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ABSTRACT

LLarge volumes of spatio-temporal data are increasingly collected and benefited
to diverse domains, including transportation, urban optimization, community
detection, climate science, etc. How to feed these large-scale data into a network-

wide prediction model for the intelligent transportation system is a promising problem.
Currently, even though a number of traffic prediction models have been proposed to
enhance the travel services and improve operational performance of transit authorities,
limited methods can be applied to forecast the network-wide traffic conditions afterward.

This thesis focuses on three problems in our predictive task. Firstly, the spatio-
temporal data usually suffers from the missing data problem. Those missing values
hide the useful information that may result in a distorted data analysis. In Chapter 3,
a spatial missing data imputation method is proposed for multi-view urban statistical
data. To address this problem, our method exploits an improved spatial multi-kernel
clustering approach to guiding the imputation process cooperating with an adaptive-
weight non-negative matrix factorization strategy. Secondly, in the crowd flow prediction,
most existing techniques focus solely on forecasting entrance and exit flows of metro
stations that do not provide enough useful knowledge for traffic management. In practical
applications, managers desperately want to solve the problem of getting the potential
passenger distributions to help authorities improve transport services, termed as crowd
flow distribution (CFD) forecasts. Therefore, to improve the quality of transportation
services, three spatiotemporal models are designed in Chapter 4 to effectively address the
network-wide CFD prediction problem based on the online latent space (OLS) strategy.
Our models take into account the various trending patterns and climate influences, as
well as the inherent similarities among different stations that are able to predict both
CFD and entrance and exit flows precisely. Lastly, with the development of urbanization,
a real-world demand from transportation managers is to construct a new metro station
in one city area that never planned before. Authorities are interested in the picture of
the future volume of commuters before constructing a new station, and estimate how
it would affect other areas. In this thesis, the specific problem is termed as potential
passenger flow (PPF) prediction. Chapter 5 proposes a multi-view localized correlation
learning method to provide a solution for the PPF prediction that can learn localized
correlations via a multi-view learning process.
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1
INTRODUCTION

1.1 Background

U rbanization’s rapid progress has modernized many people’s lives but also engen-

dered huge issues in transportation system, such as complex route planning,

traffic congestion, traffic safety, etc. Intelligent transportation systems (ITS),

being the important part of the urban computing, has gained extensive attentions to

address such issue to improve the quality of living conditions. Nowadays, large-scale

computing infrastructures and sensing technologies have produced a large volumes of

spatio-temporal data in urban spaces ((e.g., traffic flow data, statistical data, and geo-

graphical data) [103]. These spatio-temporal data imply rich knowledge about a city that

can help address above challenges in transportation system when used effectively and

correctly. For instance, we can predict the crowd flow in a city’s subway network through

analyzing the city-wide commuting data. This investigation betters the formulation of

city’s transportation planning [105]. Another example is to forecast the areas’ potential

crowd flow. Transportation managers are interested in the picture of the future volume of

commuters before building a new station, and estimate how would it affect other regions.

For this specific issue, a potential solution is to mine correlations between regional

statistical data and other spatio-temporal data sources, such as traffic flow and points

of interest (POIs) [104]. The goal of this thesis is to study three main problems in the

network-wide spatiotemporal predictive learning task for the intelligent transportation

system.
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CHAPTER 1. INTRODUCTION

First, to utilize the spatio-temporal data effectively, one big issue is the missing

data problem. For the traffic data, there are numerous sensors collecting traffic data

in road, but they distribute unevenly and probably change over time. In the extreme

case, no data is generated in some roads during a time interval. Besides, malfunctions of

sensors and human factors also lead to the problem of missing data. As a result, traffic

data can be of high sparsity, which makes missing data completion to be an important

step in traffic prediction. For another urban spatial data, e.g., urban statistical data, in

some places, they are hard to be entirely acquired due to document defacement, error

recordings, and statistician misplay. Such missing data hide useful information which

may cause distorted results for further urban development analysis. This thesis will

focus on addressing the missing data problem in urban statistical data because there

exists several specified challenges in this domain, and to the best of our knowledge,

none of existing methods can solve this problem well. To date, a number of missing data

imputation approaches can be applied in urban statistical data, e.g., mean-filling (MF),

k-nearest-neighbor (KNN) filling [57], and collaborative filtering based methods [62].

Most of them, however, have been proposed to focus on the single view problem. Besides,

although several spatiotemporal methods can infer the missing information based on the

knowledge from both spatial and temporal domains [13, 92, 106], they do not perform

well when the temporal information missed. This problem will be discussed and resolved

in Chapter 3.

Second, similar as the traffic prediction problem, forecasting crowd flows in a city

trains network is strategically significant because of the benefits it brings to many

metro management and urban optimization services, such as congestion avoidance, route

scheduling, public safety, and so forth [55, 103]. It is very important for public safety:

for instance, streamed people caused a chaotic crowd stampede at the Falls Festival in

Lorne on Victoria’s south-west coast, leaved up to 80 people injured; and 36 people died

in a catastrophic stampede at the 2015 New Year’s Eve celebrations in Shanghai [97].

An effective crowd warning and prediction system can effectively prevent people from

such real tragedies by utilizing emergency mechanisms.

Thanks to the transportation smart card ticketing system for travel on public trans-

port, a large amount of transactional data is now available that contains very detailed

information. Based on these useful data, a number of applicable passenger flow predic-

tion models have been proposed to enhance the metro services and improve operational

performance of transit authorities [59, 100]. The existing techniques for addressing

crowd flow prediction problems are mainly based on regression strategies like auto-
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1.2. RESEARCH CHALLENGES

regressive integrated moving averages (ARIMA) [84] or Gaussian processes (GP) [107].

Other strategies, such as neural networks [37, 39, 83], probability trees [36] and wavelet-

SVM [70] have also been proposed as solutions to passenger flow prediction problems.

However, to the best of our knowledge, none of these techniques can be used directly

to predict crowd flows across an entire train network. The details of the network-wide

crowd flow prediction problem are shown in Chapter 4.

Third, with the growth of intelligent transportation systems, passenger flow predic-

tion models concentrate on discovering the volume of crowds and mobility patterns that

best serve people’s daily life [58, 98]. Recent advances in passenger flow prediction are

focusing mainly on next time interval flow conditions with time evolves [22, 68]. If a

brand-new metro station is inserted into the original metro network, existing predictors

have to collect a large amount of latest transactional data to ensure normal operation.

However, a real-world requirement from transportation authorities is that they want to

obtain the potential passenger flows (PPF) of a planned city area in advance (i.e., before

constructing a station in this area). It is significant for the urban traffic development

and transportation management, as it can provide insights for the site selection of sta-

tions and analysis of passenger movement patterns, as well as give the potential crowd

warning. To date, limited studies considered the OD passenger flow prediction problem

[22, 81], and none of existing techniques focus on forecasting PPF across the entire city.

It is a novel problem connecting to the urban development and has been discussed in 5.

1.2 Research Challenges

1.2.1 Spatial Missing Data Imputation

In this thesis, the study has been explored in the missing-data imputation problem for

the Australian Bureau of Statistics (ABS) data, which has some unique challenges:

• Missing temporal information. In the real-world data from ABS, almost all the

missing values in the current year were also missing in the past years, which may be

caused by the region restriction and complicated human-made errors. This violates the

basic assumption of matrix completion [7] that the unobserved entries are sampled

uniformly at random. Thus matrix completion-based approaches may not work in this

case.

• Multi-view problem. The complicated underlying interactions suggest that simply

recovering the missing information without considering the correlations among attributes

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Regional similarity: the property of r1 is similar to the ‘Sydney centre’ because
they are neighboring each other. Although r2 is closer to the park in terms of the physical
distance, the attributes of r2 are more analogous to ‘Sydney centre’ than the park because
they have a similar functional property (business centre).

and multi-modes will end up with a poor performance. For example, the economy view

has strong correlations with the income and population views, so that a high-quality

economy in a region usually goes along with a better income and a larger population;

and a low-level economy in a region has a high probability of being connected with a

lower income and a smaller population.

• Spatial correlation mining problem. As illustrated in Figure 1.1, the statistical data

focusing on fine-grained regions may change over locations significantly and non-linearly.

Therefore, to properly recover the missing information of statistical data, the regional

similarities need to be considered.

1.2.2 Crowd Flow Distribution (CFD) Prediction

In many real-world applications, concentrating solely on entrance and exit flows does

not provide adequate information, managers also need to know potential passenger

distributions, i.e., CFD forecasts. Figure 1.2 illustrates an example CFD prediction.

Figure 4.1(a) presents a predicted snapshot. The model makes a forecast that there are

560 passengers departure from Central station between 4:45 PM and 5:00 PM. Among

them, 310 passengers will arrive at Town Hall, 160 at Strathfield, and 90 at Hurstville,

respectively. Through obtaining the CFD forecasts among all metro stations, transport
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managers can timely forecast irregular flow patterns and make a global regulation to

maintain the normal train scheduled and make a warning for crowd evacuation. Figure

4.1(b) illustrates this situation that when an irregular entrance flow appears in the

Central station, the congestion warning will be transmitted to the all possibly affected

stations (Strathfield and Town Hall). A CFD model can illustrate the crowd flows among

all these stations, which is significant for passenger route planning, train scheduling,

and crowd warning systems. These models could be especially useful for predicting

passenger flows during irregular events, such as train faults, emergencies, and public

events, where passenger flows may suddenly surge over a short time span. With a strong

CFD model, a transport administrator could forecast abnormal flow patterns and plan

crowd evacuations for all affected stations to ensure public safety and/or maintain the

normal train scheduled, as shown in Figure 1.2 (b).

(a) 560 passengers enter at Central between
4:45 to 5:15 pm, and the distribution of this
entrance flows.

(b) A congestion warning for all possibly affected
stations when occurring non-recurrent events.

Figure 1.2: An example of the crowd flow distribution.

To date, limited techniques can be used directly to address the network-wide CFD

prediction problem. Regression-based methods like Gaussian processes (GP) [107] and

auto-regressive integrated moving averages (ARIMA) [84] are proposed to forecast

entrance and exit crowd flows. While other approaches, such as wavelet-SVM [70]

and probability trees [36] have successfully designed address the classical crowd flow

prediction problem, they are hard to implement into the entire metro network. Even

though deep neural networks [83, 96, 97], are able to fix the network-wide crowd flow
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prediction problem, they are sensitive to parameters and incomplete inputs, and require

large training data that are not in line with our task. To summarize, our CFD prediction

problem faces with three intrinsic challenges here:

• High computational complexity. The specific CFD prediction problem requires

getting all potential flows across entire metro stations, which calculates the entrance/exit

flows and CFD simultaneously. Most advanced models like [10, 12, 55, 70, 83], are

already computationally expensive even on a few metro lines. Meanwhile, they require

repeated large off-line training processes that are difficult to be applied in the online

system and network-wide problem.

• Dynamic complexity. The crowd flow changes dynamically which is influenced by

complicating factors, such as time, station similarity and climate conditions.

• Real-time delayed data collection. Considering the online system, when we focus on

entrance CFD prediction, there is a travel time gap between a passenger enters a station

and exits another. These time gaps lead to the online system cannot collect complete

data because there are a large number of passengers still on their journeys. In this

situation, most city-wide traffic flow prediction methods, such as [23, 96–98], fail to solve

our problem because they require the complete data in training and testing processes.

1.2.3 Potential Crowd Flow Prediction

One of the novel problems in transportation system is named potential crowd flow pre-

diction (PPF). In this problem, we aim to discover the latent connections among diverse

domains, i.e., utilize correlations between commuting data and national statistical data

to predict the potential passenger flows in some specified geographic regions where the

subway (or city train) stations have not been built yet. Figure 1.3 illustrates this problem.

In the PPF prediction task, concentrating solely on the entrance and exit potential

flows does not provide adequate information, authorities also desperately want to master

the distribution of predicted PPF, i.e., forecast the number of potential passengers

moving to different destinations. It is utmost important to find how will the new station

affect other areas. For instance, Figure 1.3 illustrates an example of the PPF prediction

problem. A city region is partitioned into nine areas1, six of them have metro stations

(termed as known areas), and three have not constructed yet (termed as target areas).

The right part of Figure 1.3 presents an origin-destination (OD) matrix (each row point

1We use grids for clear and simple illustration, the real partition standard is explained in the Chapter
5.
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Figure 1.3: The example of PPF prediction problem. PPF aims to forecast the passenger
flows of target areas (e.g., a6, a7, a9) across the entire city network.

is the origin area and column points are destinations), e.g., F(a1, a3) = 130 indicates

that there are 130 passengers departure from a1 and are going to the a3. PPF task aims

to make an accurate prediction for the target areas in one period (e.g., rush hours) that

completes the crowd flows between them and known areas.

To date, limited studies considered the OD passenger flow prediction problem [22, 81],

and to the best of our knowledge, none of existing techniques can forecast PPF across the

entire city. It is a novel problem and a real urban developing demand that faces several

major challenges:

• Considering the number of passenger flows and their final destinations simultane-

ously.

• Analogously to the cold-start problem in the recommender system [33], it is hard to

infer the preference of a new user from the known data. In our problem, a new station in

the target area can be similarly regarded as a new user.

• Since the PPF is a spatial-temporal mining problem, spatial and temporal informa-

tion should be taken into account appropriately.
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1.3 Research Contributions

After researching the above challenges, the author has developed corresponding solutions,

which are presented in this thesis. These study contributions are showed as below:

• To handle the multi-view problem with spatial characteristic, we propose a Spa-

tially related Multi-Kernel K-Means (S-MKKM) method to identify the underlying

relationships among multiple views and capture the regional similarities. An

adaptive-weight non-negative matrix factorization approach is proposed to lever-

age the information learned above to tackle the multi-view missing data imputation

problem. Besides, the proposed method also takes the guidance from the single-

view and the real geographic information with KNN strategy into consideration. A

spatial multi-view missing data imputation method for urban statistical data based

on non-negative matrix factorization is proposed, called SMV-NMF. SMV-NMF

does not rely on the temporal information but achieves a great performance only

using spatial information (Chapter 3).

• Our experiments on six real-world datasets verify the effectiveness of our method.

All the empirical results show that the proposed method SMV-NMF outperforms

all the other state-of-the-art approaches. Furthermore, SMV-NMF shows strong

generalizability and can transfer the constructed model from one urban dataset to

another well (Chapter 3).

• The network-wide CFD prediction problem is formulated as a graph network prob-

lem and propose a data-driven forecasting model, called OLS-AO, that combines

current flow trends with historic guidance to address the three inherent challenges

associated with network-wide crowd flow prediction. To further improve the ef-

fectiveness of the model in real-world situations, we designed another extended

OLS model, called OLS-MR, that is able to adapt to sudden changes in crowd flows

(Chapter 4).

• We proposed a dual track model, called OLS-TD, integrates both OLS-AO and OLS-

MR to address a variety of challenging traffic scenarios. Our proposed models are

compared with five available prediction methods in a set of intensive experiments

on a large, real-world Opal Card dataset covering Sydney Trains. The experiments

assess the models’ effectiveness from four perspectives, including: CFD predictions

across the entire network at different timestamps, CFD predictions at major
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stations, comparisons between weekdays and weekends, and comparisons between

peak and non-peak times. The experimental results show that OLS-AO achieved

the best results for the weekend tests, and OLS-TD proved to be more stable and

effective for all weekday tests (Chapter 4).

• We devise a multi-view localized correlation learning model for the PPF prediction

(MLC-PPF for short). To leverage the spatial information, our method first con-

structs a localized similarity matrix which associates with the real geographical

neighbors and regional properties (e.g., business or residential regions). The intu-

ition behind this strategy is from the First Law of Geography [75], i.e. “Everything
is related to everything else, but near things are more related than distant things”.
Second, a novel weighted correlation learning strategy is proposed. At last, to

improve the prediction accuracy and well handle the cold-start challenge, we draw

the side information from urban statistical data, where each area has a multi-view

features to guide the learning process (Chapter 5).

• We show that our PPF method can be transferred to the classic cold-start problem in

the recommender system. It achieves a superior result that gives a new perspective

for relevant tasks. Extensive experiments are conducted on a large real-world

transactional dataset, which shows that our model outperforms other available

algorithms (Chapter 5).

1.4 Thesis Structure

The thesis is structured as follow:

Chapter 2 introduces the current methods for the spatio-temporal data impuation

and transportation prediction. We first discussed the missing data imputation which is a

significant problem when analyzing spatio-temporal data. Second, we group the trans-

portation prediction problem into three categories: time-series models, deep-learning

models and latent-space models.

Chapter 3 briefly reviews the related work for the multi-view spatial missing data

imputation. A spatially related method is proposed in this chapter, which can only use

spatial information to achieve a strong performance. In detail, the method integrates

a spatial multi-kernel clustering method and an adaptive-weight non-negative matrix

factorization (NMF) for solving the multi-view spatially related tasks. The proposed

method is also used to provide complete data for addressing the problem in Chapter 5.
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CHAPTER 1. INTRODUCTION

Figure 1.4: The illustration of the thesis structure.

Chapter 4 briefly reviews current studies on the crowd flow and origin-destination

prediction. Then we propose three online latent space (OLS) models. OLS-AO incorpo-

rates an average optimization strategy that adapts to stable passenger flows. OLS-MR

captures the most recent trends to achieve better performance when sudden changes in

crowd flow occur. The dual track model, OLS-DT, integrates both OLS-AO and OLS-MR

to exploit the strengths of each model in different scenarios and enhance the models‚Äô

applicability to real-world situations. Given a series of CFD snapshots, both models learn

the latent attributes of the train stations and, therefore, are able to capture transition

patterns from one timestamp to the next by combining historic guidance.

Chapter 5 proposes our model on forecasting potential passenger flows. We propose

a multi-view localized correlation learning method. The core idea of our strategy is to

learn the passenger flow correlations between the target areas and their localized areas

with adaptive-weight. To improve the prediction accuracy, other domain knowledge is

involved via a multi-view learning process.

The relationship among Chapters 3, 4, and 5 are illustrated in Figure 1.4. Chapter 6

concludes the thesis and outlines the scope of future work.
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2
LITERATURE SURVEY

To date, spatio-temporal predictive learning methods have been widely used in

the intelligent transportation system, especially in the subway (or city trains)

network. We first discuss the missing data completion for both multi-view spatial

data and the traffic spatio-temporal data. Then we can group the current predictive

learning methods into three categories: time-series models, deep-learning models and

latent-space models. In addition, the current studies on the network-wide crowd predic-

tion problem are introduced at the last.

2.1 Missing Data Completion

2.1.1 Spatial Missing Data Imputation

Due to the challenge discussed in Chapter 1.2.1, we first introduce the imputation

methods related to spatial data. Missing data imputation is a significant task for data

analysis [77]. In the spatially related problem, neighborhood and collaborative filtering

[67, 92] based methods are two kinds of dominant approaches in missing data filling.

Although some classical methods (e.g., zero-filling, mean value filling, regression models)

can be applied to the spatial missing data imputation, they have disadvantages in

nature, i.e, they are not designed for this spatial problem. [11] used the inverse distance

weighting (IDW) method to interpolate the spatial rainfall distribution. [85] utilized

the spatial information as inputs in a residual kriging method to estimate the average
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monthly temperature. Unlike the spatial model, some successful spatio-temporal models

were proposed for use with time stream data [5, 13, 92, 106]. However, they focused on

filling missing entries by considering both spatial and temporal properties, and would not

perform well on the static spatial data without the temporal information. Furthermore,

these discussed methods leveraged the spatial guidance but did not consider the problem

on multi-view datasets.

2.1.2 Multi-view Learning

We discuss the multi-view studies because the missing-data usually contain the multiply

views. Multi-view learning methods involved the diversity of different views that can

jointly optimize functions based on various feature subsets [40, 66]. [88] proposed a

matrix co-factorization based method (MVL-IV) to embed different views into a shared

subspace, such that the incomplete views can be estimated by the information on observed

views. To connect multiple views, MVL-IV assumes that different views have distinct

‘feature’ matrices (i.e., {Hi}d
i=1), but correspond to the same coefficient matrix (i.e., W).

