Analysis of the embodied carbon emissions flows in China: applying a network perspective to sectors, provinces, and carbon communities within the Chinese economy

Li Huang

A thesis submitted to

University of Technology Sydney, Institute for Sustainable Futures in fulfilment of the requirements of the degree of

Doctor of Philosophy

May 2020

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Li Huang declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Institute for Sustainable Futures at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree at any other academic institution except as fully acknowledged within the text. This thesis is the result of a Collaborative Doctoral Research Degree program with Shanghai University.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature of Student: Signature removed prior to publication.

Date: May 26, 2020

Acknowledgements

After almost four years of learning, researching and writing, I have finally come to this moment of writing my acknowledgements. My eyes are bursting with tears as I start to write this part... I am indebted to so many people for completing this journey.

First and foremost, I would like to express the deepest appreciation to my supervisor panel and the external examiner. They are Dr Scott Kelly, Prof. Damien Giurco, Prof. Kangjuan Lyu, and Dr Xunpeng Shi. I may not be the best PhD student, but I have had the best PhD supervisory panel that any PhD student would have dreamed of having.

I am so lucky to have had Dr Scott Kelly as my principal supervisor. His door was always open to me, and he always knew when to give me freedom and when to 'push'. With the freedom he provided, I had the opportunity to learn a wide range of qualitative and quantitative research methods and focus on my own research interest. With the 'push', I got the papers published and presented our research at the UTS 3-min thesis contest. His detailed and patient guidance from topic picking to method selecting, from academic writing to data analysis, assured and encouraged me to keep on going. Moreover, Scott's warm words during the difficult times always cheered me up and let me feel appreciated.

Prof. Damien Giurco is another wonderful person accompanying me on this journey. Before I started this PhD, I was a good learner, but not ready to be a good researcher. His words inspired me for such a transition. The high level of guidance, rich resources provided, and recognition from such a prestigious professor gave me a lot of confidence to stick to the journey. In addition, Damien was a role model for me to follow, as a professor, a leader and a family member.

I am also indebted to Professor Kangjuan Lyu, who encouraged me to apply to this Dual PhD program and patiently supported me during the whole journey. Apart from constructive academic advice, Kangjuan also has provided generous opportunities and resources to help me build my academic career.

Sincere gratitude also goes to Dr Xunpeng Shi. Through seminars, supervisions and examination, Xunpeng always provided me with critical and thought-provoking suggestions and valuable research opportunities.

I also would like to thank UTS, Shanghai University and the China scholarship council for giving me this opportunity to pursue a PhD from the Dual PhD Degree program between UTS and Shanghai University. This research was conducted under the co-supervision between these two universities. The collaborative research has provided the basis to undertake these two PhD degrees from these two universities. It must be noted that the research questions are set and approached differently and are presented in different styles to meet the separate and independent requirements of the two universities. In addition, I'd like to thank the China Scholar Council (CSC) for awarding me a scholarship to come to UTS and the UTS-CSC for awarding me the international research scholarship and dual degree top-up scholarship. Owing to these scholarships I was relieved from financial pressure and could focus on my research.

Acknowledgement also goes to collaborators, colleagues, and friends. I am very much indebted to my colleagues and friends at ISF and UTS, who together provided a very supportive research environment. In particular, I would like to thank Dr Zhifu Mi for his support on research data and advice on modelling and model construction, Dr Mingming Cheng and Dr Guangwu Chen for sharing research ideas and tips to be a successful researcher, Dr Jeremy Kohlitz and Dr Laure-Elise Ruoso for sitting next to me in years offering much advice beneficial to my life and study, Dr Xuan Lu for providing modelling techniques counselling, Rui Wang, Wanxin Chen, Dr Jianxiu Shen and Wendy Wang for their cheerful and intimate company through the difficult times. I am also grateful to John Revington for his professional proofreading service.

Last but not least, I would like to thank my family. During this PhD journey, my family also went through a dramatic change. We had the most joyful moment when I had my first baby. We also had the most heart-wrenching moment when my mum had a severe stroke. But we are together as a wonderful team, supporting, surviving and finally making it. I am so lucky and proud to have you behind me at all times!

THESIS FORMAT STATEMENT

This thesis takes the format of thesis by compilation. It is structured as a single manuscript that comprises a combination of three chapters and two published papers.

The paper *a systematic review of empirical methods for modelling sectoral carbon emissions in China* published in the *Journal of Cleaner Production* is directly used in Chapter 2 to provide a literature review of the research field.

The paper *carbon communities and hotspots for carbon emissions reduction in China* is published in the journal *Sustainablity* and is directly used in Chapter 3 for proposing a theoretical model and empirical analysis.

STATEMENT OF CONTRIBUTIONS TO THE PAPERS

CONTAINED IN THE THESIS

Statement of Contributions to the Papers contained in this thesis

The following list summarizes Li Huang's particular contributions to the joint papers directly included in this thesis.

