Causal Inference Using Bayesian Deep Learning

by

Adi Lin

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

Australian Artificial Intelligence Institute (AAII), School of Computer Science Faculty of Engineering and Information Technology (FEIT) University of Technology Sydney August, 2020

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed prior to publication.

Signature of Candidate

To my family.

ACKNOWLEDGEMENTS

As I write these acknowledgements, it seems as though it was only yesterday when I arrived in Sydney. I would like to take this opportunity to express my deepest gratitude to the people who have inspired and helped me over the last few years.

First and foremost, I would like to express my sincere gratitude to my supervisors Prof. Jie Lu, Prof. Guangquan Zhang and Dr Junyu Xuan for their continuous encouragement and guidance throughout my PhD candidature. I really appreciate the opportunity to undertake research in the Australian Artificial Intelligence Institute (AAII, formerly the Centre for Artificial Intelligence (CAI)), in the Faculty of Engineering and Information Technology (FEIT) at the University of Technology Sydney.

My principal supervisor, Prof. Lu, always allowed me sufficient freedom to explore fundamental knowledge and the unknown, enabling me to investigate the world of causality. I will always be grateful for her patience. Prof. Lu provided many research suggestions from a wide perspective, and she also taught me how to present a professional paper and gave me constructive feedback and suggestions. I am also grateful for having had Prof. Zhang as my co-supervisor. Prof. Zhang shared his experience in research and life and taught me how to write critical reviews for technical articles. Dr Junyu Xuan engaged in profitable discussions with me and gave me detailed assistance in relation to research directions. I learned a great deal about research methods from Dr Xuan, and I have greatly benefited from his scientific writing skills.

I am also indebted to the other members of my committee, Dr Haiyan Lu and Dr Ling Chen, who kindly contributed their time to help me become a better researcher. I really appreciated the discussions on causal inference with Dr Fujin Zhu. I would like to express my thanks for the support from the administrative management team, Camila Cremonese, Robyn Barden, Lily Qian and Janet Stack. I would like to thank all the other students and staff from the AAII and FEIT who have helped and influenced me. I would like to particularly mention the talented researchers of the Decision Systems & e-Service Intelligence Lab, Daokun Zhang, Mingming Gong, Yuangang Pan, Pingbo Pan, and others who are not listed here.

I kindly thank Ms Jemima Moore and Ms Robyn Barden for polishing the language used in my publications and thesis. I have learnt much about academic writing from them.

I am grateful to the Australian Artificial Intelligence Institute (AAII) at the University of Technology Sydney. This study was supported by the Australian Research Council's Discovery project.

Finally and most importantly, I would like to express my heartfelt appreciation and gratitude to my parents and my sisters. During this long journey, they always believed in and supported me. I dedicate this thesis to them. I especially thank my sisters, who took care of my parents during my study and research.

> Adi Lin Sydney, Australia, 2020

ABSTRACT

Causal inference from observational data has wide application in precision medicine, economics, social sciences, computational advertising, and so on. Causal inference from observational data aims to estimate causal effects when controlled experimentation is not feasible. Causal inference is the process of identifying how a change in a cause leads to a change in the outcome. In today's data–driven world, causal inference has become a key part of the evaluation process for many purposes, such as examining the effects of medicine or the impact of an economic policy on society.

Confounding bias occurring in observational data may result in causal inference leading a wrong result. Confounding bias is the fundamental bias of causal inference from observational data. Under some specific assumptions, it is possible to estimate the causal effect from observational data with confounding bias. Although the existing literature contains some excellent models, there is room to improve their representation power and their ability to capture complex causal relationships. Furthermore, there is a research gap between deep Bayesian models and causal inference from observational data under confounding bias. In order to narrow the gap, this thesis provides algorithms to estimate the causal effects from observational data in some cases when a set of confounders exists. This result can provide effective decision support for policymakers in various areas.