However, it does not exploit the spatial correlations and may suffer from the imbalance

problem, i.e., if there is a substantial missing ratio gap between views, the coefficient

matrix W is mostly learned from the dense view. The proposed method has addressed this

weakness by introducing guidance matrices. Another widely used strategy for solving

the multi-view problem is tensor factorization [65, 86], but this restricts a regular tensor

that requires the number of dimensions per view to be the same. Moreover, multiple

kernel learning with incomplete views [46, 76] only focuses on completing missing

kernels instead of filling missing values. To the best of our knowledge, none of the above

studies considered both spatial and multi-view problems. Hence, Chapter 3 proposes an

effective missing value imputation model for multi-view urban statistical data. There

are numerous sensors collecting traffic data in road, but they distribute unevenly and

probably change over time. In the extreme case, no data is generated in some roads

during a time interval. Besides, malfunctions of sensors and human factors also lead

to the problem of missing data. As a result, traffic data can be of high sparsity, which

makes missing data completion an important step in traffic prediction.

2.1.3 Missing Data Imputation for Spatio-temporal Data

We also discuss other spatio-temporal traffic missing data imputation methods in this

section. Missing data completion aim at filling out the data with estimation value. For a

12



2.1. MISSING DATA COMPLETION

large city network, we are faced with a truth that data is not everywhere, especially in

the real-time system, there may be not enough time to collect complete data.

A naive way is to average the values near missing data. Research by [37] used the

simple average method to impute the missing data. As they said, this was mainly because

the missing ratios for the selected sensors are sufficiently low. However, when faced with

large-scale traffic network, the number of missing data is probably huge, and the average

method cannot be adopted.

Many traffic prediction methods incorporate missing data completion into prediction

steps. [69] dealt with missing data by ‘expanded Bayesian network’. They made use of

the causal relations in traffic network, and constructed the network by replacing the

missing data with its causal variables. The main shortage for this method is that once

the structures and parameters of the Bayesian network is trained, the relative position

and time for missing data is also fixed. This is usually unreal, because data is likely to

be missed at different time and sites. In other words, one model can only handle with

one case of missing data. If we are facing a real traffic network, it is impossible for us to

enumerate every condition and train for each condition a model.

[15] proposed a data completion method by matrix factorization. The Traffic data

were structured as matrix with each entry X i j denotes traffic speed between node i and

node j. Based on the non-negative matrix tri-factorization framework, they got the latent

attribute matrix of nodes and the attribute interaction matrix. By minimising the known

error together with constraint using Laplacian matrix [26], missing data completion was

accomplished by reconstructing data matrix with factor matrices.

Tensor decomposition [32] was used by [1] to complete missing computer network

traffic data. They used a weighted optimization version of CP decomposition to impute

the missing data. [71] improve this method through Tucker decomposition. They got a

comparatively accurate result even when the missing ratio of data was quite high (up to

75%). These methods organised data as a three-way tensor, with day mode, hour mode

and interval mode. [61] used this method to floating car data and get a better coverage of

traffic state. In this paper, data is organised as a three-way tensor of link mode, interval

mode and day mode. Similar method was used in research of [72]. They treated data to

be predicted as missing data, and trained the decomposition model with historical data

as rough prediction. There are two main problems of these tensor-based methods. First,

they can only deal with one road or several road segments at a time, which is not enough

for a citywide traffic network. Second, they did not define a rule for choosing the ranks

for tensor decompositions, but the rank is one of the most crucial parameters for tensor
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decompositions.

[93] develops a spatio-temporal multi-view approach (ST-MVL) to collectively com-

plete missing values in a collection of geo-sensory time series data. It considers that 1)

the temporal correlations between readings at various time spans in the same series and

2) the spatial correlations between different time series.

2.2 Traffic and Crowd Flow Prediction

2.2.1 Time-Series Models

Time-series models treat traffic data as time series. They often build regression models for

targeted subway stations. By training with historical data and get optimized parameters,

we can get predicted future of passenger flow in targeted stations.

ARIMA is a prevailing parametric model in traffic prediction. It can deal with non-

stationary time series such as the traffic flow and entrance/exit crowd flow.

[79] shows a two-layer structure to predict traffic flow of a small road network which

consists of four motorways. The first layer uses Kohonen map and spatial information to

cluster traffic data into four categories, and the second layer predicts traffic conditions

with ARIMA models using same parameters in the same group. This means that if the

road network is bigger and more complicated, the number of groups should be much

bigger, or the accuracy will drop distinctly. The increment of group number will increase

the parameters to be learned, which makes it harder to be implemented in urban areas.

[84] also presents a method to predict traffic flow using modified ARIMA model, called

seasonal ARIMA. Traffic data often show periodicity, and seasonal ARIMA models make

use of this periodicity to improve the accuracy of predictions [52]. Through seasonal

differencing, a SARIMA model is built to predict the traffic condition. [55] proposes a

parametric and convex optimization-based method, named optimization and prediction

with hybrid loss model (OPL). It leverages the linear regression model and the outcomes

of seasonal autoregressive integrated moving average (SARIMA) method jointly. It also

combined the social media data to improve prediction accuracy under event occurrences.

A prediction model combining ARIMA and Kalman filter to predict traffic state is shown

by [89]. The state variables of Kalman filter are the historical road traffic volume and

speed at the current moment, and the observed measurements are the predicted volume

and speed data at the next moment. Another method related to ARIMA is proposed

by [91]. After incorporated with a neural network, this method can handle a situation
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where data is recorded in a varied interval. This method is more robust compared to

other ARIMA based methods.

Other regression model such as SVR is also an effective method used in traffic

prediction. A hybrid algorithm is proposed in [70], aiming to predict the short-time crowd

flows in Beijing subway network, named Wavelet SVM (SVR). The proposed method

take advantages of SVR and Wavelet models. Wavelet transform makes the crowd flow

function gradually multi-scale refined, and ultimately achieves high frequency and low

frequency information. As we can see, the crowd flow function is finally handled by the

wavelet transform with the process of time-frequency signal analysis. [9] proposes to use

online-SVR for traffic prediction. [37] introduces a method that used a multi-variable

linear regression model as the prediction model. They first built the regression models

for the single targeted road whose traffic conditions are to be predicted. Then, they

iteratively chose subset of all traffic data on other roads, and trained a multi-variable

linear regression model for each subset. Finally, Granger test was performed between

the residue of original model and multi-variable models.

It is clear that this method is unsuitable for network-wide traffic prediction, because

training models with every subset of traffic data is computationally prohibitive. Like

ARIMA models, these methods also built a regression models for traffic data to make

predictions. To sum up, the regression model cannot tackle with the crowd flow prediction

issue of a large area with a complex road network. They often study a simple subway

stations or road network, and train models to fix parameters for each station or road

segments, which can be time-consuming especially when a complex network is presented.

And the regression models are sensitive to the missing data.

2.2.2 Deep Learning Model

Deep learning models can also be used in traffic and crowd flow prediction tasks. An

hourly crowd flow prediction method based on the deep learning models is designed in

[42]. The scenario features including inbound and outbound, and smart cards; Temporal

features including the hour of a day, the day of a week, and holidays; and the passenger

flow features containing the real-time passenger flows and the previous flows, are

combined as the input features. These features are designed and trained as different

stacked autoencoders (SAE) in the first stage. Then, the pre-trained SAE are further

utilized to initialize the supervised DNN with the real-time passenger flow as the label

data in the second stage. The hybrid model (SAE-DNN) is applied and evaluated with

a case study of passenger flow prediction for four bus rapid transit (BRT) stations of
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Xiamen in the third stage. [39] develops a multiscale radial basis function (MSRBF)

network for predicting the irregular fluctuation of subway crowd flows.

EMD-BPN is a hybrid method which combines back-propagation neural networks

(BPN) and empirical mode decomposition (EMD). It is proposed to forecast the short-term

crowd flows in the metro system [83]. There are three steps in the EMD‚ÄìBPN prediction

method. The first step (EMD step) decomposes the short-term passenger flow series data

into a number of intrinsic mode function (IMF) components. The second step (Component

Identification Stage) identifies the meaningful IMFs as inputs for BPN. The third stage

(BPN Stage) applies BPN to perform the crowd flow forecasting.

[49] propose a convolutional neural network based model for larger-scale road network

speed prediction. This model organises inputs as a matrix to process traffic data as an

image. The data in the matrix arranged according to their timestamps and geographical

locations. Spatio-temporal correlations of data are then discovered and used by the

convolutional neural network.

[96] present a model to predict crowd flows, which is similar to passenger flow

prediction. They propose a model named ST-ResNet. In this model, convolutional neural

networks and residual networks are used to build a new structure. Through deep residual

learning, spatio-temporal correlations of a large area can be used in prediction. Besides,

external components such as weather and events are also added in predicting process.

Although it performs well in crowd flows prediction, this method may be limited in CFD

of subway network.

One problem of deep learning models is that these models are static, while traffic

prediction is a dynamic issue. Incidents and events are likely to change traffic patterns of

road segments. Changing parameters online for a deep learning network can be difficult

and time-consuming, which makes it hard to be implemented in real-time applications.

Another problem is the CFD prediction contains many missing entries which leads the

above deep learning models cannot be used directly.

2.2.3 Latent-Space Models

Recent years have witnessed an explosive growth of the latent space learning for the

applications in network-wide problems, such as in traffic prediction [16], community

detection systems [99], and recommendation systems [18]. The benefits of low-rank

approximation of latent space model is to remove the redundant information of the

large-scale matrix and obtain a more compact matrix [94]. Many studies used latent

space strategy in the traffic analysis have achieved the good performance. For example, to
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solve the problem of discovering and localizing abnormal activities in crowded scenes, Yu

et al. designed a spatiotemporal detection model based on Laplacian eigenmap strategy

[74].[31] focused on addressing the problem of high-order time-series prediction via

a tensor structure. The learned latent core tensor can represent the most important

attributes of the original time sequences.

As an effective method of latent space learning, non-negative matrix factorization

(NMF) has achieved great performance on solving the network-wide problems. Differ

from the original NMF, online latent space (OLS) model is able to capture the temporal

transition patterns with time evolves [8, 14]. Recent years, many applicable approaches

based on OLS were proposed. Deng et al. [16] proposed an online model that extracts

temporal and topological attributes of roads for the network traffic speed prediction. The

constrained optimization problem also can be solved by the online latent space learning

[6], and Wang et al. [80] took advantage of OLS to handle the large-scale streaming

datasets very efficiently. However, due to the particularity of CFD prediction problem,

none of above studies can be directly used.

We use the method proposed in [15] as an example. The model can predict traffic

speed in a network-scale. They denote a road network as a directed graph, with vertices

model road intersections or end of roads, and edges which connect two vertices represent

a directed road segment. The prediction model is defined by a node attribute matrix U
and a node attribute interaction pattern matrix B, together with a transition matrix

A. B can be thought as a matrix that denotes the spatial correlations of road segments.

Another matrix A that that approximates the changes of U between timestamps is also

introduced. Trained by the method introduced in this article, these matrices can be

used to predict traffic conditions of the large-scale road network (up to 8242 vertices

and 19986 edges). Moreover, this model is able to impute missing data, and can make

predictions on-the-fly. There are two main shortages in this method. Firstly, it only

utilises real-time data in a timestamp, without considering any historical data in making

predictions. The performance of this model may be improved when considering historical

data in making predictions. Secondly, in order to capture the temporal evolution of road

attribute matrix U, the model try to learn a transition matrix A from changes of U in

last timestamp and current timestamp. Then the model assumes that the changes of

U between next timestamp and current timestamp would be the same. These factors

restrict the performance of this model.
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2.2.4 Network-wide Crowd Flow Prediction

In this section, we review the current studies on the network-wide crowd flow and

origin-destination prediction.

2.2.4.1 Network-wide Problem

City network-wide crowd flow prediction is not only a significant task for the modern

transportation management, but also optimizes many urban services. Nowadays, some

of methods were focusing on forecasting the citywide crowd flows which studied the

human movement [23, 51, 90, 97]. Ma et al. devised a series of visualization approaches

to show the flows’ dynamic changes in the networks [51]. Zhang et al. proposed deep

learning models based on the ResNet to predict crowd inflows and outflows of the entire

city regions [96–98]. The Probabilistic model is an effective approach to estimate the

traffic speed. For example, [95] and [41] used trajectory data to estimate citywide traffic

volume via probabilistic graphical models. [23] developed a spatial-temporal attention

mechanism to predict the city-wide traffic flows. Unfortunately, due to the real-time
delayed data collection problem, these city traffic prediction methods cannot be utilized

to solve our CFD prediction problem directly because they require complete traffic data.

About the metro crowd flow prediction, most existing methods only focused on fore-

casting entrance/exit flows at certain stations, they neglected the crowd flows across

different stations. We list some classical works here [12, 55, 83]. Wei et al. [12] developed

an effective short-term passenger flow prediction model to explore the time variants and

capture dynamic patterns on a single subway line. Subsequently, a modified approach is

proposed based on the neural network, which aims to solve the same entrance/exit crowd

flow prediction task in a few metro lines [83]. Ni et al. [55] used auxiliary information,

such as social media events, to improve the forecast performance. Sun et al. [70] and

Leng et al. [36] took into account a special flow named transfer passenger flow, which

describes the volume of passengers transferring from one line to another. The transfer

passenger flow are different from CFD, and their studies fail to formulate a network-wide

framework. In fact, none of the discussed methods can solve the network-wide problem

efficiently because the widely-used time series strategies, such as GPR[107], ARIMA

[84] and recurrent neural network [50], are not suitable for the network-wide problem.

They usually focus on the flow prediction for one station or few metro lines that will

extremely time-consuming if they are applied to the network-wide problem. Other models

focused on exploring subway scheduling delay detection and route choice rather than
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Figure 2.1: Unified framework for traffic predictive model under current research review.

the network-wide crowd flow forecasting, such as [45, 56, 101]. In conclusion, limited

approaches can be used to solve the network-wide CFD prediction directly and efficiently.

Besides, none of existing crowd flow prediction methods considered the PPF problem

studied in this Thesis. Other relevant studies, such as [28], are point-based prediction

model, not in a matrix formulation. [28] selects k points to predict k values. However,

in the PPF problem (introduced in Chapter 1.2.3), k target areas require nk prediction

values, where n is the number of known areas. It is because we also need to consider the

crowd flows between each area.

2.2.4.2 Origin-destination (OD) Prediction

Origin-Destination Prediction aims to estimate the traffic conditions (e.g., travel times,

route planning, traffic flows) between origin and destination points, which is a critical

task for transportation planning, operation, and management [48]. Roughly speaking,

it can be divided into two categories [43]. The first category is the static estimation

[2, 25] that focuses on estimating the average OD pairs in a long-term time period,

providing advice on transportation development to authorities. The second category

is the dynamic model that usually applies to taxi demand prediction and travel time

estimation [3, 43, 64, 81, 82, 108]. The most recent research is proposed in [81], which

predicts the OD matrix based on a deep learning model via graph convolution strategy.

It divides the city area into grids and predicts the passenger demands of given origin

grid-areas and destination grid-areas at a given time slot. However, it seems that this

method does not consider the real-time delayed data collection problem, since it makes
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all trajectory data observed when testing. A similar problem appears in [64, 108] that

they are difficult to solve the real online problem.

In summary, to address our real online CFD prediction problem (introduced in

Chapter 1.2.2), we must consider the delayed data collection caused by the ongoing

journeys.

2.3 Conclusion

Several methods regarding prediction models are studied, including time-series meth-

ods, deep-learning methods and latent-space methods. Time-series models are original

method which process traffic data as time series, and methods using time-series models

neglect the spatio-temporal correlations in prediction. Methods based on deep learning

often consider spatio-temporal correlations of data in an ambiguous way. Besides, deep

learning models are often static, while traffic prediction is a dynamic problem. Although

shortages exist, deep learning methods generally perform better than time-series models

in predictions with large-scale data. Among the methods mentioned in this report, the

latent space based method can be regarded as the best method designed for network-wide

traffic prediction, in spite of some shortages. This model can predict traffic conditions of a

large-scale road network, compared to road networks studied in other articles, and make

predictions on-the-fly. It depends on spatial correlations of data to make predictions, and

can get at least comparable results with other methods while faster than other methods

and much bigger in prediction area. Figure 2.1 shows the unified framework for traffic

predictive model under current research review.
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MISSING VALUE IMPUTATION FOR URBAN STATISTICAL

DATA

Large volumes of urban statistical data with multiple views imply rich knowledge

about the development degree of cities. These data present crucial statistics

which play an irreplaceable role in the regional analysis and urban computing.

In reality, however, the statistical data that are divided into fine-grained regions usually

suffer from missing data problems. Those missing values hide the useful information that

may result in a distorted data analysis. Thus, in this chapter, we propose a spatial missing

data imputation method for multi-view urban statistical data. To address this problem,

we exploit an improved spatial multi-kernel clustering method to guide the imputation

process cooperating with an adaptive-weight non-negative matrix factorization strategy.

Intensive experiments are conducted with other state-of-the-art approaches on six real-

world urban statistical datasets. The results not only show the superiority of our method

against other comparative methods on different datasets, but also represent a strong

generalizability of our model.

3.1 Introduction

Urban statistic data connect social sciences, urban computing, administrative manage-

ment, transportation, and regional planning that are significant for city development

[20, 54, 103]. These statistical data usually include multi-fold views (e.g., views of Popu-
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lation and Economy) to reveal the growth gaps among different administrative regions

from various perspectives. For example, the economy view records the key economic indi-

cators for fine-grained regions, such as the number of industries and employee statistics;

and the population view consists of detailed population information of all age groups in

each region.

The statistic data provide key statistics to governments, business and the community

on social science, for the benefit of some aspects of human life. However, in some places,

statistical data are hard to be entirely acquired due to document defacement, error

recordings, and statistician misplay. Such missing data hide useful information which

may cause distorted results for further analysis. To the best of our knowledge, it is still a

blank field concerning this specific problem, but the real demand appears. Hence, the

missing value imputation for urban statistical data is a vital task for reliable urban

computing and government services.

In this chapter, we study the problem of missing-data imputation for the Australian

Bureau of Statistics (ABS), which has some unique challenges:

• Missing temporal information. In the real-world data from ABS, almost all the

missing values in the current year were also missing in the past years, which may be

caused by the region restriction and complicated human-made errors. This violates the

basic assumption of matrix completion [7] that the unobserved entries are sampled

uniformly at random. Thus matrix completion-based approaches may not work in this

case.

• Multi-view problem. The complicated underlying interactions suggest that simply

recovering the missing information without considering the correlations among attributes

and multi-modes will end up with a poor performance. For example, the economy view

has strong correlations with the income and population views, so that a high-quality

economy in a region usually goes along with a better income and a larger population;

and a low-level economy in a region has a high probability of being connected with a

lower income and a smaller population.

• Spatial correlation mining problem. As illustrated in Figure 1.1, the statistical data

focusing on fine-grained regions may change over locations significantly and non-linearly.

Therefore, to properly recover the missing information of statistical data, we need to

consider the regional similarities.

To date, a number of missing data imputation approaches are applied in urban

statistical data, e.g., mean-filling (MF), k-nearest-neighbor (KNN) filling [57], and col-

laborative filtering based methods [62]. Most of them, however, have been proposed to
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focus on the single view problem. Besides, although several spatiotemporal methods can

infer the missing information based on the knowledge from both spatial and temporal

domains [13, 92, 106], they do not perform well when the missing temporal information

challenge appears. To address all challenges, our proposed method is designed as a

spatially related method which can only use spatial information to achieve a strong per-

formance. In detail, the method integrates a spatial multi-kernel clustering method and

an adaptive-weight non-negative matrix factorization (NMF) for solving the multi-view

spatially related tasks. We summarize the main contributions and innovations of this

chapter as follows:

• To handle the multi-view problem with spatial characteristic, we propose a Spa-

tially related Multi-Kernel K-Means (S-MKKM) method to identify the underlying

relationships among multiple views and capture the regional similarities.

