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ABSTRACT

MODELLING AND SIMULATION OF HANDOVER IN
LIGHT FIDELITY (LI-FI) NETWORK

by
Hieu Danh Huynh

With the demand for faster and secure communication technologies to make our lives
better, innovative technologies like Li-Fi (Light Fidelity) are becoming increasingly
popular. Li-Fi utilizes Light Emitting Diodes (LEDs) for accomplishing data trans-
mission. This research concentrates around handover algorithms and performance

evaluation of a Li-Fi network. Accordingly, the work is outlined in two parts.

Firstly, this research work evaluates the performance of handover algorithms in
Li-Fi network. Two handover algorithms are investigated namely, the closest-AP-
based algorithm (AP: Access Point) and maximum-channel-gain-based algorithm.
Monte Carlo simulations using MATLAB tools are conducted to evaluate handover
algorithms and show the impact of User Equipment (UE)’s rotation and movement

on handover performance.

Secondly, this research evaluates the performance of a Li-Fi network with multiple
beams LEDs on moving UEs. The network performance is investigated in the case of
the maximum channel gain. The simulated results show that when the beam angle
is 30°, the Li-Fi system has the best performance in terms of channel gain (hence

throughput) by considering its mean and standard deviation (SD) values.



	Title Page
	Certificate of Original Authorship
	Acknowledgements
	List of Publications
	Contents
	List of Figures
	List of Tables
	Abbreviation
	Nomenclature and Notation
	Abstract

