
Nearest Neighbor Search in High

Dimensional Space

by

Mingjie Li

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Centre for Arti�cial Intelligence

Faculty of Engineering and Information Technology

University of Technology Sydney

December, 2020

CERTIFICATE OF
AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a

degree nor has it been submitted as part of requirements for a degree at any

other academic institution except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have

received in my research work and the preparation of the thesis itself has been

acknowledged. In addition, I certify that all information sources and literature

used are indicated in the thesis.

This research is supported by the Australian Government Research Training

Program.

Signature:

Date: 10/12/2020

iii

Production Note:

Signature removed
prior to publication.

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor Prof.

Ying Zhang for his continuous support and guidance throughout my PhD career.

Ying is professional, patient and kind. He introduced me to the research area

of nearest neighbor search and further provided constant motivation which kept

me going. His valuable ideas and suggestions always guided me and broadened

my knowledge and horizon in the related areas. I am very thankful to him for

his patience and con�dence during my PhD study. Even experiencing failures

and di�culties in research and life, his constant encouragement and support

always kept me optimistic and positive. Additionally, Ying is a good mentor and

friend for me. He gave me many useful advices on planing career development.

I would like to thank Prof. Wei Wang for his constructive ideas and invaluable

suggestions on the works in this thesis. The insightful discussions with Prof.

Wang always gave me many inspirations. In addition, I would like to thank

Prof. Ivor W. Tsang and A/Prof. Lu Qin for the discussions and suggestions on

the related topic.

I would like to thank Prof. Xuemin Lin and A/Prof. Wenjie Zhang for

supporting the works in this thesis, as most of the works were conducted

iv

in collaboration with them. I thank Prof. Lin for o�ering a rigorous while

interesting research environment.

I am thankful to the faculties and sta�s at the school of computer science

at University of Technology Sydney. They were very helpful and supportive

throughout my PhD study. It was indeed a pleasure to be a part of such an

exciting community.

I would like to thank Dr. Xin Cao, Dr. Lijun Chang, Dr. Xiaoyang Wang, Dr.

Shiyu Yang, Dr. Zengfeng Huang, and Dr. Yixiang Fang for sharing the ideas

and experiences. Thanks to the members from database groups at UNSW and

UTS, including Dr. Long Yuan, Dr. Longbin Lai, Dr. Xiang Wang, Dr. Xing

Feng, Dr. Xubo Wang, Dr. Haida Zhang, Dr. Yang Yang, Mr. Xuefeng Chen,

Dr. You Peng, Dr. Boge Liu, Ms. Xiaoshuang Chen, Mr. Yuren Mao, Dr.

Fan Zhang, Dr. Dong Wen, Dr. Dian Ouyang, Ms. Wanqi Liu, Mr. Hanchen

Wang, and Mr. Yuanhang Yu, for creating a dynamic and vibrant atmosphere

in the labs and in life. I would also like to thank Mr. Daniel Ouyang, Mr. Peng

Zhang, and Mr. Xunxiang Yao for their sel�ess help and care during my PhD life.

Last but not least, I would like to thank my father Mr. Zheng Li, my mother

Mrs. Fengying Zhu, my brother Mr. Mingchang Li and my sister Mrs. Jenly

Li for their continuous support, encouragement and love during my entire PhD

journey and in my life. I am greatly indebted to them.

v

PUBLICATIONS

� Mingjie Li, Ying Zhang, Yifang Sun, Wei Wang, Ivor W. Tsang, Xuemin

Lin. An E�cient Exact Nearest Neighbor Search by Compounded Embed-

ding. DASFAA 2018. (Chapter 4)

� Mingjie Li, Ying Zhang, Yifang Sun, Wei Wang, Ivor W. Tsang, Xuemin

Lin. I/O E�cient Approximate Nearest Neighbour Search based on

Learned Functions. ICDE 2020. (Chapter 5)

� Wen Li, Ying Zhang, Yifang Sun, Wei Wang,Mingjie Li�, Wenjie Zhang,

Xuemin Lin. Approximate Nearest Neighbor Search on High Dimen-

sional Data - Experiments, Analyses, and Improvement. TKDE 2019.

(�Corresponding Author)(Chapter 6)

vi

TABLE OF CONTENT

CERTIFICATE OF AUTHORSHIP/ORGINALITY iii

ACKNOWLEDGEMENTS iv

PUBLICATIONS vi

TABLE OF CONTENT vii

LIST OF FIGURES x

LIST OF TABLES xii

ABSTRACT xiii

Chapter 1 Introduction 1
1.1 Exact Nearest Neighbor Search . 2
1.2 Approximate Nearest Neighbor Search by Learning to hash 5
1.3 Approximate Nearest Neighbor Search: An Experimental Study . 8

Chapter 2 Literature Review 12
2.1 Exact Nearest Neighbor Search . 12
2.2 Approximate Nearest Neighbor Search 14

2.2.1 Hashing-based Methods . 15
2.2.2 Partition-based Methods . 20
2.2.3 Graph-based Methods . 21

Chapter 3 Problem Statement 23
3.1 Problem De�nition . 23
3.2 Notations . 24

Chapter 4 Exact Nearest Neighbor Search by Compounded Em-
bedding 26

4.1 Overview . 26

vii

TABLE OF CONTENT

4.2 Embedding and Distance Lower Bound 26
4.2.1 Motivation . 27
4.2.2 Embedding Method . 28
4.2.3 Correctness of Distance Lower Bound 29
4.2.4 Optimization of Distance Lower Bound 31
4.2.5 Using PCA Technique . 33

4.3 E�cient Exact NNS Algorithm . 34
4.3.1 Motivation . 34
4.3.2 Exact NNS Algorithm . 36
4.3.3 Performance Analysis . 38
4.3.4 Discussion . 39

4.4 Experiments . 40
4.4.1 Experimental Settings . 40
4.4.2 Performance Evaluation . 42

4.5 Conclusion . 47

Chapter 5 Approximate Nearest Neighbor Search By Learned
Functions 48

5.1 Overview . 48
5.2 Our ANNS Framework . 49

5.2.1 Our ANNS Solution . 49
5.2.2 Performance Analysis . 52

5.3 Learning to Index by Linear Hashing 53
5.3.1 Linear Model and Its Objective Function 53
5.3.2 Relaxation and Optimization 55

5.4 Learning to Index by Neural Network 60
5.4.1 DNN Architecture . 60
5.4.2 Objective Function . 61

5.5 Discussion . 62
5.6 Experiments . 63

5.6.1 Experimental Settings . 63
5.6.2 Parameter Tuning . 68
5.6.3 Performance Comparison . 70
5.6.4 Summary . 74

5.7 Conclusion . 76

Chapter 6 Approximate Nearest Neighbor Search: An Experi-
mental Evaluation 77

6.1 Overview . 77
6.2 Evaluation Scope . 78
6.3 The State-of-the-art ANNS Algorithms 79

viii

TABLE OF CONTENT

6.3.1 LSH-based methods . 79
6.3.2 L2H-based methods . 80
6.3.3 Partition-based Algorithms 82
6.3.4 Graph-based Algorithms . 83

6.4 Diversi�ed Proximity Graph . 84
6.4.1 Motivation . 85
6.4.2 Diversi�ed Proximity Graph 86

6.5 Experiments . 87
6.5.1 Experimental Settings . 87
6.5.2 Evaluation Measures . 89
6.5.3 Comparison with Each Category 90
6.5.4 Second Round Evaluation . 93
6.5.5 Summary . 99

