajectory

the taxi is currently located at. So that the best model could be allocated

accurately.

Algorithm 3.1 Algorithm of ELM

Constant Parameters: θSV R, θDBN , λ, k.

Input: input trajectory for training X = (ai) ∈ RT , ai ∈ Rlength(ai), output

target for training set Y, input trajectory for prediction X∗ = (xp) ∈ RΓ,

xp ∈ Rlength(xp).

Output: predicted GPS coordinate o.

1: l = () ∗ T , label = (0) ∗ T ;

2: Train a SVR model S using X, Y and hyperparameters θSV R;

3: Train a DBN model D using X, Y and hyperparameters θDBN ;

4: m = −1;

5: for i = 0; i < T ; i+ + do //construct a classifier to estimate the current

proportion of the whole trajectory

6: m+ +;

7: for j = 0.1; j <= 0.95; j+ = 0.05 do //extract input trajectory with

the proportion from 10% to 95%

8: s = round(0.5 ∗ length(ai) ∗ j) ∗ 2;

9: l(m) = ai[0 : s];

10: if j > λ then

30

https://1drv.ms/x/s!AqOdc5BgGmiqag7VfuFgtJd51EE?e=APC6Mn


Chapter 3. Taxi Destinations Prediction from Trajectories Using a Novel
Data Embedding Method and Ensemble Learning

11: label(m) = 1; //binary labelling for this trajectory

12: end if

13: end for

14: end for

15: for p = 0; p < Γ; p+ + do

16: ρ = kNN(l, label,xp, k); //apply kNN to estimate the current

proportion

17: if ρ = 1 then

18: o = S(xp);

19: else

20: o = D(xp);

21: end if

22: end for

Algorithm 3.1 illustrates our ELM algorithm. Define X and Y as the

input trajectory data and target data. X∗ denotes the input trajectories for

prediction and o is the predicted output. Step 2 and Step 3 train each model

with hyperparameters θSV R and θDBN , respectively. Steps from 4 to 14 is

the key component of our proposed ELM, it constructs the training data

and corresponding labels for segment estimation classifier, which provides

basis for model selection. From step 4 to 9, the input trajectory prefix X

is extracted with the prior proportions (from 10% to 95%, with increment

of 5%) of the whole trajectory. Steps 10 to 12 set the corresponding target

label = 1 only if the prior proportion of the extracted trajectory exceeds

λ, which is a constant parameter based on the performance of SVR and

DBN, otherwise, label = 0. Steps from 15 to 22 elaborate the mechanism

of proposed ELM. In step 16, a lazy supervised learning approach k -nearest

neighbor (kNN) algorithm is applied to predict the segment proportions of

the current position with query trajectory X∗, as it is a simple and fast

algorithm that performs well on large sized training data. Finally, SVR and

DBN can be applied based on the binary label of ρ. Fig. 3.4 gives the brief

workflow of ELM.
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Figure 3.4: Workflow chart of ELM.

3.1.3 Input and Output Layers

As ELM is derived from SVR and DBN, we need to determine the inputs and

outputs for training each model. The inputs of SVR model are the initial

m points and last m points (except the final destination) of the trajectory

prefix, which give us a total of 2m coordinates or 4m numerical values. When

the prefix of the trajectory contains less than 2m points, overlap the initial

and last m points. When the prefix contains less than m points, repeat the

first or last point. The outputs include the predicted longitudinal value and

latitudinal value, which in fact acts as the function of regression.

Fig. 3.5 shows the inputs and outputs of the constructed model of

DBN. Firstly, we apply k -means clustering algorithm to partition trip

destinations of the training data into n clusters, denote the centre of the

ith cluster as ci, 1 ≤ i ≤ n. The inputs of DBN model are 2m points of

trajectory prefix integrated with time-related embedding vectors b1, b2 and

b3 aforementioned, which are derived by our proposed CFE technique. The
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Figure 3.5: Architecture of DBN model.
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outputs are the probabilities pi corresponding to the ith cluster, which can

be implemented with a Softmax layer on the top layer, as shown in Eq. (3.7).

pi =
exp(ei)∑n
j=1 exp(ej)

(3.7)

where ei is the ith activation of the previous layer. Then, the predicted

destination can be calculated by Eq. (3.8).

ŷ =
n∑

i=1

pici (3.8)

3.2 Experiments and Results

3.2.1 Datasets and Evaluation Metrics

The Porto Dataset

It is a real-world large-scale dataset of taxis in Porto, Portugal (Kaggle 2015).

It was collected from 442 taxis running from 1st July 2013 to 30th June

2014. Each observation contains a list of GPS coordinates with longitude

and latitude, timestamp and day type (holiday, workday or weekend). The

last item of the list represents the destination of this trajectory while the first

one corresponds to this trip’s pickup location. The time interval between two

consecutive GPS coordinates is 15 seconds.

The Chengdu Dataset

This dataset is also a real-world dataset collected from more than 14 thousand

taxis in the city of Chengdu, China (DataCastle 2016). The period is

from 3rd to 30th August 2014. Each observation comprises taxi identity,

GPS coordinates, activity (carrying passenger or not) and corresponding

timestamp. The GPS data point is recorded with the frequency of every 10

seconds.
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Evaluation Metrics

To evaluate the performance of the proposed models, we use these indices:

mean absolute error (MAE) and root mean square error (RMSE). On top

of that, for the overall performance evaluation, we define the average MAE

(AMAE) and average RMSE (ARMSE). These indexes are defined as

dij = 2r arcsin(

√
sin2(

ϕij − ϕi

2
) + cosϕij cosϕi sin2(

λij − λi
2

)) (3.9)

MAEj =
1

n

n∑
i=1

dij (3.10)

RMSEj =

√√√√ 1

n

n∑
i=1

d2
ij (3.11)

AMAE =

∑m
j=1 MAEj

m
(3.12)

ARMSE =

∑m
j=1 RMSEj

m
(3.13)

where dij denotes the Haversine distance between the predicted GPS

coordinate (ϕij, λij) and real coordinate (ϕi, λi). r is the radius of the earth

sphere, we set r = 6371km in this research.

3.2.2 Experimental Settings

To validate the superiority of our proposed ensemble learning model, we

conducted extensive experiments on two real dataset: the Porto dataset and

the Chengdu dataset. Our experiments were carried out on a sever with

Intel Xeon CPU E5-2680 v2 of 2.8GHz. Some models are subdivided into

classification and regression with the postfix of “C” and “R”, respectively.

To examine the effects of the proposed ELM within different segments of the

whole trajectory, we extract the initial 10% ∼ 90% (with increment of 10%)

of the whole trajectories for both validation and test sets.
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Data Pre-processing

As the time interval in the Chengdu dataset is only 10 seconds, we convert

it into 20 seconds by extracting separated coordinates from the previous

trajectory prefix. After dropping some abnormal trajectories, we get a

dataset of Porto with totally 1,566,798 trajectories and a dataset of Chengdu

with 792,781 trajectories in total. As a practical matter, we always

predict destination of current trajectory based on the historical trajectories.

Therefore, we arranged the trips by ranking their start time in ascending

order, and took the initial 80% and the last 20% as training and test set,

respectively. As these datasets are very large, it is quite challenging to train

when feeding the whole data. We randomly select 30% candidates for training

and 10% of the training data as validation set. Table 3.1 gives the sample

sizes of training, test and validation sets.

Table 3.1: Sizes of training, test and validation sets

Dataset
Quantity of Trip

Training Set Test Set Validation Set

Porto 376031 313360 37603

Chengdu 190268 158556 19027

Architecture of the Learning Model

There are some parameters m, θSV R, θDBN and λ which should be set before

training the models. In our experiment, we take m = 5 for both models. For

determining θSV R, after having tried several combinations of parameters on

validation set, we choose the radial basis function (RBF) as kernel, and set

constant C = 100 and ε = 0.1 for the insensitive-loss function. For θDBN , the

determination of parameters, such as the layer size, neurons in output layer,

nodes in each hidden layer, are elaborated later. For λ in ELM, the MAE of

different segments in the Porto dataset with SVR and DBN are calculated in

Fig. 3.6 (a). It is shown that the overall performance of SVR without CFE
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is better, while the DBN-C model with CFE performs best within the initial

30% of the whole trajectory. They perform similarly when the extracted

percentage is around 30%, therefore the parameter of λ in our ELM can be

set to 0.30. In a similar way, we set λ = 0.25 for the dataset of Chengdu.

(a) (b)

Figure 3.6: Determination of λ with validation sets. (a) on the Porto dataset.

(b) on the Chengdu dataset.

Structure of DBN

To find the best architecture for the DBN model, we test the performance

on validation sets with several different architectures, and we choose the

structure with the best performance. There are some hyperparameters

need to be allocated for DBN. The first is the number of neurons in

the output layer. It is chosen from {1800, 2000, 2200, 2400, 2600, 2800}
in the Porto dataset, while for the Chengdu dataset, we choose from

{600, 800, 1000, 1200, 1400, 1600}. The second is the layer size of network,

where layer size from two to seven are chosen to be tested. The third

hyperparameter is the number of nodes in each layer, for simplicity, the

number of nodes in each layer is set to be the same, and it is chosen from

200 to 1000 for Porto and 50 to 500 for Chengdu.
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(a) (b)

Figure 3.7: Network error with epoch in DBN. (a) on the Porto dataset. (b)

on the Chengdu dataset.

Regarding the performances of AMAE and ARMSE on the validation

sets, the best structure of DBN for the Porto dataset can be found from

Table 3.2: layer size = 2, nodes in layer = 500 and cluster number in output

layer = 2400. With Table 3.3, the best structure for Chengdu dataset: layer

size = 3, nodes in layer = 100 and cluster number in output layer = 800.

3.2.3 Evaluation on the Constructed Classifier

When applying kNN classifier to ELM, we set k = 23 for Porto dataset and

k = 25 for Chengdu dataset. Fig. 3.8 shows the accuracy of model for

estimating the current segment, which performs as a classifier to allocate the

model with the best performance from knowledge base. From Fig. 3.8, we

can find that the overall accuracy of the constructed kNN classifier is high,

while it performs relatively worse when the percentage of the whole trajectory

is around λ. However, this does not make much sense, since the performances

of both SVR and DBN-C models are similar when the percentage is near λ

(as shwon in Fig. 3.6).

We compare the performance of our proposed ELM with SVR, DBN,
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artificial neural network (ANN) [14], kNN and naive Bayes (NB) models.