• We propose an adaptive-weight non-negative matrix factorization approach to lever-

age the information learned above to tackle the multi-view missing data imputation

problem. Besides, the proposed method also takes the guidance from the single-view

and the real geographic information with KNN strategy into consideration.

• A spatial multi-view missing data imputation method for urban statistical data

based on non-negative matrix factorization is proposed, called SMV-NMF. SMV-

NMF does not rely on the temporal information but achieves a great performance

only using spatial information.

• Our experiments on six real-world datasets verify the effectiveness of our method.

All the empirical results show that the proposed method SMV-NMF outperforms

all the other state-of-the-art approaches. Furthermore, SMV-NMF shows strong

generalizability and can transfer the constructed model from one urban dataset to

another well.

3.2 The Proposed Method

Before clarifying our model, we firstly introduce some basic notations, operations and

algorithms used in this chapter. The main symbols used in this Chapter are summarized

in Table 3.1.
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Table 3.1: Symbol description.

Symbols Descriptions
X = [X1X2...Xd] original data matrix contains d views

W ; Hp latent space matrices

Yp; Ȳp
indication matrices for all complete

entries and missing entries of p-th view

k; l
the number of dimensions of

latent space; and the number of clusters

n; d
the number of regions;

and the number of views
Z; Z

′
weight matrices

L graph Laplacian matrix
Xmv; Xsv; Xknn three guidance matrices

Kβ the kernel matrix
λ1;λ2;λ3;α regularization parameters

Figure 3.1: Problem description.

3.2.1 Problem Description and Preliminary

As illustrate in Figure 3.1, this research focuses on completing the missing values in the

urban statistical data, where one urban dataset contains multiple views, e.g., Income,

Population, Economy views, etc. For a dataset with n regions (r1,...,rn) and d views, the

dimension of attributes in the p-th view is mp (1≤ p ≤ d). Our method aims to impute

the missing values with a high accuracy.
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3.2.1.1 Multi-view NMF

The multi-view NMF aims to learn a latent subspace W ∈ Rn×k+ by multiple views

{X1...Xd} through the multi-view generation matrices Hp ∈ R
k×mp
+ . The basic missing

data imputation model can be described as the following optimization objective:

(3.1) arg min
W≥0,Hp≥0

J0 =
d∑

p=1
||Yp ¯ (X p −WHp)||2F ,

where Yp are indicator matrices whose entry Yp(i, j) is one if X p(i, j) has been recorded

(for observed values) and zero otherwise (for missing values); and ¯ is the Hadamard

(element wise) product operator.

3.2.1.2 Multiple Kernel K-means (MKKM)

Let {xi}n
i=1 be a collection of n samples (region), xi represents the statistical features of

the i-th region, and φp(·) be the p-th view mapping that maps x onto the p-th reproducing

kernel Hilbert space. In this case, each sample has multiple feature representations

defined by a group of feature mappings φβ(xi) = [β1φ1(xi)>, · · · ,βdφd(xi)>]>, where β

consists of the coefficients of the d base kernels. A kernel function can be expressed as

κβ(xi,x j)=φβ(xi)>φβ(x j)=∑d
p=1β2

pκp(xi,x j). And a kernel matrix Kβ is then calculated

by applying the kernel function κβ(·, ·) to {xi}n
i=1. Based on the kernel matrix Kβ, the

objective of MKKM can be written as:

min
V ,β

Tr(Kβ(In −VV>))

s.t. V ∈Rn×l ,V>V =Il ,β>1d = 1,βp ≥ 0,∀p,
(3.2)

where V is the clustering matrix; 1d ∈Rd is a column vector with all 1 elements; In and

Il are identity matrices with size n and l; l is the number of clusters.

3.2.2 Multi-view Spatial Similarity Guidance

As discussed in Chapter 2.1.2, multi-view matrix factorization based methods suffer

from the imbalance problem. In this chapter, we build the similarity guidance X mv
p for

the p-th view X p to address this problem. Accordingly, we propose an approach to obtain

regional similarities via the spatially related MKKM model, called S-MKKM. The basic

idea is that the development of a city gradually fosters different functional groups, such
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Figure 3.2: An example of building X mv
p . Assume that regions x1 and x3 are falling into

one cluster with the blue background, and x2 and x4 belong to another cluster with
gray background. x2 and x3 are the centroid regions of two clusters, respectively. For a
missing entry x12, its corresponding value x32 is used as an imputation guide. Moreover,
if the value in centroid region is missed, then a greedy strategy is implemented to find
the nearest observed value (use x49 to fill x29).

as educational and business districts, where the regions belonging to the same group

would have strong connections with each other [103]. S-MKKM utilizes the MKKM

clustering algorithm combined with a graph Laplacian dynamics strategy (an effective

smoothing approach for finding spatial structure similarity [15, 22]) to cluster regions

into the functional groups. Specifically, we construct a graph Laplacian matrix L, defined

as L = D−M, where M is a graph proximity matrix that is constructed from the regional

physical topology (i.e., M(i, j) = 1 if and only if the region xi is contiguous to x j), and

D is a diagonal matrix D(i,i) =
∑

j(M(i, j)). With this constraint, the S-MKKM model is

expressed as follows:

min
V ,β

Tr(Kβ(In −VV�))+αTr(V�LV )

s.t. V ∈Rn×l ,V�V = Il ,β�1d = 1,βp ≥ 0,∀p,
(3.3)

where α is the regularization parameter; V is the consensus clustering matrix.

To get the complete kernels, we initially impute the missing data for each view

by a simple method, such as KNN or MF. After that, Equation (3.3) can be solved by

alternately updating V and β: i) With the kernel coefficients β fixed, V can be obtained

by choosing the l smallest eigenvectors of (−Kβ+αL). ii) With V fixed, β can be optimized

via solving the quadratic programming with linear constraints [46].

The objective of the S-MKKM is to discover the regions with similar properties and
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build the guidance matrices X mv
p . After having gotten V , X mv

p can be built. Figure 3.2

shows an example of this process. The construction process of X mv
p is that i) for the

unknown entry xi j, and the region xi ∈ c-th cluster, we use its corresponding value xc(i), j

from the centroid region to impute xi j; ii) if the corresponding value of centroid region

is also missed, a greedy strategy will be used to find the nearest observed value for

imputation.

3.2.3 Adaptive-Weight NMF

To learn the knowledge from X mv
p more reliably, we propose an adaptive weighting

strategy in the NMF imputation process. The adaptive-weight matrix of the p-th view is

denoted as Zp ∈R
n×mp
+ , which is built by an exponential function as shown in Equation

(3.4) and (3.5).

(3.4) zp(i) = e−Dist(vi ,vc(i)),

(3.5) Zp = zp1>
mp

,

where Dist(·, ·) is the Euclidean distance calculating from the geo-location (vi) and its

corresponding centroid region (vc(i)), here we use the latent embedding vi to represent

the geo-location of region i, and vc(i) represents the centroid of the c-th cluster which

contains region vi; zp ∈ Rn+ is a column vector and 1mp is all-ones vector with size mp.

It is not a straight way for imputation, but the adaptive-weight matrix Zp controls

how much information can be extracted. Zp adjusts the penalty of each estimated entry.

As emphasised in the First Law of Geography [75], the near things have more spatial

correlations than distant things. If the distance between xi and xc(i) is small, we want a

high penalty to guide the imputation process.

Combining the above strategy, our model can be described as the following optimiza-

tion function:

(3.6) arg min
W≥0,Hp≥0

J1=J0 +λ1

d∑
p=1

||Ȳp ¯Zp ¯ (X mv
p −WHp)||2F ,

where Ȳp = 1−Yp, 1 is an all one matrix that has the same size as Yp; X mv
p is a homo-

morphic matrix of X p; and λ1 is the regularization parameter to control the learning

rate of X mv
p .
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3.2.4 Improved by Single-view and KNN Guidances

S-MKKM aims to find the regional groups by considering multiple views simultaneously.

However, it is obvious that each view has its characteristics, and the relationships

between regions in one specific view are also critical for imputing missing entries. To

consider the above knowledge, we apply the spatially related kernel k-means (S-KKM)

to capture the similarities among regions of each view. It is essentially analogous to the

learning process of S-MKKM as discussed in Chapter 3.2.2, but considering each view,

respectively. For one view X p, the S-KKM model is expressed as follows:

min
Vp

Tr(Kp(In −VpVp
>))+αTr(V>

p LVp)

s.t. Vp ∈Rn×l ,Vp
>Vp = Il ,

(3.7)

where Kp is one separate kernel and Vp represents the p-th clustering matrix based on

X p.

In fact, to reduce the complexity of our model, we assume that the physical location

affects the clustering performance with the same degree and the number of clusters is

the same as that in S-MKKM, i.e., l and α are the same as used in Equation (3.3). The

reason behind this assumption is that most cities have the same functional regions, such

as the residential region and business region. Thus, it is reasonable that we choose the

same α and l in this practical task. Besides, α and l are very stable due to the intrinsic

property of the urban statistical data, and we fixed them in the experiments. The single

view guidance matrix X sv
p and adaptive-weight matrix Z

′
p can be constructed by the

same strategy of building X mv
p and Zp.

Furthermore, for each region, its k-nearest spatial neighbors imply rich information

that should be considered in our model. Even though the regional physical topology is

already involved in multi-view and single-view learning processes, the KNN is a more

flexible method. After structuring X knn
p which is an imputed matrix with the average

value of k-nearest neighbors, our final optimization function is shown as follows:

(3.8)

arg min
W≥0,Hp≥0

J=J1+λ2

d∑
p=1

||Ȳp¯Z
′
p¯(X sv

p −WHp)||2F

+λ3

d∑
p=1

||Ȳp ¯ (X knn
p −WHp)||2F ,

where λ2 and λ3 are the regularization parameters to control the learning rate of X sv
p

and X knn
p , respectively.
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Given the estimated factor matrices W and Hp based on the above update equations,

the filled data are given by:

(3.9) X̂ p =Yp ¯ X p + Ȳp ¯ (WHp).

3.2.5 Learning Algorithm

As Equation (3.8) is a non-convex problem, we use the multiplicative update strategy

[35] to ensure the convergence under the following update rules. We first initialize latent

space matrices (W and Hp) by decomposing data matrices {X1...Xd}. The update rules

for W and Hp are presented in Equation (3.10) - (3.11).

(3.10) W =W ¯

d∑
p=1

(Yp ¯ X p + Ȳp ¯ (λ1Zp¯ X mv
p +λ2Z

′
p ¯X sv

p +λ3X knn
p ))H>

p

d∑
p=1

((Yp + Ȳp ¯ (λ1Zp +λ2Z ′
p +λ31))¯ (W>Hp)H>

p )
,

(3.11) Hp = Hp
W(Yp ¯ X p+Ȳp ¯ (λ1Zp ¯ X mv

p +λ2Z
′
p ¯ X sv

p +λ3X knn
p ))

W(Yp + Ȳp ¯ (λ1Zp +λ2Z ′
p +λ31))¯ (W>Hp)

.

The above two multiplicative update rules guarantee to be non-negative if the initial-

ization is positive. Without this constraint, the matrices W and Hp could be negative,

thus the imputation results could be negative too, which is a contradiction to the facts.

We now derive the update rule of W as an example, other variables can be solved with a

similar process. The objective of J could be rewritten as follows:

J = L0 +L1 +L2 +L3 , where:

L0 =
d∑

p=1
||Yp ¯ (X p −WHp)||2F ,

L1 =λ1

d∑
p=1

||Ȳp ¯Zp ¯ (X mv
p −WHp)||2F ,

L2 =λ2

d∑
p=1

||Ȳp ¯Z
′
p ¯ (X sv

p −WHp)||2F ,

L3 =λ3

d∑
p=1

||Ȳp ¯ (X knn
p −WHp)||2F .

(3.12)
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We provide the derivative of L0 respect to W as an example, the other components

can be derived in the same way. L0 could also be rewritten as follows:

(3.13) L0 =
〈
Yp ¯ (X p −WHp),Yp ¯ (X p −WHp)

〉
,

where 〈,〉 presents the inner product of matrix. Then:

dL0(W)=−2
d∑

p=1

〈
dWHp,Yp ¯ (X p −WHp)

〉
=−2

d∑
p=1

〈
dW ,Yp ¯ (X p −WHp)H>

p
〉

⇒ ∂L0

∂W
=−2

d∑
p=1

Yp ¯ (X p −WHp)H>
p .

(3.14)

Analogously, we can get:

∂L1

∂W
=−2λ1

d∑
p=1

Ȳp ¯Zp ¯ (X mv
p −WHp)H>

p ,(3.15)

∂L2

∂W
=−2λ2

d∑
p=1

Ȳp ¯Z
′
p ¯ (X sv

p −WHp)H>
p ,(3.16)

∂L3

∂W
=−2λ3

d∑
p=1

Ȳp ¯ (X knn
p −WHp)H>

p .(3.17)

To utilize the multiplicative update strategy [35], we set the step γ to:

(3.18) γ= W
d∑

p=1
((Yp + Ȳp ¯ (λ1Zp +λ2Z ′

p +λ31))¯ (W>Hp)H>
p )

,

then, we got the update rule of W as shown in Equation 3.10. Besides, the update rule of

Hp can be obtained via a similar derivation process.

The process of SMV-NMF is summarized in Algorithm 1.
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Algorithm 1: SMV-NMF
Input: original data {X p }; graph Laplacian matrix L.
Output: complete data {X̂ p}.

1 Impute X p by KNN for an initialization.
2 Initialize W and Hp by decomposing X p.
3 Construct X mv

p , X sv
p and X knn

p by S-MKKM, S-KKM, and KNN respectively.
4 for t = 1 to T do
5 if |Jt − Jt+1| / Jt ≥ ε then
6 update W By Equation (3.10)
7 update H By Equation (3.11)
8 else
9 Break

10 Return X̂ p By Equation (3.9).

3.2.6 Time complexity and convergence

We discuss the time complexity and convergence of SMV-NMF here. The time complexity

of guidance matrices X mv
p and X sv

p is mainly affected by MKKM. Even though MKKM

has a high computational complexity (O(n3)), it is not involved in update loop of variables

(W and Hp). Equation (3.10) and Equation (3.11) present that the time complexity of

our final function is governed by matrix multiplication operations in each iteration.

Therefore, the time complexity per iteration is dominated by O(nk2). Due to the pursuing

of pinpoint accuracy, we sacrifice efficiency to some degree in this real-world problem.

In terms of convergence, Algorithm 1 is guaranteed to converge when W or Hp is fixed,

because the second-order derivatives regarding W or Hp are positive semi-definite. Thus,

the objective function can achieve its optimal value by optimizing W and Hp alternately.

3.2.6.1 Proof of Convergence

First part of convergence. The aim of this part is to find anauxiliary function for

SMV-NMF objective function as expressed in Equation (3.8).

Definition 1. G(h,h
′
) is an auxiliary function for our final function J(h) if the

following conditions are satisfied:

(3.19) G
(
h′,h

)≥ J(h) and G(h,h)= J(h).

The auxiliary function is useful because of the following lemma, and the proof of

Lemma 3.1 is given by [35].
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Lemma 3.1. If G is an auxiliary function, then J is non-increasing under the update:

(3.20) ht+1 = argmin
h

G
(
h,ht) ,

consequently, we have:

(3.21) J
(
ht+1)≤G

(
ht+1,ht)≤G

(
ht,ht)= J

(
ht) .

Lemma 3.2. If K(ht) is a diagonal matrix under the following definition,

(3.22) K(ht)= diag(Wdiag(v)WT h./h),

where v is a column vector of V =Yp +Y p ¯
(
λ1Zp +λ2Z′

p +λ31
)

then,

G
(
h,ht)=J

(
ht)+ (

h−ht)T ∇J
(
ht)

+ 1
2

(
h−ht)T K

(
ht)(h−ht) ,

(3.23)

is an auxiliary function for J(h).

Proof. Since G(h,h) = J(h) is obvious, we need only show that G(h,ht) ≥ J(h). To do

this, we compare

J(h)=J
(
ht)+ (

h−ht)T ∇J
(
ht)

+ 1
2

(
h−ht)T

(
Wdiag(v)WT

)(
h−ht) ,

(3.24)

with Equation (3.23) to find that G(h,ht)≥ J(h) is equivalent to

(3.25) 0≤ (
h−ht)T

[
K

(
ht)−Wdiag(v)WT

](
h−ht) .

The next step is to prove
[
K

(
ht)−W diag(v)WT]

is positive semi-definite. Let Q =
Wdiag(v)WT , then

[
K

(
ht)−W diag(v)WT]

can be expressed as [diag(Qh./h)−Q]. As

the Lemma 3.1 provided in [24], if Q is a symmetric non-negative matrix and h be a

positive vector, then the matrix Q̂ = diag(Qh./h)−Q º 0.

�
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Second part of convergence. We can now demonstrate the convergence of method.

Proof. Replacing G(h,ht) in Equation (3.20) by Equation (3.23) results in the update

rule:

(3.26) ht+1 = ht −K
(
ht)−1∇J

(
ht) .

Since Equation (3.23) is an auxiliary function, J is nonincreasing under this update

rule, according to Lemma 3.1. Writing the components of this equation explicitly, we

obtain

(3.27) ht+1
a = ht

a
(Wx)a(

W(v¯WT h
)
)a

,

where x is the column vector of X =
(
Y ¯ X +Y ¯ (

λ1Z¯ X mv +λ2Z′¯ X sv +λ3X knn))
.

By reversing the roles of W and H in Lemma 3.1 and 3.2, J can similarly be shown

to be nonincreasing under the update rules for W .

�

3.3 Experiments

In this chapter, we have conducted comprehensive experiments to demonstrate the

effectiveness of our method.

3.3.1 Datasets

There are six real-world urban statistical datasets (Sydney, Melbourne, Brisbane,

Perth, SYD-large, and MEL-large), where -large datasets contain much more fine-

grained regions from Australian Bureau of Statistics (2017). Each dataset contains four

views, i.e., Economy, Family, Income, and Population. The data example is shown in the

Figure 3.3. As we can see in the example, the data of each area contains four views. For

example, the economy view can reflect the current business status via total number of

businesses, value of total building, etc. The size of the six datasets are 174, 284, 220,

130, 2230, 1985 respectively. The designation of regions is based on the Australian

Statistical Geography Standard for the best practical value. The scales of different views

are normalized into the same range [0,10] so that we can evaluate the results together.
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132,733 67.8 3909.1 81.8

Person Total

Total number 
of businesses

Total number 
of businesses entries

Total number 
of businesses exits

. . .Value of total 
building

11,843 2,027 1,496 615 . . .

Total number 
of businesses

Total households

. . .

Total families Average Family Size . . .Separate house

7417 6074 3 3203

Total households

Mean Investment
income

Mean Superannuation 
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56923 7808 26200 53489

Mean Employee 
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Business area
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Business 
area (r1)

3.5 km

2.5 km

5.5 km

Park

Figure 3.3: The example of ABS data and visualization.

The numbers of the dimension of the four views are 43, 44, 50, 97, respectively. We choose

Australian cities mostly because the Australian Bureau of Statistics provides enough

data for our study, while such data from other countries is inaccessible to us. However,

our method is general enough and can be applied to other cities with administrative

areas and statistical census data. To guarantee the diversity of testing, for each missing

ratio, we randomly select the test columns and repeat the experiment 20 times and

report average results.
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3.3.2 Baselines & Measures

3.3.2.1 Baselines

We compare the proposed method SMV-NMF with the following 12 baselines. All para-

meters of the proposed method and baselines are optimized by the grid search method.

sKNN: A classical method that uses the average values of its k nearest spatial

neighbors as an estimate (k=6).

MKKMIKa: A MKKM based method to handle the incomplete views [46]. We modified

it to adapt to the spatially related data, then interpolated a missing value by its k nearest

spatial neighbors (k=6);

MKKMIKb: Similar to MKKMIKa but utilize the mean value of each cluster to fill

the missing data.

NMF: Fill the missing data by NMF.

IDW: A global spatial learning method compared in many works [11, 13].

UCF: The Local spatial learning method based on collaborative filtering [67, 92].