6.6 Further Analyses . 102
6.6.1 Space Partition-based Approach 102
6.6.2 Graph-based Approach . 104

6.7 Conclusion . 105

Chapter 7 Epilogue 107

REFERENCES 109

ix

LIST OF FIGURES

1.1 Illustration of our idea of index and query processing. Grey points
are embedding values of data points, orange points are embedding
values of the query point (i.e., q�1 , . . . , q

�

m). 8

4.1 Motivation of Distance Lower Bound 28
4.2 Illustration of Our Embedding Method 29
4.3 Motivation of Exact NNS using Embedded Space 34
4.4 Search time with respect to m and n 42
4.5 Comparison of search time on all datasets 42
4.6 Pruning performance (lower the better) 44
4.7 Comparison with respect to k . 45
4.8 Pre-processing time . 46
4.9 Speedup with respect to recall . 46

5.1 The Sigmoid Function . 56
5.2 The Architecture of Our Non-Linear Hash Learning 60
5.3 The impact of parameters of OPFA on Deep 68
5.4 The impact of parameters of NeOPFA on Deep 69
5.5 I/O Cost with respect to k on all datasets 71
5.6 Ratio with respect to k on all datasets 72
5.7 Recall with respect to k . 73
5.8 Search Time with respect to k . 73
5.9 Pre-processing Time on All Datasets . 75

6.1 Motivation of Diversi�ed Proximity Graph 85
6.2 Speedup vs Recall for LSH-based and L2H-based Methods 91
6.3 Speedup vs Recall for Partition-based and Graph-based Methods 92
6.4 Speedup with Recall of 0.8 . 94
6.5 Recall with Speedup of 50 . 94
6.6 Speedup vs Recall on Di�erent Datasets 95
6.7 Recall vs Percentage of Data Points Accessed 96
6.8 Accuracy vs Recall . 97
6.9 The Ratio of Index Size and Data Size (%) 98

x

LIST OF FIGURES

6.10 Index Construction Time (seconds) . 98
6.11 Index Memory Cost (MB) . 98
6.12 Precision vs Recall . 99
6.13 F1 score vs Recall . 99
6.14 Analyses of Space Partitioning-based Methods 103
6.15 minHops Distributions of KGraph and DPG 104

xi

LIST OF TABLES

2.1 Overview of the Indexing and Searching of Existing Exact NNS Algo-

rithms . 14
2.2 Overview of the Indexing and Searching of Representative ANNS Al-

gorithms . 16

3.1 Summary of Notations . 24

4.1 Dataset Summary . 41

5.1 Statistics of Datasets . 65
5.2 Parameter Settings of OPFA . 66
5.3 Index Sizes of All Algorithms (in Megabytes) 74

6.1 Dataset Summary . 89
6.2 mAP for each algorithm . 100
6.3 Ranking of the Algorithms Under Di�erent Criteria 101

xii

ABSTRACT

Nearest neighbor search (NNS) in high dimensional space is a fundamental

and essential operation in applications from many domains, such as machine

learning, databases, multimedia and computer vision, to name a few. In this

thesis, we investigate both exact and approximate NNS in high dimensional

space.

For the exact NNS, we propose an e�cient technique which can have a

signi�cant speedup over the state-of-the-art exact solutions. Speci�cally, we

�rst propose a novel compounded embedding technique, by which we achieve

a tight distance lower bound for Euclidean distance. Then each point in a

high dimensional space can be embedded into a low dimensional space such

that the distance between two embedded points lower bounds their distance

in the original space. Following the �lter-and-verify paradigm, we develop

an e�cient exact NNS algorithm by pruning a large number of candidates

using the new lower bounding technique. Comprehensive experiments on many

real-world data demonstrate the e�ectiveness and e�ciency of our new algorithm.

In terms of the approximate NNS, we propose an external memory-based ap-

proximate NNS algorithm by learning to hash. Speci�cally, we introduce a novel

data-sensitive indexing and query processing framework for approximate NNS

with an emphasis on optimizing the I/O e�ciency, especially, the sequential

xiii

LIST OF TABLES

I/Os. The proposed index consists of several lists of point IDs, ordered by

values that are obtained by learned hashing functions on each corresponding

data point. The functions are learned from the data and approximately preserve

the order in the high-dimensional space. We consider two instantiations of the

functions (linear and non-linear), both learned from the data with novel objec-

tive functions. Comprehensive experiments on six large scale high dimensional

datasets show that our proposed methods with learned index structure perform

much better than the state-of-the-art external memory-based approximate NNS

methods in terms of I/O e�ciency and search accuracy.

Although lots of approximate NNS algorithms have been continuously proposed

in the literature each year, there is no comprehensive evaluation and analysis of

their performance. Therefore, we conduct a comprehensive and systematic ex-

perimental evaluation for the state-of-the-art approximate methods. Our study

(1) is cross-disciplinary (i.e., including 19 algorithms in di�erent domains, and

from practitioners) and (2) has evaluated a diverse range of settings, includ-

ing 20 datasets, several evaluation metrics, and di�erent query workloads. The

experimental results are carefully reported and analyzed to understand the per-

formance results. Furthermore, we propose a new method that achieves both

high query e�ciency and high recall empirically on majority of the datasets

under a wide range of settings.

xiv

Chapter 1

Introduction

Nearest neighbor search (NNS) in high dimensional space aims to �nd a point

in a reference database which has the smallest distance to a given query point.

It is a fundamental and signi�cant operation in many applications from many

domains, such as machine learning, multimedia databases and computer vision.

In these applications, each object is usually represented by a point in a high

dimensional space. For instance, by utilizing the deep learning technique [71],

an image can be embedded into a point in a 4096-dimensional space. Then, for

a given image (i.e., a high dimensional point), NNS can be used to identify the

most similar one within an image database.

There are two kinds of NNS problems, exact NNS and approximate NNS.

Exact NNS aims to �nd out the truth nearest neighbors for given queries while

the approximate one focuses on retrieving the approximate nearest neighbours

for better e�ciency. For the users, choosing the exact solution or the approxi-

mate one depends on the practical applications and demands. In the application

of protein analysis, each protein is represented by a mass spectrum where each

spectrum is basically a high dimensional vector. When a new protein is dis-

covered, the scientists need to fully analyze its chemical structure based on the

1

Chapter 1 1.1. EXACT NEAREST NEIGHBOR SEARCH

information from the known proteins. At this point, they prefer to choose exact

NNS to �nd out the most similar spectrums within a protein database. How-

ever, in some applications, the approximate NNS is the �rst choice as it achieves

satisfactory results while having a better e�ciency. For example, in image re-

trieval, Google applies approximate NNS techniques alongside the PageRank for

large-scale image search [62]. In natural language processing, researchers utilize

the approximate NNS method to accelerate the training of large transformer

models [68].

In this thesis, both exact and approximate NNS in high dimensional space

are investigated, and the Euclidean distance, one of the most popular distance

metrics widely used in NNS applications, is used as the similarity measure. We

propose an exact NNS algorithm by using the embedding techniques, and an

approximate NNS algorithm by learning to hash. Finally, we conduct a com-

prehensive experimental evaluation for the state-of-the-art approximate NNS

methods.

1.1 Exact Nearest Neighbor Search

It is commonly believed that the computation of the exact NNS in high dimen-

sional space in the worst case is very expensive due to the curse of dimension-

ality [55]. Despite of the hardness of exact NNS, thanks to the fact that the

intrinsic dimensionality of the real-life high dimensional data is usually much

lower [2, 75], it is still feasible to develop e�cient and practical exact NNS al-

gorithms for high dimensional real-life data. A variety of exact NNS algorithms

have been proposed in the literature. Some of them are based on tree structures

such as KD-tree [12], iDistance [56], and Cover-Tree [16]. As reported in [54],

they cannot scale to high dimensional data due to the poor performance of tree

2

1.1. EXACT NEAREST NEIGHBOR SEARCH Chapter 1

structure in high dimensional space.