Among these models, some are subdivided into classification and regression

models, with the postfix of ”C” and ”R”, respectively. In addition, to

evaluate the performance of our proposed CFE technique, each model is

also tested with and without CFE technique, respectively.

Figure 3.8: Accuracy of kNN classifier for estimating current segment.

3.2.4 Comparison with Baseline Methods

Generally, as shown in Table S1 and Table S2 of Supplementary file 1, with

the taxi getting closer to the destination, all the prediction models can get

higher accuracies. ELM improves the overall performance, and it performs

best among all these baselines. Model of SVR outperforms DBN-C when

the whole trajectory completion proportion approximates 1, one reason is

probably that SVR performs as a regression task to learn the real numerical

destinations from training data, while DBN-C is a classification task to

learn the probability distributions of destination clusters. However, DBN-
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C performs best at the initial proportions, because the pre-trained DBN-C

has better generative ability (Gao, Gao, Gao & Wang 2014). Moreover,

it can learn invariant features and generate invariant representations from

training data, which is insensitive to some transformations and exhibits

better classification invariance (Ji, Zhang, Zhang & Wang Aug. 2014, David

& Netanyahu 2015). As ELM is derived from SVR mostly, compared with

SVR, ELM improves the overall accuracy and it significantly enhances the

prediction performance at the initial parts of the whole trajectory. Compared

with models of DBN, ANN, kNN and NB, ELM increases the overall

performance significantly.

3.2.5 Evaluation on the Proposed CFE

In order to evaluate the effectiveness and efficiency of our proposed CFE

technique in features representation, we conduct experiment and compare

it with the most commonly used one-hot embedding technique (denotes as

One-Hot-E) in our deep learning models. From Table S3 and Table S4

in Supplementary file 1, CFE requires much lower dimensionality for the

feature representation compared with the One-Hot-E (26 versus 48 in these

experiments), which derives a network with less parameters to be learned

from training data. As a result, CFE takes less computational time for

training the whole network, especially with complex networks (like deep

learning), which has been proved in both the Porto and Chengdu taxi

experiments. In addition, CFE employs a fuzzy membership and can well

address the similarity issues between the observations, leading to a better

prediction performance compared with the similarity-equal One-Hot-E. The

proposed ELM is an ensemble model of SVR and DBN, which need to be

trained prior to feeding into the segment detection classifier. Table 3.4

demonstrates the time cost of model training and trip’s destination prediction

for ELM method.
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Table 3.4: Time costs by the our proposed model

Dataset
Training Time Prediction Time

SVR DBN-C 1 trip 102 trips 103 trips 104 trips 105 trips

Porto 12.03 h 16.16 h 15.94 s 122.05 s 126.65 s 160.10 s 294.25 s

Chengdu 3.80 h 1.38 h 16.39 s 82.21 s 111.39 s 125.71 s 223.34 s

Figure 3.9: Comparison of ELM and other models with a case study (on

Porto dataset).
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3.2.6 Case Study

As presented in Fig. 3.9, assume that a taxi picked up passengers at a location

( ), the current location of the taxi is labeled as  . The real destination of

this trip is denoted by N. Then, the input of our proposed ELM model is the

selected 2m points (the initial m points counted from pickup location and the

last m points from current location, m = 5 in this experiment) between the

pickup location ( ) and current location ( ). The output is the geographical

coordinates of the predicted drop-off location. The predicted destination via

ELM, NB, ANN-R, ANN-C, DBN-R, SVR and kNN-R are marked as �, O,

�, �, �, ⊕ and �, respectively. The distance of each predicted destination to

the real destination is shown in Table 3.5. ELM gets the predicted coordinate

at �, which is the most close to the real drop-off location of this trip. Then

various kinds of LBSs based on position � can be delivered for taxi riders or

driver. Compared with the predicted coordinates derived from other models,

the surroundings of the real destination (N) is more relevant to those around

the coordinate predicted via ELM, which is also reasonable and efficient for

giving guidelines to taxi riders. While if the predicted destination is too far

away from the groundtruth coordinate, it might result in misunderstandings

and confusions to users.

Table 3.5: Distances between the real and predicted destinations with

different models (unit: km)

ELM SVR DBN-R ANN-R ANN-C kNN-R NB

1.44 3.53 2.25 3.57 3.99 3.66 3.80

3.3 Summary

In this chapter, an ensemble learning model is proposed for taxi destinations

prediction. In this model, the advantages of SVR and DBN models are

incorporated to render a more accurate prediction. A novel data embedding
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method named CFE is presented for time-related features embedding in

deep learning model. We evaluated the prediction performances and made

comparisons with baseline methods of SVR, DBN, ANN, kNN and naive

Bayes. Comprehensive experiments on real datasets demonstrate that our

ensemble learning model outperforms other baselines in terms of the overall

performance. Comparison experiments also confirm that our proposed data

embedding method outperforms traditional one-hot embedding in terms of

accuracy as well as computational cost.
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Chapter 4

Offline and Online Detection of

Anomalous Patterns from Bus

Trajectories for Traffic Insight

Analysis

The work in this chapter utilizes deep learning architecture for feature

extraction from bus trajectory data sources and develops visualization for

both offline and online discoveries of anomalous traffic patterns. We also

develop methods for detecting the anomaly locations to provide insights of

the corresponding anomalies for understanding the influences caused by the

anomaly to the road traffic.

The rest of this chapter is organized as follows. In Section 4.1, we

elaborate on the methods of feature extraction and visualization, offline and

online algorithms for anomalous patterns detection and insight analysis on

anomalies. Section 4.2 presents experimental results and analyses. Section

4.3 makes a summary of this work.
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4.1 Methods

This section introduces the preliminary definitions, and presents our method

for feature extraction and trajectory visualization through deep learning.

Then, details of our proposed offline and online methods are described to

detect anomalous trajectory and to obtain insights into the anomaly based

on the visualized trajectories. A basic workflow of our method is illustrated

in Fig. 4.1. An important step of the method is to feed the bus trajectory

data and meteorological data into a well trained deep sparse autoencoder

(DSAE) to generate the color trajectory (CT), which provides the basis for

trajectory visualization, offline and online detection of anomalies. Another

key sector is to produce a color trajectory map (CTM) by GIS fusion for

anomaly insight analysis.

4.1.1 Preliminaries

Definition 1 Trajectory: A trajectory T of a moving objective is a set

of time-ordered data points, T = (t1, t2, · · ·, tN−1, tN) ∈ RD×N , ti =

(ϕi, λi, vi)
T ∈ R3, where each data point consists of latitude ϕi, longitude

λi and velocity vi at the ith timestamp.

Definition 2 Class A Anomaly: Given a trajectory εi, if the extracted

spatial feature (τi, τk) and temporal feature NCTi
are both very different from

the spatial and temporal features of its spatio-temporal neighbors, we termed

it as Class A Anomaly.

Definition 3 Class B Anomaly: Given a trajectory εi, if the extracted spatial

feature (τi, τk) is very different from the spatial features of its temporal

neighbors, it is defined as Class B Anomaly.
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4.1.2 Feature Extraction and Trajectory Visualization

Using Deep Learning

The method employs a nonlinear dimensionality reduction method (DSAE)

to extract hidden features from bus trajectory data to characterize the

trajectories for trajectory visualization.

As mentioned in Definition 1, a trajectory is a time series of data points

with the same time interval, each data point is typically consisted of latitude

ϕ, longitude λ and velocity v (unit: km/h). The speed information is

popularly available in many existing GPS devices. However, it can also

be approximated by algorithm in literature (Feng & Timmermans 2013) in

some cases of speed data lack.

Rainfalls, especially heavy rains, can significantly affect traffic flow

characteristics and may lead to traffic congestions or even accidents (Jia, Wu

& Xu 2017). We integrate the bus trajectory data with local precipitation

data r (unit: mm/h). Thus, ti is updated as zi denoted by

zi = (ϕi, λi, vi, ri)
T ∈ R4 (4.1)

and T is updated as Z denoted by

Z = (z1, z2, · · ·, zN−1, zN) ∈ R(D+1)×N (4.2)

Data normalization is conducted to normalize the data in each dimension

into range [−1, 1]. For example, the dimension of longitude λ is normalized

by Eq. (4.3).

λi
′ = 2(

λi − λmin

λmax − λmin

)− 1 (4.3)

where λmax and λmin are the maximum and minimum values of the

longitudinal feature in training set.

Windowing operations is performed as it has been validated that

windowing processing could smooth the noise in a relevant study (Liu,

Taniguchi, Tanaka, Takenaka & Bando 2017). Suppose a time window size
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ω is set to move zi along the time axis. The windowed data point xi and

time series X are denoted by

xi = (ϕi
′, λi

′, vi
′, ri
′, · · ·, ϕi+ω−1

′, λi+ω−1
′, vi+ω−1

′, ri+ω−1
′)T ∈ R4∗ω (4.4)

and

X = (x1,x2, · · ·,xNX−1,xNX
) ∈ R(4∗ω)×NX (4.5)

where NX = N − ω + 1, ω is an integer and 0 < ω < N .

X is then fed into DSAE, which is a deep neural network stacked by many

single sparse autoencoders (SSAE). Each SSAE is layer-wise pre-trained

before fine-tuning of the whole network. Suppose the visible layer’s vector

in the lth SAE is denoted by v(l) ∈ RDV ×NX , then the hidden layer’s vector

h(l) and the reconstruction vector r(l) are defined as

h(l) = tanh(W(l)
en · v(l) + b(l)

en) ∈ RD
(l)
H ×NX (4.6)

and

r(l) = tanh(W
(l)
de · h

(l) + b
(l)
de ) ∈ RD

(l)
R ×NX (4.7)

where W
(l)
en and W

(l)
de are the weights of the lth layer of the encoder and

decoder, respectively. b
(l)
en and b

(l)
de are the biases of the lth layer of the

encoder and decoder, respectively.

Then, the reconstruction error is calculated by

min L(l) =
1

2

∥∥h(l) − r(l)
∥∥2

2
+ α

(∥∥W(l)
en

∥∥2

2
+
∥∥∥W(l)

de

∥∥∥2

2

)
+ β

D
(l)
H∑

j=1

KL
(
ρ||ρ̂(l)

j

)
(4.8)

and

KL
(
ρ||ρ̂j(l)

)
= ρ log

ρ

ρ̂
(l)
j

+ (1− ρ) log
1− ρ

1− ρ̂(l)
j

(4.9)

where the L2-norm penalty item is used to prevent over-fitting, and the

Kullback-Leibler (KL) divergence is mainly for obtaining a sparse hidden

layer to generate more outstanding features. α, β and ρ are the preset
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hyperparameters to control the corresponding penalty items, and ρ̂
(l)
j is the

average activation of the units in the lth hidden layer.