Paper	Li's Contribution
Huang, L., Kelly, S., Lv, K., & Giurco, D. (2019).	Overall 90 %Conceptualization and formal
A systematic review of empirical methods for modelling sectoral carbon emissions in China.	analysis 95%
Journal of Cleaner Production, 215, 1382–1401.	Methodology 90%
https://doi.org/10.3390/su11195508	Data collection 100%
This paper is directly used in Chapter 2.	Writing-original draft 100%
Huang, L., Kelly, S., Lu, X., Lv, K., Shi, X., &	Overall 90%
Giurco, D. (2019). Carbon communities and hotspots for carbon emissions reduction in China	Conceptualization and formal analysis 95%
Sustainability, 11(19), 5508.	Methodology 85%
https://doi.org/10.1016/j.jclepro.2019.01.058	Data collection 100%
This paper is directly used in Chapter 3.	Writing-original draft 100%

Declaration

Li Huang's percent contributions to the above two papers have been endorsed by all the authors. Permission to include the papers into the thesis has also been granted by all the authors.

For the above two papers, Li Huang completed the original draft writing and analysis independently. Other authors contribute to the papers by having supervision or consultation meetings to improve the paper quality

Li Huang	Production Note: Signature removed prior to publication.	Kangjuan Lv	Production Note: Signature removed prior to publication.
Scott Kelly	Production Note: Signature removed prior to publication.	Xunpeng Shi	Production Note: Signature removed prior to publication.
Damien Giurco	Production Note: Signature removed prior to publication.	Xuan Lu	Production Note: Signature removed prior to publication.

Two working paper arises from this thesis

Huang, L., Kelly, S., Lv, K., Xuan L., & Giurco, D. (2020). The structural roles of sectors and their contributions to carbon emissions in China: A complex network perspective.

Lu, X., Kelly, S., **Huang, L.*** (2020). Evaluating Systemic Credit Risk in China Between the Banking Sector and the Real Economy. submitted

Abstract

With China's commitment to achieve peak emissions by 2030, emissions from different sectors of the economy are being examined. China's current carbon emissions mitigation research focus mainly on the two ends of the industrial supply chain: production and consumption. Most of the intermediate industries between these two ends are presently being overlooked. Research into the ways in which carbon emissions are transferred between sectors can provide a theoretical basis and evidence to identify the key industries and communities to achieve effective emissions mitigation.

This research combines input-output modelling and network analysis to track and examine the transfer of embodied carbon emissions between sectors and regions in China. It develops an embodied carbon emission transfer network model for such a task. In addition, empirical studies are conducted to examine the emissions transfer in China from 2007 to 2012. Network analysis is applied to clarify transmission pathways from macro, meso and micro perspectives. The role played by the structure of sectors and carbon communities are studied using a hierarchical linear model.

Network analysis metrics are used to prioritise which sectors to focus on to reduce future carbon emissions. Sectors with high out-degree, such as the electricity sector, and sectors with high in-degree, such as the construction sector, can act as a focal point for enhancing carbon emissions reduction performance. Sectors with high betweenness, such as the metallurgy sector, are shown to be hubs of the emission network, and can work as leverage points for cutting carbon-intensive inputs and hence reduce total carbon emissions along industrial supply chains.

The identification of carbon communities within which sectors engage in intensive carbon emissions exchange can help provincial governments make decisions about where they can collaborate to obtain synergistic outcomes in reducing carbon emissions. Sectors within the same community, such as Shanghai-Zhejiang community, can strengthen their cooperation to achieve greater mitigation efficiency. Additionally, for communities which have comparatively low within-community carbon flows, such as Shanxi community, the focus should be on external connections outside the community.

'One community – one policy' is proposed for the carbon emissions mitigation work. A sector's emissions are affected both by its node level and community level structures. Therefore, to reduce the carbon emissions, the sector and its community should be considered together to achieve a synergy. In addition, the increasing size and density of carbon communities due to industrial agglomeration can have a restraining effect on the growth of sectoral carbon emissions.

Keywords: carbon emissions; industry; sector; complex network; input-output analysis; structural characteristics.

Table of Contents

Chapter 1 Introduction	1
1.1 Background	1
1.2 Research aim and research questions	4
1.3 Significance of the research	5
1.4 Research method	6
1.4.1 Bibliometric analysis and knowledge mapping	6
1.4.2 The hybrid model incorporating input-output analysis and net	twork
analysis	7
1.4.3 Statistical analysis	9
1.5 Key terms	9
1.6 Organisation of the thesis	13
References	13
Chapter 2 Literature Review	18
Abstract	19
2.1 Introduction	21
2.2 Method	23
2.2.1 Search strategy and selection of papers	23
2.2.2 Methods used for bibliometric analysis and knowledge mapping	ing25
2.3 Review of methods	27
2.3.1 Environmentally-extended input-output analysis (EE-IOA)	27
2.3.2 Index decomposition analysis	
2.3.3 Econometrics	29
2.3.4 Carbon emission control efficiency evaluation	31
2.3.5 Simulation and other methods	
2.4 Bibliometric analysis	
2.5 Knowledge mapping through CiteSpace	
2.6. Discussion	
2.6.1 Critique of methods	57
2.6.2 Emerging trends and gaps for method usage in CSCE field	68
2.7 Conclusions and recommendations	
References	