Existing Methods. OST [76], FNN [54] and HB+ [31] are three most recent

exact NNS algorithms in high dimensional Euclidean space. OST proposes an

orthogonal search tree using the PCA basis obtained from the data set and then

exact NN search is performed on this search tree by following the �lter-and-verify

paradigm. However, OST individually use the PCA without the consideration

of the coherence between PCA components. FNN obtains the distance lower

bounds between query and data points by nonlinearly embedding the dataset

into a low dimensional space according to two important statistics (mean and

variance) of the coordinate values of all dimensions. Then NNS can be conducted

following the �lter-and-verify paradigm by using the distance lower bounds be-

tween query and data points in the embedded space. FNN does not need to con-

struct any index, so its preprocessing procedure is very computationally cheap.

However, the distance lower bound obtained by FNN is not very tight due to

the use of �xed embedded dimensions. HB+ is a newly proposed method which

is an extension of HB [100]. The key idea of HB is to devise distance lower

bound between a query and a data point by exploiting separating hyperplanes

between the query point and the corresponding cluster of the data point. The

complexity of the lower bound computation is O�k2d� where k and d denote the

number of clusters and the dimensionality, respectively. This seriously limits the

search performance of HB in high dimensional space. HB+ alleviates this issue

by accelerating the lower bound computation.

Our Solution. Motivated by the above analysis, in this thesis, we propose a

new embedding technique for Euclidean space to devise distance lower bound,

which is essential for exact NNS. In a nutshell, we embed data points in the d

dimensional space Rd into a m�n dimensional space, denoted by Em�n (m�nP

d). The �rst m dimensions of Em�n is a linear embedding of data points in Rd,

3

Chapter 1 1.1. EXACT NEAREST NEIGHBOR SEARCH

and the last n dimensions are obtained by the non-linear embedding method.

Speci�cally, we choose a subspace Sm of the d-dimensional Euclidean space Rd

with dimensionality m, and the remaining dimensions form the other subspace

Sd�m. Then each point p in Rd can be embedded into a m � n dimensional

Euclidean space where the coordinate values of the �rst m dimensions come

from Sm and the coordinate values of the last n dimensions are from n times

space partitioning on Sd�m. We show that the distance between two points in

the embedded space is a lower bound of their distance in the original space.

Following the �lter-and-verify paradigm, we develop an e�cient exact NNS

algorithm for high dimensional data by pruning a large number of candidates

using the distance lower bound obtained by our embedding technique and hence

reducing the expensive cost of distance veri�cation in high dimensional space.

Contributions. The principle contributions in response to handle the exact

NNS are summarized as follows:

� We propose a new embedding technique, combining the linear and non-

linear methods, for devising the Euclidean distance lower bound. We also

show that the linear embedding part of the distance lower bound can be

optimized by the PCA technique. Speci�cally, the linear embedding is

directly from the PCA subspace while the non-linear embedding is achieved

by space partitioning.

� We develop an e�cient exact NN search algorithm following the �lter-and-

verify paradigm, by leveraging the new distance lower-bounding technique

in low-dimensional space. Speci�cally, We construct a Cover-Tree [16]

index under the embedded space to perform a range query and then the

survived candidates will experience the distance veri�cation, among which

the distance lower bound still keeps being re�ned and leveraged for pruning.

4

1.2. APPROXIMATE NEAREST NEIGHBOR SEARCH BY LEARNING TO
HASH Chapter 1

� Our comprehensive experiments on 10 real-life high dimensional data

demonstrate the e�ectiveness and e�ciency of our proposed techniques.

Our algorithm can signi�cantly outperform the state-of-the-art exact NN

search techniques in terms of the pruning power and the search time in

high dimensional space.

The details of this work are presented in Chapter 4.

1.2 Approximate Nearest Neighbor Search by

Learning to hash

Instead of �nding the exact nearest neighbors, an enormous amount of research

e�ort has been attracted to the problem of approximate nearest neighbor search

(ANNS), which circumvents the curse of dimensionality by the trade-o� between

the search time and search accuracy. However, most of the existing approximate

approaches proposed in the literature are main-memory algorithms which focus

on engineering the best trade-o� between the CPU cost and the accuracy. In the

era of big data, increasing amount of applications are being produced and oper-

ated on huge volume of the high dimensional data, where external I/O storage

and I/O-centric query processing are needed. For instance, billions of objects

(users and items) are mapped to 160-dimensional points via a deep learning

model at Alibaba for user recommendation [114]. To handle the large scale data,

it is desirable to develop highly e�cient external-memory algorithms for better

scalability.

Motivation. Existing external memory-based ANNS algorithms are mainly

hash-based approaches, which can be further classi�ed into two categories.

1. Random hash based approaches. A number of I/O e�cient LSH-

based ANNS methods were proposed, such as LSH-forest [109], C2LSH [34],

5

Chapter 1
1.2. APPROXIMATE NEAREST NEIGHBOR SEARCH BY LEARNING TO

HASH

QALSH [53], which aim to obtain a good trade-o� between search accuracy and

I/O e�ciency with theoretical guarantees. I-LSH [81] is the state-of-the-art I/O

e�cient random hash based method, which has a small I/O cost by using an

incremental, rather than exponentially expanding, search strategy. All these ap-

proaches rely on the sorted-lists where each list corresponds to the hashed values

of the objects; that is, the objects in the high dimensional space are mapped into

multiple sorted lists (i.e., a low-dimensional embedding space) and each list is

further divided into consecutive buckets. The query processing consists of a set

of sequential scans on these lists/buckets. These approaches are I/O e�cient in

the sense that sequential I/Os are invoked for the search of these lists/buckets.

However, the search quality of these methods is far from satisfactory because

they employ random projections, which are independent of the actual data dis-

tribution.

2. Learning to hash (L2H) based approaches. These algorithms signi�cantly

outperform the random hash based methods [75], as they can learn data-sensitive

hash functions to generate high-quality low dimensional embeddings that pre-

serve the locality in the expected sense rather than in the worst-case sense.

However, most of these L2H methods are main-memory based, and do not con-

sider the query processing on external memory. To the best of our knowledge,

PQBF [83] and AOSKNN [43] are the only two existing L2H methods that aim

to optimize the I/O performance where the objects and their embeddings are

located in external memory. However, they still require excessive amount of

random I/Os, which are much more expensive than sequential I/Os. Moreover,

the learning of hash functions in [83, 43], which is the key to the performance

of the methods, is independent to the index structure, and hence there is no

optimization for the I/O e�ciency in the learning of their hash functions.

Our Solution. Motivated by the above analysis, in this thesis, we aim at

6

1.2. APPROXIMATE NEAREST NEIGHBOR SEARCH BY LEARNING TO
HASH Chapter 1

designing external-memory based indexing and query processing techniques for

ANNS such that we can (i) maximally use the inexpensive sequential I/Os during

the search; and (ii) conduct end-to-end learning of the hashing functions, which

are also aware of the I/O characteristics.

To address the �rst goal, after the learned hashing (i.e., mapping) function

maps every point to its corresponding low dimensional embedding, we build

indexes as a set of M sorted lists. Each entry of a list is of the form (ID, value)

which records the object ID and its embedding value on a particular dimension;

the list is sorted in ascending order of values. By doing this, the objects in

high dimensional space are mapped into M sorted lists by learned mapping

functions. Our query processing procedure only makes bi-directional sequential

access to each list and hence fully exploits the sequential I/Os (See Fig. 1.1 for

an illustration).