A 3-neuron layer is embedded as the output of DSAE to get 3-dimensional

hidden features for better visualization, representing the red, green and blue

channel in the rgb color space, which is denoted by

Y = (or,og,ob)
T ∈ R3×NY (4.10)

where NY = N − ω + 1.

The red channel or is normalized into range [0, 255] using Eq. (4.11).

R = Round

(
or −min(or)

max(or)−min(or)
× 255

)
(4.11)

and similarly for the green channel (G) and blue channel (B).

Then the color trajectory (CT) of the trip T is denoted by

CT = (R,G,B)T ∈ R3×NCT (4.12)

where NCT = N − ω + 1.

4.1.3 Offline Anomalous Traffic Patterns Detection

For the ith complete trajectory, we define τi as

τi = (NCTi
,CTi) =

(
NCTi

, (Ri,Gi,Bi)
T
)

(4.13)

where NCTi
= Ni − ω + 1 is a temporal feature that highly depends on the

trajectory duration Ni. A larger NCT indicates that traffic anomaly might

have occurred with higher confidence. However, a trip even with a normally

ranged NCTi
might also be affected by traffic anomalies. Here, τi is referred

to as a trajectory representation.

We choose a trajectory representation τk as exemplar. We recommend to

choose one with a relatively small NCT , as it is more unlikely to be anomaly.

We denote s (τi, τk) to represent the similarity between CTi and CTk (i.e.,

the color trajectory of the exemplar). If s (τi, τk) is lower, then it is more
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similar between CTi and CTk. To compute the similarity, there is a pre-

condition that NCTi
= NCTk

. If NCTk
< NCTi

, we append NCTi
− NCTk

number of points of white color (rgb(255, 255, 255)) to CTk to construct a

new trajectory representation τj to make NCTi
= NCTj

, while the temporal

feature NCTk
stays the same.

τj = (NCTk
,CTj) =

(
NCTk

, (Rj,Gj,Bj)
T
)

(4.14)

Similarly, if NCTk
> NCTi

, we do the same processing on CTi, and then

get τm.

τm = (NCTi
,CTm) =

(
NCTi

, (Rm,Gm,Bm)T
)

(4.15)

Then, the similarity between CTi and CTk can be derived by Eq. (4.16),

when NCTi
= NCTk

or Eq. (4.17), when NCTi
6= NCTk

.

s (τi, τk) =

NCTi∑
n=1

(
(Rn

i −Rn
k)2 + (Gn

i −Gn
k)2 + (Bn

i −Bn
k)2

2552 + 2552 + 2552

)
(4.16)

s (τi, τk) =

s (τi, τj) ifNCTi
> NCTk

s (τk, τm) ifNCTi
< NCTk

(4.17)

Let dnab =
(Rn

a−Rn
b )

2
+(Gn

a−Gn
b )

2
+(Bn

a−Bn
b )

2

2552+2552+2552
. Given a small positive threshold

ε, if the similarity between two color points is smaller than ε, we ignore the

nuance and redefine the similarity as 0. Therefore, we have Eq. (4.18) in Eq.

(4.17).

dnab =

dnab if dnab ≥ ε

0 if dnab < ε
(4.18)

For the ith complete trajectory, we have

εi = (NCTi
, s (τi, τk)) (4.19)

where s (τi, τk) is a spatial feature since it is mainly extracted from

buses’ GPS spatial positional information, and it can capture the spatial

distribution of the moving object.
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By mapping all ε to a two-dimensional space which is referred to as a

spatio-temporal plane here, we are able to detect those two classes of traffic

anomalies defined in Section 4.1.1: class A anomaly and class B anomaly.

The major differences between class A anomaly and class B anomaly lies

in their neighbors definition and the measurement of similarities between

their neighbors. Class A anomaly considers both spatial and temporal

features to define its neighbors and to measure their similarities. However, if

the temporal difference between its neighbors is not significant, there might

also be abnormal patterns among them. Therefore, class B anomaly reveals

this abnormal patterns by addressing the spatial differences from its temporal

neighbors. Specifically, if there are several bus trajectories possessed the same

or similar temporal features (same or similar trajectory durations), we take

them as mutual temporal neighbors. However, if the spatial distribution of

one of them is significantly different from the rest, it is understandable that

there might be some anomalous events that changed the spatial distribution

of this trajectory. Such spatial distribution could be reflected by the spatial

feature s(τi, τk) aforementioned.

Spatio-temporal outliers’ co-ordinate points can be detected using our

proposed offline anomalous traffic patterns detection (OFF-ATPD) algorithm

(Algorithm 4.1), where steps 1 to 11 divide the whole training set into

different subsets for class A anomaly detection (εtrain C1) and class B anomaly

detection (εtrain C2) by adopting a threshold NC . For class B anomaly

detection (i.e, εi < NC), we employ the Boxplot rule with a parameter δ

to identify anomalous observations by aggregating all the spatial features of

εi as well as its forward and backward temporal neighbors within η steps (i.e.,

temporal feature located in NCTi
±η) to form S (steps 12 to 25). On the other

hand, class A anomaly can be detected by computing the Euclidean distance

from the nearest spatio-temporal neighbor under a threshold r (steps 26 to

31).

Algorithm 4.1 OFF-ATPD algorithm

Parameters: NC , δ, r, η.

52



Chapter 4. Offline and Online Detection of Anomalous Patterns from Bus
Trajectories for Traffic Insight Analysis

Input: εtrain, εi. // εi is for test

Output: Ci. // True denotes anomaly

1: m← 0, n← 0;

2: for εj ∈ εtrain do

3: NCTj
← Get the temporal feature of εj;

4: if NCTj
≥ NC then

5: m← m+ 1;

6: εtrain C1(m)← εj;

7: else

8: n← n+ 1;

9: εtrain C2(n)← εj;

10: end if

11: end for

12: if εi < NC then

13: TN ← Search the forward and backward temporal neighbors of εi

from εtrain C2 within steps of η;

14: S ← Aggregate all the similarities of εi and members in TN ;

15: Q1 ← Compute the first quartile of S;

16: Q3 ← Compute the third quartile of S;

17: IQR← Q3 −Q1;

18: U ← Q3 + δ ∗ IQR;

19: L← Q1 − δ ∗ IQR;

20: if S(εi) > U or S(εi) < L then

21: Ci ← True;

22: else

23: Ci ← False;

24: end if

25: else

26: D ← Compute the distance between εi and its nearest spatio-

temporal neighbor in εtrain C1;

27: if D > r then
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28: Ci ← True;

29: else

30: Ci ← False;

31: end if

32: end if

4.1.4 Insight Analysis Using Anomalous Patterns

We combine the trajectory T and the color trajectory (CT) in Eq. (4.12) to

construct a color trajectory map (CTM) through conducting GIS fusion with

CT. Note that we have NCT < N after a window size ω was introduced in

the windowing process. Then we construct a location vector li and a location

matrix L:

li = (ϕi, λi)
T ∈ R2 (4.20)

and

L =
(
l|w−1

2 |+1, l|w−1
2 |+2, · · ·, l|w−1

2 |+N−w, l|w−1
2 |+N−w+1

)
∈ R2×NL (4.21)

where NL = NCT = N − ω + 1.

We also combine the location matrix L with CT to generate L′:

L′ = (L,CT) (4.22)

For each L′i, map the color with the value of (Ri,Gi,Bi)
T to coordinate

(ϕi, λi)
T on the GIS map, so as to generate the CTM of a whole trajectory.

L′i =
(
(ϕi, λi)

T , (Ri,Gi,Bi)
T
)

(4.23)

The color trajectory (i.e., CT in Eq. (4.12)) and CTM are linked via the

conjunct rgb values. By comparing the CT of an anomalous trajectory with

those non-anomalous trajectories, the most significant difference between

them can be found, and the corresponding sector of these colors can be

regarded as anomalous. Then, the anomaly occurring location as well as the

road influence sector are estimated, by locating the coordinate (ϕi, λi)
T on

the CTM via the anomalous colors (Ri,Gi,Bi)
T obtained from last step.
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4.1.5 Online Detection of Anomalous Traffic Patterns

The proposed OFF-ATPD method in Section 4.1.3 takes the complete bus

trajectories as input. It is an offline detection mechanism because the data

is ready only after the bus completes the whole trip from the origin place

to the terminal stop. In this section, we propose an online anomalous

traffic patterns detection (ON-ATPD) algorithm (Algorithm 4.2), which is a

substantial extension to the OFF-ATPD algorithm.

By Algorithm 4.2, Xt is the real-time input at timestamp t, derived from

Eq. (4.5). Step 1 computes the color trajectory of input Xt with DSAE (see

details in Section 4.1.2). Step 2 tests whether the bus has arrived at the

terminal of the trip or not. Steps 3 and 4 go to the OFF-ATPD algorithm

when the bus reaches the terminal stop. While the bus is still on the way to

the terminal stop, steps 6 to 13 append or remove segments from the current

color trajectory CTt by comparing with the most similar color trajectory

from the training set εtrain. Steps 14 and 15 calculate εt′′ with the newly

constructed color trajectory CTt′′ and apply the OFF-ATPD algorithm for

anomaly detection. Since we have defined the nearest neighbor (the most

similar) color trajectory of the real-time CTt (by step 6), there might be a

situation that patterns of the nearest neighbor are quite different from the

original complete color trajectory. In order to improve the reliability of online

anomaly detection, we introduce an integer parameter n to decide whether

all abnormal patterns adjudged from the the previous n − 1 detections and

the current detection can yield an anomaly report (steps 16 to 20).

Algorithm 4.2 ON-ATPD algorithm

Parameters: NC , δ, r, η, n.

Input: εtrain, Xt, t > n.

