UNIVERSITY OF TECHNOLOGY SYDNEY Faculty of Engineering and Information Technology

MODELLING AND SIMULATION OF HANDOVER IN LIGHT FIDELITY (LI-FI) NETWORK

by

Hieu Danh Huynh

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Master of Engineering (Research)

Sydney, Australia

12/2020

Certificate of Original Authorship

I, Hieu Danh HUYNH declare that this thesis, is submitted in fulfilment of the requirements for the award of Master of Engineering (Research), in the School of Electrical and Data Engineering, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institutions.

This research is supported by the Australian Government Research Training Program.

Date: 12/12/2020

Acknowledgements

I would like to express my special gratitude to my principal supervisor, A/Prof. Dr. Kumbesan SANDRASEGARAN, for the patience, generous support and immense knowledge he afforded me throughout this study.

A special thanks to my parents who were always supporting and encouraging me with their best wishes.

I would also like to thank to Department of Education and Training for giving me financial support in form of a Research Training Program Scholarship (RTPS) scholarship.

> Hieu Danh HUYNH Sydney, Australia, 2020.

List of Publications

The content of this thesis is based on the following papers that have been published or accepted to peer-reviewed conferences.

Conference Papers

- C-1. H. D. Huynh, K. Sandrasegaran and S. C. Lam 2018, 'Modelling and Simulation of Handover in Light Fidelity (Li-Fi) Network', *TENCON 2018 2018 IEEE Region 10 Conference*, pp. 1307-12.
- C-2. H. D. Huynh and K. S. Sandrasegaran 2019, 'Coverage Performance of Light Fidelity (Li-Fi) Network', 2019 25th Asia-Pacific Conference on Communications (APCC), pp. 361-66.

Contents

C	Certificate			ii
A	Acknowledgments			iii
L	List of Publications			iv
L	List of Figures			viii
L	List of Tables			xii
А	Abbreviation			xiv
Ν	Notation			xvii
A	Abstract			xix
1 I	Introduction			1
1	.1 Research Significance		 •	1
1	.2 Research Contributions		 •	2
1	.3 Research Aims and Objectives		 •	2
1	.4 Research Methods		 •	3
1	.5 Thesis Layout		 •	5
1	.6 Summary		 •	5
2 H	Background			6
2	2.1 Definition		 •	6
2	2.2 History		 •	7
2	.3 Evolution		 	8

	2.4	System Operation	9
	2.5	System Architecture	11
	2.6	Advantages and Disadvantages of Li-Fi	12
	2.7	Li-Fi Attocell Network (LAC)	13
	2.8	Downlink Transmission	15
	2.9	Handover Definition	16
	2.10) Conclusion	17
3	Li	terature Review	19
	3.1	Handover Algorithm	19
	3.2	Load Balancing (LB)	21
	3.3	Multiple Beams	27
	3.4	Intercell Interference	28
	3.5	Conclusion	30
4	\mathbf{M}	odelling and Simulation	32
	4.1	Li-Fi Channel	32
	4.2	Geometric Orientation Model	34
	4.3	Simulation Model	36
	4.4	Single Beam LEDs Model	37
		4.4.1 Single Beam LEDs Li-Fi System Configuration	37
		4.4.2 Single Beam LEDs Li-Fi System Parameters	39
		 4.4.2 Single Beam LEDs Li-Fi System Parameters	39 39
	4.5	4.4.2 Single Beam LEDs Li-Fi System Parameters	39 39 41
	4.5	 4.4.2 Single Beam LEDs Li-Fi System Parameters	39 39 41 41
	4.5	 4.4.2 Single Beam LEDs Li-Fi System Parameters	 39 39 41 41 43

		4.5.3 Multiple Beams LEDs Li-Fi System Flowchart	44
	4.6	Conclusion	46
5	\mathbf{Pe}	rformance Analysis of Single Beam LEDs Model	47
	5.1	Channel Gain Assessment	47
	5.2	Maximum-channel-gain-based Handover Decision	52
	5.3	Nearest-AP-based Handover Decision	64
	5.4	Handover Assessment	74
	5.5	Conclusion	76
6	Pe	rformance Analysis of Multiple Beams LEDs Model	77
	6.1	Channel Gain Assessment	77
	6.2	Beam Angle Assessment	85
	6.3	Conclusion	88
7	Co	onclusions, Limitations and Future Research	89
	7.1	Summary	89
	7.2	Conclusions	92
	7.3	Limitations and Future Research	92
	Bi	bliography	93

