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ABSTRACT

to diverse domains, including transportation, urban optimization, community
detection, climate science, etc. How to feed these large-scale data into a network-
wide prediction model for the intelligent transportation system is a promising problem.
Currently, even though a number of traffic prediction models have been proposed to
enhance the travel services and improve operational performance of transit authorities,
limited methods can be applied to forecast the network-wide traffic conditions afterward.
This thesis focuses on three problems in our predictive task. Firstly, the spatio-
temporal data usually suffers from the missing data problem. Those missing values
hide the useful information that may result in a distorted data analysis. In Chapter 3,
a spatial missing data imputation method is proposed for multi-view urban statistical
data. To address this problem, our method exploits an improved spatial multi-kernel
clustering approach to guiding the imputation process cooperating with an adaptive-
weight non-negative matrix factorization strategy. Secondly, in the crowd flow prediction,
most existing techniques focus solely on forecasting entrance and exit flows of metro
stations that do not provide enough useful knowledge for traffic management. In practical
applications, managers desperately want to solve the problem of getting the potential
passenger distributions to help authorities improve transport services, termed as crowd
flow distribution (CFD) forecasts. Therefore, to improve the quality of transportation
services, three spatiotemporal models are designed in Chapter 4 to effectively address the
network-wide CFD prediction problem based on the online latent space (OLS) strategy.
Our models take into account the various trending patterns and climate influences, as
well as the inherent similarities among different stations that are able to predict both
CFD and entrance and exit flows precisely. Lastly, with the development of urbanization,
a real-world demand from transportation managers is to construct a new metro station
in one city area that never planned before. Authorities are interested in the picture of
the future volume of commuters before constructing a new station, and estimate how
it would affect other areas. In this thesis, the specific problem is termed as potential
passenger flow (PPF) prediction. Chapter 5 proposes a multi-view localized correlation
learning method to provide a solution for the PPF prediction that can learn localized
correlations via a multi-view learning process.

L Large volumes of spatio-temporal data are increasingly collected and benefited
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