Output: Ct, t > n. // True denotes anomaly

1: CTt ←Get the color trajectory of Xt with DSAE;

2: if t is the end timestamp of the trip then

3: εt ← Compute the temporal and spatial features of CTt by Eq. (4.19)

and go to OFF-ATPD algorithm;
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4: Ct ← OFF-ATPD(NC , δ, r, η, εtrain, εt);

5: else

6: CTt′ ← Get the most similar color trajectory of CTt from εtrain;

7: NCTt ← Get the temporal feature of CTt;

8: NCTt′
← Get the temporal feature of CTt′ ;

9: if NCTt < NCTt′
then

10: CTt′′ ← Append CTt with the last NCTt′
− NCTt color points of

CTt′ ;

11: else

12: CTt′′ ← Remove the last NCTt −NCTt′
color points of CTt;

13: end if

14: εt′′ ← Compute the temporal and spatial features of CTt′′ and go to

OFF-ATPD algorithm;

15: Ct ← OFF-ATPD(NC , δ, r, η, εtrain, εt′′);

16: if Ct−n+1, ..., Ct−1, Ct are all True then

17: Ct ← True;

18: else

19: Ct ← False;

20: end if

21: end if

4.2 Experiments and Results

We have performed comprehensive experiments to answer the following

research questions:

RQ1: Is OFF-ATPD effective and sensitive to detect all anomalies (i.e.,

with a high detection rate)?

RQ2: Is our developed feature visualization method useful for capturing

anomaly locations and traffic impacts with the detected anomalies?

RQ3: How does our proposed ON-ATPD perform in real-time traffic

anomaly detection?

RQ4: How well do our proposed feature extraction deep architecture and
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anomaly detection methods perform in comparison with the state-of-the-art

methods?

4.2.1 Datasets and Evaluation metrics

Datasets

We use trajectory datasets from 3 bus routes in Guiyang (China) with

a duration of 4 months in the year of 2016. All the data (including

the local hourly precipitation data) is officially provided by the Guiyang

Open Government Data Platform 1. The first two datasets are collected

on weekends, while the last one is form the off-peak hours (except the

morning peak from 06:00 to 09:00 and afternoon peak from 17:00 to 19:30)

on weekdays. Each dataset is divided into a training set (the first 3 months)

and a test set (the following month). All datasets are naturally unbalanced,

since traffic anomalous event rarely occurs along the same bus route. The

imbalanced ratios (minority/majority) are 0.025, 0.014 and 0.007 for the

test sets of Route 66, Route 50 and Route 18, respectively. Table S1 in

Supplementary file 2 provides a detailed description about these datasets.

Evaluation Metrics

In the performance evaluation, we use measurements accuracy (Acc),

detection rate (DR), false alarm rate (FAR) (Tsai & Lin 2010) and area

under the ROC curve (AUC). Criteria of Acc, DR and FAR are defined as

follows:

Acc =
TP + TN

TP + TN + FP + FN
(4.24)

DR =
TP

TP + FN
(4.25)

FAR =
FP

FP + TN
(4.26)

1http://www.gyopendata.gov.cn/city/index.htm
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• True Positive (TP): the number of anomalous trajectory correctly

detected as anomaly;

• True Negative (TN ): the number of non-anomalous trajectory correctly

identified as non-anomaly;

• False Positive (FP): the number of non-anomalous trajectory

incorrectly identified as anomaly;

• False Negative (FN ): the number of anomalous trajectory falsely

identified as non-anomaly.

We also define an index named averaged moving standard deviation

(AMSD) to evaluate the concentration of the majority samples (negative

samples), which is also a criterion for evaluating the hidden feature extraction

architecture. A lower AMSD indicates that those non-anomalies are closer to

their neighbors. However, from an overall perspective, a higher AMSD value

shows that those non-anomalies are more dissimilar to each other. Method

with a higher AMSD might make more false detections, which we should try

to avoid in this study. The definition of AMSD can be referred to Eq. (4.27).

Firstly, a window size κ for the windowing operation along the horizontal

axis NCT is employed here. Then we compute the sample standard deviation

of all the normalized s (τij, τk) (denoted as ŝ (τij, τk)) within each κ-sized

NCT . Following this, we get the mean standard deviation of all κ-sized NCT

for AMSD.

AMSD =
1

m

m∑
i=1

√√√√ 1

ni − 1

ni∑
j=1

(ŝ (τij, τk)− s̄i) (4.27)

4.2.2 Parameters

The parameters are set as: (ω, α, β, ρ, ε) = (10, 10−5, 10−4, 0.05, 0.01)

for all the bus routes. The window size ω cannot be set with either too big

or too small value, we choose 10 as suggested by the literature work (Liu,

Taniguchi, Tanaka, Takenaka & Bando 2017). We set ρ with a value near 0
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because the centre of each RGB space axis is 0. In addition, the values of α,

β and ε are set empirically, but without using a specific parameters tuning

method. Parameter δ is a key parameter for detection performance, since too

high or too low δ will result in a low detection rate or a high false alarm rate

(as illustrated by Fig. 4.2). The default value range to determine the upper

and lower fences is 1.5 in Boxplot rule. We fine tune the value of δ around

1.5. The parameters in both algorithms OFF-ATPD and ON-ATPD are set

as the same: (NC , δ, r, η) = (450, 2.0, 50, 2) for Bus Route 66, (NC , δ, r,

η) = (500, 1.7, 50, 2) for Route 50 and (NC , δ, r, η) = (350, 0.9, 40, 2) for

Route 18, with the understandings and trials from the training set. The Bus

Route 18 utilizes a smaller value of NC as its route is shorter. The setting

of the other parameters in algorithm ON-ATPD is discussed in Subsection

4.2.5. Moreover, we employ a DSAE of four encoding layers with dimensions

40 → 20 → 10 → 3 to identify the 3-dimensional hidden features2.

4.2.3 Offline Detection Results about Anomalous

Patterns

The performance comparisons between our proposed OFF-ATPD versus the

state-of-the-art baselines are listed in Table 4.3 (note that we have transferred

the anomalous observations from the training set to the test set to enlarge the

positive sample size for performance evaluation). The proposed OFF-ATPD

detects all known anomalies with a high accuracy and a low false alarm

rate. The spatio-temporal planes for Bus Routes 66, 50 and 18 are shown

in Fig. S1 of Supplementary file 3, where those points distributed along the

tick (X) sign exhibit a trend that the s similarity increases with NCT when

NCT > NCTk
, while it decreases with NCT when NCT < NCTk

. Also in Fig.

S1 (a) of Supplementary file 3, anomalies #1 and #2 are categorized as class

A anomalies as their spatial and temporal features are both far away from

their spatio-temporal neighbors, and similarly for anomalies #1, #2, and #3

2The layer number and neuron number can be changed. However, the network should

be a deep learning architecture.
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(a) Bus Route 66 (b) Bus Route 50 (c) Bus Route 18

Figure 4.2: Performance comparisons under different settings of parameter

δ.

in Fig. S1 (b) of Supplementary file 3.

However, anomalies #3, #4 in Fig. S1 (a), #4, #5 in Fig. S1 (b) and #1,

#2 in Fig. S1 (c) of Supplementary file 3 were detected as class B anomalies,

because only their spatial features are far away from their temporal neighbors.

In general, class A anomaly has more serious impact on traffics than class B

anomaly does, while class B anomaly is more difficult to uncover. Fig. S2 of

Supplementary file 3 illustrates the processes of detecting class B anomalies,

with steps 14 to 26 in Algorithm 4.1. Fig. 4.2 presents the performance on all

the datasets under different settings of parameter δ. With the increase of δ,

a higher accuracy and lower false alarm rates were achieved for all datasets.

However, when δ rises above a threshold (e.g., δ > 2.8 for Bus Route 66),

the detection rate decreases, while it remains high when δ is located within

the threshold.

The detected anomalies shown in Table 4.1 are all coincided with the

known traffic anomalous events, which are elaborated as follows:

Known event 1 : A sedan bumped a car at Shachong East Road in the

late afternoon of 14 August 2016, the driver of the sedan escaped after the

accident resulting in serious traffic congestion3. It was raining at that time

and this event only affected services for Bus Route 50.

3http://www.gywb.cn/content/2016-08/16/content_5188212.htm

60

https://1drv.ms/b/s!AqOdc5BgGmiqcSUTTyu_qqnN-e0?e=cYvgOb
https://1drv.ms/b/s!AqOdc5BgGmiqcSUTTyu_qqnN-e0?e=cYvgOb
https://1drv.ms/b/s!AqOdc5BgGmiqcSUTTyu_qqnN-e0?e=cYvgOb
http://www.gywb.cn/content/2016-08/16/content_5188212.htm


Chapter 4. Offline and Online Detection of Anomalous Patterns from Bus
Trajectories for Traffic Insight Analysis

Known event 2 : A severe car crash (an SUV and a truck) occurred on

the West No.2 Ring Road in the morning of 18 September 2016. Two men

died on site and one got injured4. This event imposed impacts on Bus Route

66 and Route 50 bus services.

Known event 3 : Two cars crashed on the facilities of a bus station near

the Guizhou Cancer Hospital (West Beijing Road) around the noon on 26

November 2016. A pedestrian died5. This event affected Bus Route 66

service.

Known event 4 : An SUV crashed an electric motorcycle on the North

Wenchang Avenue in the morning of 14 December 2016. Two riders on the

electric motorcycle got injured while trapping under the vehicle6. Only Bus

Route 18 service was influenced by this crash.

4.2.4 Results about Feature Visualization and

Anomaly Insight Analysis

Fig. 4.3 (a), (e) or (i) depicts the CT of a real-world trajectory in Bus

Route 66, 50 or 18, respectively. It is evident from Fig. 4.3 (a) that the

bus trajectory starts at the color of yellow �; the color changes gradually

and finally gets to blue � when the bus is approaching to the destination.

The horizontal axis indicates the temporal feature (NCT , 1 unit equals 10

seconds, each row contains 100 units).

The CTM of anomalous trajectory is obtained by fusion of the color

trajectory (CT) with the GIS map (via Eq. (4.22) and Eq. (4.23)). Here we

illustrate an anomalous trajectory by taking the anomaly #1 in Bus Route

66 as example. As shown in Fig. 4.4 (a), subfigure (i) is the CTM of #1,

and © denotes the actual event site. By contrasting the CT of anomaly #1

(i.e., subfigure (ii)) and non-anomalies (i.e., subfigure (iii) and (iv)), we can

4http://www.sohu.com/a/114567218_398062
5https://m.sohu.com/n/474230721/?wscrid=53843_3&_smuid=

BnKG38irJV6gorGDwjyzS0&mv=2
6http://gz.sina.com.cn/news/sh/2016-12-15/detail-ifxytqav9265554.shtml
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(a) Anomaly #1 in Bus Route 66

(b) Anomaly #4 in Bus Route 50

Figure 4.4: Insight analyses for anomaly #1 in Bus Route 66 and anomaly

#4 in Bus Route 50. (i) CTM of the anomalous trajectory. (ii) CT of the

anomalous trajectory. (iii) CT of a non-anomalous trajectory. (iv) CT of

another non-anomalous trajectory.
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(a) Bus Route 66 (b) Bus Route 50 (c) Bus Route 18

Figure 4.5: Comparison of concentration performance on the training sets.

have an intuitive perspective that the anomaly might have occurred around

light yellow �, because the part with such color is very different from those

of the non-anomalies. However, when it proceeds to the color of grey �, the

rest part of CT turns to be similar to those of non-anomalies. It means that

the anomaly happened at the locations highlighted between locations � and

� in Fig. 4.4 (a), which is in line with the real location (©) of event 2.