To address the second goal, our idea is to leverage machine learning methods

to preserve locality of point objects in the embedding space. This is done by

designing novel loss function that is aware of the block-based I/O assess charac-

teristics, novel relaxation and optimization techniques. In addition, we consider

di�erent models that learn linear hashing functions and non-linear ones, respec-

tively.

Contributions. The main contributions for this work are summarized as fol-

lows.

� We develop an I/O e�cient external-memory ANNS framework, which

consists of a set of sorted lists and a querying processing algorithm.

� We propose two hash learning methods for linear and non-linear hash func-

tions. Particularly, linear hashing method learns the sorted lists sepa-

rately by penalizing the order mismatch. A fast training method based

on stochastic gradient descent (SGD) is developed for optimization. Non-

7

Chapter 1
1.3. APPROXIMATE NEAREST NEIGHBOR SEARCH: AN EXPERIMENTAL

STUDY

Figure 1.1: Illustration of our idea of index and query processing. Grey points
are embedding values of data points, orange points are embedding values of the
query point (i.e., q�1 , . . . , q

�

m).

linear hashing method learns a neural network for our framework. A train-

ing architecture based on a fully-connected neural network is constructed

for the optimization of the loss function.

� Comprehensive experiments on six large scale high dimensional datasets

demonstrate that our proposed methods outperform the state-of-the-art

ANNS techniques in terms of I/O e�ciency and search accuracy.

The details of this work are presented in Chapter 5.

1.3 Approximate Nearest Neighbor Search: An

Experimental Study

Motivation. There are hundreds of papers published on algorithms for approx-

imate nearest neighbor search (ANNS), but there have been few systematic and

comprehensive comparisons among these algorithms. In this thesis, we conduct

a comprehensive experimental study on the state-of-the-art ANNS algorithms in

the literature, due to the following needs:

8

1.3. APPROXIMATE NEAREST NEIGHBOR SEARCH: AN EXPERIMENTAL
STUDY Chapter 1

1. Coverage of Competitor Algorithms and Datasets from Di�erent Areas.

As the need for performing ANNS arises naturally in so many diverse domains,

researchers have come up with many methods while unaware of alternative meth-

ods proposed in another area. In addition, there are practical methods proposed

by practitioners and deployed in large-scale projects such as the music recom-

mendation system at spotify.com [14]. As a result, it is not uncommon that

important algorithms from di�erent areas are overlooked and not compared with.

For example, there is no evaluation among Rank Cover Tree [51] (from Machine

Learning), Product Quantization [57, 38] (from Multimedia), SRS [106] (from

Databases), and KGraph [27] (from practitioners). Moreover, each domain typ-

ically has a small set of commonly used datasets to evaluate ANNS algorithms;

there are very few datasets used by all these domains. In contrast, we conduct

comprehensive experiments using carefully selected representative or latest al-

gorithms from di�erent domains, and test all of them on 20 datasets including

those frequently used in prior studies in di�erent domains. Our study con�rms

that there are substantial variability of the performance of all the algorithms

across these datasets.

2. Overlooked Evaluation Measures/Settings. An ANNS algorithm can be

measured from various aspects, including (i) search time complexity, (ii) search

quality, (iii) index size, (iv) scalability with respect to the number of objects and

the number of dimensions, (v) robustness against datasets, query workloads,

and parameter settings, (vi) updatability, and (vii) e�orts required in tuning its

parameters. Unfortunately, none of the prior studies evaluates these measures

completely and thoroughly. For example, most existing studies use a query

workload that is essentially the same as the distribution of the data. Measuring

algorithms under di�erent query workloads is an important issue, but little result

is known. In this study, we evaluate the performance of the algorithms under a

9

Chapter 1
1.3. APPROXIMATE NEAREST NEIGHBOR SEARCH: AN EXPERIMENTAL

STUDY

wide variety of settings and measures, to gain a complete understanding of each

algorithm (c.f., Table 6.3).

3. Discrepancies in Existing Results. There are discrepancies in the experi-

mental results reported in some of the notable papers on this topic. For example,

AGH was shown to perform better than Spectral Hashing in the literature [82],

while the study in [98] indicates otherwise. This situation also exists between

Spectral Hashing and DSH [98, 36]. While much of the discrepancies can be ex-

plained by the di�erent settings, datasets and tuning methods used, as well as

implementation di�erences, it is always desirable to have a maximally consistent

result to reach an up-to-date rule-of-thumb recommendation in di�erent scenar-

ios for researchers and practitioners. In this study, we try our best to make a

fair comparison of several algorithms, and test them on all 20 datasets. Finally,

we will also publish the source code, datasets, and other documents so that the

results can be easily reproduced.

Contributions. Our principle contributions are summarized as follows.

� Comprehensive experimental study of the state-of-the-art ANNS methods

across several di�erent research areas. Our comprehensive experimental

study extends beyond past studies by: (i) comparing all the methods with-

out adding any implementation tricks, which makes the comparison more

fair; (ii) evaluating all the methods using multiple measures; and (iii) we

provide rule-of-thumb recommendations about how to select the method

under di�erent settings. We believe such a comprehensive experimental

evaluation will be bene�cial to both the scienti�c community and prac-

titioners, and similar studies have been performed in other areas (e.g.,

classi�cation algorithms [21]).

� We group algorithms into several categories, and then perform detailed

analysis on both intra- and inter-category evaluations. Our data-based

10

1.3. APPROXIMATE NEAREST NEIGHBOR SEARCH: AN EXPERIMENTAL
STUDY Chapter 1

analyses provide con�rmation of useful principles to solve the problem, the

strength and weakness of some of the best methods, and some initial ex-

planation and understanding of why some datasets are harder than others.

The experience and insights we gained throughout the study enable us to

engineer a new empirical algorithm, DPG, that achieves both high query

e�ciency and high recall empirically on majority of the datasets under a

wide range of settings.

The details of this work are presented in Chapter 6.

11

Chapter 2

Literature Review

A large amount of methods regarding the exact and approximate nearest neigh-

bour search in high dimensional space have been proposed in the past years and

achieved prominent success in terms of the academic research and the industrial

applications. This chapter provides a comprehensive literature review for the

existing NNS algorithms in community.

2.1 Exact Nearest Neighbor Search

Exact nearest neighbour search (NNS) aims to �nd out the true nearest neighbors

for the given query within a database. In the past, a variety of exact NNS

algorithms have been proposed in the literature. Some of them are based on tree

structures, such as KD-tree [12], iDistance [56] and Cover Tree [16]. KD-tree,

also called k-dimensional tree, is a binary search tree structure for organizing

data points in a space with k dimensions. It works by recursively partitioning

the data points based on a median value of a chosen attribute. When given a

query point, we �nd the matching leaf of the KD-tree, and compare the query

point to all points in the leaf. KD-tree supports approximate and exact NNS,

12

2.1. EXACT NEAREST NEIGHBOR SEARCH Chapter 2

and have a good performance when the dimensionality of data is low (e.g., 5-

10 dimensions). iDistance [56] is a B�-tree variant, which is an indexing and

query processing technique for exact nearest neighbor search on point data in

multi-dimensional metric spaces. In the indexing stage, data points in multiple

dimensional space are mapped to one-dimensional values (iDistance value), and

then B�-tree can be adopted to index the points using the iDistance as the key.

To process a kNN query, the query is mapped to a number of one-dimensional

range queries, which are then processed e�ciently on the iDistance index. Cover

Tree [16] can be thought of as a hierarchy of levels with the top level containing

the root point and the bottom level containing every point in the metric space.