List of Figures

1.1	Research Method Diagram	4
2.1	The total frequency bandwidth of the electromagnetic spectrum [11].	7
2.2	Li-Fi network operation.	9
2.3	The layout and the package of Li-Fi transmitter chip [11]	10
2.4	The layout and the package of Li-Fi receiver chip $[11]$	11
2.5	The main building blocks of Li-Fi and its application areas [11]	11
2.6	The concept of Li-Fi attocell network [2]	14
2.7	Key components in a LAC downlink transmission system [2]	15
3.1	Li-Fi and Wi-Fi backhaul system model [25]	22
3.2	Schematic diagram of the system model [26]	23
3.3	Schematic diagram of an indoor hybrid Li-Fi and Wi-Fi network [27].	24
3.4	Simulation Scenario of Li-Fi/RF Hybrid Network [28]	25
3.5	Paradigm of an indoor hybrid Li-Fi/RF network [29]	26
3.6	Modelling of device orientation based on rotations in three axes [30]	26
3.7	The layout of a 7-cell attocell network [31]	27
3.8	Hexagonal cellular layout of seven attocells [32]	28
3.9	Three-dimensional Voronoi cell formation in the Li-Fi network [34]. $% \left[\left(1-\frac{1}{2}\right) \right) =0$.	29

4.1	Lambertian emission pattern for mode n [36]	32
4.2	Modelling of the receiver's orientation based on rotations around	
	three axes [3]. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	35
4.3	UE mobility modelling $[36, 38]$	37
4.4	The simulated optical network system [36]	38
4.5	Single Beam LEDs Li-Fi System Flowchart	40
4.6	Multiple beams LED optical network system [38]	41
4.7	The layout of the optical scenario with an angle diversity optical	
	transmitter [38]	42
4.8	The layout of a 4-element angle diversity transmitter [38]	42
4.9	Multiple Beams LEDs Li-Fi System Flowchart	45
5.1	Channel gain of four APs when $\alpha = 0, \beta = 0$ and $\gamma = 0$ [36]	47
5.2	Channel gain of four APs when $\alpha = 0, \beta = 45^0$ and $\gamma = 0^0$ [36]	49
5.3	Channel gain of four APs when $\alpha = 0, \beta = 0$ and $\gamma = 45^0$ [36]	50
5.4	Channel gain of four APs when $\alpha = 0, \beta = 80^0$ and $\gamma = 0$ [36]	51
5.5	Channel gain of four APs when $\alpha = 0, \beta = 0$ and $\gamma = 80^0$ [36]	52
5.6	Maximum-channel-gain-based signal when $\alpha = 0, \beta = 0$ and $\gamma = 0$	
	[36]	53
5.7	Maximum-channel-gain-based interference when $\alpha = 0, \beta = 0$ and γ	
	$= 0 [36]. \ldots \ldots$	54
5.8	Maximum-channel-gain-based signal when $\alpha = 0, \ \beta = 45^0$ and $\gamma =$	
	0 [36]	56
5.9	Maximum-channel-gain-based interference when $\alpha = 0, \beta = 45^0$ and	
	$\gamma = 0 [36]. \ldots \ldots$	57

ix

5.10	Maximum-channel-gain-based signal when $\alpha = 0, \beta = 0$ and $\gamma = 45^{0}$ [36].	58
5.11	Maximum-channel-gain-based interference when $\alpha = 0, \beta = 0$ and $\gamma = 45^{0}$ [36]	59
5.12	Maximum-channel-gain-based signal when $\alpha = 0$, $\beta = 80^{0}$ and $\gamma = 0$ [36].	60
5.13	Maximum-channel-gain-based interference when $\alpha = 0, \beta = 80^{0}$ and $\gamma = 0$ [36]	61
5.14	Maximum-channel-gain-based signal when $\alpha = 0, \beta = 0$ and $\gamma = 80^{0}$ [36].	62
5.15	Maximum-channel-gain-based interference when $\alpha = 0, \beta = 0$ and $\gamma = 80^{0}$ [36]	62
5.16	Nearest-AP-based signal when $\alpha = 0, \beta = 0$ and $\gamma = 0$ [36]	64
5.17	Nearest-AP-based interference when $\alpha = 0, \beta = 0$ and $\gamma = 0$ [36]	65
5.18	Nearest-AP-based signal when $\alpha = 0, \beta = 45^{\circ}$ and $\gamma = 0$ [36]	67
5.19	Nearest-AP-based interference when $\alpha=0,\beta=45^0$ and $\gamma=0$ [36].	67
5.20	Nearest-AP-based signal when $\alpha = 0, \beta = 0$ and $\gamma = 45^{0}$ [36]	69
5.21	Nearest-AP-based interference when $\alpha=0,\beta=0$ and $\gamma=45^0$ [36].	69
5.22	Nearest-AP-based signal when $\alpha = 0, \beta = 80^{0}$ and $\gamma = 0$ [36]	71
5.23	Nearest-AP-based interference when $\alpha=0,\beta=80^0$ and $\gamma=0$ [36].	71
5.24	Nearest-AP-based signal when $\alpha = 0, \beta = 0$ and $\gamma = 80^0$ [36]	72
5.25	Nearest-AP-based interference when $\alpha=0,\beta=0$ and $\gamma=80^0$ [36].	73

