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ABSTRACT

Causal inference from observational data has wide application in precision medicine,

economics, social sciences, computational advertising, and so on. Causal inference

from observational data aims to estimate causal effects when controlled experimenta-

tion is not feasible. Causal inference is the process of identifying how a change in a

cause leads to a change in the outcome. In today’s data–driven world, causal inference

has become a key part of the evaluation process for many purposes, such as examining

the effects of medicine or the impact of an economic policy on society.

Confounding bias occurring in observational data may result in causal inference

leading a wrong result. Confounding bias is the fundamental bias of causal inference

from observational data. Under some specific assumptions, it is possible to estimate

the causal effect from observational data with confounding bias. Although the existing

literature contains some excellent models, there is room to improve their representa-

tion power and their ability to capture complex causal relationships. Furthermore,

there is a research gap between deep Bayesian models and causal inference from

observational data under confounding bias. In order to narrow the gap, this thesis pro-

vides algorithms to estimate the causal effects from observational data in some cases

when a set of confounders exists. This result can provide effective decision support

for policymakers in various areas.

This thesis recovers causal inference from observational data with observed con-

founding bias, unobserved confounding bias and time-dependent confounding bias.

First, this thesis considers two kinds of causal inference problems when observed
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confounding bias exists. This thesis proposes a model with separate Gaussian pro-

cesses to estimate the Conditional Average Causal Effect on the Treated (CACT).

Each separate Gaussian process is proposed to estimate the average causal effect for

the treated group and the control group. In order to estimate various kinds of causal ef-

fects, such as average, conditional average, and average treated, this thesis focuses on

Bayesian generative models. A prior called Causal DP is proposed, and a generative

model called CDP based on the prior is developed to estimate causal effects. The prior

captures the complex relationships between covariates, treatments, and outcomes in

observational data. The model is a Bayesian nonparametric generative model and is

not based on the assumption of any parametric distribution. The proposed generative

model performs well with missing covariates and does not suffer from overfitting.

Second, this thesis proposes methods to resolve the challenges when unobserved con-

founding bias exists. The instrumental variable methods resolve this problem by in-

troducing a variable that is correlated with the treatment and affects the outcome only

through the treatment. This thesis presents a one-stage approach to jointly estimate the

treatment distribution and the outcome generating function through a designed deep

neural network structure. The one-stage method is different to existing instrumental

variable methods requiring two stages to separately estimate the conditional treatment

distribution and the outcome generating function. This study is the first to merge the

two stages to leverage the outcome to the treatment distribution estimation. Finally,

this thesis estimates the causal effect for Dynamic Treatment Regimes (DTRs) where

time-dependent confounding bias exists. Censoring and time-dependent confounding

under DTRs bring a challenge in the observational data has a declining sample size

but an increasing feature dimension over time. This thesis combines outcome regres-

sion models with treatment models for high-dimensional features using uncensored

subjects that are potentially small-sample. And this thesis fits deep Bayesian models

for outcome regression models to unveil complex relationships between confounders,
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treatments, and outcomes.

This thesis evaluates all the methods proposed in this thesis using synthetic, semi-

synthetic or real-world data. Comparative experiments against several state-of-the-

art methods show that the proposed methods generally perform better than or are

comparative with their competitors. Given the key importance of causal inference

in both theory and real-world applications, we argue that the models and algorithms

proposed in this thesis contribute to both scientific research and practical applications.

Dissertation directed by

Dist. Prof. Jie Lu, Associated Prof. Guangquan Zhang, and Dr. Junyu Xuan

Australian Artificial Intelligence Institute, School of Computer Science, FEIT
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