Apart from location detection, our method also provided insights to

understand implications of the car crash on the road by highlighting the

road section between � and � (at the left bottom of Fig. 4.4 (a)). Similarly,

Fig. 4.4 (b) visually illustrates another example of anomaly #4 in Bus Route

50 that happened between the color of bright red � and dark red �, which

also coincides with the real site (©) of event 1.

4.2.5 Online Detection Results about Anomalous

Patterns

We conducted online detection simulation experiments for all of the

trajectories in test sets. The online anomaly report is carried out every

3 minutes. The parameters NC , δ, r and K set for ON-ATPD are the same

as those used by OFF-ATPD. Only parameter n is tested with different

values from 1 to 3. Table 4.2 shows the performance of our proposed online

detection algorithm. All of the known anomalies are detected correctly. In

particular with the increase of n, higher accuracies and lower false alarm
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Table 4.2: Performance of proposed online anomaly detection method (ON-

ATPD)

Route Parameter Acc (%) DR (%) FAR (%) Time

66

n=1 94.51 100 5.63 3.2s

n=2 95.12 100 5.00 3.2s

n=3 97.56 100 2.50 3.2s

50

n=1 91.92 100 8.19 12.1s

n=2 92.76 100 7.34 12.0s

n=3 95.26 100 4.80 12.3s

18

n=1 74.40 100 25.77 6.5s

n=2 76.45 100 23.71 6.5s

n=3 87.71 100 12.37 6.6s

Notes : Time is the mean computational time for one

detection. Our experiments were conducted on the server

with Intel Xeon Gold 6150 of 2.7GHz.

rates can be achieved on all datasets. On average for each detection, the

method needs about 3 seconds of computational time for each detection in

Bus Route 66, while needs about 7 and 12 seconds in Bus Routes 18 and 50

detection, respectively.

Fig. 4.6 illustrates some sequential steps of the online detection for

anomaly #1 in the Bus Route 66 dataset, where the real-time color

trajectories with an interval of 3 minutes are displayed at corresponding

timestamp. A detection result of ‘Anomaly’ or ‘No anomaly’ indicates

whether there exists any anomaly for the current trajectory. For anomaly

#1, the detection system is alarmed around 08:07 AM with an anomaly

reporting, when the bus is located at the color �. Comparing with the real

anomaly location shown in Fig. 4.4 (a), the detected site at color � is quite

close to the real anomaly location �.
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4.2.6 Comparison with Baseline Methods

Feature Extraction and Visualization

Our deep learning-based feature extraction method DSAE is compared with

other popular baseline methods including PCA, random projection (RP) and

single sparse autoencoder (SSAE) to understand the quality of our color

trajectories (CT). From Fig. 4.3, it is apparent that our DSAE-based model

can generate the smoothest color distributed trajectories. In Fig. 4.3 (a)(e)

and (i), with the trajectory moves on, it gradually changes from one color to

another distinct color. While the trajectories by the rest baselines sometimes

switch back to the previous color at certain parts of the CT. This conflict

will make it difficult for anomaly insight analyses when they are overlapped

on the GIS map. Furthermore, on the spatio-temporal planes derived by the

above baseline methods, none of them can get better detection performance

than the DSAE-based method for all the datasets (Fig. S3 of Supplementary

file 3). The distribution of some known anomalies (especially the class B

anomalies) yields a similar pattern with that of non-anomalies (#3, #4 in Bus

Route 66 with PCA and SSAE, #4, #5 in Bus Route 50 with RP and SSAE,

#1, #2 in Bus Route 18 with PCA, RP and SSAE), which makes difficulties

to clearly distinguish between anomalies and non-anomalies. Moreover, many

of the known non-anomalies are obviously mapped as isolated outlier points

(labeled © in Fig. S3 of Supplementary file 3), which do not exhibit the

characteristics of the expected patterns.

We also calculated the AMSD values (see Subsection 4.2.1) for all of the

non-anomalies, under every window size κ from 2 to 10. DSAE-based model

achieved the best performance on the datasets of Bus Route 66 and Route 18,

as shown in Fig. 4.5. RP obtained fairly good performance on Bus Route 50;

however, its performance in anomaly detection is sensitive as it made false

predictions on quite a number of points in Bus Route 50. SSAE performed

the worst on all of the datasets.
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Table 4.3: Performance comparison on the test sets with the baseline methods
Route Metric OFF-ATPD OneSVM BiSVM LSTM HDBSCAN kNN

66

Acc (%) 99.39 40.24 98.78 98.17 98.17 98.78

DR (%) 100 100 50.00 25.00 75.00 50.00

FAR (%) 0.63 61.25 0 0 1.25 0

AUC (%) 99.61 75.63 99.53 75.00 97.19 75.00

50

Acc (%) 98.33 52.92 99.44 98.89 99.44 99.44

DR (%) 100 100 60.00 20.00 60.00 60.00

FAR (%) 1.69 47.74 0 0 0 0

AUC (%) 99.66 79.52 100 60.00 97.12 80.00

18

Acc (%) 96.93 48.12 — — 99.32 —

DR (%) 100 100 — — 0 —

FAR (%) 3.09 52.23 — — 0 —

AUC (%) 97.25 75.60 — — 99.14 —

Notes : Supervised learning method BiSVM, LSTM or kNN cannot be applied to Bus

Route 18 dataset since there is no positive sample in the training set. AUC is computed

by the ‘sklearn’ package in Python.

Comparison on Anomalous Traffic Patterns Detected by Our

Offline Approach

We compare the anomaly detection performance by our offline detection

approach (OFF-ATPD) with those by the commonly used methods in

outlier/anomaly detection (Chandola, Banerjee & Kumar 2009), including

classification-based methods (one-class SVM (OneSVM) (Li et al. 2003, Wang

et al. 2004), binary SVM (BiSVM) and LSTM network), a clustering-based

method (HDBSCAN clustering (Campello, Moulavi & Sander 2013)) and

a nearest-neighbor-based method (kNN). The same features extracted via

DSAE are used for these baseline methods. Our approach is implemented

by Python and Tensorflow, the code of our algorithms is publicly available

in GitHub repositories7. OneSVM and BiSVM use the ‘e1071’ package in R.

LSTM network is implemented by the ‘rnn’ package in R. While baselines of

HDBSCAN and kNN use the R packages of ‘dbscan’ and ‘FNN’, respectively.

7https://github.com/Xiaocai-Zhang/Anomalous-Traffic-Patterns-Detection
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The output probabilities of our approach to calculate AUC are linearly

scaled by the similarity (i.e., S(εi) in Algorithm 4.1). While the output

probabilities via OneSVM and BiSVM are estimated by Platt scaling (Lin,

Lin & Weng 2007). The performances are shown in Table 4.3. Because there

is no positive sample in the training set of Bus Route 18, the supervised

learning methods of BiSVM, LSTM and kNN are not applicable. Overall,

OFF-ATPD achieved better performances with high accuracies, the 100%

detection rates, low false alarm rates and high AUC scores on all of these

datasets. OneSVM is also a competitive method that detected all anomalies

correctly; however, its high false alarm rates (61.25%, 47.74% and 52.23%)

make it less efficient. BiSVM and HDBSCAN also demonstrated low false

alarm rates and high AUC scores; nevertheless, they are unable to identify

all the anomalies accurately. None of the rest machine learning baseline

methods could detect all of the anomalies correctly. One reason is probably

that the real-world datasets for traffic anomaly detection as we utilized in

this experiment are extremely imbalanced. Machine learning on imbalanced

datasets might produce unsatisfactory classifiers (Provost 2000, Zhu, Lin &

Liu 2020). Instead of taking machine learning ideas for pattern recognition,

our developed algorithm explores the ideas of spatio-temporal neighborhood

and Boxplot rules to identify anomalous traffic patterns in class A task

and in class B task, respectively. Because these anomalous patterns have

distinct spatial and temporal characteristics, our approach can achieve

better performance on imbalanced data than the baseline machine learning

approaches.

4.3 Summary

The work in this chapter mainly consists of four parts. First, deep learning-

based method is proposed to extract novel features from bus trajectory data,

and the method can make good visualization of this features as well. Second,

we have termed class A anomaly and class B anomaly to better address
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the discrepancy issues between these diversified anomalous patterns. Offline

detection algorithm is designed by using the Boxplot rule or the nearest

neighborhood for detecting different classes of anomalous patterns. Third,

we fused the visualized color trajectories with GIS map to generate a color

trajectory map, and developed methods that are able to conduct insights

analysis on the locations of anomalies as well as on the traffic influences to

the road. Last, we also developed an online detection method extending

from the offline method for a real-time detection of anomalous traffic

patterns. Extensive experiments on three real-world datasets confirmed the

effectiveness and superiority of our deep feature extraction method, offline

and online detection methods, and anomaly insight analysis method.