IDW+UCF: The average result of IDW and UCF.

MVL-IV: A state-of-the-art multi-view learning method based on matrix co-factorization,

which learns a same coefficient matrix to connect multiple views [88].

ST-MVL: A state-of-the-art method to impute spatio-temporal missing data [92]. We

only use its spatial part due to the problem of missing temporal information.

SMV-MF; MV-NMFa; MV-NMFb: Remove the non-negativity constraint in SMV-

NMF; Remove the graph Laplacian dynamics strategy in SMV-NMF when building the

X mv
p and X sv

p ; Remove the KNN guidance in SMV-NMF.

Measures. We utilized the most widely used evaluation metrics in this chapter,

namely Mean Relative Error (MRE) and Root Mean Square Error (RMSE).

MRE =
∑Q

i=1 |ui − ûi|∑Q
i=1 ui

, RMSE =

√√√√∑Q
i=1(ui − ûi)2

Q
,

where ûi is a prediction for missing value, and ui is the ground truth; Q is the number

of prediction values.
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Methods
Sydney Melbourne Brisbane Perth SYD-large MEL-large

MRE RMSE MRE RMSE MRE RMSE MRE RMSE MRE RMSE MRE RMSE
sKNN 0.3302 1.5319 0.3108 1.3181 0.3534 1.4787 0.3701 1.5754 0.2998 1.2543 0.2635 1.1155

MKKMIKb 0.3281 1.5507 0.3462 1.4635 0.3773 1.5934 0.3986 1.6992 0.3413 1.6112 0.3067 1.4552
IDW 0.3321 1.5183 0.3187 1.3188 0.3517 1.4663 0.3724 1.5574 0.3273 1.4992 0.3081 1.2587
UCF 0.3566 1.6631 0.3380 1.4635 0.3626 1.5928 0.3757 1.6554 0.3327 1.4230 0.3321 1.5093

IDW+UCF 0.3300 1.4604 0.3141 1.3048 0.3408 1.3967 0.3591 1.4924 0.3045 1.2236 0.2970 1.2111
MKKMIKa 0.3073 1.4393 0.2833 1.2264 0.3167 1.3479 0.3546 1.5066 0.2915 1.2808 0.3019 1.2300

NMF 0.2189 1.3841 0.1990 1.1557 0.2225 1.3048 0.2469 1.2866 0.2385 1.1996 0.2032 1.0660
ST-MVL 0.2948 1.3137 0.2833 1.1796 0.3117 1.2932 0.3325 1.3949 0.2948 1.0772 0.2829 1.1453
MVL-IV 0.1948 1.0603 0.1744 0.8185 0.1970 0.9698 0.2252 1.0676 0.1792 0.8959 0.1834 0.9223
SMV-MF 0.1911 0.9360 0.1851 0.8006 0.1832 0.8033 0.2199 0.9647 0.1777 0.8315 0.1922 0.9015

MV-NMFa 0.1806 0.9257 0.1816 0.8159 0.1640 0.7296 0.2170 0.9721 0.1714 0.8226 0.1858 0.8613
MV-NMFb 0.1829 0.9609 0.1738 0.8048 0.1647 0.7703 0.2239 1.0095 0.1681 0.8046 0.1763 0.8124
SMV-NMF 0.1773 0.9084 0.1687 0.7471 0.1574 0.7051 0.2097 0.9347 0.1620 0.7753 0.1692 0.7911

Table 3.2: The average MRE and RMSE of all missing ratios on four urban statistical datasets. Best results are bold.
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(a) Test on Sydney.
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(b) Test on Melbourne.

Figure 3.4: Average RMSE with the variation of missing ratios.

3.3.3 Results on Urban Statistical Datasets

The first set of experiments is designed to assess performance on each dataset. We pick

up half of statistical fields (properties) in each urban dataset randomly as the validation

set, and the other half as the test set. In the test set, we randomly select missing ratios

from 10% to 70% to evaluate the imputation accuracy.

Table 3.2 presents the average errors of all missing ratios across different test

methods. It is clear show that our approaches (SMV-MF, MV-NMFa, MV-NMFb, SMV-

NMF) perform much better than other baselines across different missing ratios on

six real-world datasets, where SMV-NMF achieves the best results. Without the non-

negativity constraint, SMV-MF performs worse than SMV-NMF, which demonstrates the

effectiveness of this constraint. MVL-IV yields better results than ST-MVL, MKKMIKa,

IDW+UCF, and NMF becuase it considers the multi-view problem.

To represent our results more clearly, we pick the top eight methods varying different

missing ratios on the Sydney and Melbourne datasets, which is shown in Figure 3.4. It is

apparent that NMF is sensitive to the missing ratio, which could get good results under

the lower level missing ratios, but performs worse when the missing ratio increases. Our

methods, (SMV-MF, MV-NMFa, MV-NMFb, SMV-NMF) have significant improvements

compared with current baselines.

Overall, SMV-NMF outperforms the other baselines because it integrates both multi-

view and spatial problems to address the specified missing data imputation task. MV-

NMFa and MV-NMFb remove a part of the spatial guidance which results in slightly

worse performances than SMV-NMF.
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(a) Test dataset Melbourne.
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Figure 3.5: The average RMSE in generalizability tests.

3.3.4 Generalizability Test

We conduct experiments on testing the generalizability in this section. In detail, we

choose the dataset Sydney as the validation set and two urban datasets (Melbourne

and Brisbane) as the test sets. We report the experimental results on eight available

algorithms. SMV-NMF is the most outstanding approach, as shown in Figure 3.5.

Our method represents strong generalizability which can transfer the constructed

model from one urban dataset to another. This is because there are high correlations

among cities. For example, the number of functional regions of each city is mostly the

same, resulting in the same amount of clusters. The gap between SMV-NMF and MVL-IV

narrows as the missing ratio increases, but the former is more robust than the latter

because SMV-NMF achieves the best results across all missing ratios. Table 3.3 reveals

the average errors using two evaluation metrics. The generality test demonstrates that

our model SMV-NMF is a universal model that performs well crossing different urban

statistical datasets.

3.3.5 The Sensitivity of Parameters

This section evaluates the performances of SMV-NMF by varying the critical parameters

(k, λ1, λ2, and λ3). Due to space limitations, we have only shown the experimental results

for the Sydney validation dataset. We discuss them separately but pick them up by the

grid search method because four parameters have high dimensional correlations that

are hard to visualize. Our illustration approach that discusses parameters separately

has been widely used in many other research papers [15, 22].

Figure 3.6 (a) shows the different performances with a varying setting for k. When
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Methods
Dataset Melbourne Dataset Brisbane
MRE RMSE MRE RMSE

UCF 0.3311 1.4026 0.3656 1.5624
IDW 0.3324 1.3374 0.3697 1.4934

IDW+UCF 0.3182 1.3061 0.3518 1.4552
MKKMIKa 0.2827 1.2018 0.3137 1.3020

ST-MVL 0.2794 1.1391 0.3123 1.2698
NMF 0.1538 0.9067 0.1781 0.9196

MVL-IV 0.1510 0.7879 0.1636 0.8089
SMV-NMF 0.1506 0.7202 0.1493 0.6718

Table 3.3: Generalizability test. We report the average MRE and RMSE of all missing
ratios and best results are bold.
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Figure 3.6: Effect of Parameters.

we increase k from 5 to 15, the results improve significantly. However, the performance

tends to stay stable at 15 ≤ k ≤ 35. In particular, SMV-NMF achieves the best result

when k = 30, while it can get good performance if the k is set between 15 and 35. This

indicates that a low-rank latent space representation can already capture the attributes

of the urban statistical data.

Figure 3.6 (b) reveals the effect of varying λ1, λ2, and λ3. These three parameters

determine the strength of the three guidance matrices Xmv, Xsv, and Xknn, respectively.

λ1=2−7, λ2=2−8 and λ3=2−6 yield the best results for SMV-NMF. We observe that the

performance is stable when these three parameters are ranged between 2−8 and 2−6.

In summary, both parameters used in this chapter bring benefits to the improvement

of our models. Furthermore, our model is stable and easy fine-tuning because it is

insensitive to these parameters.
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(b) Conduct on the smallest dataset (Perth).

Figure 3.7: Convergence rate.

Table 3.4: Effects of different initialization methods.

Zero-init Random-init Mean-init KNN-init
RMSE 1.1741 1.1347 0.9496 0.9084

3.3.6 Initialization and Convergence

To get the complete kernels, we first impute the missing data for each view by an efficient

method, such as KNN and MF. The effects of different initializations are reported in

Table 3.4. Based on the results, we easily find that the initialization method KNN could

achieve the great performance for SMV-NMF. Accordingly, we choose the KNN method

for a good balance between time-consuming and accuracy.

Figures 3.7 (a) and (b) show the convergence trends of iterative model SMV-NMF on

both the largest and smallest datasets. It illustrates that our algorithm can converge

into a local solution in terms of the objective value in a small number of iterations.

3.4 Conclusion

In this chapter, we propose a spatial missing data imputation method for multi-view

urban statistical data, called SMV-NMF. To address the multi-view problem, an improved

spatial multi-kernel method is designed to guide the imputation process based on the

NMF strategy. Moreover, the spatial correlations among different regions are involved

in our method from two perspectives. Firstly, the latent similarities are discovered by

S-MKKN and S-KKM based on the idea of finding functional regions, and secondly,

KNN is used for capturing the information of real geographical positions. We conduct

intensive experiments on six real-world datasets to compare the performance of our
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model and other state-of-the-art approaches. The results not only show that our approach

outperforms all other methods, but also represent strong generalizabilities crossing

different urban datasets.
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CROWD FLOW DISTRIBUTION PREDICTION

As a key mission of the modern traffic management, crowd flow prediction (CFP)

benefits in many tasks of intelligent transportation services. However, most

existing techniques focus solely on forecasting entrance and exit flows of metro

stations that do not provide enough useful knowledge for traffic management. In practi-

cal applications, managers desperately want to solve the problem of getting the potential

passenger distributions to help authorities improve transport services, termed as crowd

flow distribution (CFD) forecasts. Therefore, to improve the quality of transportation ser-

vices, we proposed three spatiotemporal models to effectively address the network-wide

CFD prediction problem based on the online latent space (OLS) strategy. Our models take

into account the various trending patterns and climate influences, as well as the inherent

similarities among different stations that are able to predict both CFD and entrance and

exit flows precisely. In our online systems, a sequence of CFD snapshots is used as the

training data. The latent attribute evolutions of different metro stations can be learned

from the previous trend and do the next prediction based on the transition patterns. All

the empirical results demonstrate that the three developed models outperform all the

other state-of-the-art approaches on three large-scale real-world datasets.

4.1 Introduction

Crowd flow prediction is not only one of the crucial research hotspots in the field of

intelligent transportation system and urban computing, but is also recognized as an
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important real-world application benefiting metro development and urban services, such

as risk assessment, route planning, congestion avoidance, etc. [45, 51, 55, 103]. It is

very important for public safety: for instance, streamed people caused a chaotic crowd

stampede at the Falls Festival in Lorne on Victoria’s south-west coast, leaved up to 80

people injured; and 36 people died in a catastrophic stampede at the 2015 New Year’s

Eve celebrations in Shanghai [97]. An effective crowd warning and prediction system can

effectively prevent people from such real tragedies by utilizing emergency mechanisms.

Thanks to the modern smart-card ticketing system for travel on public transport

and portable GPS devices, a large collection of transactional data with spatiotempo-

ral information are now available for analysts to make full use of data and discover

useful knowledge. At present, a number of successful and applicable crowd flow pre-

diction methods have been proposed to improve operational performance of transit

authorities[53, 59, 100]. Unfortunately, to the best of our knowledge, most existing meth-

ods focusing on metro crowd flow prediction are non-network-wide framework. They

formulate their problems on separate stations or a few subway lines and none of these

approaches can be implemented in forecasting CFD directly.

It should be noted, however, it is inadequate to concentrate solely on entrance and exit

flows, managers also desperately want to solve the problem of getting potential passenger

distributions, i.e., forecast the crowd flow distribution, termed as CFD forecasts in this

chapter. Once the passenger flows across the entire transportation network can be gotten,

the predicted CFD information will significantly assist the analysis of how a station

affects others, which is utmost essential for urban transportation development, e.g.,

passenger route planning and train scheduling. For instance, Figure 4.1(a) presents a

predicted snapshot. The model makes a forecast that there are 272 passengers departure

from Central station between 4:45 PM and 5:00 PM. Among them, 124 passengers will

arrive at Bondi Junction, 88 at Redfern, and 60 at Stanmore, respectively. Through

obtaining the CFD forecasts among all metro stations, transport managers can timely

forecast irregular flow patterns and make a global regulation to maintain the normal

train scheduled and make a warning for crowd evacuation. Figure 4.1(b) illustrates

this situation that when an irregular entrance flow appears in the Central station, the

congestion warning will be transmitted to the all possibly affected stations (Redfern and

Bondi Junction).

To date, limited techniques can be used directly to address the network-wide CFD

prediction problem. Regression-based methods like Gaussian processes (GP) [107] and

auto-regressive integrated moving averages (ARIMA) [84] are proposed to forecast
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(a) 560 passengers departure from Central between
4:45 and 5:00 PM, and their distribution in the
future.

(b) An effective crowd warning for all possibly af-
fected stations when suffering from abnormal flow
patterns.

Figure 4.1: An example of crowd flow distribution.

entrance and exit crowd flows. While other approaches, such as wavelet-SVM [70]

and probability trees [36] have successfully designed address the classical crowd flow

prediction problem, they are hard to implement into the entire metro network. Even

though deep neural networks [83, 96, 97], are able to fix the network-wide crowd flow

prediction problem, they are sensitive to parameters and incomplete inputs, and require

large training data that are not in line with our task. To summarize, our CFD prediction

problem faces with three intrinsic challenges here:

High computational complexity. The specific CFD prediction problem requires

getting all potential flows across entire metro stations, which calculates the entrance/exit

flows and CFD simultaneously. Most advanced models like [10, 12, 55, 70, 83], are

already computationally expensive even on a few metro lines. Meanwhile, they require

repeated large off-line training processes that are difficult to be applied in the online

system and network-wide problem.

Dynamic complexity. The crowd flow changes dynamically which is influenced by

complicating factors, such as time, station similarity and climate conditions.

Real-time delayed data collection. Considering the online system, when we focus

on entrance CFD prediction, there is a travel time gap between a passenger enters

a station and exits another. These time gaps lead to the online system cannot collect

complete data because there are a large number of passengers still on their journeys. In

this situation, most city-wide traffic flow prediction methods, such as [23, 96–98], fail

to solve our problem because they require the complete data in training and testing

processes. Section 4.2.2 illustrates the detailed discussions and explanations.
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Motivated by these challenges, we propose three online latent space learning models

for the CFD prediction of complex metro network, which enables us to forecast both

CFD and entrance/exit flows precisely. Recently, the online latent space strategy has

been used in the traffic flow prediction task and recognized as an advanced approach

to address the spatiotemporal network-wide problem [4, 16, 22]. These models, firstly

embedded the network-wide data into latent spaces by utilizing matrix factorization

based methods. Then, temporal information is also involved to capture latent attributes

and detect the dynamic patterns with time evolves [8].

In Chapter 4, to effectively infer the spatiotemporal latent attributes among different

stations, we take advantages of the non-negative matrix factorization (NMF) strategy to

embed the CFD network of each timestamp into two latent spaces; the first latent space

indicates the properties of all entrance metro stations, and the second one indicates the

properties of all exit metro stations. The first contribution of this chapter is to propose

a CFD prediction model, called OLS-AO (online latent space model with average opti-

mization), which is able to learn a smooth tendency by utilizing an average optimization

strategy from previews timestamps in a given time window. Global similarities among

all stations and climates are also involved in this model by a graph Laplacian embedding

approach. However, the sudden increase/decrease flows will appear when suffering from

some irregular events or during peak times. In such scenarios, the average strategy may

prevent OLS-AO from gaining the sudden changes in flows, misleading to the next pre-

diction. To keep the effectiveness of our method running in real-world applications, our

second contribution is that we further design another variant model via the optimization

of the most recent CFD trends, termed as OLS-MR (online latent space model with most

recent trend). Empirical results demonstrate that the second model, OLS-MR, achieves

better performances than OLS-AO when crowd flows change dramatically. Accordingly,

given that each model performs relatively better in various situations, our third contri-

bution is to propose a dual-track model, called OLS-DT, that takes advantages from both

OLS-AO and OLS-MR in a parallel running way. We perform a collection of experiments

on a large real-world transactional data covering Sydney Trains and make comparisons

with other state-of-the-art methods to test the effectiveness of our approaches. These are:

(1) CFD predictions across the entire network; (2) major station test; (3) comparisons

between weekdays and weekends; rush and non-rush hours.

It should be noted that though our models are proposed to address the CFD prediction

problem, they can be transfered to other network-wide crowd flow prediction problem,

such as forecasting city-wide crowd flows [97]. To demonstrate the transferability of
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Table 4.1: Symbol description.

Symbols Descriptions

G; n city trains network; number of stations
X t entrance or exit CFD matrices

W ; H latent space matrices
k the number of dimensions of latent attributes
T the number of consecutive snapshots in a window

A; B transition matrices of W and H
P indication matrix for all complete entries of D

λ1 −λ3; λ̂1 − λ̂3 regularization parameters

Chatswood (v1)

Town Hall (v2)
Bondi 

Junction (v5)

Central (v4)

Hurstville (v6)

Strathfield (v3)

(a) A sample network G.

v1

0 100 20 300 10 10

0 0 0 50 0 0

50 5 0 100 0

0 10 10 0 0 20

10 0 0 30 0 0

0 0 50 0

v2 v3 v4 v5 v6

v1

v2

v3

v4

v5

v6

0

0 0

(b) X t (xi j)

Figure 4.2: The topology example of metro network.

our methods, we choose another dataset used in [97] to test our performances. All the

evaluation results prove the superiority of our models over comparison methods.

4.2 Problem Description

In this section, we first describe the crowd flow related data, and then formulate the

network-wide CFD prediction problems as a graph network problem. For ease of presen-

tation, the main symbols used in this chapter are summarized in Table 4.1.
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4.2.1 Data Description

We describe the mainly used dataset in this chapter, which is a large-scale, real-world

transactional dataset of Sydney Trains network. After data cleaning1, the dataset con-

tains above 30 million transactional records covering 178 stations between 7 Nov 2016

and 11 Dec 2016. We also downloaded the weather data from Australia Bureau of

Meteorology2 of the same time span. Below sections introduce their formats and features.

4.2.1.1 Transactional data

Transactional database stores a large number of activity attributes of passengers. We

only used the records that are related to our problem and fulfilled the confidentiality deed

that ensures the privacy of each passenger. The useful records include: (1) Passenger:

a unique hashed identification number; (2) Origin: the time and location where the

passenger started a journey; (3) Destination: the time and location where the passenger

ended a journey; (4) Duration: the number of seconds taken to complete a journey. An

example of data is presented in Figure 4.3 (a).

4.2.1.2 Station throughput

The station throughput data record the throughputs (entrance and exit) of each station

at all timestamps (15 minute interval). This database can reflect the busy degree of each

station. An example of data is shown in Figure 4.3 (b).

4.2.1.3 Weather

Weather data are collected from the Australia Bureau of Meteorology. Our data are

gathered from the longitude and latitude of stations in the entire Sydney area. In this

case, the weather conditions for them may vary. Figure 4.3 (c) indicates an example of

our weather data.

4.2.2 Problem Formulation

Focusing on the CFD prediction problem, we need to record every travel path of every

passenger. In this chapter, each travel path is termed as an origin-destination pair. We

use a directed graph G = (V ,E) to define the CFD network, where E is the group of edges

1We removed the recording errors, UNKNOWN trips, and entrance and exit at the same station, etc.
2www.bom.gov.au/climate/data/
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(a) Examples of transactional data.

(b) Examples of station throughput data.

(c) Examples of weather data.

Figure 4.3: A sample of our data.

and V denotes the group of vertexes. A vertex vi ⊆ V records the i-th entrance metro

station, and an edge e(vi,v j) denotes an origin-destination pair from station vi to v j.