Cover Tree is e�cient for range queries and answering exact k-nearest neighbor

search. However, as reported in [54], these algorithms have a poor performance

on high dimensional data.

Following the �lter-and-verify paradigm, another kind of exact NNS algo-

rithms have been proposed and show their advantages in terms of addressing

data in high dimensional space, such as OST [76], FNN [54] and HB+ [31]. OST

proposes an orthogonal search tree using the PCA basis evaluated from the data

set, where the tree depth corresponds to the total number of PCA dimensions

used for projection. Particularly, the search tree is constructed in a similar

way to KD-tree [12], where the data points are recursively partitioned based

on their sorted projection values in each individual PCA dimension. Exact NN

search can be conducted on this search tree, where the di�erence between the

query projection and each node is used as distance lower bound for NN candi-

date pruning, and then the distance veri�cation is executed if the pruning fails.

FNN [54] obtains the distance lower bounds between query and data points by

nonlinearly embedding the dataset into a 2-dimensional space according to two

important statistics (mean and variance) of the coordinate values of all dimen-

13

Chapter 2 2.2. APPROXIMATE NEAREST NEIGHBOR SEARCH

Methods Indexing/Pruning approach Searching paradigm

KD-tree [12]
Binary search tree based on di-
mension partitioning

Tree search and veri�cation

iDistance [56]
B�-tree variant based on dimen-
sion reduction

Range query and veri�ca-
tion

Cover tree [16]
Hierarchy search tree based on
distance bounding

Multi-layer tree search

OST [76]
Orthogonal search tree based on
PCA

Filtering and veri�cation

FNN [54]
Distance lower bounding based
on non-linear embedding

Filtering and veri�cation

HB+ [31]
Distance lower bounding based
on clustering

Filtering and veri�cation

Table 2.1: Overview of the Indexing and Searching of Existing Exact NNS Algorithms

sions. The performance can be enhanced by partitioning the dimensions into t

disjoint groups and computing the statistics for each group, where each point

is embedded to a 2t-dimensional space. Then NNS can be conducted follow-

ing the �lter-and-verify paradigm by using the distance lower bounds between

query and data points in the embedded space. Table 2.1 summarizes the exist-

ing exact methods in terms of their indexing (pruning) techniques and searching

paradigms.

Overall, exact NNS methods su�er from the curse of dimensionality [55],

and currently cannot scale to deal with very large scale data with up to one

billion data points. Therefore, in most cases, the problem of approximate NNS

enjoys more interests of researchers.

2.2 Approximate Nearest Neighbor Search

The approximate nearest neighbour search (ANNS) focuses on how close the re-

trieved points are to the query rather than whether the returned points are the

true nearest neighbours. It aims to get a trade-o� between the search accuracy

14

2.2. APPROXIMATE NEAREST NEIGHBOR SEARCH Chapter 2

and search e�ciency by exploring the approximate results. This section clas-

si�es the existing ANNS algorithms into three main categories: Hashing-based,

Partition-based and Graph-based. Table 2.2 summarizes the existing representa-

tive approximate algorithms in terms of their indexing (hashing) techniques and

searching approaches.

2.2.1 Hashing-based Methods

The algorithms belonging to this class transform data point to a low-dimensional

representation, so each point could be represented by a short code (called hash

code). There are two main sub-categories in this class: Locality Sensitive Hash-

ing (LSH) and Learning to Hash (L2H).

Locality Sensitive Hashing

Locality sensitive hashing (LSH) is data-independent hashing approach. The

LSHmethods rely on a family of locality sensitive hash functions that map similar

input data points (distance@ r) to the same hash codes with higher probability

than dissimilar points (distanceA cr), so LSH methods are initial designed to

solve (r,c)-ANN problem. The designing of good locality sensitive hash functions

is vital for LSH-related methods. For Euclidian distance measure, a great number

of hash functions are proposed [24, 3, 5, 110, 6]. Random linear projections [24,

39, 96, 108] are the most commonly used hash function to generate hash code, in

which the random projection parameters are chosen from a 2-stable distribution

(e.g. Gaussian distribution).

In order to achieve good search precision, several hash functions are concate-

nated to form a hash table, thus decreasing the collision probability for dissimilar

points. While it also reduces the collision probability of nearby points, so one

usually requires to construct multiple hash tables, leading to large memory cost

15

Chapter 2 2.2. APPROXIMATE NEAREST NEIGHBOR SEARCH

Type Method Indexing/hashing Searching

LSH-
based

SRS [106]
R-tree based on random pro-
jection

Incremental k-NN
search with early termi-
nation examination

QALSH [53]
B�-tree based on random pro-
jection

Range search with
query-aware exponen-
tial bucket expansion

I-LSH [81]
B�-tree based on random pro-
jection

Range search with in-
cremental bucket ex-
pansion

L2H-
based

PQ [57]
Inverted �le based on carte-
sian product k-means

k-NN search on in-
verted �le with asym-
metric distance compu-
tation

PQBF [83]
B�-tree based on Z-order [108]
on PQ codes

k-NN search on a set of
B�-trees

ITQ [41]
Iterative quantization based
PCA strategy

k-NN search based on
hamming ranking

AGH [82] Graph-based hashing
k-NN search based on
hamming ranking

DeepBit [77]
DCNs with quantization loss
minimization

k-NN search based on
hamming ranking

SADH [102]
DCNs with similarity-
adaptive optimization

k-NN search based on
hamming ranking

Partition-
based

Randomized
KD-tree [103]

Binary search tree based on
hyperplane partitioning

Depth-�rst search

FLANN [91]

A algorithm con�guration
method based on the ran-
domized KD-tree, hierarchical
k-means tree and linear scan

k-NN search on the se-
lected algorithm

VP-
tree [18]

Binary search tree based on
pivoting partitioning

Range search with de-
creasing radius

Graph-
based

Kgraph [28,
27]

Approximate directed k-NN
graph

Greedy search

DPG [75]
Approximate directed k-NN
graph considering the diversi-
�cation

Greedy search

SW [87] Navigable small world graph
Greedy search with
multi-restarts

HNSW [88]
Hierarchical Navigable small
world graph

Multi-layer greedy
search

Table 2.2: Overview of the Indexing and Searching of Representative ANNS Algo-
rithms

16

2.2. APPROXIMATE NEAREST NEIGHBOR SEARCH Chapter 2

and long query time. Hence, some heuristic methods [85, 65, 86] are presented

to check more hash buckets which may contain the nearest neighbor or the candi-

dates near the query point, so as to increase the search quality without increasing

the number of hash tables.

Because the hash tables are constructed before searching, the points collided

with the query in a part of hash functions in one hash table are neglected al-

though they are likely near. Hence, instead of using �static� compound hash func-

tions to construct hash table before searching, some recent LSH-based methods

(e.g. C2LSH [34], LazyLSH [130], QALSH [86]) employ dynamic collision count-

ing scheme for more e�cient searching. Very recently, Liu et al. [81] proposes

I-LSH to dramatically reduce the I/O cost of approximate NNS with theoretical

guarantee. Unlike the previous LSH methods [34, 53], which expand the bucket

width in an exponential way, I-LSH adopts a more natural search strategy to

incrementally access the hash values of the objects, thus can greatly reduce I/O

cost under the same theoretical guarantee.

LSH-based methods are widely studied by the theory community and enjoy

the sound probabilistic theoretical guarantees on query result quality (based on

distance ratios), e�ciency, and index size even in the worst case. Note that

the soundness of theoretical guarantees of LSH algorithms relies on the assump-

tion that: given two data points, the hash functions are selected randomly and

independently [113].