6.2	Channel gain of multiple beams Li-Fi network (3D plot) when the beam angle is 0^0 [38]	79
6.3	Channel gain of multiple beams Li-Fi network (2D plot) when the beam angle is 15^0 [38]	80
6.4	Channel gain of multiple beams Li-Fi network (3D plot) when the beam angle is 15^0 [38]	80
6.5	Channel gain of multiple beams Li-Fi network (2D plot) when the beam angle is 30^0 [38]	81
6.6	Channel gain of multiple beams Li-Fi network (3D plot) when the beam angle is 30^0 [38]	81
6.7	Channel gain of multiple beams Li-Fi network (2D plot) when the beam angle is 45^0 [38]	82
6.8	Channel gain of multiple beams Li-Fi network (3D plot) when the beam angle is 45^0 [38]	82
6.9	Channel gain of multiple beams Li-Fi network (2D plot) when the beam angle is 60^0 [38]	83
6.10	Channel gain of multiple beams Li-Fi network (3D plot) when the beam angle is 60^0 [38]	83
6.11	Channel gain of multiple beams Li-Fi network (2D plot) when the beam angle is 75^0 [38]	84
6.12	Channel gain of multiple beams Li-Fi network (3D plot) when the beam angle is 75^0 [38]	84
6.13	Probability Density Function (PDF) when changing beam angles [38].	88

List of Tables

4.1	Simulation single beam LED set up [36]	39
4.2	Simulation parameters in multiple beams environment [38]	43
5.1	Channel gain statistics of maximum-channel-gain-based handover decision when $\alpha = 0, \beta = 0$ and $\gamma = 0$ [36]	55
5.2	The overall system performance of maximum-channel-gain-based handover decision when $\alpha = 0$, $\beta = 0$ and $\gamma = 0$ [36]	55
5.3	Channel gain statistics of maximum-channel-gain-based handover decision when $\alpha = 0$, $\beta = 45^{\circ}$ and $\gamma = 0$ [36]	57
5.4	The overall system performance of maximum-channel-gain-based handover $\alpha = 0$, $\beta = 45^{0}$ and $\gamma = 0$ [36]	58
5.5	Channel gain statistics of maximum-channel-gain-based handover decision when $\alpha = 0, \beta = 0$ and $\gamma = 45^{0}$ [36].	59
5.6	Channel gain statistics of maximum-channel-gain-based handover decision when $\alpha = 0, \beta = 80^{\circ}$ and $\gamma = 0$ [36].	61
5.7	Channel gain statistics of maximum-channel-gain-based handover decision when $\alpha = 0$, $\beta = 0$ and $\gamma = 80^{0}$ [36]	63
5.8	Channel gain statistics of nearest-AP-based handover decision when $\alpha = 0, \beta = 0$ and $\gamma = 0$ [36]	66
5.9	The overall system performance when $\alpha=0,\beta=0$ and $\gamma=0$ [36].	66
5.10	Channel gain statistics of nearest-AP-based handover decision when $\alpha = 0, \beta = 45^{0}$ and $\gamma = 0$ [36]	68

5.11	Overall system performance when $\alpha = 0, \ \beta = 45^0$ and $\gamma = 0$ [36]	68
5.12	Channel gain statistics of nearest-AP-based handover decision when $\alpha = 0, \beta = 0$ and $\gamma = 45^{0}$ [36]	70
5.13	Channel gain statistics of nearest-AP-based handover decision when $\alpha = 0, \beta = 80^{0}$ and $\gamma = 0$ [36]	72
5.14	Channel gain statistics of nearest-AP-based handover decision when $\alpha = 0, \beta = 0$ and $\gamma = 80^{0}$ [36]	73
5.15	Handover comparison between two handover decisions when $\alpha = 0$, $\beta = 0$ and $\gamma = 0$ [36]	75
5.16	Handover comparison between two handover decisions when $\alpha = 0$, $\beta = 45^{\circ}$ and $\gamma = 0$ [36]	76
6.1	Beam angle values [38]	77
6.2	Percentage of each Signal to Interference Ratio (SIR) range for each beam angle set [38]	86
6.3	Signal to Interference Ratio (SIR) of UE (User Equipment) when changing beam angles [38]	87