Infrastructure plans for some cities have adopted the ‘Bus Lane’ strategy

for some major roads during certain periods to improve the efficiency of

bus services. In that case, our approach may not be efficient to detect the

incident-based anomaly, as the situation that some incidents affecting other

vehicles on the road might not affect buses. However, from the perspective

of bus service operation or management, that situation does not affect the

decision making, since those anomalies that impose little impact on bus

service will not be taken into account.
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Chapter 5

Differential Evolution based

LSTM Recurrent Neural

Network for Traffic Flow

Prediction

Deep learning has drawn large amount of attention and has made great

progresses in traffic flow prediction. State-of-the-art deep learning algorithms

like DNN (Qu et al. 2019), SAE (Lv et al. 2014),DBN (Huang et al. 2014,

Huang et al. 2013) and LSTM (Tian & Pan 2015) have achieved much

better performances in traffic flow prediction than the traditional parametric

methods or other machine learning methods. However, global optimization

of the network’s hyperparameters is still a tough problem in deep learning

despite of remarkable improvements. The aforementioned deep learning

models in traffic flow prediction or even in other relevant domains (Tang,

Liu, Zou, Zhang & Wang 2017, Zhang, Zhao, Zheng & Li 2019, Zhang,

Liu, Zheng, Zhao, Li & Liu 2018) all employ a grid search strategy or a

random search strategy for hyperparameters tuning. Grid search considers

all of the possible combinations of the hyperparameters with specified grid

gaps. Such an exhaustive strategy is computationally expensive in the case
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of many hyperparameters or large numbers of training samples, which has

led to poor performance in practice (Bergstra & Bengio 2012). On the other

hand, random search scans over a low-dimensional subspace of all possible

combinations with the notion that not all hyperparameters are equally

important. Previous study (Bergstra & Bengio 2012) has demonstrated that

random search could obtain satisfactory models in most cases while with low

computational cost.

We propose to use a differential evolution algorithm (Storn & Price 1997)

for deep learning hyperparameters optimization and in particular to obtain

optimal hyperparameters of LSTM recurrent neural network (RNN). LSTM

is specially capable of learning long-term interdependencies (Liu, Shahroudy,

Xu, Kot & Wang 2017) to overcome the gradient vanishing problem in

RNN. This advantage makes LSTM effective and efficient in processing

sequence data including traffic flow time series data. The differential

evolution algorithm is good at optimizing the hyperparameters in LSTM

to achieve high accuracy and robustness for traffic flow prediction. The

LSTM network of the optimal hyperparameters is then trained to learn

important sequential traffic flow features. To accelerate the convergence

of the differential evolution algorithm, we design parallel computing and

early stopping programs. Our new deep learning method is termed PDE-

LSTM, standing for parallel-differential-evolution-based LSTM for traffic

flow prediction. This is the first work that employs evolutionary algorithms to

optimize the deep learning architecture and hyperparameters in the problem

of traffic flow prediction.

The rest of this chapter is structured as follows. Section 5.1 presents

details of PDE-LSTM. Section 5.2 describes the datasets collected by Dublin

and San Francisco, reports and analyzes the results of the newly proposed

PDE-LSTM. Section 5.3 summarizes this chapter.
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5.1 Methods

The workflow of our proposed model for traffic flow prediction is illustrated by

Fig. 5.1. The workflow contains 3 main components: data processing, PDE-

LSTM and prediction. First, the preprocessed dataset is split into training

data, validation data and test data. Second, PDE-LSTM is performed on

the training and validation data to optimize the hyperparameters of LSTM.

Third, the traffic flow for a near future time interval is predicted by the

optimized LSTM model. In this section, we give a brief introduction to the

differential evolution algorithm. Then, details of our proposed traffic flow

prediction model, including parallel computing and early stopping steps, are

described. Finally, an example is provided to illustrate the steps for a better

understanding of the details.

Figure 5.1: The workflow of PDE-LSTM in traffic flow prediction.
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5.1.1 Differential Evolution

Differential evolution (DE) is proposed by Storn and Price (Storn & Price

1997), which is an efficient population-based stochastic search technique to

solve optimization problems (Wu, Shen, Li, Chen, Lin & Suganthan 2018). A

standard DE algorithm consists of 4 steps: initialization, mutation, crossover

and selection.

Initialization

Suppose there are D parameters to be optimized in a problem. For the jth

parameter, j = 1, 2, ..., D, let its corresponding range be
[
bLj
, bUj

]
, where

the subscripts L and U denote the lower and upper bounds. The initialized

population with a size P is generated by Eq. (5.1).

z0
ij = bLj

+ rand(0, 1) ∗ (bUj
− bLj

) (5.1)

where i = 1, 2, ..., P ; rand(0, 1) is the function to generate a random number

valued between 0 and 1 with a uniform probability distribution.

Mutation

The purpose of mutation is to add a scaled vector difference between two

randomly sampled individuals to a third individual vector (Hamza, Essam &

Sarker 2015). The mutation is conducted using Eq. (5.2) and Eq. (5.3).

vG+1
ij = zG

kj + FG
i ∗ (zG

lj − zG
mj) (5.2)

and

FG
i = random(FL, FU) (5.3)

where 1 6 i 6= k 6= l 6= m 6 P ; FG
i is the mutation factor produced randomly

from the uniform distribution on the interval [FL, FU ]; superscript G denotes

the Gth generation of the algorithm.
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Crossover

The step of crossover is to cross the initialized and mutated vectors to

generate new trail vectors. The DE algorithm crosses each vector using Eq.

(5.4) and Eq. (5.5).

uG+1
ij =

{
vG+1
ij , ifcGij > Cr

zG
ij, ifcGij < Cr

(5.4)

and

cGij = rand(0, 1) (5.5)

where uG+1
ij is the new trail vector after crossover; Cr ∈ [0, 1] is the crossover

factor; rand(0, 1) generates a random value uniformly distributed on the

interval between 0 and 1.

Selection

The selection operation aims to select the best genes for offsprings. The

selection is carried out by comparing the fitness values of the trail vector

uG+1
i and the target vector zG

i . If the fitness value of trail vector uG+1
i is

better than that of target vector zG
i , then replace the target vector with trail

vector uG+1
i for the offspring; otherwise keep target vector zG

i to the next

generation until the algorithmic terminal condition is met.

zG+1
i =

{
uG+1
i , iff(uG+1

i ) ≤ f(zG
i )

zG
i , iff(uG+1

i ) > f(zG
i )

(5.6)

5.1.2 Differential Evolution based LSTM under

Parallel Computing

Suppose at time t + m, we have the historical traffic flow at time intervals

(t+ 1, t+ 2, · · · , t+m), the task is to predict the traffic low at time interval

t + m + 1. The input X of the model can be represented by Eq. (5.7) and

Eq. (5.8).

xj = (xj1, xj2, · · · , xjm)T ∈ Rm (5.7)
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and

X = (x1,x2, · · ·,xN−1,xN) ∈ Rm×N (5.8)

where m is the sequence length and N is the number of observations.

The yzG
i denotes the output via the LSTM model under the

hyperparameters from the ith target vector at the Gth iteration zG
i . Similarly,

yuG+1
i is the corresponding output with hyperparameters derived from the

ith trail vector uG+1
i .

yzG
i = gLSTM (X, zG

i ) (5.9)

yzG
i =

(
yzGi1, yz

G
i2, · · ·, yzGi(N−1), yz

G
iN

)
∈ RN (5.10)

yuG+1
i = gLSTM (X,uG+1

i ) (5.11)

yuG+1
i =

(
yuG+1

i1 , yuG+1
i2 , · · ·, yuG+1

i(N−1), yu
G+1
iN

)
∈ RN (5.12)

where X stands for the input data; gLSTM represents the LSTM model

with the hyperparameters vector z or u; yz and yu denote the corresponding

outputs. We use mini-batch stochastic gradient decent (SGD) together with

the RMSProp (Tieleman & Hinton 2012) optimizer to train the LSTM model.

Suppose the groundtruth of traffic flow is denoted by Eq. (5.13).

ŷ = (ŷ1, ŷ2, · · · , ŷN−1, ŷN) ∈ RN (5.13)

We employ the criterion of mean absolute percentage error (MAPE) for

measuring the fitness values. The fitness values of target vector and trail

vector are defined by Eq. (5.14) and (5.15), respectively.

f(zG
i ) =

1

N

N∑
j=1

∣∣yzGij − ŷj∣∣
|ŷj|

· 100% (5.14)

and

f(uG+1
i ) =

1

N

N∑
j=1

∣∣yuG+1
ij − ŷj

∣∣
|ŷj|

· 100% (5.15)
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Since training a deep leaning model is a time-consuming process, we

introduce parallel computing for training the LSTM models and calculating

the fitness values of target and trail vectors, as illustrated by the selection

procedure in Fig. 5.1. Then, the offsprings zG+1
i could be determined by Eq.

(5.6). The best fitness value of this generation is defined by Eq. (5.16).

fBest
G+1 = minf(zG+1

i ) (5.16)

In order to improve the time efficicy of hyperparameter optimization

process, we propose to integrate a criterion of early stopping into our

algorithm. Firstly, a parameter n is defined, if the best fitness of the Gth

generation (i.e., fBest
G+1 ) is the same with the best fitness values of the previous

n− 1 generations, the early stopping mechanism will be triggered, as shown

by Eq. (5.17).

fBest
G+1 = fBest

G = · · · = fBest
G−n+2 (5.17)

where G > n− 1 and G ≤ maxG− 1.

The global optimal hyperparameters vector z∗ are determined using Eq.

(5.18).

z∗ = arg
z∈RD

min f(zG∗+1
i ) (5.18)

where G∗ denotes the generation that the terminal condition is applied.

5.1.3 PDE-LSTM: An Illustrative Example

A simplified example of PDE-LSTM is illustrated at Table 5.1 to Table 5.6.

Suppose there are 5 hyperparameters for optimization: sequence length (SL),

hidden unit (HU), maximum epoch (ME), batch size (BS) and learning rate

(LR); and assume they are in the ranges [1,50], [1,75], [10,1000], [1,500] and

[0.001,0.1], respectively. If the population size is set as P = 4, then the

initialized population is the numbers shown in Table 5.1.
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Table 5.1: Population with the step of initialization

SL HU ME BS LR

15.62 31.56 286.48 111.46 0.0902

45.55 3.62 967.34 332.06 0.0611

36.47 31.67 450.11 457.8 0.0077

22.10 45.11 786.58 144.83 0.0442

For the step of mutation, we assume FL = 0.5 and FU = 1 to generate

the mutation factor. Table 5.2 lists the mutated population.

Table 5.2: Population with the step of mutation

SL HU ME BS LR

16.80 61.46 485.20 218.07 0.0130

11.21 61.62 806.02 12.06 0.0471

27.19 44.97 494.86 332.16 0.0132

16.75 52.81 811.18 73.01 0.0472

In the step of crossover, if the crossover factor is set as Cr = 0.7, then

the population can be updated by Eq. (5.4) and (5.5), as listed in Table 5.3.