Assume that the current time is T, for any previous time interval t, the value of each edge

e(vi,v j) is associated with the observed flow x(vi,v j), i.e., x(vi,v j) is the total number

of passengers that departure from ith station at timestamp t and are going to the jth

station. We collect and calculate these passenger numbers from the travel information

in the transactional data, i.e., if a passenger is detected departure from the ith station

at t, and has arrived at jth station at current time T, the number will add one in the

corresponding position of the CFD matrix. Then, G can be represented by CFD matrix

X t = (xi j), where xi j = x(vi,v j).

The time interval is 15 minutes, which is a appropriate and practical timespan in the

real-world application [12, 70, 78]. With time evolves, there are different CFD matrix

X t at timestamp t. For instance, a sample of real Sydney trains network G t is shown in
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Figure 4.4: An example of delayed data collection. Suppose there are two stations (v1 and
v2), and we will only focus on the OD pair from v1 to v2. At the current timestamp T, the
data in XT and XT−1 are increasing until all passengers have reached their destinations.
The blue box illustrates the data we can collect at T. Can we use the collected data “3”
in XT as a complete data? No, because there are a large number of passengers still on
their journeys. Does “22” indicate the complete number of travels in XT−1? Possible but
uncertain, because there are many routes (or express and local train) between v1 and
v2, the faster one may have arrived in one time interval, but the slower one maybe not.
Make our attention at XT−2. Is the number “75” complete? Much more possible, because
two time intervals passed.

Figure 4.2(a), its corresponding CFD matrix X t is shown in Figures 4.2(b), where x12 =

100 means that we detected 100 travelers entering at Chatswood (v1) at time interval t
and have exited at Town Hall (v2) at the current time interval T.

Real-time delayed data collection problem. Standing at the current timestamp

T, it is infeasible to build an exact XT (i.e., an exact XT is that all passengers have

arrived their destinations). It is because XT needs to collect all crowd flows, the value,

such as xi j, is keep growing in the next several timestamps until all passengers have

reached their destination. Figure 4.4 illustrates an example of how the delayed data

affect the data collection. In this case, how can we make sure that the data collected are

complete and can be used for learning? To address this challenge, we propose a complete

data condition in Section 4.3.2.2.

In summary, we aim to predict the next short-term CFD matrix XT+1 on-the-fly by
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Time
?

XT=4

Embedding

WT+1W1 H1
T× × 

Predict WT+1  and  HT+1
T

WT × HT
T HT+1

T

Recovering

XT+1X3X2X1

Learn Wt ,  Ht
T,  and  transitions A, B

by utilizing the guidance of side information

Figure 4.5: The flowchart of OLS-AO. In the learning process, given a set of previous
CFD matrices {Xt} with the time window T (use T = 4 as an example), OLS-AO learns
the latent spaces Wt and Ht of each Xt and the transitions matrices A and B by an
average optimization method in section 4.3.2.3. The side information is utilized to guide
the updating of Wt, Ht, A and B during the learning process. Predicted latent spaces
WT+1 and HT+1 can be inferred by the Algorithm 2 shown in section 4.3.4.

using a series of previous CFD, X (X1, X2, · · · , XT).

4.2.3 Exit Crowd Flow Prediction Problem

In the above section, we discussed the origin to destination (OD) flows, termed as

entrance CFD. However, in real-world scenarios, there is another part of CFD, named as

exit CFD. For example, let y(vi,vj) records the number of people that exit at ith station

and came from jth station (i.e., a destination to origin pair, (DO)). The value (v3, v1) =

50 shown in Figure 4.2(b) illustrates that there are 50 passengers exit at Strathfield

(v3) at time interval t, that came from Chatwood (v1). In this situation, we can construct

an exact exit CFD matrix because all the passengers have arrived at their destinations.

Although there are two CFD types, they can be addressed in a similar way. Thus, to keep

clarity of this chapter, we have only presented the optimization strategy for entrance

CFD prediction, but test them both in the experiments.
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4.3 Online Latent Space Model: OLS-AO

In this section, we propose our first model OLS-AO (online latent space with average

optimization). We will describe how the latent space model can be used in the metro

network, and how to make the model capture temporal patterns. OLS-AO is able to

learn the latent temporal transitions via an average optimization strategy, which takes

into account climate influences and similarities among different stations as well as the

historic trends. Figure 4.5 shows the flowchart of this model.

4.3.1 The Basic Latent Space Model

Considering a slice X at timestamp t, the basic latent space model decomposes the CFD

matrix X ∈ Rn×n+ into two matrices W ∈ Rn×k+ and H ∈ Rn×k+ , where W and H represent

the latent spaces; n is the number of stations and k is the number of dimension of latent

space. Each row in these matrices represents k attributes of corresponding entrance

and exit stations. Hence, the crowd flows between the entrance and exit stations are

determined by the interactions between latent attributes.

(4.1) min
W≥0,H≥0

||X −WH>||2F ,

where H> is the transpose of H.

In this basic latent space model, we utilize the non-negative matrix factorization

method. One of the advantages of non-negative constraint is the interpretability of the

results and reasonable assumptions of latent attributes [35, 38, 47]. Besides, due to the

fact that the predicted values must be non-negative, W and H should be non-negative as

well. Figure 4.6 gives the intuition of this basic model.

4.3.2 Online Strategy

4.3.2.1 Temporal information involved

To involve the temporal information, we formulate the original continuous problem as a

time-dependent model. Given a time window T (i.e., a sequence contains T previous CFD

matrix, and T is also used to present the current time), for each timestamp t ∈ (1, · · · , T),

we aim to learn the corresponding time-dependent latent attribute representations Wt

and Ht from X t. After involving the time dimension, our model can be expressed as:
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(a) CFD matrix decomposition. (b) crowd flow estimation.

Figure 4.6: The latent space example. It represents how to build the static latent space
model for our CFD problem in each timestamp. As shown in subfigure(a), crowd flow
(x14) is determined by two sets of latent attributes. These attributes might illustrate
many factors, such as time spans, business region, station size, etc. It is remarkable that
subfigure(b) provides an example for these latent attributes when k = 3, and these latent
attributes can be any factors without existing a strict explanation. The dimension of
latent space k is a hyper-parameter.

Figure 4.7: An example of building indication matrix Pt. We take the entries x14 and p14
as the example. If the values meet the condition of data completion, then we can use
these values as the guidance, p14 = 1 as shown in the red solid line box; if not, set p14 to
0 which means the collected data are incomplete yet as shown in the blue dotted line box.

(4.2) min
Wt≥0,Ht≥0

I =
T∑

t=1
||Pt ¯ (X t −WtH>

t )||2F ,

where ¯ is the entrywise product; and Pt denotes the indication matrix for all the

complete trips in X t. The construction process of Pt is discussed next.
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4.3.2.2 Address the delayed data collection problem

For entrance CFD problem, we only set Pt = 1 (1≤ i, j ≤ n) if the time horizon between t
and present time T is sufficient for the vast majority of people to have arrived at their

destination. As we mentioned in Section 4.1 and 4.2, the real-time delayed data collection

problem illustrates that we can only obtain a part of complete trips, and other flows are

incomplete until the last passenger finish his journey and exit at station. In this case,

how can we make sure that the data collected are complete?

Complete data condition. To make the problem solvable, we assume that the

travel times for each OD pair in each timestamp fits the normal distribution based on the

suggestion in [27], i.e., Zq,t ∼ N(µq,t,σ2
q,t). Zq,t denotes the travel times for one OD pair

at timestamp t (qth, q ∈ all CFD). Then, based on the property of normal distribution, if

the time horizon is greater than µq,t +2σq,t, we have approximately 98% confidence that

all passengers have reached their destination.

Figure 4.7 represents the process of constructing the indication matrix Pt. X1 is the

first CFD matrix in the time window. The value of x14 means we have collected 317

passengers that enter at v1 at time t=1 and then exit at v4 until T. Due to the fact that

the time gap between 1 and T is larger than the learned µq,1 +2σq,1, we have a very

high confidence that the collected data (317) is complete. In contrast, as shown in X3, the

time gap between 3 and T is smaller than µq,3 +2σq,3, which does not gain the enough

confidence level. Then the entry 153 is recognized as a incomplete data.

4.3.2.3 Latent Transition Learning

Since our model is an online dynamic prediction system, crowd flow is continually

changing over time. We focus on learning the transition patterns of latent spaces Wt

and Ht from previous timestamps to the next. The evolving patterns can be captured by

these learned transitions, so we can do a prediction based on the current CFD condition.

In our first model, OLS-AO, we choose an average optimization strategy to learn

two transition matrices A ∈ Rk×k+ and B ∈ Rk×k+ , which represent the smooth trends of

Wt and H>
t in T previous CFD matrices. The average optimization strategy is able to

filter accidental noise in some degrees, such as urgent construction, Gate failure, etc.

Therefore, the learned trends can be recognized as a representation of the stable CFD

changes from previous timestamps. For example, A and B approximate the changes of W
and H between t-1 to t, i.e., Wt =Wt−1A and Ht = Ht−1B.

To this stage, the latent transition learning process is shown as Equation (4.4).
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(4.3) min
Wt,Ht,A,B

T =
T∑

t=2
(||Wt −Wt−1A||2F +||Ht −Ht−1B||2F ).

We consider our online optimization problems jointly, then we can get:

(4.4) min
Wt,Ht,A,B

L1 =I +λ1T ,

where λ1 is the regularization parameter.

In a real-world application, crowd flows would be influenced by various complex

factors, such as the similarities among stations, weather, and periodic property. Therefore,

to improve the forecasting performance, we will take these valuable resources into

consideration in the next section.

4.3.3 Learning From Side Information

4.3.3.1 Incorporating with Inherent and External Influences

Based on the phenomenon that the development of a city gradually evolves various

functional regions, such as residential, business, and tourist areas, where the regions

have the same functional property will have strong connections with each other [103].

The stations located in the same functional regions will also have strong similarities

with each other. To consider the inherent features and extract much more non-linear

information, we build the kernel K s
t to present the correlations among stations.

Let xi (1≤ i ≤ n) be a flow distribution at timestamp t of i-th entrance station, and

φ(·) be the mapping that maps xi onto the reproducing kernel Hilbert space. In this

case, a kernel matrix K s
t is then calculated by applying the kernel function κ(xi,x j) =

φ(xi)>φ(x j) into {xi}n
i=1. The similarity kernel matrices are learned by historic data due

to the incomplete data issue in the online process.

As similar to the building process of K s
t , we can build a kernel matrix Kw based on

the weather view. Unlike K s
t changing with a small time span, Kw presents the weather

condition in a day. We apply commonly used radial basis function (RBF) kernels to build

K s
t and Kw. For example, assume r1 and r2 indicate the weather properties of station v1

and v2 , the weather kernel Kw is generated by Kw(r1,r2) = exp(−δ||r1,r2||2), where δ

is an RBF kernel parameter, we set δ = 0.2 in our method. Then we use the following

equation to fuse these two components.
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(4.5) K t = K s
t +αYt ¯Kw,

where Yt is a weight matrix at timestamp t, which is learned by the throughput data

(normalized into [0, 1]); Yt(i, j) = 1 - dist(yi,y j), where dist() is the Euclidean distance;

the function of Yt is to balance the different influences between large and small stations;

and α is a balance factor. The sensitivity analysis of all parameters and the effects of

performance with various settings are shown in Section 4.5.9.

After above steps, we take into account the graph Laplacian dynamics [34] into

our model to obtain the spatial structure of each station. Specifically, we construct a

graph Laplacian matrix L t, defined as L t = Dt − K t, where Dt is a diagonal matrix

Dt(ii) =∑
j(K t(i j)). This new constraint can be expressed as the following optimization:

(4.6) min
Wt

S =
T∑

t=1
Tr(W>

t L tWt).

The intuition behind this graph-based optimization is that one of the latent spaces

Wt can learn the similarity structure from K t.

4.3.3.2 Historical Guidance

Traffic periodicity is a very important factor for the existing studies. Crowd flows also

represent the stable and daily periodic properties, especially on weekdays. Thanks to this

phenomenon, our prediction objective XT+1 is close to its historic guidance X h
T+1. Thus,

history information is an important guidance that should be considered. We denote that

Wh
T+1 and Hh

T+1 are two latent matrices learned from history for the next timestamp T+1.

We aim to learn variables by consulting these historical guidances. More importantly,

the other benefit of this strategy is that it adapts to the sharpening transformation from

peak time to non-peak time.

The historical guidance Wh
T+1 and Hh

T+1 can be learned by Equation (4.4) with a slight

modification, of replacing X t, Wt and Ht with X h
t , Wh

t and Hh
t , respectively, and setting

T to T +1. The indication matrix Pt should be removed in the learning process because

all historical trips are completed. Then, historical guidance is expressed as:

(4.7) min
WT ,HT ,A,B

H = ||Wh
T+1 −WT A||2F +||Hh

T+1 −HTB||2F ,
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where WT and HT are the latent spaces at timestamp T.

Taking all the above techniques into consideration, our final jointly loss function is

expressed as:

(4.8) min
Wt,Ht,A,B

L =I +λ1T +λ2S +λ3H ,

where λ1 to λ3 are the regularization parameters.

After solving Equation (4.8), the learned matrices WT , HT , A and B can be used to

do the prediction. The next CFD matrix XT+1 is:

(4.9) XT+1 = (WT A)(HTB)>.

4.3.4 Learning Process

Equation 4.8 is a complex non-convex problem. In this case, we choose an effective

gradient descent method with multiplicative update strategy [35] to discover the local

optimization.

Theorem 4.1. L is non-increasing under the following update rules in Equation
(4.10)-(4.14) by optimizing Wt, Ht, A and B alternatively:

(4.10) Wt =Wt ¯
Pt ¯ X tHt +λ1(Wt−1A+Wt+1A>)+λ2K tWt + λ̂3Wh

T+1A>

Pt ¯ (WtH>
t )Ht +λ1(Wt +Wt AA>)+λ2DtWt + λ̂3WT AA> ,

(4.11) Ht = Ht ¯
P>

t ¯ X>
t Wt +λ1(Ht−1B+Ht+1B>)+ λ̂3Hh

T+1B>

P>
t ¯ (HtW>

t )Wt +λ1(Ht +HtBB>)+ λ̂3HTBB> ,

where λ̂3 is given by:

(4.12) λ̂3 =
{

λ3, t = T
0, otherwise

(4.13) A = A¯ λ1
∑T

t=1 W>
t−1Wt +λ3W>

T Wh
T+1

λ1
∑T

t=1 W>
t−1(Wt−1A)+λ3W>

T (WT A)
,
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(4.14) B = B¯ λ1
∑T

t=1 H>
t−1Ht +λ3H>

T Hh
T+1

λ1
∑T

t=1 H>
t−1(Ht−1B)+λ3H>

T (HTB)
.

It is noteworthy that the update rules indicate a time-related learning process, the

information from previous and next timestamps (Wt−1 and Wt+1) affect each other. This

chain updating rules make sure all variables are learned comprehensively with the

side information guidance. We now derive the update rule of Wt as an example, other

variables can be solved with a similar process. Considering Wt while all other variables

are fixed, Equation (4.8) can be rewritten as follows:

(4.15)

L =
T∑

t=1
Tr((Pt ¯ (X t −WtH>

t ))(Pt ¯ (X t −WtH>
t ))>)+

λ1

T∑
t=2

Tr((Wt −Wt−1A)(Wt −Wt−1A)>)+λ2

T∑
t=1

Tr(W>
t L tWt)

+λ3Tr((Wh
T+1 −WT A)(Wh

T+1 −WT A)>)+J (Ht,B),

where J (Ht,B) indicates the components of L excluding Wt, which is a constant value

when only considering the partial derivative of Wt.

Taking the derivation of L with respect to Wt, we can get g(Wt) according to [60]:

(4.16)

g(Wt)=2(−Pt ¯ X tHt +Pt ¯ (WtH>
t )Ht)+

2λ1(−Wt−1A+Wt −Wt+1A>+Wt AA>)+
2λ2(−K tWt +DtWt)+2λ̂3(−Wh

T+1A>+WT AA>),

As introduced in [35], the traditional gradient descent method is expressed as: Wt

= Wt - γg(Wt) = Wt - γ(Pitem + Nitem), where Pitem and Nitem denote all positive and

negative items in g(Wt), respectively (e.g., Pitem = 2(Pt ¯ (WtH>
t )Ht +λ1(Wt +Wt AA>)+

λ2DtWt + λ̂3WT AA>)). We can set the step γ to:

(4.17) γ= Wt

Pitem
,

then, we got the update rule of Wt as shown in Equation (4.10).

Algorithm 2 summarizes our learning and prediction process of OLS-AO.
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Algorithm 2: OLS-AO
Input: CFD matrices [X1, · · · , XT]; similarty kernels [K1, · · · ,KT]; historic

guidance Wh
T+1, Hh

T+1
Output: prediction XT+1

1 initialize Wt,Ht, A and B by historical values
2 for Epoch = 1 to M do
3 if |Li −Li+1| / Li ≥ ε then
4 for t = 1 to T do
5 update Wt and Ht By Equation (4.10) - (4.12)

6 update A and B By Equation (4.13) and (4.14)
7 else
8 Break

9 Return XT+1 By Equation (4.9)

4.3.5 Analysis of Complexity and Convergence

We first discuss the computational complexity of OLS-AO. As shown in Equations (4.10)

- (4.14) and Algorithm 2, the computational complexity is dominated by the matrix

multiplication operations. For each iteration, the computational complexity of OLS-AO

is O(Tn2k).

In terms of convergence, Algorithm 2 is guaranteed to converge at a local optimal

solution by optimizing Wt, Ht, A and B alternatively. The convergence trends are plotted

in Section 4.5.10. To prove Lemma 4.1, we will find an auxiliary function similar to

that used in the [35]. We here give the convergence proof of HT and other variables can

similarly be proofed.

4.3.5.1 Proof of Theorem 4.1

Definition 1. Q(h,h
′
) is an auxiliary function for our final function L (h) if the

following conditions are satisfied:

(4.18) Q
(
h′,h

)≥L (h) and Q(h,h)=L (h).

Lemma 4.1. If Q is an auxiliary function, then L is non-increasing under the update:

(4.19) ht+1 = argmin
h

Q
(
h,ht) ,
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consequently, we have:

(4.20) L
(
ht+1)≤Q

(
ht+1,ht)≤Q

(
ht,ht)=L

(
ht) .

The proof of Lemma 4.1 is given by [35]. Lemma 4.1 illustrates that L
(
ht+1)≤L (ht)

when exits Q
(
h,ht).

Lemma 4.2. If R(ht) is a diagonal matrix under the following definition,

(4.21) R(ht)= diag((WT diag(p)W + I +B>B)h/h),

where p is a column vector of PT ¯PT , then,

(4.22) Q
(
h,ht)=L

(
ht)+ (

h−ht)T ∇L
(
ht)+ 1

2
(
h−ht)T R

(
ht)(h−ht) ,

is an auxiliary function for L .

Proof. Since Q(h,h) = L (h) is obvious, we need only show that Q(h,ht)≥L (h), which

is equivalent to

(4.23) 0≤ (
h−ht)T

[
R

(
ht)− (WT diag(p)W + I +B>B)

](
h−ht) .

Let O = WT diag(p)W + I +B>B, then
[
R

(
ht)− (WT diag(p)W + I +B>B)

]
can be ex-

pressed as [diag(Oh/h)−O]. As the proof provided in [24], if O is a symmetric non-

negative matrix and h be a positive vector, then the matrix Ô = diag(Oh./h)−O º 0.

�

Replacing Q(h,ht) in Equation (4.19) by Equation (4.22), we can obtain update rules

and proof L is non-increasing of Theorem 4.1.