This thesis recovers causal inference from observational data with observed confounding bias, unobserved confounding bias and time-dependent confounding bias. First, this thesis considers two kinds of causal inference problems when observed confounding bias exists. This thesis proposes a model with separate Gaussian processes to estimate the Conditional Average Causal Effect on the Treated (CACT). Each separate Gaussian process is proposed to estimate the average causal effect for the treated group and the control group. In order to estimate various kinds of causal effects, such as average, conditional average, and average treated, this thesis focuses on Bayesian generative models. A prior called Causal DP is proposed, and a generative model called CDP based on the prior is developed to estimate causal effects. The prior captures the complex relationships between covariates, treatments, and outcomes in observational data. The model is a Bayesian nonparametric generative model and is not based on the assumption of any parametric distribution. The proposed generative model performs well with missing covariates and does not suffer from overfitting. Second, this thesis proposes methods to resolve the challenges when unobserved confounding bias exists. The instrumental variable methods resolve this problem by introducing a variable that is correlated with the treatment and affects the outcome only through the treatment. This thesis presents a one-stage approach to jointly estimate the treatment distribution and the outcome generating function through a designed deep neural network structure. The one-stage method is different to existing instrumental variable methods requiring two stages to separately estimate the conditional treatment distribution and the outcome generating function. This study is the first to merge the two stages to leverage the outcome to the treatment distribution estimation. Finally, this thesis estimates the causal effect for **D**ynamic **T**reatment **R**egimes (DTRs) where time-dependent confounding bias exists. Censoring and time-dependent confounding under DTRs bring a challenge in the observational data has a declining sample size but an increasing feature dimension over time. This thesis combines outcome regression models with treatment models for high-dimensional features using uncensored subjects that are potentially small-sample. And this thesis fits deep Bayesian models for outcome regression models to unveil complex relationships between confounders,

treatments, and outcomes.

This thesis evaluates all the methods proposed in this thesis using synthetic, semisynthetic or real-world data. Comparative experiments against several state-of-theart methods show that the proposed methods generally perform better than or are comparative with their competitors. Given the key importance of causal inference in both theory and real-world applications, we argue that the models and algorithms proposed in this thesis contribute to both scientific research and practical applications.

Dissertation directed by

Dist. Prof. Jie Lu, Associated Prof. Guangquan Zhang, and Dr. Junyu Xuan Australian Artificial Intelligence Institute, School of Computer Science, FEIT

TABLE OF CONTENT

A	CKN(WLEDGEMENTS	iv
A	BSTR	АСТ	vi
Ll	IST O	FIGURES	xii
Ll	IST O	TABLES	xiii
1	Intr	duction	1
	1.1	Background	1
	1.2	Research Questions and Objectives	4
	1.3	Research Contributions	7
	1.4	Research Significance and Innovation	8
		1.4.1 Theoretical Significance	8
		1.4.2 Practical Significance	9
		1.4.3 Research Innovation	9
	1.5	Thesis Structure	10
	1.6	Publications Related to this Thesis	12
2	Lite	ature Review	15
	2.1	Causal Models	15
		2.1.1 Causal Graphical Models and Structural Equation Models	15
		2.1.2 Potential Outcome Models	19
	2.2	Causal Effects	22
	2.3	Causal Inference: Methods for Data without Unobserved Confounders	24
		2.3.1 Existing Methods for Causal Inference	24
		2.3.2 Machine Learning Tools to Realize Causal Inference Methods	29
		2.3.3 Bayesian Nonparametric Learning	30
	2.4	Causal Inference: Instrumental Variable Methods	32
	2.5	Causal Inference: Dynamic Causal Effect	32