Table 5.3: Population with the step of crossover

SL HU ME BS LR

15.62 61.46 286.48 111.46 0.0902

45.55 3.62 967.34 12.06 0.0611

27.19 31.67 450.11 457.76 0.0132

22.10 45.11 786.58 73.01 0.0472

For the selection step, all the hyperparameters’ values in the population

are rounded to integers, and parallel computing is employed for the parallel

training of LSTM network with the corresponding hyperparameters vector.

The fitness values (MAPE) of the target vectors and trail vectors are shown

in Table 5.4 and 5.5, respectively.
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Table 5.4: Fitness values of initialized population (target vectors)

SL HU ME BS LR Fitness (MAPE)

16 32 286 111 0.0902 6.95%

46 4 967 332 0.0611 6.68%

36 32 450 458 0.0077 6.27%

22 45 787 145 0.0442 6.53%

Table 5.5: Fitness values of crossovered population (trail vectors)

SL HU ME BS LR Fitness (MAPE)

16 61 286 111 0.0902 6.63%

46 4 967 12 0.0611 6.99%

27 32 450 458 0.0132 6.41%

22 45 787 73 0.0472 6.72%

Table 5.6 shows the rounded numbers of offspring population after the

step of selection. If the algorithm terminates at this iteration, then the vector

z∗ = (36, 32, 450, 458, 0.0077)T with the minimum fitness are regarded as the

optimal hyperparameters. If not, the initialized population in step 1 will be

updated by the offspring for the next iteration.

Table 5.6: Offspring population with the step of selection

SL HU ME BS LR Fitness (MAPE)

16 61 286 111 0.0902 6.63%

46 4 967 332 0.0611 6.68%

36 32 450 458 0.0077 6.27%

22 45 787 145 0.0442 6.53%
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5.2 Experiments and Results

5.2.1 Datasets and Evaluation Metrics

Datasets

The proposed method was tested on three real-world road traffic flow

datasets. Two of them are about the traffic flow of two roads in Dublin,

Ireland, and the third one is about a main road in San Francisco, USA.

We choose three roads of dense traffic flow for study because they have

been given much attentions in both traffic management and research (Huang

et al. 2014). The two Irish datasets were download from the official traffic

data site maintained by Transport Infrastructure Ireland (TII) (Transport

Infrastructure Ireland 2019). The San Francisco dataset was download

from the Caltrans Performance Measurement System (PeMS) database

(PeMS 2019) maintained by the California Department of Transportation

(Caltrans). All the flow data were collected at a 15-minute interval

continuously spanning one year from April 1 2018 to March 31 2019, using

the average of all the inductive loop detectors in the corresponding road. The

15-min format of data can be transformed into a 30-min, 45-min or 60-min

interval format for different tasks of prediction.

The dataset for each road is divided into a training set, a validation set

and a test set. In particular, the flow data of the first 9 months is reserved

as the training set, the 10th month’s data for validation, and the last two

months’ for test. Table 5.7 provides more details about these datasets. The

average traffic flow of 15 minutes interval during a typical week is depicted in

Fig. 5.2. All the data and code are publicly available in GitHub repositories8.

Evaluation Metrics

The prediction performance of the proposed method and existing methods

are evaluated using three metrics: mean absolute error (MAE), root mean

8https://github.com/Xiaocai-Zhang/Traffic_flow_prediction_based_DE-LSTM
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Figure 5.2: Average traffic flow of the M50-N, M1-N and I280-S roads during

a typical week.
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Table 5.7: Dataset description

Dataset Road Segment Direction Detector No

M50-N M50 Balinteer to Finglas Northbound 8

M1-N M1 Airport to Swords Northbound 2

I280-S I280 Bernal Heights to Ingleside Southbound 7

square error (RMSE) and mean absolute percentage error (MAPE). They

are defined as

MAE =
1

n

n∑
i=1

|yi − ŷi| (5.19)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (5.20)

MAPE =
1

n

n∑
i=1

|yi − ŷi|
ŷi

· 100% (5.21)

where yi denotes the ith predicted traffic flow value, and ŷi indicates the

corresponding groundtruth flow value.

5.2.2 Hyperparameters

For a deep learning model, there are two categories of hyperparameters:

model hyperparameters and optimizer hyperparameters. In this study, we

choose to use 5 hyperparameters that have heavy impact on the performance

of the LSTM regression model. These hyperparameters are: sequence length,

hidden unit, maximum epoch, batch size and learning rate. Sequence length

and hidden unit are model hyperparameters applicable to determine the

structure of LSTM network. The maximum epoch, batch size and learning

rate are optimizer hyperparameters that have effects on the training process.

More details of these hyperparameters include:

• Sequence length: it refers to the input length of LSTM network,

corresponding to m in Eq. (5.7). An appropriate input length can
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capture the most critical information of the data while excluding

unnecessary input data;

• Hidden unit: it stands for the number of units in the hidden layer of

LSTM network. An over-set number of hidden units may significantly

increase the time cost for training and sometimes the process may fail

to converge (Ling 1995);

• Maximum epoch: it refers to the maximum number of training epochs

that completely pass through the training dataset. A small maximum

epoch might result in underfitting, whereas a larger maximum epoch

takes more time for training. While training the LSTM network with

a maximum setting of epoch, we choose the best model at the epoch

that the lowest MAPE is witnessed on the validation set;

• Batch size: a large batch size can speed up the network training process.

However, a large batch size requires a huge memory. On the other hand,

a small batch size may cause the process difficult to converge (Dai &

Zhu 2018);

• Learning rate: the learning rate is an important hyperparameter for

SGD algorithm. It controls how fast the learning model is adapt to the

problem. Too large learning rate can lead the model to a suboptimal

solution, while a learning with too small value may make the training

process become permanently stuck.

5.2.3 Parameter Settings

Hyperparameter Ranges

As required, we have 5 hyperparameters for optimization (i.e, D = 5).

In order to enhance the practical applicability of our proposed method in

practice, we avoid using parameter tuning technique because it is a time-

consuming procedure, especially for tuning a deep learning model on large-

scale data. Instead, we assign higher upper bounds to all hyperparameters
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Table 5.8: Lower and upper bounds of each hyperparameter
Sequence Length Hidden Unit Maximum Epoch Batch Size Learning Rate

bL1 bU1 bL2 bU2 bL3 bU3 bL4 bU4 bL5 bU5

1 50 1 75 10 1000 10 500 0.001 0.1

to test the searching ability of DE algorithm. Thus, the ranges of “sequence

length” and “hidden unit” are all set as [1, 50] and [1, 75], respectively. The

bounds of the “maximum epoch” are all set as [10, 1000]. All “batch size” are

generated between 10 and 500. Note that “batch size” below 10 are suggested

to be avoided in order to speed up the training process. Hyperparameter of

“leaning rate” for all prediction tasks are produced in the interval [0.001, 0.1].

Table 5.8 gives the bounds of each hyperparameter.

Other Settings

Other important parameters for PDE-LSTM are set as:

(P, FL, FU , Cr, n,maxG) = (40, 0.5, 1, 0.7, 3, 10) for all of the datasets.

5.2.4 Prediction Performances Comparison

The prediction results on the 3 test sets by our proposed PDE-LSTM model

are shown in Table S1, Table S2 and Table S3 in Supplementary file 5. Its

mean accuracy (1-MAPE) is exceeding 93% for the four tasks on all of the

test datasets (two thirds of them exceeding 94%). These results suggest that

the forecasting accuracy obtained by PDE-LSTM is high, stable and robust.

Comparisons between the groundtruth flow and the predicted flow on the

15-min prediction task are presented in Fig. 5.3. The predicted traffic flow

and trends by PDE-LSTM closely match with the groundtruth for all of the

test sets.

We also compare the performance of our proposed PDE-LSTM model

with state-of-art baseline models in the field of traffic flow forecasting,

including seasonal ARIMA (SARIMA), Gaussian process (GP), back-

propagation neural network (BPNN) (Dougherty & Cobbett 1997), SVR
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Figure 5.3: Comparison between the predicted flow and the groundtruth flow

on the 15-min prediction task. The predicted traffic flow and trends (denoted

by red dash line) by our PDE-LSTM closely match with the groundtruth

traffic flow (denoted by blue solid line) for all of the test sets.

86



Chapter 5. Differential Evolution based LSTM Recurrent Neural Network
for Traffic Flow Prediction

(Yang et al. 2010) and deep-learning-based models like DNN (Qu et al. 2019),

DBN (Huang et al. 2013, Huang et al. 2014), SAE (Lv et al. 2014), RNN,

traditional LSTM (Tian & Pan 2015) and the LSTM under a random search

strategy (denoted by LSTM (RSS)). To evaluate the effects of differential

evolution algorithm on LSTM model, random search in a fixed set (Huang

et al. 2014) is employed for LSTM (RSS) to make comparisons with PDE-

LSTM. The fixed set is formed by the same hyperparameters of sequence

length (i.e., i = 1), hidden unit (i.e., i = 2), maximum epoch (i.e., i = 3),

batch size (i.e., i = 4) and learning rate (i.e., i = 5), ranging from 5, 5,

100, 50 and 0.001 to the corresponding upper bounds (bUi
in PDE-LSTM as

shown in table 5.8) with 5, 5, 100, 50 and 0.01 as gaps, respectively.

PDE-LSTM achieved the best performance in terms of MAE, RMSE or

MAPE for all the prediction tasks on each dataset (see Table S1, Table S2

and Table S3 in Supplementary file 5). Methods such as SAE, DBN, RNN

and LSTM exhibit a quite competitive accuracy to each other. SVR performs

well in short-term predictions (e.g., 15-min prediction). However, its errors

surge when conducting longer-term predictions (e.g., 30-min, 45-min and

60-min predictions). Overall, the deep learning models can achieve better

performances than the other methods. The LSTM-based models can improve

the accuracy in comparison with the other deep learning models. One reason

is probably that LSTM is capable of learning long-term interdependencies

(Liu, Shahroudy, Xu, Kot & Wang 2017), which makes it perform even better

when modelling sequential time series data of traffic flow.

5.2.5 Residual and Correlation Analyses

Taking the 15-min prediction for example, Fig. 5.4 demonstrates the plot and

distribution of residual errors on the test sets by PDE-LSTM. The residual

errors are calculated using Eq. (5.22).

ei = ŷi − yi (5.22)
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where ŷi is the ith groundtruth flow and yi is the corresponding predicted

flow. For the residuals in the M50-N dataset, 86.81% of them are distributed

between [−50, 50), and further 98.62% are covered by the interval of

[−100, 100) (see Fig. 5.4 (d)). For the M1-N dataset, 81.37% of the residuals

are located between [−50, 50), and 97.09% of them are spanned between

[−100, 100) (see Fig. 5.4 (e)). In a similar pattern, 70.71% and 92.09% of

them are in [−50, 50) and [−100, 100), respectively, for the residuals in the

I280-S dataset (see Fig. 5.4 (f)).