4.4 A Variant Model OLS-MR and a Dual- Track
Model OLS-DT

This section proposes one variant model OLS-MR (online latent space model via learning

most recent trend) and a dual-track model to improve the CFD forecasting performance.
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4.4.1 Motivation

Our first model, OLS-AO relies on the average optimization strategy to learn the tran-

sition matrices A and B. This learning method extracts long-term tendencies that can

avoid abnormal noises, especially in the non-rush hours. However, it is insensitive to

the sharp change of crowd flows. For example, Figure 4.8 (a) shows the real entrance

flows of three stations between 10:00 AM and 3:00 PM. During these stable passenger

flows, as shown in the green box, OLS-AO will perform well. However, a sudden increase

flow will occur during the peak times, e.g., between 7:00 to 8:00 AM in Figure 4.8 (b),

the crowd flow shoots upward. Intuitively, OLS-AO is insensitive to this scenario due to

the average optimization strategy. Hence, this situation inspires us to propose another

model to handle situations where sudden changes flow appear.

4.4.2 Learning the Most Recent Trend

As discussed above, we want to learn the most recent trend to fix the weakness of

OLS-AO. Motivated by this point, we partition the transition matrices A and B by each

timestamp t, i.e., learning At and Bt from one snapshot to the next. Note that, even

though A and B are disassembled to the time-related variables, it does not mean that At

or Bt only learn knowledge from timestamp t-1. There is an association chain between

time 1 to time T, which can be illustrated by the update rules in Equations (4.27) - (4.30).

In detail, we revise the optimization function T̃ and H̃ in Equation (4.3) and (4.7)

respectively to tackle the most recent dynamic trends as follows:

(4.24) min
Wt,Ht,At,Bt

T̃ =
T∑

t=2
(||Wt −Wt−1At−1||2F +||Ht −Ht−1Bt−1||2F ),

(4.25) min
WT ,HT ,AT ,BT

H̃ = ||Wh
T+1 −WT AT ||2F +||HT+1 −HTBT ||2F ,

AT and BT are transition matrices when t = T. After incorporating the side information

described in Section 4.3.3, the final loss function of OLS-MR is

(4.26) min
Wt,Ht,At,Bt

L̃ =I +η1T̃ +η2S +η3H̃ ,

where η1 to η3 are the regularization parameters.
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Figure 4.8: Crowd flow changes in different scenarios.

4.4.3 Learning Process

Theorem 4.2. L̃ is non-increasing under the following update rules in Equation (4.27) -
(4.30) by optimizing Wt, Ht, At and Bt alternatively:

(4.27) Wt =Wt ¯
Pt ¯ X tHt +η1(Wt−1At−1 +Wt+1A>

t )+η2K tWt + η̂3Wh
T+1A>

T

Pt ¯ (WtH>
t )Ht +η1(Wt +Wt At A>

t )+η2DtWt + η̂3WT AT A>
T

,

(4.28) Ht = Ht ¯
P>

t ¯ X>
t Wt +η1(Ht−1Bt−1 +Ht+1B>

t )+ η̂3Hh
T+1B>

T

P>
t ¯ (HtW>

t )Wt +η1(Ht +HtBtB>
t )+ η̂3HTBTB>

T
,

(4.29) At = At ¯
η1W>

t Wt+1 + η̂3W>
T Wh

T+1

η1W>
t (Wt At)+ η̂3W>

T (WT AT)
,

(4.30) Bt = Bt ¯
η1H>

t Ht+1 + η̂3H>
T Hh

T+1

η1H>
t (HtBt)+ η̂3H>

T (HTBT)
.

Equations (4.27) - (4.30) satisfy:

η̂3 =
{

η3, t = T
0, otherwise

Theorem 4.2 can be proved as shown in section 4.3.4 and 4.3.5 with slight changes.
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Algorithm 3: OLS-MR
Input: CFD matrices [X1, · · · , XT]; similarty kernels [K1, · · · ,KT]; historic

guidance Wh
T+1, Hh

T+1
Output: prediction XT+1

1 initialize Wt,Ht, At and Bt by historical values
2 for Epoch = 1 to M do
3 if

∣∣L̃i −L̃i+1
∣∣ / L̃i ≥ ε then

4 for t = 1 to T do
5 update Wt and Ht By Equations (4.27) and (4.28)
6 update At and Bt By Equations (4.29) and (4.30)

7 else
8 Break

9 Return XT+1 By DT+1 = (WT AT)(HTBT)>

Based on Theorem 4.2, the learning and prediction processes for OLS-MR are summa-

rized in Algorithm 3.

We theoretically discuss the OLS-MR here. The computational complexity of OLS-

MR is also determined by the matrix multiplication operations. For each iteration, the

computational complexity is O(Tn2k). Furthermore, even though OLS-MR relies on the

most previous trend, the learning process also leverage the information from previous

and next timestamps (Wt−1 and Wt+1), as well as the transition matrices. This chain

updating rules make sure all training data are considered and associated with each

other.

4.4.4 A Dual-track Model

As the fact that OLS-AO and OLS-MR execute respectively stronger in two different

situations (the first adapts to the stable flows and the second adapts to the sudden

changes of flows.) A dual-track strategy can be proposed to integrate both two models

that to solve the prediction task in a variety of crowd flow situations.

Due to the real-time delayed data collection problem, the ground-truth at current

time T is not available, but we only can obtain the total number of entrance crowd flows

for each station at current time. Hence, we compare the sum of each row in XT with

ground-truth, and use MAE as the selection criteria for the next prediction. Inspired by

[44], we use a temporally-varying fusion strategy in our dual-track model. The prediction

of OLS-DT is expressed as:
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(4.31) X DT
T+1 =


τX AO

T+1 + (1−τ)X MR
T+1 i f |MAEAO −MAEMR | ≤ ξ

X AO
T+1 i f MAEMR −MAEAO > ξ

X MR
T+1 i f MAEAO −MAEMR > ξ

where τ = e−MAEAO

e−MAEAO+e−MAEMR
; and ξ = 0.1 is a threshold; MAEAO and MAEMR present the

prediction errors at timestamp T of OLS-AO and OLS-MR, respectively. Our dual-track

model (OLS-DT) is presented in Algorithm 4.

Algorithm 4: OLS-DT
while need to predict next XT+1 do

if |MAEAO −MAEMR | ≤ ξ then
X DT

T+1 = τX AO
T+1 + (1−τ)X MR

T+1;
else

if MAEMR −MAEAO > ξ then
X DT

T+1 = X AO
T+1;

else
X DT

T+1 = X MR
T+1;

4.5 EXPERIMENTS

In this section, we report on the experiments carried out on three real-world datasets.

4.5.1 Datasets

• The state-wide train network. This dataset is provided by NSW Sydney Trains as shown

in section 4.2.1. This dataset contains above 30 million trajectories covering 178 stations

between 7 Nov 2016 and 11 Dec 2016; the average trajectories (including entrance and

exit flows) on weekdays and weekends are 1.04 and 0.53 million, respectively. We pick

the data between 7 Nov. 2016 and 20 Nov. 2016 as the training set (used to calculate the

historic guidance and pick the parameters); the remaining data are used as the test set.

For the detailed of strategy of picking the best hyper-parameters, please refer to the next

section.

• The major station network. We select the top 20 stations as the major stations

based on throughput capacity. This selected dataset contains This dataset contains about
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19.8 million trajectories in total; the average trajectories (including entrance and exit

flows) on weekdays and weekends are 0.68 and 0.34 million, respectively. The division of

training and test data is the same as the first dataset.

• TaxiBJ. As we mentioned in the Introduction section, our methods not only can

effectively address the CFD prediction, but also solve other network-wide flow forecasting

task. We choose this widely used dataset to demonstrate the transferability of our models.

For more details about this dataset, please refer to [97]. We used the data between 14

Mar. 2016 and 10 April. 2016 as our test data; the data between 15 Feb. 2016 and 13

Mar. 2016 were used as the training data (pick parameters).

4.5.2 Baselines & Measures & Parameters

Baselines. The baselines are outlined as follows. All parameters used in baselines are

picked by a grid search approach.

• HA: We predict CFD by the historical average method on each timespan. For

example, all historical time spans from 9:45 AM to 10:00 AM on Tuesdays are utilized to

do the forecast for the same time interval.

• ONMF: the traditional Online non-negative matrix factorization based method

without utilizing side information.

• LSM-RN-All: A state-of-the-art OLS-based method to predict network-wide traffic

speed problem [16].

• SARIMA: A linear regression model with seasonal property to effectively predict

future values in a time series.

• GPR: Gaussian process regression (GPR) would handle the spatiotemporal pattern

prediction in a stochastic process. It usually suffers from a heavy computational cost

[63].

Measures. Two metrics are used in this chapter, Mean Relative Error (MRE) and

Mean Absolute Error (MAE), as they are generally employed in evaluating time series

accuracy [93].

MAE =
∑Ω

i=1 |ci − ĉi|
Ω

, MRE =
∑Ω

i=1 |ci − ĉi|∑Ω
i=1 ci

,

where ĉi is a forecasting value and ci is the ground truth; Ω is the number of predictions.

Initialization. To ensure a better performance, we initialize latent space matrices

of ONMF, LSM-RN-All, and proposed models in each time interval with corresponding
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Table 4.2: Parameters.

Different types
OLS-AO OLS-MR

λ1 λ2 λ3 η1 η2 η3

Weekdays
Entrance CFD 26 2−1 213 21.5 2−5 25

Exit CFD 25 2−1 215 25.5 2−4 218

Weekends
Entrance CFD 26 2−3 26.5 20.5 2−5 22

Exit CFD 22 2−2 22 23.5 2−4 24

historic data. This initialization method is reasonable under the assumption that model

parameters will not change much compared to their historic values [16].

Picking Parameters. The hyper-parameters used in the experiments for different

application scenarios are shown in Table 4.2. All regularization parameters are optimized

by the grid search method. We set latent dimension k = 70, time window T of OLS-AO to

6 and T of OLS-MR to 3 for a good balance between time cost and performance. Much

more details about sensitivity of parameters can be found in section 4.5.9.

It is worth notice that the proposed methods are online models. For example, when we

want to predict CFD matrix at T+1, the data in T previous timestamps can be seen as the

training set, and data at timestamp T+1 is used for validation. For the next prediction

step, data at T+2 becomes the validation set and data in its T previous timestamps is

recognized as the training set. Finally we go through all the training set, and get the

average error on validation set. The hyper-parameters achieved the lowest error are

picked in the test.
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Figure 4.9: CFD prediction on the entire trains network.
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Table 4.3: Comparisons on different time spans. We report the average mean relative errors (MRE) through all test data and
best results are bold. The time spans are M-rush (7:30-9:00 AM), Non-rush (14:00-15:30 PM), A-rush (16:45-18:15 PM).

Methods
Entrance CFD Weekdays Exit CFD Weekdays Entrance CFD Weekends Exit CFD Weekends

Average
M-rush Non-rush A-rush M-rush Non-rush A-rush M-rush Non-rush A-rush M-rush Non-rush A-rush

OLS-AO 0.198 0.347 0.241 0.256 0.378 0.348 0.584 0.519 0.513 0.646 0.583 0.516 0.427
OLS-MR 0.193 0.357 0.226 0.247 0.382 0.337 0.608 0.558 0.551 0.637 0.592 0.563 0.437
OLS-DT 0.190 0.341 0.226 0.233 0.369 0.341 0.578 0.520 0.507 0.631 0.580 0.508 0.418

HA 0.209 0.369 0.248 0.269 0.401 0.348 0.634 0.598 0.592 0.689 0.639 0.642 0.470
LSM-RN-All 0.615 0.753 0.523 0.580 0.743 0.672 0.777 0.943 0.801 0.779 0.854 0.824 0.739

ONMF 0.440 0.633 0.420 0.578 0.675 0.679 0.660 0.779 0.791 0.817 0.775 0.715 0.664
SARIMA 0.225 0.424 0.266 0.311 0.436 0.446 0.730 0.630 0.631 0.818 0.669 0.676 0.522

GPR 0.801 0.491 0.592 0.868 0.503 0.644 0.738 0.592 0.568 0.793 0.656 0.629 0.656

Table 4.4: Overall results. We report the average errors among different methods between 6:00 AM and 10:00 PM. Best results
are bold.

Methods
Entrance CFD Weekdays Exit CFD Weekdays Entrance CFD Weekends Exit CFD Weekends Average
MAE MRE MAE MRE MAE MRE MAE MRE MAE MRE

OLS-AO 1.531 0.308 1.899 0.357 1.912 0.533 2.081 0.590 1.856 0.447
OLS-MR 1.542 0.311 1.887 0.356 1.944 0.557 2.129 0.601 1.875 0.457
OLS-DT 1.520 0.289 1.855 0.350 1.917 0.528 2.077 0.593 1.842 0.440

HA 1.652 0.334 1.969 0.391 2.176 0.617 2.635 0.667 2.108 0.502
LSM-RN-All 5.713 1.009 3.424 0.592 2.105 0.598 2.857 0.779 3.525 0.744

ONMF 4.122 0.763 2.687 0.502 2.119 0.603 3.417 0.883 3.086 0.688
SARIMA 1.939 0.395 2.304 0.463 2.270 0.659 2.671 0.724 2.296 0.560

GPR 4.283 0.955 4.928 1.001 2.333 0.671 2.590 0.662 3.533 0.822
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Table 4.5: Comparisons on major stations. We report the average mean relative errors (MRE) of major stations. Best results
are bold.

Methods
Entrance CFD Weekdays Exit CFD Weekdays Entrance CFD Weekends Exit CFD Weekends

Average
M-rush Non-rush A-rush M-rush Non-rush A-rush M-rush Non-rush A-rush M-rush Non-rush A-rush

OLS-AO 0.192 0.321 0.233 0.254 0.364 0.331 0.582 0.510 0.508 0.647 0.566 0.512 0.418
OLS-MR 0.187 0.344 0.219 0.241 0.389 0.321 0.601 0.549 0.526 0.633 0.572 0.545 0.427
OLS-DT 0.183 0.315 0.210 0.242 0.356 0.317 0.574 0.511 0.501 0.619 0.559 0.519 0.408

HA 0.211 0.386 0.244 0.271 0.398 0.352 0.627 0.611 0.599 0.671 0.643 0.651 0.472
LSM-RN-All 0.585 0.714 0.615 0.577 0.712 0.643 0.719 0.920 0.836 0.744 0.814 0.833 0.726

ONMF 0.454 0.612 0.391 0.558 0.665 0.699 0.661 0.740 0.698 0.887 0.741 0.736 0.654
SARIMA 0.221 0.408 0.273 0.331 0.452 0.419 0.721 0.647 0.632 0.800 0.675 0.632 0.518

GPR 0.765 0.501 0.541 0.797 0.530 0.634 0.719 0.607 0.566 0.777 0.634 0.610 0.644
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Table 4.6: Comparisons with different time intervals. We report the average errors with different time interval between 6:00
AM and 10:00 PM. Best results are bold.

Methods

Time Interval – Half Hour Time Interval – One Hour

Entrance CFD Weekdays Exit CFD Weekdays Entrance CFD Weekdays Exit CFD Weekdays

MAE MRE MAE MRE MAE MRE MAE MRE

OLS-AO 1.697 0.281 2.017 0.327 1.754 0.285 2.276 0.320

OLS-MR 1.703 0.285 1.939 0.311 1.807 0.292 2.019 0.315

OLS-DT 1.654 0.274 1.901 0.305 1.750 0.279 1.985 0.308

HA 1.988 0.327 2.334 0.381 2.133 0.333 2.556 0.371

LSM-RN-All 5.910 0.923 3.580 0.626 6.177 0.901 3.849 0.574

ONMF 4.567 0.722 3.076 0.477 4.257 0.734 3.111 0.463

SARIMA 2.198 0.390 2.255 0.461 2.459 0.382 2.354 0.396

GPR 4.372 0.913 4.883 0.898 4.473 0.901 5.013 0.921
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Table 4.7: Transferability test on TaxiBJ dataset. We report the average mean relative errors (MRE) of city crowd flow
prediction. Best results are bold.

Methods Inflow weekdays Outflow weekdays Inflow weekends Outflow weekends Average

OLS-AO 0.164 0.165 0.172 0.173 0.169

OLS-MR 0.170 0.170 0.190 0.179 0.177

OLS-DT 0.157 0.160 0.168 0.166 0.162

HA 0.498 0.478 0.191 0.192 0.339

LSM-RN-All 0.276 0.298 0.246 0.310 0.282

ONMF 0.264 0.305 0.279 0.259 0.277

SARIMA 0.193 0.211 0.197 0.201 0.201

GPR 0.200 0.239 0.192 0.189 0.205

71



CHAPTER 4. CROWD FLOW DISTRIBUTION PREDICTION

4.5.3 Results on the State-wide Train Network

We first assess the performances of our models across the state-wide train network. We

consider two types of CFD flows (entrance and exit as discussed in section 4.2.2 and

4.2.3); comparisons between peak and non-peak times; and results between weekdays

and weekends to evaluate our models comprehensively.

Table 4.3 reports the average MRE in different scenarios. We pick three noticeable

time periods in this test, termed as M-rush (morning rush), Non-rush and A-rush

(afternoon rush). In the weekday test, it is apparent that OLS-AO performs better during

non-rush times, while OLS-MR performs better during rush times in both the entrance

and the exit CFD prediction tasks. In the weekend test, OLS-AO achieves the better

results because passenger flows are more stable throughout the day. The dual-track

model which incorporates both OLS-AO and OLS-MR that performs almost the best

through all experiments. Because OLS-AO and OLS-MR separately designed for the rush

and non-rush hours, OLS-DT usually gets the closely results as the better one of the first

two models. To keep image clear, we only draw top four methods in Figure 4.9 because

other baselines perform far worse than the select methods. In addition, we remove the

lines of OLS-DT because it overlaps closely with the best one of OLS-AO and OLS-MR

that leads to a bad visualization in Figures. The tests drawn in Figure 4.9 demonstrate

the conclusions above and the results of Table 4.3. For the regression methods, GPR and

SARIMA, are both sensitive to the incomplete data, but SARIMA takes periodicity into

consideration that gets the better results. They need to build models for every crowd

flow that results in the huge re-training cost and the high complexity. Although, ONMF

and LSM-RN-All can solve the network-wide prediction problem, they do not incorporate

historic guidance that performance suffers. More comparisons are shown in Table 4.4.

Table 4.4 presents the average errors of all test methods for each timestamp between

6.00 am and 10.00 pm. OLS-AO provides the best performance on weekends compared

with other baselines because sudden changes in flow are rare. However, on weekdays,

OLS-AO and OLS-MR will outperform alternatively in different scenarios; in this case,

the dual-track method achieve the best performance on weekdays.

In summary, the first two purpose-built models, OLS-AO and OLS-MR, have their

own advantages for network-wide CFD predictions for complex metro system. OLS-DT

achieves the best performances on weekdays and weekends.
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4.5.4 Results for the Major Stations

This evaluation aims to remove any interference created by smaller stations to evaluate

our methods’ more comprehensively. In this case, we select the top 20 stations as the

major stations based on throughput capacity. Table 4.5 shows the performances from

three perspectives, including tests on entrance/exit CFD, weekdays and weekends, rush

and non-rush hours. It is apparent that the experimental results lead to similar conclu-

sions to our first test. The proposed three models outperform other baseline methods,

OLS-AO and OLS-MR are able to adapt to different scenarios, and OLS-DT achieve the

best overall results.

4.5.5 Results on Different Time Intervals

In the real-world crowd flow prediction application, an appropriate and practical time

interval is around 15 minutes [12, 70, 78]. Authorities prefer a short-term prediction

that can manage services more flexibly. We add this set of experiments to demonstrate

the robustness of our models with different time intervals.

Table 4.6 represents the average MAE and MRE with different time intervals (half-

hour and one-hour). In this weekday test, it is apparent that OLS-DT achieves better

results than OLS-AO and OLS-MR, and these three proposed online models outperform

other baselines. Even though that the spatial-temporal continuity will become weaker

when the time interval increases, our models can learn periodicity knowledge from the

historical guidance. This strategy leads to good performances when testing on the longer

time intervals.