TABLE OF CONTENT

3	Cau	sal Inference with Gaussian Processes to Support the Decision to Ter-	
	mina	ate or Retain an Existing Program	35
	3.1	Introduction	35
	3.2	Problem Setup	37
	3.3	Gaussian Processes for Estimating Causal Effects	38
	3.4	Experiments	40
	3.5	Summary	41
4		Causal Dirichlet Mixture Model for Causal Inference from Observa-	
	tiona	al Data	43
	4.1	Introduction	43
	4.2	Preliminaries	46
		4.2.1 Causal Inference	46
		4.2.2 Dirichlet Process	48
	4.3	Causal Dirichlet Process	50
		4.3.1 Model Description	53
		4.3.2 Model Inference	56
		4.3.3 Estimation of Causal Effects	64
		4.3.4 Imputation of Missing Covariates	67
	4.4	Experiments	67
		4.4.1 Convergence Evaluation	68
		4.4.2 Violation Evaluation: Robustness	69
		4.4.3 Ability to Cope with Low Propensity Scores	71
		4.4.4 Evaluation with Varying Covariate Dimensions	73
		4.4.5 Time Complexity Evaluation	75
		4.4.6 Causal Effect Estimation with Synthetic Data	76
		4.4.7 Causal Effect Estimation with Real-world Data	80
	4.5	Summary	83
	4.5	Summary	05
5		e-stage Deep Instrumental Variable Method for Causal Inference from ervational Data	86
	5.1		86
	5.2	Preliminaries	89
	5.2	5.2.1 Causal inference	89
			89 90
	5 2		
	5.3	One-stage Instrumental Variable Method	94
	5.4	Experiments	97
		5.4.1 Data simulation	98
		5.4.2 Basic experimental setting	99
		5.4.3 Evaluation on hyperparameter sensitivity	99
		5.4.4 Evaluation on propensity scores	00

		5.4.5 Evaluation on effectiveness of one stage	101
		5.4.6 Evaluation on complex relationship modeling	106
	5.5	Summary	
6	Dee	o Bayesian Estimation for Dynamic Treatment Regimes with Long	<u>-</u>
		Follow-Up	108
	6.1	Introduction	108
	6.2	Preliminaries	
		6.2.1 Dynamic Causal Effects	112
		6.2.2 Deep Kernel Learning	115
	6.3	Deep Bayesian Model	118
	6.4	Experiments	120
		6.4.1 Data simulation	120
		6.4.2 Experimental setting	123
		6.4.3 Evaluation of a long follow-up time and declining sample size	123
		6.4.4 Evaluation of dynamic causal effect with synthetic data	126
	6.5	Summary	132
7	Con	lusion and Future Directions	134
	7.1	Conclusion	134
	7.2	Future Directions	136
Ар	pend	ces	138
BI	BLIC	GRAPHY	139

LIST OF FIGURES

1.1	Thesis structure	10
2.1	The joint density function is factorized under the Markovian condition	16
4.1	Diagram of the three-layer clusters	52
4.2 4.3	Comparison between the CDP model and the EDP model The log likelihood of the data for post burn-in iterations of the Gibbs	54
4.3	sampler	69
4.4	Results are from simulated data for robustness evaluation of local in-	70
4.5	dependence of covariates within clusters	72
	by different values of intercept	73
4.6	Results are from simulated data for evaluation on the effect from the dimension of covariates	74
4.7	Running time from simulated examples with different data scale	76
5.1	Graphical model for standard causal inference	89
5.2	The causal graphical model of smoking affecting general health	91
5.3	One-stage neural network architecture	95
5.4	Sensitivity analysis for different dropout rates	100
5.5	Experimental analysis for the influence of different batch size values .	101
5.6	Experimental analysis for the influence of different propensity scores .	102
5.7	The performance of DeepIV using different values of samples drawn	
	from the associated probability distribution	102
6.1	Causal graph of time-dependent confounding	
6.2	The sample size declines as the study progresses	
6.3	The experimental performance for "350s"	
6.4	The experimental performance for "never treat"	129

LIST OF TABLES

Example of Potential Outcomes
Potential outcomes
Results on the IHDP dataset
Key Notations
Results from simulation for violation for local generalized linear mod-
els for outcome
The comparative methods
Results from simulated data Sim- 1: binary outcome
Results from simulated data Sim-7 to Sim-9: continuous outcome 81
Dehejia—Wahha Sample
Results from NSW Data Files (Dehejia-Wahha Sample) 84
The performance (RMSE) of estimating the outcome generating func-
tion from simulation data
The experimental analysis for different hyperparameters
The experimental results of simulation data that treatments and out-
comes share some relationships with observed confounders 105
The experimental performance of neural networks applied with dif-
ferent hyperparameters
The performance of estimating the outcome generating function from
simulation data \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 107
Declined sample size and increased dimensional features
The comparative methods
The experimental results for 9 time points
The experimental results for y time points i i i i i i i i i i i i i i i i i i i