Learning to Hash

Learning to hash (L2H) methods fully make use of the data distribution to gener-

ate speci�c hash functions, leading to higher e�ciency at the cost of relinquishing

the theoretical guarantees. The main methodology of Learning to hash methods

is similarity-preserving, so that the ANN relationships between the data points

17

Chapter 2 2.2. APPROXIMATE NEAREST NEIGHBOR SEARCH

in the original space could be maximally preserved in the hash coding space.

According to the di�erence of the optimization objective design to pre-

serve similarity, the learning to hash algorithms could be grouped into the

following classes: pairwise-similarity persevering class [121, 82, 80, 47, 78],

multiwise-similarity persevering class [118, 116, 120], implicitly-similarity perse-

vering class [60, 64] and quantization class [57, 41, 70]. More related references

could be found in [117, 115, 119]. Besides similarity persevering criterion, most

of the hashing methods require the codes to be balance and uncorrelated.

Many literatures indicate that the quantization algorithms are more e�cient

than other learning to hash methods. The quantization-based methods seek to

minimize the quantization distortion (equal to the sum di�erence of each data

point and its approximation). Product Quantization (PQ) [57] is a popular meth-

ods for ANNS, which decomposes the original vector space into the Cartesian

product ofM lower dimensional subspaces, and performs vector quantization [42]

in each subspace separately. A vector is then represented by a short code com-

posed of its subspace quantization indices (i.e., PQ codes). Recently, there are

many extensions are proposed to improve the performance of PQ for indexing

step [38, 95, 10, 123, 66] and searching step [11, 58, 66, 48]. For example, Opti-

mized Product Quantization (OPQ) [38] use pre-rotation to further minimize the

quantization distortion. Additive Quantization (AQ) [9] and Composite Quanti-

zation (CQ) [127] are the generalization of PQ and represent a vector as the sum

of M D-dimensional vectors where D is equal to the dimension of input data.

Bene�ting from the development of deep neural network, deep hashing meth-

ods that employ deep learning are widely studied in recent years. As we does

not use label information, we only introduce unsupervised deep hashing methods

in this paper. More evaluation of supervised deep hashing algorithms could be

found in [19]. Semantic hashing [101] is the �rst work on using deep learning

18

2.2. APPROXIMATE NEAREST NEIGHBOR SEARCH Chapter 2

techniques for hashing, which builds a multi-layers Restricted Boltzmann Ma-

chines (RBM) to learn compact binary codes for text and documents. In order

to learn the binary codes, most of deep hashing methods design a sign activation

layer to produce binary codes and minimize the loss between the compact real-

valued code and the learned binary vector [77, 79, 122, 84]. Another solution

is to reconstruct the original data. For example, [20, 124] use autoencoder as

hidden layers. Thanh-Toan et al. [26] propose to constrain the penultimate layer

to directly output the binary.

Because hashing methods must obtain the binary code from the output of

hash functions, the binary constraint optimization problem is an NP-hard prob-

lem. To ease the optimization, most of the hashing methods adopt the following

�relaxation + rounding� approach, which makes the binary codes are suboptimal.

For handling this problem, some discrete optimization methods are developed

[80, 25, 102].

Most of learning to hash methods are main memory based, that is, all op-

erations including the indexing (hashing) and querying are conducted in main

memory for better search e�ciency. And also, they cannot trivially be extended

to support I/O e�cient nearest neighbor search in external memory. Recently,

two external memory based approximate algorithms are proposed, which lever-

age existing learning to hash methods for I/O e�cient index construction.

Liu et al. [83] proposed the �rst I/O-e�cient PQ-based solution for ANNS,

called PQBF. They design a linear order on the PQ codes by employing the Z-

order [108], where a lower bound for the AQD distance (i.e., an approximation of

original Euclidean distance) can be achieved. Then they design an index called

PQB�-forest to support e�cient similarity search on AQD. Speci�cally, PQB�-

forest �rst creates a number of partitions of the PQ codes by a coarse quantizer

and then builds a B�-tree, called PQB�-tree, for each partition. The search

19

Chapter 2 2.2. APPROXIMATE NEAREST NEIGHBOR SEARCH

process is expedited by focusing on a few selected partitions that are closest to

the query, as well as by the pruning power of PQB�-trees. Note that although

the objects in PQB�-tree are indexed by B�-tree, the random I/Os are invoked

because it is unlikely to ensure the nearby objects accessed during the search are

allocated at the adjacent pages in one order alone.

Gu et al. proposed an external memory-based ANNS algorithm, namely

AOSKNN, in [43] based on the �projection-�lter-re�nement� framework. Speci�-

cally, they adopt PCA to embed the high-dimensional point objects into a low-

dimensional space. Then, a �lter condition is inferred to execute pruning over

the projected data. As an R-tree-based index is employed to organize the em-

bedded objects in low dimensional space, random I/Os are invoked during the

search.

2.2.2 Partition-based Methods

Methods in this category can be deemed as dividing the entire high dimensional

space into multiple disjoint regions. Let the query q be located in a region rq,

then its nearest neighbors should reside in rq or regions near rq.

The partition process often carry out in a recursive way, so partition-based

methods are best represented by a tree or a forest. Tree-based space partition

has been widely used for exact and approximate nearest neighbor search in low

dimensional space. It can be modi�ed to work for k-ANNS in high-dimensional

space. For example, KD-tree [12] is one of the most popular exact NN search

method in low dimensional space. While randomized KD-trees are developed

from KD-tree to speed up ANN search by building multiple randomized kd-trees

as index.

According to the references used in the division, there are three main par-

titioning approaches: pivoting, hyperplane and compact partitioning schemes.

20

2.2. APPROXIMATE NEAREST NEIGHBOR SEARCH Chapter 2

Pivoting methods partition the points relying on the distances from the point

to some pivots (usually randomly chosen). Algorithms in this class contain

VP-Tree [126], Ball Tree [22] etc. Hyperplane partitioning methods recursively

divide the space by the hyperplanes with random directions (e.g. Annoy [14],

Random-Projection Tree [23]) or axis-aligned separating hyperplanes [103, 105].

Compact partitioning algorithms either divide the data into clusters [33] or cre-

ate possibly approximate Voronoi partitions [93, 16] to exploit locality.

2.2.3 Graph-based Methods

Graph-based methods construct a proximity graph where each data point cor-

responds to a node and edges connecting some nodes de�ne the neighbor-

relationship. The main idea of these methods is a neighbor's neighbor is also

likely to be a neighbor. The search could be e�ciently performed by iteratively

expanding neighbors' neighbors in a best-�rst search strategy following the edges.

According to the di�erence of the graph structures, graph-based methods are

divided into several classes. The �rst one tries to build a Delaunay Graph in

which each node connects with all its �Voronoi neighbors� (the points who share

a Voronoi border with the node). However, the Delaunay Graph is proved to

be complete graph as the increase of the dimensionality, which is not possible

to compute e�ciently. A practical approach is to build an exact or approximate

k-nearest neighbor graph that records the top-k nearest neighbors for each node.

Especially for high dimensional space, the approximate k-nearest neighbor graph

construction methods were widely studied recently [44, 35, 129, 28, 128, 125].

With the support of kNN graph, nearest neighbor search is conducted by hill-

climbing strategy [13] and usually assigns some random data points as initial

enter points, which is easy to get trapped in local optimal. In order to obtain

better starting points, some schemes are proposed to locate some initial entries

21

Chapter 2 2.2. APPROXIMATE NEAREST NEIGHBOR SEARCH

quickly. For example, IEH [61] and Efanna [32] use hashing and randomized

kd-tree to generate the initial candidate neighbors.