Abbreviation

- ADC Analogue to Digital Converter
- ADR Angle Diversity Receiver
- AF Amplify-and-Forward
- AP Access Point
- APS Access Point Selection
- BS Base Station
- CCI Co-Channel Interference
- CCU Central Controller Unit
- CSI Channel State Information
- DAC Digital to Analogue Converter
- DF Decode-and-Forward
- DD Direct Detection
- EGC Equal Gain Combining
- FL Fuzzy Logic
- FOV Field of View
- FR Frequency Reuse
- FSO Free-Space Optical
- IB In-Band
- IM Intensity Modulation
- IR Infrared
- IrDA Infrared Data Association
- JOA Joint Optimization Algorithm

LAC	Light Fidelity Attocell
LB	Load Balancing
LD	Laser Diode
LED	Light Emitting Diode
Li-Fi	Light Fidelity
LOS	Line of Sight
MAC	Medium Access Control
MIMO	Multiple-Input Multiple-Output
MRC	Maximum Ratio Combining
OBS	Optical Base Station
OPC	Optimum Combining
OWC	Optical Wireless Communications
PD	Photodiode
PDF	Probability Density Function
PF	Proportional Fairness
PPP	Poisson Point Process
QoS	Quality of Service
RF	Radio Frequency
RGB	Red, Green and Blue
SBC	Select Best Combining
SD	Standard Deviation
SDMA	Space-division Multiple Access
SIR	Signal to Interference Ratio
SINR	Signal to Interference plus Noise Ratio
SNR	Signal to Noise Ratio
SOA	Separate Optimization Algorithm
SSL	Solid State Lighting

SSS	Signal Strength Strategy
TDMA	Time Division Multiple Access
UE	User Equipment
VL	Visible Light
VLC	Visible Light Communication
Wi-Fi	Wireless Fidelity

Nomenclature and Notation

Notation	Definition
A	the effective photodetector area
d	the Euclidean distance between AP_i and UE
g	the receiver's optical concentrator gain - gain used to concentrate the received signal of the photodiode detector
$H_{LOS}(0)$	LOS channel gain
I(0)	the Lambertian irradiance at the centre of the beam in W/m^2
m	the refractive index
n	order of Lambertian irradiance
n _{rx}	the normal vectors of the receiver plane
n_{tx}	the normal vectors of the transmitter plane
N	the number of users
N_i	users are served by each AP
N^{AP}	the number of AP
R_0	Lambertian radiant intensity - the angular distribution of the radiation intensity pattern
$r_{q,j}$	the rate of j^{th} user when being served by q^{th} AP
$r_1^T, r_2^T,, r_Q^T$	rate vectors
Т	timeslot T
α	the receiver orientation along the z-axis
β	the receiver orientation along the x-axis

γ	the receiver orientation along the y-axis
ϕ	function angle of irradiance - angle between the trans-
	mitter - receiver distance and the vertical axis (from the
	transmitter)
$\phi_{1/2}$	the half power angle
φ	angle of incidence - angle between the transmitter - re-
	ceiver distance and the vertical axis (from the receiver)
$arphi_c$	the field of view of the photodiode receiver
	the Euclidean norm operators
$ R _{\infty}$	the maximum absolute row sum of the matrix R
"' ''	the inner product

ABSTRACT

MODELLING AND SIMULATION OF HANDOVER IN LIGHT FIDELITY (LI-FI) NETWORK

by

Hieu Danh Huynh

With the demand for faster and secure communication technologies to make our lives better, innovative technologies like Li-Fi (Light Fidelity) are becoming increasingly popular. Li-Fi utilizes Light Emitting Diodes (LEDs) for accomplishing data transmission. This research concentrates around handover algorithms and performance evaluation of a Li-Fi network. Accordingly, the work is outlined in two parts.

Firstly, this research work evaluates the performance of handover algorithms in Li-Fi network. Two handover algorithms are investigated namely, the closest-AP-based algorithm (AP: Access Point) and maximum-channel-gain-based algorithm. Monte Carlo simulations using MATLAB tools are conducted to evaluate handover algorithms and show the impact of User Equipment (UE)'s rotation and movement on handover performance.

Secondly, this research evaluates the performance of a Li-Fi network with multiple beams LEDs on moving UEs. The network performance is investigated in the case of the maximum channel gain. The simulated results show that when the beam angle is 30°, the Li-Fi system has the best performance in terms of channel gain (hence throughput) by considering its mean and standard deviation (SD) values.