4.5.6 Visualization of Crowd Flow Distribution

Figure 4.10 gives an intuitive presentation of the CFD prediction in Sydney. The forecast

time span is 3:45 PM – 4:00 PM on 7 Nov 2016. The first red marked value in the

rectangle presents the predicted result of OLS-DT, while the value in the bracket is its

ground truth. This visualization illustrates the effectiveness of our model. In this time

period, people tend to go home (large residential areas, Hurstville and Burwood), and a

small number of people are going to Central.
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Figure 4.10: The visualization of CFD prediction.

4.5.7 Transferability Test on TaxiBJ Dataset

This set of experiments is designed to assess the transferability of our three models.

OLS-AO, OLS-MR and OLS-DT are not only used for CFD prediction but suitable for

other network-wide prediction problem, such as city-wide crowd flow forecasting. There

are two types of flows of each city area, named as “Outflow” and “Inflow” where Outflow

is the number of traffic crowds leaving an area to other regions in one timestamp, and

Inflow presents the number of traffic crowds entering an area from other regions in one

timestamp [97]. The time interval in this dataset is 30 minutes. Due to the fact that

this problem does not suffer from the incomplete data challenge, we can remove the

indication matrix Pt when conducting experiments.

Table 4.7 shows results of our methods together with some baselines. Compared with

other methods, our three models can achieve the great accuracies. OLS-DT is performs

the best on weekdays and weekends. In general, our methods perform better than other

baselines that have the strong transferability to solve other crowd flow problem.

4.5.8 Ablation Study

In this section, we analyses the contribution of each component of the final optimization

function. We only report the average mean relative errors on entrance CFD predictions
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Table 4.8: Ablation studies on models. We report the average mean relative errors (MRE)
of entrance CFD prediction on the entire trains network. Best results are bold.

Online K t h
OLS-AO OLS-MR

rush time non-rush rush time non-rush

X 0.430 0.633 0.425 0.701
X X 0.408 0.611 0.375 0.667
X X 0.236 0.361 0.217 0.364
X X X 0.220 0.347 0.210 0.357

on weekdays because other parts of experiments obtain similar conclusions.

Table 4.8 illustrates that how the side information affect performance. The term

“Online” means the online strategy with transition learning process, OLS-AO uses the

average optimization and OLS-MR learns the most recent trend. K t illustrates whether

the model involve the inherent and external influences, e.g., station similarities and

weather. h indicates the historical guidance is used or not.

As the tests shown in Table 4.8, we clearly see that two models perform bad when

only considering the online strategy, that is also the reason why transitional ONMF

model and LSM-RN-All cannot achieve good results. The other combinations show that

the side information make great improvements of two models, especially for the historical

guidance. This is mainly caused by the daily periodicity of crowd flows, which means

CFDs are usually very stable and have a strong daily periodic property. The results of

combination of “Online” and “h” represent the performances of our previous work in [22],

which are slightly worse than the extended models. The inherent and external influences

give a help for a better performance because it have drawn useful information from

station correlations and the weather conditions.

4.5.9 The Sensitivity of Parameters

Table 4.2 presents the best choice of each parameter. To evaluate how they affect the

performance of our methods, we varied them in a wide range in this test. In this section,

we have only presented the outcomes for the entrance CFD on weekdays due to the page

limitation.

Figure 4.11(a) shows the different performances with a varying setting for α. This

factor controls the weights of weather effect. As can be shown in the results, α = 2−3 is
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Figure 4.11: Effect of parameters.

the best choice for both OLS-AO and OLS-MR. Beside, α is not sensitive in the range of

2−8 and 2−1.

Figure 4.11(b) represents various results by varying λ1 and η1. These two parameters

connect to our online process that control the strength of the current flow trends to use.

λ1=26 and η1=21.5 achieve the best results for OLS-AO and OLS-MR, respectively.

Figure 4.11(c) plots the effects with various λ2 and η2. The strength of guidance from

inherent and external information are determined by these two parameters. λ2=2−1 and

η2=2−5 yield the best performances for OLS-AO and OLS-MR, respectively.

Figure 4.11(d) illustrates the impacts of varying λ3 and η3 which effect the power of

historic guidance. Generally, OLS-AO requires more historical information than OLS-MR

to perform better. The best values of λ3 and η3 were 213 and 25, respectively.

In a summary, the parameters used in our methods are benefit to the improvement

of our models. Furthermore, they are not sensitively in a part of searching range which

means our model are stable and easy fine-tuning.
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Table 4.9: Scalability test. OLS-AO/OLS-MR completed each prediction step in a reason-
able time span (about 5.5 seconds) with the highest accuracy.

OLS-AO/MR LSM ONMF SARIMA GPR
re-train(s) - - - 156.55 399.82

pred.(s) 5.53 3.69 4.96 0.68 0.36
train+pred.(s) 5.53 3.69 4.96 157.23 400.18
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Figure 4.12: Comparisons between running time and various k, T

4.5.10 Scalability

The scalability test is used to assess the efficiency of various approaches. We first to

present the effects of window size T and the number of latent dimension k. Figure

4.12 (a) shows the various performances (left axis) and time costs (right axis) with

various k. Generally, both OLS-AO and OLS-MR achieve the better performances but

longer computational cost with k increased. Therefore, we set k to 70 for a good balance

between computational cost and the prediction results. Figure 4.12 (b) shows the different

prediction errors (left axis) and computational cost (right axis) with a varying setting for

T. OLS-AO gets a minimum MAE when T=6, while OLS-MR performs good when T ≥ 3.

Hence, due to the computational cost will grow rapidly with T increases, we suggest

setting T to 3 in our task.

Table 4.9 illustrates the results of the forecasting times and training process for

one prediction step on the state-wide metro network based on the above recommended

T and k. The regression methods, SARIMA and GPR, required an enormous amount

of re-training time, which is difficult to implement in a real-time system. LSM and

ONMF were faster at prediction than OLS-AO, OLS-MR but show a lower accuracy. The

scalability test demonstrates that our models, OLS-AO and OLS-MR, are able to be
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Figure 4.13: Convergence rate.

applied in the real-time network-wide problems, which cost approximately 5.5 seconds

for each prediction step.

Convergence. As shown in Figures 4.13 (a) and (b), our models OLS-AO and OLS-

MR can efficiently converge into a local optimization with a small number of iterations.

4.6 Conclusions

In this chapter, we proposed three spatiotemporal models to effectively address the

network-wide CFD prediction problem based on the online latent space (OLS) strategy.

The first model named OLS-AO combines the stable flow trends with the side information

guidance by using an average optimization strategy that adapts to stable crowd flows.

The second model, OLS-MR, learning from the most recent trends, is able to handle

the dramatical changes of crowd flows. To enhance the models’ applicability of handing

real-world situations, our last dual-track model, OLS-DT, utilizes the benefits of both

OLS-AO and OLS-MR to achieve the best performance in a variety of challenging traffic

situations. All the empirical results demonstrate that the proposed models outperform

all the other state-of-the-art methods.
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POTENTIAL PASSENGER FLOW PREDICTION

Recently, practical applications for passenger flow prediction have brought many

benefits to urban transportation development. With the development of urban-

ization, a real-world demand from transportation managers is to construct a new

metro station in one city area that never planned before. Authorities are interested in

the picture of the future volume of commuters before constructing a new station, and

estimate how would it affect other areas. In this chapter, this specific problem is termed

as potential passenger flow (PPF) prediction, which is a novel and important study

connected with urban computing and intelligent transportation systems. For example, an

accurate PPF predictor can provide invaluable knowledge to designers, such as the advice

of station scales and influences on other areas, etc. To address this problem, we propose

a multi-view localized correlation learning method. The core idea of our strategy is to

learn the passenger flow correlations between the target areas and their localized areas

with adaptive-weight. To improve the prediction accuracy, other domain knowledge is

involved via a multi-view learning process. We conduct intensive experiments to evaluate

the effectiveness of our method with real-world official transportation datasets. The

results demonstrate that our method can achieve excellent performance compared with

other available baselines. Besides, our method can provide an effective solution to the

cold-start problem in the recommender system as well, which proved by its outperformed

experimental results.

79



CHAPTER 5. POTENTIAL PASSENGER FLOW PREDICTION

Figure 5.1: The example of PPF prediction problem. We aim to forecast the passenger
flows of target areas (e.g., a6, a7, a9) across the entire city network.

5.1 Introduction

With the growth of intelligent transportation systems, passenger flow prediction models

concentrate on discovering the volume of crowds and mobility patterns that best serve

people’s daily life [58, 98]. Recent advances in passenger flow prediction are focusing

mainly on next time interval flow conditions with time evolves [22, 68]. If a brand-new

metro station is inserted into the original metro network, existing predictors have to

collect a large amount of latest transactional data to ensure normal operation. However,

a real-world requirement from transportation authorities is that they want to obtain the

potential passenger flows (PPF) of a planned city area in advance (i.e., before constructing

a station in this area). It is significant for the urban traffic development and transporta-

tion management, as it can provide insights for the site selection of stations and analysis

of passenger movement patterns, as well as give the potential crowd warning.

In the PPF prediction task, concentrating solely on the entrance and exit potential

flows does not provide adequate information, authorities also desperately want to master

the distribution of predicted PPF, i.e., forecast the number of potential passengers

moving to different destinations. It is utmost important to find how will the new station

affect other areas. For instance, Figure 5.1 illustrates an example of the PPF prediction

problem. A city region is partitioned into nine areas1, six of them have metro stations

(termed as known areas), and three have not constructed yet (termed as target areas).
1We use grids for clear and simple illustration, the real partition standard is explained in the section

of data description.
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The right part of Figure 5.1 presents an origin-destination (OD) matrix (each row point

is the origin area and column points are destinations), e.g., F(a1, a3) = 130 indicates

that there are 130 passengers departure from a1 and are going to the a3. PPF task aims

to make an accurate prediction for the target areas in one period (e.g., rush hours) that

completes the crowd flows between them and known areas.

Traditional passenger flow mining usually deals with data from a single view. Re-

cently, there exists a diversity of datasets from different sources in various domains

with multiple views [102]. The multi-view learning algorithm is widely recognized as

an effective way of solving the cross-domain problem, that features from different views

can be served for the target domain learning process [17, 66, 87]. [88] proposed a matrix

co-factorization based method (MVL-IV) to embed different views into a shared subspace,

such that the incomplete views can be estimated by the information on observed views.

To connect multiple views, MVL-IV assumed that different views have distinct ‚Äòfea-

ture‚Äô matrices (i.e., {Hi}m
i=1), but correspond to the same coefficient matrix (i.e., W). The

tensor-based methods, such as [29], [30] [73] were proposed to address the cross-domain

recommendation problem. They devised a cross-domain triadic factorization model to

learn the triadic factors for user, item and domain, where the item dimensionality varies

with domains. The above approaches and other similar methods [65, 86] cannot address

our PPF prediction problem directly because they are not formulated for the passenger

flow prediction task. However, since they can handle the cold-start problem by utilizing

the cross-domain knowledge, an illuminative clue is educed. In conclusion, none of rel-

evant studies can solve the PPF prediction problem directly. Accordingly, this chapter

aims to design a reliable approach for PPF prediction with cross-domain knowledge

involved.

To date, limited studies considered the OD passenger flow prediction problem [22,

81], and to the best of our knowledge, none of existing techniques can forecast PPF

across the entire city. It is a novel problem and a real urban developing demand that

faces several major challenges: (1) Considering the number of passenger flows and

their final destinations simultaneously. (2) Analogously to the cold-start problem in the

recommender system [33], it is hard to infer the preference of a new user from the known

data. In our problem, a new station in the target area can be similarly regarded as a

new user. (3) Since the PPF is a spatial-temporal mining problem, spatial and temporal

information should be taken into account appropriately.

To resolve this novel and significant problem, in this chapter, we devise a multi-view

localized correlation learning model for the PPF prediction (MLC-PPF for short). To
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leverage the spatial information, we first construct a localized similarity matrix which

associates with the real geographical neighbors and regional properties (e.g., business

or residential regions). The intuition behind this strategy is from the First Law of

Geography [75], i.e. “Everything is related to everything else, but near things are more
related than distant things”. Second, a novel weighted correlation learning strategy is

proposed. At last, to improve the prediction accuracy and well handle the cold-start

challenge, we draw the side information from urban statistical data, where each area has

a multi-view features to guide the learning process. In summary, our main contributions

are shown as follows:

• We formulate the PPF prediction problem and provide the first attempt on fore-

casting passenger flows for urban transportation development.

• We propose a multi-view localized correlation learning method to provide a solu-

tion for the PPF prediction that can learn localized correlations via a multi-view

learning process.

• We show that our method can be transferred to the classic cold-start problem in

the recommender system. It achieves a superior result that gives a new perspective

for relevant tasks.

• We conduct extensive prediction experiments on a large real-world transactional

dataset and show that our model outperforms other available algorithms.

5.2 Problem Statement

Focusing on the PPF prediction problem, every origin-destination among areas needs to

be recorded. We formulate the OD passenger flow network as a fully connected graph

G = (A, E), where A is a set of vertexes and E is the set of edges. ai ⊆ V records the

i-th origin or destination area, and an edge e(vi,v j) denotes an origin-destination flow

from area ai to a j. The value of each edge e(ai,a j) is associated with the observed flow

f (ai,a j), i.e., f (ai,a j) is the total number of passengers that departure from ith area and

are going to the jth area. Then, G can be represented by PPF matrix F = ( f i j), where

f i j = f (ai,a j). The example of G and F is shown in Figure 5.1. f31 = 55 means that 55

passengers leave from a1 and theirs’ destination is a2.

In the real-world scenario, one area may have several stations. In this case, we

calculate the passenger flows of these stations together to present the total flows of the
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Table 5.1: Symbol description.

Symbols Descriptions

G; a crow flow network; the area
Fd PPF matrix in the d-th day
Fk the localized flow matrix of F
C the localized correlation matrix
H an indicator matrix for the k-nearest neighbors
W the adaptive weight matrix
Xv the v-th view of statistical data
Y an indicator matrix for observed data
λ regularization parameter

area. We consider three specific and useful time periods to predict PPF, which will help

the authorities to do a better temporal analysis of transportation development. The three

periods are morning rush hour (7.00 AM - 9.00 AM), afternoon rush hour (5.00 PM - 7.00

PM), and non-rush hour (2.00 PM - 4.00 PM).

Furthermore, traffic periodicity is a very important factor for relevant studies. Crowd

flows also represent the stable and daily periodic properties, especially on weekdays. To

extract the temporal information and make a more general prediction, we consider a

series of previous daily PPF matrices (F1,F2, · · · ,FD) in the same time period to predict

the PPF matrix of target areas (F̂D) for the day D. Note that, the prediction is not limited

in the D-th day, the target can be changed easily based on the real requirement.

To best simulate the crowd flow changes when picking the target areas, in this chapter,

we tracked all trajectories of passengers, from origins to their destinations. For example,

if area a1 is selected as a target area, all the departure crowd flows from a1 will add

to its closest area (e.g., a2) to best simulate the people’s choice. In this way, the PPF is

learned by the crowd flows under the assumption that the original passengers from a1

will departure from its closest neighbor a2.

5.3 The Proposed Method

In this section, we propose our PPF prediction model MCL-PPF. We will describe the

strategy of localized correlation learning with adaptive-weight, and how to leverage

the cross-domain multi-view information to improve our work. Figure 5.2 shows the

flowchart of our model. For ease of presentation, the main symbols used in this chapter

are summarized in Table 5.1.
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Figure 5.2: The flowchart of our proposed model. In the learning process, given a set of previous PPF matrices {Fd}, MLC-PPF
learns the localized correlation matrix C and adaptive-weight W via a k-nearest indicator matrix H. The cross-domain
knowledge is utilized to guide the updating of C. Then, the target prediction can be inferred by Algorithm 5.
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5.3.1 Localized Correlation Learning

PPF prediction problem is a spatially related task that the more similar between two

areas, the more correlations of passenger flow condition they have. Assuming that a city

is partitioned into n areas, including known and target areas. F ∈Rn×n presents the PPF

matrix, and Fk ∈Rn×n presents the localized flow matrix of F, where the i-th row of Fk

is a combination of its k-nearest area passenger flows. In that way, we formulate the

function to learn the localized correlation, which can be expressed as:

min
C

1
2

D∑
d=1

∥∥∥Fd −Fk
dC

∥∥∥2

F

s.t. PΩ(Fd)= PΩ(Fk
d),

(5.1)

where C ∈Rn×n is the localized correlation matrix that learns the transformation from

Fk
d to Fd in each period of day d, D is the total number of days; PΩ(·) stands for the

projection of all observed passenger flows from the known area set Ω; ‖·‖F is Frobenius

norm of matrix.

Now, we will discuss how to build Fk
d of one period in a day. The physical distances

among areas need to be considered first. Moreover, the development of a city gradually

fosters different functional regions, such as business and educational areas, where the

areas belonging to the same functional region will have strong connections with their

properties [103].

Thus, the similarities among areas should take into account the above two standards.

To this end, we build two distance metrics from the real geographic location and regional

similarity. The distance metric between i-th and j-th areas is shown as follows:

(5.2) si, j = 2− (
disti, j

max(disti,:)
+

dist
′
i, j

max(dist′i,:)
),

where disti, j is the geographic distance between i-th and j-th areas; and dist
′
i, j presents

the Euclidean distance which is calculated by intrinsic features of areas (e.g., point of

interest attributes).

After having gotten the si, j, the k neighbors of the i-th area can be picked. Then,

we construct an indicator matrix H for the k-nearest neighbors of all areas where each

row indicates the position of its k-nearest known areas. For example, in the stage 2 of

Figure 5.2, the first row of H illustrates that a2, a3, and an are the k-nearest areas of
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a1 if k is setting to 3. Accordingly, for each day d, the localized flow matrix Fk
d can be

represented as Fk
d = (H¯W)Fd, where W is an adaptive-weight matrix that learns the

different weights of k-nearest areas. To this stage, the localized correlation learning

process is shown as Equation (5.3).

min
C,W

1
2

D∑
d=1

‖Fd − (H¯W)FdC‖2
F

s.t. PΩ(Fd)= PΩ(Fk
d),

(5.3)

where ¯ is the entrywise product; The loss function aims to learn the localized correla-

tions matrix C and weight matrix W simultaneously.

5.3.2 Improvement by Cross-domain Learning Process

As mentioned above, there are various functional regions of a city. Thanks to the urban

statistical data, the passenger flow similarities among different areas can be reviewed

from this cross-domain perspective. Based on the phenomenon that the similar functional

regions have the similar passenger flows (e.g., the business regions have a large number

of entrance flows during the morning rush hour, and people leave from residential areas

in the same time span), we leverage such information to guide the localized correlation

learning process.

The statistical data have multiple views to record the differences between areas. For

example, the economy view reveals the economic features, such as the number of indus-

tries and employee statistics; and the population view consists of detailed population

information. Let {X1, X2, · · · , XV } denote the multi-fold views of statistical data, where

Xv ∈Rn×mv , the row of Xv denotes the area and column denotes the feature. To improve

the prediction performance, cross-domain knowledge is involved as guidance, which can

be formulated as:

min
C,W

1
2

D∑
d=1

‖Fd − (H¯W)FdC‖2
F + λ

2

V∑
v=1

∥∥∥Xv −CX k
v

∥∥∥2

F

s.t. PΩ(Fd)= PΩ(Fk
d),

(5.4)

where λ is the regularization parameter; X k
v = HXv denotes the localized matrix of Xv.

After solving Equation (5.4), the learned matrices W and C can be used to make the

prediction. The predicted PPF of target areas in D-th day is:
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(5.5) F̂D = (1−Y )¯ ((H¯W)FDC),

where Y is an indicator matrix whose entry (i, j) is one if F(i, j) is observed and zero

otherwise.

To this stage, the OD passenger flows in the target areas are learned by the above

processes, i.e., predict each row of target areas. However, the column of target areas

revealing how much crowds arrived at these areas needs to be predicted with a slight

modification. That is, replace Fd with F>
d in Equation (5.4) to learn the localized correla-

tion from the other side. It can be solved in a likewise manner. Thus we only presented

the optimization strategy of Equation (5.4) due to the page limitation.