The second class is a proximity graph called navigable Small World graph

(SW-graph) [17, 69]. Yury et al. [87] proposed NSW method to build SW-

graph by iteratively inserted the points where each point is linked to some nodes

selected by a greedy search algorithm from the graph in building. The SW-

graph contains an approximation of the Delaunay graph and has long-range

links together with the small-world navigation property, so it is more e�cient

for the nearest neighbor search. But the degree of NSW is too high to be e�cient

and there also exist connectivity problems in it. HNSW [88] is an Extension of

SW-graph, which generates a multi-layer proximity graph. HNSW is one of the

most e�cient ANNS algorithms so far.

22

Chapter 3

Problem Statement

In this chapter, we formally present the problem de�nition and then introduce

some notations widely used through this thesis.

3.1 Problem De�nition

In this thesis, we consider a datasetD which containsN points in a d dimensional

Euclidean space Rd (i.e., D >Rd�N). We are particularly interested in the high-

dimensional case where d is a fairly large number (e.g., d C 100). Let p denote

a point (column vector) in the space Rd with d dimensions, and we use pi to

represent its coordinate value in the i-th dimension. The Euclidean distance

between two points, YqpY, is de�ned as
»
Pdi�1�qi � pi�2. Sometimes, we would

use Yq, pY to denote the distance between q and p to make the formula (context)
more readable. We consider the Euclidean distance as our distance metric and

throughout the thesis, we use �space� to denote the �Euclidean space�. The point

vectors used in thesis are all column vectors.

Exact Nearest Neighbor Search. Given a query point q, the exact nearest

neighbor of q (denoted as o�) is the point in D that has the smallest distance to

23

Chapter 3 3.2. NOTATIONS

Notation De�nition

R
d An Euclidean space (d dimensions)

S
m A subspace of Rd (m dimensions)

P
t A t dimensional truncated PCA (tP d)

E
m�n An embedded space (m � n dimensions)

D The dataset represented in a d �N design matrix; each col-
umn is a d-dimensional point (object)

p A data point in original space Rd

pi The i-th coordinate value of p

p� The projection point of p in subspace Sm

p� The embedded point of p in space Em�n

YpqY / Yp, qY the Euclidean distance between point p and q
Ð�pq The vector from point p to point q

l A sorted list with entries of form (ID, value)

H The (learned) mapping function to a lower dimensional em-
bedding space

W The parameters of the linear mapping functions

θ The parameters of the non-linear mapping functions

Table 3.1: Summary of Notations

q. We can generalize the concept to the i-th exact nearest neighbor (denoted as

o�i). A k-exact nearest neighbor query returns the set of �o�1, o�2, ..., o�k�.
Approximate Nearest Neighbor Search. Instead of returning the exact

nearest neighbour, the approximate nearest neighbor search (ANNS) focuses on

how close the retrieved objects are to the query q. Let the o� be exact nearest

neighbor in D with respect to a query q, and let p be the ANNS result returned

by an algorithm, we can measure the quality of p by the ratio of its distance to

the query over the nearest neighbor distance, i.e., YpqY
Yo�qY . The ratio is lower, the

result is better. It is easy to extend the de�nition to the top-k version of ANNS.

3.2 Notations

Given any two points p and q in Rd, we use pq to represent the line segment

between p and q, and the Euclidean distance between them is denoted by YpqY.
24

3.2. NOTATIONS Chapter 3

By Ð�pq, we denote the vector from p to q, and �abc is used to denote the angle

between ab and bc. Other important notations frequently used in this thesis are

summarized in Table 3.1.

25

Chapter 4

Exact Nearest Neighbor Search by

Compounded Embedding

4.1 Overview

In this chapter, we introduce our proposed embedding technique for e�cient

exact nearest neighbour search. This work is published in [73] and the rest

of this chapter is organized as follows. Section 4.2 introduces our embedding

method and the distance lower bound obtained from it. Section 4.3 presents

our exact NNS solution based on the embedding techniques. The comprehensive

experimental results for our proposed techniques are reported in Section 4.4.

Finally, we summarize this chapter in Section 4.5.

4.2 Embedding and Distance Lower Bound

In this section, we �rst introduce the motivation of our distance lower bound

technique, followed by our embedding method, linear and non-linear embedding.

Then we formally show the correctness of our distance lower bound within the

26

4.2. EMBEDDING AND DISTANCE LOWER BOUND Chapter 4

embedded space, followed by its optimization. Finally, we remark that the above

techniques can be applied to the PCA space of Rd to achieve better performance.

4.2.1 Motivation

Suppose the original space R3 � �w1,w2,w3� is a 3-dimensional space as shown

in Fig. 4.1. Given a query point q and a data point p, we use q� and p� to denote

their orthogonal projections on a one-dimensional subspace S1 � �w1�. Now we

will show how to devise a distance lower bound for YpqY based on Yp�q�Y, Yqq�Y,
and Ypp�Y.

Let o be the point inRd generated by moving q along the direction of
Ð�

q�p� with

distance Yq�p�Y. It is trivial to see that qo is parallel to q�p�, and YqoY � Yq�p�Y, thus
Yop�Y � Yqq�Y. It is easy to know that qo is perpendicular to op, i.e., �qop is a right

angle. According to the Pythagorean Theorem, we have YpqY2
� YqoY2

�YopY2
. By

Triangle Inequality, we have YopY C S Yop�Y � Ypp�Y S. Then we have the following

distance lower bound for YpqY:
YpqY2

C Yp�q�Y2
� �Ypp�Y � Yqq�Y�2. (4.1)

Let q� (resp. p�) be a 2-dimensional point with coordinate values q�1 � q1

(resp. p�1 � p1) and q�2 � Yqq�Y (resp. p�2 � Ypp�Y). Recall that q1 denotes the

coordinate value of point q on the 1st dimension. By doing this, we introduce

another dimension to the subspace S1, resulting in a 2-dimensional embedded

space, denoted by E2. The 1st dimension of E2 directly comes from S1, while

the 2nd dimension is the distance between the point and its projection on the

subspace S1. The points p and q from R3 are mapped to p� and q� in the

embedded space E2. Then inequality (4.1) can be re-written as follows:

27

Chapter 4 4.2. EMBEDDING AND DISTANCE LOWER BOUND

Figure 4.1: Motivation of Distance Lower Bound

YpqY2
C �p1 � q1�2

� �Ypp�Y � Yqq�Y�2
� Yp�q�Y2

. (4.2)

Inequality (4.2) implies that the distance between p and q in the embedded

space (i.e., Yp�q�Y) is always no larger than their distance in the original space

(i.e., YpqY).
In the following three subsections, we formally de�ne our embedding method

and then prove the correctness of the distance lower bound in the embedded

space, followed by the optimization of the distance lower bound.

4.2.2 Embedding Method

Given the Euclidean space Rd � �w1,w2, . . . ,wd�, where w1,w2, . . . ,wd are the

orthonormal basis of Rd. We use Sm to denote a subspace of Rd with m di-

mensions (mP d), and the remaining dimensions form another subspace Sd�m.

Then, we partition the Sd�m into n (nP d) disjoint subspaces, denoted by Se1 ,

Se2 ,..., and Sen , respectively, where e1 � e2 � ... � en � d �m. Then we combine

the subspace Sm and Se1 together to form a new subspace, denoted by Sm�e1 .

Accordingly, Sm and Se2 are combined together to form the second subspace

28

4.2. EMBEDDING AND DISTANCE LOWER BOUND Chapter 4

Figure 4.2: Illustration of Our Embedding Method

Sm�e2 . Consequently, we generate n new subspaces, denoted by Sm�e1 , Sm�e2 ,...,

and Sm�en , respectively. They share a common subspace Sm (See Fig. 4.2 for an

illustration).