	in China	87
Abstract		
3.1 Intro	duction	
3.2 Data	r	91
3.3 Meth	nod	93
3.3.	1. Network Construction of 2012 Embodied Sectoral Carbon Emis	sions .95
3.3.	2. Two-Step Reduction of the Carbon Network	97
3.3.	3. Community Detection in the Carbon Network	98
3.3	4. Position Measurement of Sectors in the Carbon Network	100
3.4. Resi	Its and Discussions	101
3.4.	1. Overview of the 2012 Embodied Carbon Emission Network of G	China101
3.4.	2. Position of Sub-Sectors and Sectors in the 2012 Embodied	l Carbon
	Emission Network	104
3.4.	3. Community of the 2012 Embodied Carbon Emission Network	112
3.4.	4. Position of Sectors in Carbon Communities	120
3.5 Conc	clusions and Policy Implications	121
Appendi:	x A	125
Referenc	es	137
Chapter 4	The Contribution of Carbon Transfer Network Structure to	Sectors'
	Carbon Emissions	140
4.1 Intro	duction	141
4.2 Rese	arch Data	141
4.3 Rese	arch method	142
4.3.	1 Statistical model	143
4.3.	2 Dependent variables	145
4.3.	3 Independent variable	150
4.3.	4 Other control variables	151
4.4 Mod	el preparation, results and discussion	152
4.4.	1 Model setting	152
4.4.	2 Descriptive statistics and exploratory analysis of main variables.	155
4.4.	3 Necessity analysis of the use of a hierarchical linear model	160
4.4.	4 Results and discussion	161
4.5 Conc	clusions	

Referen	References	
Chapter 5	Final Discussion and conclusion	
5.1 Intro	oduction	
5.2 Find	dings, conclusion and policy suggestions	
5.3 Con	tributions to the body of knowledge	
5.4 Lim	itations and suggestions for future research	
Referen	ces	

List of Tables

Table 1.1 Summary of key terms 10
Table 2.1 Search terms for the representative methods 24
Table 2.2 Percentages of published CSCE journal papers using each method40
Table 2.3 Summary of the largest 10 clusters 45
Table 2.4 Methods used by the top 20 citing papers for each cluster
Table 2.5 Top 10 papers with the strongest citation burst 56
Table 2.6 Comparison of the main methods in CSCE field
Table 3.1 Comparison between cluster detection method and community detection
method
Table 3.2 Network metrics in the context of carbon emissions transfer network 101
Table 3.3 Summary of out-degree and out-strength metrics
Table 3.4 Summary of in-degree and in-strength metrics 107
Table 3.5 Summary of betweenness metrics
Table 3.6 Communities of the 2012 carbon emissions transfer network114
Table 3.7 Comparison between region division and community division119
Table 4.1 Descriptive statistics of the network structure variables of China's carbon
emissions transfer network (original values)157
Table 4.2 Partial correlation coefficient matrix of structural characteristics of China's
carbon emissions transfer network (original variables)158
Table 4.3 Partial correlation coefficient matrix of topological characteristics of China's
carbon emissions transfer network160
Table 4.4 ICC (1), ICC (2) and $r_{wg(j)}$ estimates of sector-level carbon emissions transfer
network structure variables
Table 4.5 The relationship between the network structure variables of China's carbon
emissions transfer network and the carbon emissions
Table 5.1 Raw network and reduced network comparison
Table 5.2 The relationship between the network structure variables of China's carbon emissions transfer network and the carbon emissions (one year lag behind)177
Table 5.3 The relationship between the network structure variables of China's carbon

List of Figures

Figure 1.1 Outline of thesis14
Figure 2.1 The conceptual frame work of the co-citation network
Figure 2.2 The general structure of a DEA model adapted from (Zhou et al., 2008)32
Figure 2.3 Publications and citations of papers published from 1997 to 2017 40
Figure 2.4 Publication per method from 1997 to 2017
Figure 2.5 Citation per method from 1997 to 2017
Figure 2.6 A landscape view of the co-citation network from 1997 to 2017
Figure 2.7 The timeline of co-citation clusters from 1997 to 2017
Figure 3.1 Visualization of the 2012 carbon emissions transfer network103
Figure 3.2 A five-sector example illustrating the importance of high out-degree
sector
Figure 3.3 A five-sector example illustrating the importance of high in-degree
sector
Figure 3.4 A simple economy example illustrating the importance of high-betweenness
sectors
Figure 3.5 Visualization of the embodied carbon emission flows among communities in
2012
Figure 3.6 Comparison between region division and community division119
Figure 4.1 Multi-level data structure
Figure 4.2 Probability density distribution of total carbon emissions in 2007, 2010 and
2012 (logarithmic transformation)
Figure 4.3 Probability density distribution of total carbon emissions in 2007, 2010 and
2012
Figure 4.4 Probability density of sector carbon emissions for each year-community 156