5.3.3 Learning and Prediction

Equation (5.4) is a complex non-convex problem. But the loss function associated with

Equation (5.4) is convex regarding C with fixed W and vice verse. We can optimize them

alternatively until convergence (e.g., alternating least squares (ALS)). A straightforward

way to minimize the loss function is through the gradient method.

Considering C while W is fixed, Equation (5.4) can be rewritten as follows:

L =1
2

D∑
d=1

Tr((Fd − (H¯W)FdC)(Fd − (H¯W)FdC)>)

+ λ

2

V∑
v=1

Tr((Xv −CX k
v )(Xv −CX k

v )>).

(5.6)

Taking the derivative of L with respect to C, we can get gradient gC:

gC =
D∑

d=1
((H¯W)Fd)>((H¯W)FdC−Fd)

+λ
V∑

v=1
(CXvX k>

v − XvX k>
v ).

(5.7)

Analogously, the derivative of L with respect to W is:

(5.8) gW =
D∑

d=1
(H¯W)FdCC>F>

d −H¯ (FdC>F>
d ).
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Let α and T be the step-size and number of iterations. In each stage, we adopt the

following update rules:

(5.9) Ct+1 = Ct −α
gCt

‖gCt‖F
,

(5.10) Wt+1 =Wt −α
gWt

‖gWt‖F
,

Fd(t+1) =Y ¯Fd(t) + (1−Y )¯ ((H¯Wt)Fd(t)Ct),(5.11)

where t = 1,2, · · · ,T.

We give the derivatives of L with respect to C and W. The objective function of L

can be rewritten as follows:

L =− 1
2

D∑
d=1

Tr((H¯W)FdCF̂d
>)

− 1
2

D∑
d=1

Tr(F̂d
>C>F>

d (H¯W)>)

+ 1
2

D∑
d=1

Tr((H¯W)FdCC>F>
d (H¯W)>)

− λ

2

V∑
v=1

Tr(CX k
v X>

v )− λ

2

V∑
v=1

Tr(XvX k>
v C>)

+ λ

2

V∑
v=1

Tr(CXvX k>
v C>)+R(C̄),

(5.12)

where R(C̄) indicates the components of L excluding C, which is a constant value when

only considering the partial derivative of C. The further simplification of Equation (5.12)

is:

L =−
D∑

d=1
Tr((H¯W)FdCF̂d

>)

+ 1
2

D∑
d=1

Tr((H¯W)FdCC>F>
d (H¯W)>)

−
V∑

v=1
Tr(CX k

v X>
v )+ λ

2

V∑
v=1

Tr(CXvX k>
v C>)+R(C̄).

(5.13)
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Taking the derivative of L with respect to C, we can get:

g(C)=−
D∑

d=1
F>

d (H¯W)>F̂d +
1
2

D∑
d=1

F>
d (H¯W)>(H¯W)FdC

+ 1
2

D∑
d=1

F>
d (H¯W)>(H¯W)FdC−λ

V∑
v=1

XvX k>
v

+ λ

2

V∑
v=1

CX k
v X k>

v + λ

2

V∑
v=1

CX k
v X k>

v

=−
D∑

d=1
F>

d (H¯W)>F̂d +
D∑

d=1
F>

d (H¯W)>(H¯W)FdC

−λ
V∑

v=1
XvX k>

v +
V∑

v=1
CX k

v X k>
v

=
D∑

d=1
((H¯W)Fd)>((H¯W)FdC− F̂d)

+λ
V∑

v=1
(CXvX k>

v − XvX k>
v ).

(5.14)

Analogously, the objective function of L can be rewritten as:

L =
D∑

d=1
Tr((H¯W)FdCF̂d

>)

+ 1
2

D∑
d=1

Tr((H¯W)FdCC>F>
d (H¯W)>)

+R
′
(W̄),

(5.15)

where R
′
(W̄) indicates the components of L excluding W, which is a constant value

when only considering the partial derivative of W . Then, the derivative of L with respect

to W is:

g(W)=−
D∑

d=1
H¯ (F̂dC>F>

d )+ 1
2

D∑
d=1

(H¯W)FdCC>F>
d

+ 1
2

D∑
d=1

(H¯W)FdCC>F>
d

=
D∑

d=1
(H¯W)FdCC>F>

d −H¯ (F̂dC>F>
d ).

(5.16)

Based on the above update equations, the iterative learning and prediction process

for MLC-PPF are summarized in Algorithm 5.
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Algorithm 5: MLC-PPF
Input: PPF matrices [F1, · · · , XD]; Mutiple views of statistical data [X1, · · · , XV ].
Output: Prediction FD

1 Initialize C: C ← (Y ¯ (H¯W)FD))†(Y ¯FD) by solving Equation (5.3), where † the
pseudo-inverse of matrix;

2 Initialize W : W ← S, where S is built by Equation (5.2)
3 Construct H by the real geographic location and regional similarity.
4 for t = 1 to T do
5 if |Lt −Lt+1| / Lt ≥ ε then
6 update Ct+1 By Equation 5.9
7 update Wt+1 By Equation 5.10
8 update Ft+1 By Equation 5.11
9 else

10 Break

11 Return F̂D By Equation 5.5.

Figure 5.3: Examples of transactional data.

5.4 Experiments

In this section, we report on the experiments carried out on the real-world dataset, and

show the effectiveness of our proposed method.

5.4.1 Data Description

• We describe the transactional dataset used in this chapter, which is a large-scale,

real-world dataset provided by NSW Sydney Transport. After data cleaning2, the

dataset contains above 35 million transactional records covering 194 stations

including the city train and ferry stations between 7 Nov 2016 and 11 Dec 2016. We

pick the data between 7 Nov. 2016 and 20 Nov. 2016 as the training and validation

sets (used to tune parameters); the remaining data are used as the test set.

2We removed the recording errors and UNKNOWN trips, etc.

90



5.4. EXPERIMENTS

Figure 5.4: Examples of ABS data.

Transactional database stores a large number of activity attributes of passengers.

We only used the records that are related to our problem and fulfilled the con-

fidentiality deed that ensures the privacy of each passenger. The useful records

include: (1) Passenger: a unique hashed identification number; (2) Origin: the

time and location where the passenger started a journey; (3) Destination: the

time and location where the passenger ended a journey; (4) Duration: the number

of seconds taken to complete a journey. An example of data is presented in Figure

5.3.

• The urban statistical data are collected from Australian Bureau of Statistics 2017

(ABS) with four views; those are Economy, Family, Income, and Population. In this

chapter, we used the statistics of Sydney and the numbers of dimension of four
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Figure 5.5: City partition and station mapping.

views are 43, 44, 50, 97, respectively. An example of data is presented in Figure

5.4. In our method, we normalized all data for the cross-domain guidance.

• All the transactional dataset across the transport network are mapped into 117

areas to build the flow matrices Fd, d = 1, ...,D. The designation of areas is based

on the Australian Statistical Geography Standard for the best practical value.

Figure 5.5 illustrates the city partition and station mapping. The designation

of areas based on Australian Statistical Geography Standard have been painted

yellow. In this Figure, the mapping between stations and areas are given. The

reason we only choose the areas existing stations is that the ground-truth can be

obtained, and it is difficult to evaluate the blank area.

5.4.2 Methods and Metrics

We use the following five baselines which can learn the flow data by the cross-domain

knowledge guidance. Among them, CDTF and WITF are two tensor-factorization-based

(TF) methods that can solve the cold-start problem. For NMF, we concatenate the flow
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matrix with the statistical data. All parameters used in baselines and our method are

picked by a grid search approach.

• NMF: Predict the PPF by the non-negative matrix factorization, which concate-

nates the flow matrix and the statistical data [35].

• MVL-IV: A state-of-the-art multi-view learning method based on the matrix co-

factorization, it learns the same coefficient matrix to connect multiple views [88].

In this method, we set the flow matrix as one of the views, other views are from

the ABS dataset.

• LS-KNN: Latent similarity k-nearest neighbors. After calculating the latent simi-

larities among areas by Equation (5.2), we pick k-nearest neighbors of the target

areas, and use average crowd flows of these neighbors as an estimate (k=4).

• CDTF: A state-of-the-art TF method to learn the cross-domain knowledge [29].

• WITF: A weighted irregular TF method which is similar as the CDTF [30]. For

CDTF and WIFT, we leverage the passenger flow and ABS data to construct the

tensor.

Metrics. We used the two most widely used evaluation metric to measure the PPF

prediction quality. They are Mean Absolute Error (MAE) and Normalized Root Mean
Square Error (NRMSE).

MAE =
∑M

i, j=1 | f i j − f̂ i j|
M

,

NRMSE = 100%
nval

√√√√ 1
M

M∑
i, j=1

( f i j − f̂ i j)2 ,

where f̂ i j is a forecasting passenger flow from i-th area to j-th; and f i j is the ground

truth; M is the number of predictions; nval = max( f i j)−min( f i j).
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Table 5.2: Comparisons with different time periods. We report the average mean absolute errors (MAE) and normalized root
mean square error (NRMSE) among various methods. The target areas occupied 20% of the total set. Best results are bold.

Methods
Morning Rush Hour Afternoon Rush Hour Non-rush Hour Average
MAE NRMSE MAE NRMSE MAE NRMSE MAE NRMSE

NMF 124.50 30.78% 117.92 37.13% 89.11 28.44% 110.51 32.12%
MVL-IV 108.31 29.50% 101.55 29.78% 92.05 27.54% 100.64 28.94%
CDTF 75.15 22.43% 84.02 25.93% 67.78 19.37% 75.65 22.58%
WITF 69.30 18.73% 72.06 19.45% 62.57 17.26% 67.98 18.48%

LS-KNN 19.89 5.42% 20.20 7.67% 23.51 7.94% 21.20 7.01%
MLC-PPF 9.84 2.30% 11.47 3.12% 8.22 1.21% 9.84 2.21%

Table 5.3: Comparisons with different removing ratios. We report MAE and NRMSE through all test data.

Methods
5% 10% 15% 25%

MAE NRMSE MAE NRMSE MAE NRMSE MAE NRMSE
NMF 88.11 20.70% 90.23 21.66% 107.44 26.52% 128.70 30.11%

MVL-IV 92.75 20.36% 90.40 20.75% 99.01 23.79% 101.93 32.40%
CDTF 59.25 18.90% 61.25 19.26% 68.07 22.00% 79.06 26.35%
WITF 60.41 18.23% 60.72 19.77% 61.18 19.23% 71.07 20.73%

LS-KNN 13.69 4.72% 16.45 5.01% 18.51 5.44% 23.99 9.25%
MLC-PPF 8.64 1.37% 8.80 1.20% 9.73 1.90% 11.07 2.34%
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5.4.3 Comparisons on Different Time Periods

The first set of experiments is designed to assess the performance on different time

periods. We randomly removed 20% areas as the target set, and the remaining 80%

areas as the known set. The learning step α is fitted to 10−2 and there are only two

hyper-parameters used in our method, where k and λ are chosen from {1,2,3,...,10}

and {10−5,10−4, ...,105} respectively. We repeat the experiment 20 times with random

initialization and report the average results.

Experimental results are presented in Table 5.2. Compared with other approaches,

our method achieved the best prediction accuracies on both three time periods. None

of the multi-view and cross-domain methods work well because it is hard to capture

the relationships between statistical data and the passenger flows. The approach LS-

KNN performs better than other baselines, which illustrates that the PPF prediction

problem has a strong spatial correlation property. In summary, the proposed method

is a well-designed model for PPF prediction, which outperforms the other available

baselines because it considers the localized correlations and the cross-domain knowledge

simultaneously.

5.4.4 Comparisons on Various Missing Ratios

In this experiment, we evaluate how performance will change with varied number of

target areas. We randomly pick 5%, 10%, 15%, 25% areas as the target areas, and run

20 times to report the average errors. The test period is in the morning rush hours. The

performances of different methods are summarized in Table 5.3.

It is apparent that the experimental results lead to similar conclusions to the first

comparison. Our model, MLC-PPF, significantly outperforms all other comparative

methods over all testing sets. The performances of MLC-PPF in 5% dataset are very close

to that of in 10%, which illustrates that the 90% remaining area set can learn a satisfied

localized correlation and make accurate PPF predictions. In the real-world application,

the proportion of target areas is usually small since only a few areas are suitable for

constructing a new station.

5.4.5 Ablation Study

In this section, we analyze the contribution of critical components of the final optimization

function. We report the average mean relative error and normalized root mean square
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Figure 5.6: Effect of parameters.

Table 5.4: Ablation Studies on our method. We report how the adaptive matrix W and
ABS guidance affect the performance. The average MAE and NRMSE conducted on the
morning rush period are shown below.

W ABS
10% 20%

MAE NRMSE MAE NRMSE
X 9.72 2.07% 10.11 2.51%

X 10.34 1.98% 12.62 2.43%
X X 8.80 1.20% 9.84 2.30%

error here on the morning rush period with two removing ratios since the similar

conclusions can be gotten on other time periods.

Table 5.4 illustrates how the adaptive-weight matrix W and cross-domain knowledge

from ABS data affect the performance of our model. The field “W” means whether we

learn the adaptive weight of k-nearest neighborhoods, and field of “ABS” denotes that

the ABS data is involved or not. As the tests shown in Table 4.8, it is apparent that

our method performs worse when only considering the adaptive-weight matrix or ABS
guidance. On the one hand, our model achieves a better MAE when the adaptive-weight

W worked solely, but performs worse based on NRMSE. On the other hand, the ABS
guidance is useful to avoid the abnormal prediction because it yields better results on

NRMSE.

5.4.6 Parameter Analysis

In this section, we analyze the effects of two hyper-parameters used in this chapter,

where k is the number of nearest neighborhoods, and the regularization factor λ controls
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the strength of guidance from ABS data.

Figure 5.6(a) shows the different performances with a varying setting for k. For each

area, the correlation matrix C only learns the transform from these neighborhoods. As

can be shown in the results, k = 2 is the best choice for our method, and k is not sensitive

in the range of 1 and 5.

Figure 5.6(b) represents various results by varying λ. λ=2−1 achieves the best results

for our method, and the performances are stable when choosing between [10−5, 100].

In a summary, the parameters used in this chapter are benefit to the improvement of

our models. MLC-PPF is stable because it is insensitive to parameters.

5.4.7 Case Study

We display a PPF prediction result of one target area in this section. In this case, the

area “Homebush” is treated as the target area. For better visualization, we only remain

the areas where the number of arrived passengers is greater than 5.

As shown in Figure 5.7, our model yields a great prediction result compared with the

ground-truth, especially in some main areas of Sydney, such as the central area “Sydney-

Haymarket”, “Burwood-Croydon”, “North Sydney-Lavender Bay” and “Parramatta-

Rosehill”. The case study demonstrates the effectiveness of our method for the PPF

prediction.
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Figure 5.7: The case study. This figure shows the passenger flow prediction that departure from “Homebush” to other areas.
To keep figure clear, we only draw our method and the ground-truth because other baselines perform far worse than the
MLC-PPF.
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Table 5.5: Transfer to the cold-start problem. We report the MAE of all test methods.

Target Domain CMF CDTF WITF MLC-PPF
Book 0.834 0.755 0.740 0.396
Music 0.847 0.779 0.716 0.582

5.4.8 Transfer to the Cold-start Problem

As we have emphasized, our strategy can provide a new perspective to address the classic

cold-start problem in the recommender system. This set of experiments is designed to

assess the transferability of our model.

We choose a very famous dataset from Amazon to do the evaluation, in which the

dataset contains 1,555,170 users and 1-5 scaled ratings over 548,552 different products

covering four domains: books, music CDs, DVDs and videos [29]. We randomly remove

the 20% users from target domains to simulate the cold-start situation. Three baselines

are used in this comparison. CMF is an effective method based on the collective matrix

factorization which couples rating matrices for all domains on the User dimension

[66]. CDTF and WITF are two tensor-factorization-based cross-domain recommendation

methods, they devise a strategy to transform original data into a cubical tensor that can

better capture the interactions between user factors and item factors [29, 30]. In this

experiment, we leverage the information excluding target domain to build the k-nearest

indicator matrix H.

Table 5.5 shows the results of our methods together with some state-of-the-art

approaches. MLC-PPF can achieve the greatest accuracies for the target domains, which

illustrates that our method is able to solve the unacquainted world phenomenon and

give inspiration for relevant tasks. Despite the effectiveness of our methods, we should

admit that there is a limitation of MLC-PPF. MLC-PPF only can make the prediction

when its k-neighbors have ratings. However, based on the test results, the predicted

ratings are reliable and able to make the recommendation.

5.5 Conclusion

In this chapter, we proposed an effective method for the potential passenger flow predic-

tion, which is a novel study that brings benefits to the urban transportation development.

To address this spatio-temporal problem, we design a multi-view localized correlation

learning model (MLC-PPF) for the PPF prediction. The k-nearest indicator matrix H is

constructed by the real geographical neighbors and regional properties. MLC-PPF can
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learn the correlations between each known area and its k-nearest neighbors with the

cross-domain knowledge guidance. We evaluate the performance of our method with a

set of well-designed experiments. All empirical results not only demonstrate that the

proposed model outperforms all the other methods in the PPF prediction task, but also

represent the capability of tackling the cold-start problem in recommender system.
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6.1 Conclusions

This thesis presents several methods to address three main predictive tasks in the

network-wide crow flow prediction for the intelligent transportation system. We first

address the spatio-temporal missing data problem; and second, to improve the quality of

transportation services, we proposed three spatiotemporal models to effectively address

the network-wide crowd flow distribution (CFD) prediction problem based on the online

latent space (OLS) strategy. Last, we provide the first attempt on the potential passenger

flow (PPF) prediction problem.

Chapter 3 proposes a spatial missing data imputation method for multi-view urban

statistical data, called SMVNMF. To address the multi-view problem, an improved

spatial multi-kernel method is designed to guide the imputation process based on the

NMF strategy. Moreover, the spatial correlations among different regions are involved

in our method from two perspectives. Firstly, the latent similarities are discovered by

S-MKKN and S-KKM based on the idea of finding functional regions, and secondly,

KNN is used for capturing the information of real geographical positions. We conduct

intensive experiments on six real-world datasets to compare the performance of our

model and other state-of-the-art approaches. The results not only show that our approach

outperforms all other methods, but also represent strong generalizabilities crossing

different urban datasets. The chapter 3 is supported by the conference publication at

IJCAI-2020 [19].
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Chapter 4 proposes we propose two data-driven models for CFD prediction on the

Sydney Trains rail network. The first model, called OLS-AO, is based on average opti-

mization and historic guidance and captures the dynamic changes in latent attributes

over time. To improve prediction accuracy, we further designed another OLS model,

called OLS-MR, to tackle sudden changes in CFDs. Intensive experiments show that our

proposed methods outperform several baselines. A dual-track strategy, which combines

both OLS-AO and OLS-MR, achieves the best results on weekdays, and OLS-AO is the

most outstanding method for weekend predictions. The chapter 4 is supported by the

journal and conference publications at TKDE and CIKM-2018, respectively [21, 22].

Chapter 5 targets at the potential passenger flow prediction, which is a novel study

that brings benefits to the urban transportation development. To address this spatio-

temporal problem, we design a multi-view localized correlation learning model (MLC-

PPF) for the PPF prediction. The k-nearest indicator matrix H is constructed by the real

geographical neighbors and regional properties. MLC-PPF can learn the correlations

between each known area and its k-nearest neighbors with the cross-domain knowl-

edge guidance. We evaluate the performance of our method with a set of well-designed

experiments. The chapter 5 is supported by the conference publication at AAAI-2020

[20].

6.2 Future Work

Most recent studies, such as [64, 81, 108], predict the OD matrix based on a deep learning

model via graph convolution strategy or recurrent neural network. For example, [81]

divides the city area into grids and predicts the passenger demands of given origin

grid-areas and destination grid-areas at a given time slot. However, it seems that this

method does not consider the real-time delayed data collection problem, since it makes

all trajectory data observed when testing. At current research stage, deep learning based

methods are difficult to solve the real online problem. Therefore, our further effort will

be made towards developing a real online model based on deep learning.
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