Fig. S1 in Supplementary file 6 presents correlation plots between the

groundtruth flow and the predicted flow by PDE-LSTM on the I280-S

dataset (i.e., subfigures (a) (g) (m) and (s)). These correlations are also

compared with those competitive and well-performed baselines, like LSTM

(RSS), DBN, SVR, BPNN and SAE (see other subfigures in Fig. S1 of

Supplementary file 6). The comparison shows that PDE-LSTM can cover

more points inside the blue-lined area and less points outside for all of the

four prediction tasks. This is another perspective to demonstrate that PDE-

LSTM outperformed the baseline models.

5.2.6 Runtime Comparison

Parallel computing and early stopping strategy are implemented for PDE-

LSTM to speed up the optimization process. The time costs by PDE-LSTM

for all the prediction tasks are listed in Table 5.9. Overall, the required

time for optimization increases with the increase of training data volume.

The 15-min prediction takes the most amount of time (it was trained on the

largest volume of training data). The computational costs by LSTM under

the random search strategy (i.e., LSTM (RSS)) are also listed in Table 5.9.

The optimization time for LSTM (RSS) may vary greatly even for the same

prediction task (e.g., 19.78h vs 8.13h vs 6.97h for the 30-min prediction).

One reason is probably that a large sequence length (or hidden units) or a

small batch size are derived during the tuning phase. Overall, PDE-LSTM

outperforms LSTM (RSS) in most of these prediction tasks in terms of time
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efficiency. Even in the cases that PDE-LSTM takes more running time, the

time costs by these two models have no significant differences (e.g., 9.93h vs

8.13h and 7.50h vs 6.97h in the 30-min prediction task).

Table 5.9: Computational time cost comparison

Dataset Model
Optimization Time Cost (h)

15-min 30-min 45-min 60-min

M50-N
LSTM (RSS) 17.97 19.78 11.03 9.57

PDE-LSTM 11.02 5.77 5.35 2.42

M1-N
LSTM (RSS) 20.68 8.13 7.47 10.25

PDE-LSTM 16.25 9.93 3.28 3.30

I280-S
LSTM (RSS) 22.25 6.97 7.62 12.38

PDE-LSTM 12.83 7.50 4.63 3.17

Notes : Our experiments were run on the server with 2.2GHz

Intel Xeon Gold CPU 6238R with 26 cores enabled.

5.3 Summary

In this chapter, we developed a deep learning approach for urban traffic

flow prediction. Unlike adopting traditional grid search or random search

strategies, we use a differential evolution algorithm to determine the globally

optimized hyperparameters for an LSTM network. Parallel computing is

implemented in the approach to accelerate the optimization process. Our

proposed method is named PDE-LSTM (parallel-differential-evolution-based

LSTM). Experimental results evaluating on 3 real-world datasets show that

PDE-LSTM has achieved at least 93% accuracies for all of the prediction

tasks, and it has better performances than the state-of-the-art baseline

methods: seasonal ARIMA, GP, BPNN, SVR, DNN, DBN, SAE, RNN and

LSTM.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have mainly addressed three research problems on traffic

time series data analysis, namely taxi destination prediction, anomalous

traffic patterns detection and urban traffic flow prediction. The proposed

methods for solving these problems are detailed in Chapters 3-5. In the

following content, the results and findings of each research problem are

summarized.

We proposed a data-driven ensemble learning approach for the taxi

destination prediction problem, which incorporates the advantages of SVR

and DBN models for dealing with different segments of the trajectories. A

novel data embedding technique named CFE was applied in deep learning

model. We evaluated the individual and overall prediction performances

and made comparisons with baselines of SVR, DBN, ANN, kNN and naive

Bayes. From the experimental results on two real-world taxi GPS trajectory

datasets collected from two independent urban cities, we demonstrated that

our ensemble learning approach performs better than other models in terms

of the overall performance. In general, it can get more accurate predictions,

when the taxi is getting closer to the drop-off location. Experiments also

showed the effectiveness of our proposed CFE technique in deep learning.
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We developed novel methods for online and offline detections of

anomalous traffic patterns from bus trajectory datasets. Our methods have

explored deep learning ideas to extract novel features and the methods

can make good visualization of the features as well. Based on the spatial

and temporal characteristics of the anomalies, we have termed class A

anomaly and class B anomaly to better address the discrepancy issues

between these diversified anomalous patterns. The key idea behind our

algorithms is to use the Boxplot rule or the nearest neighborhood for different

detection tasks of anomalous patterns. Our methods are able to conduct

insights analysis on the locations of anomalies as well as on the traffic

influences to the road caused by the corresponding anomalies, after the

visualized color trajectories are fused with GIS map to generate a color

trajectory map. We also developed an online detection method extending

from the offline method for a real-time anomalous traffic patterns detection.

Comprehensive experiments on three real-world bus route datasets confirmed

the effectiveness and superiority of our deep feature extraction method and

anomaly detection approaches while comparing with the baseline methods

PCA, RP, SSAE, one-class SVM, binary SVM, LSTM, HDBSCAN and kNN.

The thesis presented an improved deep learning approach for urban traffic

flow prediction. The key idea is to use a differential evolution algorithm to

determine globally optimized hyperparameters for an LSTM network, and the

parameter search is implemented by parallel computing and early stopping to

accelerate the optimization process. This search strategy for hyperparameter

optimization is advanced to grid search or random search commonly adopted

by other deep learning models. Our method is named PDE-LSTM (parallel-

differential-evolution-based LSTM). The proposed PDE-LSTM model was

evaluated on three real-world flow datasets to confirm its superior prediction

performance in comparison with the baseline methods of seasonal ARIMA,

GP, BPNN, SVR, DNN, DBN, SAE, RNN and LSTM. PDE-LSTM has

achieved at least 93% accuracy for all of the prediction tasks. This result is

expected, as an LSTM-based model with optimized hyperparameters is more
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capable of learning sequential features than other deep learning models.

6.2 Future Work

In addition to the encouraging results and findings, there are still some

problems as well as challenges need to be addressed in the future work.

Firstly, for the problem of taxi destination prediction, we have constructed

a classifier based on a simple lazy learning algorithm kNN to estimate the

current segment of the whole trajectory. Although the kNN classifier can

achieve a high overall accuracy on large-scale data, it delivered unsatisfactory

performances when the percentage of the whole trajectory is around 20%,

30% or 40%. It would be interesting to investigate other promising

methods, such as the state-of-the-art deep learning methods, to improve

the generalization ability of classifier for providing a more accurate result.

Furthermore, prediction of the arrival time of taxi would be also of great

significance for this problem.

Secondly, the proposed online anomaly detection method leads a

relatively high false alarm rate when tested on some datasets. One reason is

probably that we chose the most similar color trajectory from the training set

as the reference to construct a new color trajectory. Under the circumstances,

it might be not robust to get a color trajectory that follows a similar pattern

with the original trajectory. In this case, we will focus on developing a

more effective and reliable method to measure the similarity between two

color trajectories. Besides, we will explore the possibility of transferring our

proposed methods to other trajectory data sources, such as the city-wide

taxis or trains trajectory data.

Thirdly, the proposed PDE-LSTM model is designed for processing

continuous variables, however, some discrete variables in LSTM network

such as the loss function, the normalization function and time features

embedding cannot be optimized directly via the proposed model. As future

work, we will investigate how to make our proposed algorithm adapt to

93



Chapter 6. Conclusion and Future Work

discrete hyperparameters optimization. On the other hand, exploring other

kinds of optimization methods in this problem and making comparisons with

differential evolution will also be the next stage of this research.
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Appendix: List of

Supplementary Files

The supplementary file list and the corresponding download links

name chapter description link

Supplementary file 1 3 supplementary tables for chapter 3 link

Supplementary file 2 4 supplementary tables for chapter 4 link

Supplementary file 3 4 supplementary figures for chapter 4 link

Supplementary file 4 4 data and code for chapter 4 link

Supplementary file 5 5 supplementary tables for chapter 5 link

Supplementary file 6 5 supplementary figures for chapter 5 link

Supplementary file 7 5 data and code for chapter 5 link

Notes : If there are any issues with the links, please visit

https://github.com/Xiaocai-Zhang/Thesis backup to download the

above supplementary tables and figures.
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Appendix B

Appendix: List of

Abbreviations

The following list is neither exhaustive nor exclusive, but may be helpful.

ITS Intelligent transportation systems

GPS Global positioning system

LBSs Location-based services

SVR Support vector regression

RGB Red-green-blue

GIS Geographic information systems

HMM Hidden Markov chain model

PCA Principal component analysis

SVM Support vector machine

kNN k -nearest neighbour

RNN Recurrent neural network
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LSTM Long short-term memory

ARIMA Auto-regressive integrated moving average

VARMA Vector auto-regressive moving average

ES Exponential smoothing

NN Neural network

FNN Fuzzy neural network

SAE Stacked autoencoder

DBN Deep belief network

DNN Deep neural network

CNN Convolutional neural network

GMM Gaussian mixture model

BCM Bayesian combination method

ELM Ensemble learning model

CFE Circular fuzzy embedding

MAE Mean absolute error

RMSE Root mean square error

AMAE Average mean absolute error

ARMSE Average root mean square error

RBF Radial basis function

EV Electric vehicle

ANN Artificial neural network
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NB Naive Bayes

One-Hot-E One-hot embedding

API Application programming interface

DSAE Deep sparse autoencoder

CT Color trajectory

CTM Color trajectory map

KL Kullback-Leibler

Acc Accuracy

DR Detection rate

FAR False alarm rate

ROC Receiver operating characteristic

AUC Area under the ROC curve

TP True positive

TN True negative

FP False positive

FN False negative

AMSD Averaged moving standard deviation

SUV Sport utility vehicle

RP Random projection

SSAE Single sparse autoencoder

OneSVM One-class support vector machine
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BiSVM Binary SVM

DE Differential evolution

SGD Stochastic gradient decent

MAPE Mean absolute percentage error

TII Transport infrastructure Ireland

PeMS Performance measurement system

GP Gaussian process

BPNN Back-propagation neural network

RSS Random search strategy
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