The embedded space regarding these 1�n subspaces is a (m�n)-dimensional

space, denoted by Em�n. Then for each point p > Rd, we use p̂1, p̂2,..., and p̂n

to denote its corresponding projections on the subspaces Sm�e1 , Sm�e2 ,..., and

Sm�en , respectively. Then for each p̂i, where i � 1, ..., n, we use p�i to denote its

projection on subspace Sm. We directly denote p� as the projection of p on Sm,

it is trivial that p� = p�1 = p�2 = ... = p�n. By p�, we denote the corresponding

embedding of p in the embedded space Em�n, where p�j � p
�

j for 1 B j B m and

p�m�k � Yp̂kp�kY for 1 B k B n. Note that Yp̂kp�kY is the distance between p̂k and

its projection on the subspace Sm. In other words, the embedded space Em�n

contains two parts: linear embedding (the �rst m dimensions) and non-linear

embedding (the last n dimensions).

4.2.3 Correctness of Distance Lower Bound

In this subsection, we formally show that the distance between two points within

the embedded space Em�n can serve as the lower bound of their distance in

29

Chapter 4 4.2. EMBEDDING AND DISTANCE LOWER BOUND

original Rd.

Theorem 1. Given an Euclidean space Rd with an orthonormal basis

�w1,w2, . . . ,wd�, the subspace Sm � �w1,w2, . . . ,wm� and the corresponding em-

bedded space Em�n, we have Yp�q�Y B YpqY where p and q are two points in Rd

while p� and q� are their embedded points in Em�n.

Proof. (1) When n � 1, there is no space partitioning on Sd�m. Taking Fig. 4.1

for example, we let q� and p� be the projections of q and p on Sm, respectively.

We de�ne o as the point in Rd such that
Ð�

q�q �
Ð�

p�o. Then we can have Ð�qo �
Ð�

q�p�

and Ð�op �
Ð�

p�p �
Ð�

p�o. It is trivial that
Ð�

q�p� is within subspace Sm, and
Ð�

p�o and
Ð�

p�p

are both within the subspace Sd�m. Since Sm is orthogonal to Sd�m, Ð�qo and Ð�op

are perpendicular to each other. According to the Pythagorean Theorem and

Triangle Inequality, we can have YpqY2
C Yq�p�Y2

� �Yq�qY � Yp�pY�2.

Now consider p� and q�, which are the embedded points of p and q in the

embedded space Em�1. By de�nition, we have p� � �p�, Ypp�Y� and q� � �q�, Yqq�Y�,
then we have:

Yp�q�Y2
�

m

Q
i�1

�p�i � q�i�2
� �Ypp�Y � Yqq�Y�2

� Yq�p�Y2
� �Yq�qY � Yp�pY�2

B YpqY2
.

Hence, when n � 1, the Theorem 1 holds. This case is equivalent to the inequality

Lemma in [76].

(2) When n � 2. For n � 1, we have Yq�p�Y2
� �Yq�qY � Yp�pY�2 B YpqY2

. SinceYq�p�Y2
is directly from the subspace Sm of Rd, we can have:

d

Q
i�m�1

�pi � qi�2
C �Yq�qY � Yp�pY�2. (4.3)

As n � 2, we generate 2 new subspaces Sm�e1 and Sm�e2 , respectively, where

e1 � e2 � d �m. For each new subspace, we can have that:

Zq̂1p̂1Z2
C Yq�p�Y2

� �Zq̂1q�Z � Zp̂1p�Z�2, (4.4)

30

4.2. EMBEDDING AND DISTANCE LOWER BOUND Chapter 4

Zq̂2p̂2Z2
C Yq�p�Y2

� �Zq̂2q�Z � Zp̂2p�Z�2. (4.5)

The Eqn. (4.4) and Eqn. (4.5) can be further re-written as:

m�e1

Q
i�m�1

�pi � qi�2
C �Zq̂1q�Z � Zp̂1p�Z�2, (4.6)

d

Q
i�m�e1�1

�pi � qi�2
C �Zq̂2q�Z � Zp̂2p�Z�2. (4.7)

After combining the Eqn. (4.6) and Eqn. (4.7), we can have:

d

Q
i�m�1

�pi � qi�2
C �Zq̂1q�Z � Zp̂1p�Z�2

� �Zq̂2q�Z � Zp̂2p�Z�2. (4.8)

Finally, we can have:

YpqY2
C Yq�p�Y2

� �Zq̂1q�Z � Zp̂1p�Z�2
� �Zq̂2q�Z � Zp̂2p�Z�2

� Yp�q�Y2
. (4.9)

Therefore, when n � 2, the Theorem 1 holds.

(3) When n C 3. Based on the cases of n � 1 and n � 2, it is easy to prove

that the Theorem 1 holds for n C 3, so we omit it here.

4.2.4 Optimization of Distance Lower Bound

In this subsection, we discuss the optimization of our distance lower bound within

the embedded space Em�n. Our distance lower bound is from the combination

of linear and non-linear embeddings, so the optimization consists of two parts.

For the linear case, given a dataset with N points in space Rd, we aim to

�nd a subspace Sm of Rd that is able to maximize the average square distance

of all pairwise projected data points on Sm. This optimization objective is given

as follows:

Maximize
1

N2

N

Q
i�1

N

Q
j�1

d2
ij. (4.10)

31

Chapter 4 4.2. EMBEDDING AND DISTANCE LOWER BOUND

where the dij denotes the distance between the projected point i and j on Sm.

The optimization of the above objective leads to our another important theo-

rem, which is given as follows. The proof is similar to the Multidimensional

scaling [112].

Theorem 2. Given a dataset D with N points in space Rd, the subspace Sm �

�w1, ...,wm� (m P d) which can maximize the average square distance of all

pairwise projected data points on Sm, is the m-dimensional PCA of dataset D.

Proof. We assume that the dataset D is already centered, i.e., PNi�1 x
i
l �

0, for all l � 1, ..., d, where the xil denotes the l-th coordinate value of the i-th

point. Then we can have that the dataset D̃, which is the orthogonal projection

of dataset D on Sm, is also centered, as PNi�1w
T
l x

i � wTl P
N
i�1 x

i � 0, for all l �

1, ...,m. Let x̃i denote the projection of data point i on Sm, then

N

Q
i�1

x̃il � 0, for all l � 1, ...,m. (4.11)

Let bij denote the inner product between x̃i and x̃j. Since SSx̃i � x̃j SS2 � �x̃i�T x̃i �
�x̃j�T x̃j � 2�x̃i�T x̃j, we can have:

d2
ij � bii � bjj � 2bij. (4.12)

The Eqn. (4.11) leads to

N

Q
i�1

bij �
N

Q
i�1

m

Q
l�1

x̃ilx̃
j
l �

m

Q
l�1

x̃jl

N

Q
i�1

x̃il � 0, for all j � 1, ...,N. (4.13)

With a notation T � PNi�1 bii, by Eqns. (4.12) and (4.13), we have:

N

Q
i�1

d2
ij �

N

Q
j�1

d2
ij � 2T. (4.14)

32

4.2. EMBEDDING AND DISTANCE LOWER BOUND Chapter 4

Hence, our optimization objective can be rewritten as:

1

N2

N

Q
i�1

N

Q
j�1

d2
ij �

1

N2
� 2NT � 2 �

1

N

N

Q
i�1

bii � 2 �
1

N

N

Q
i�1

�x̃i�T x̃i. (4.15)

PCA can be de�ned as the orthogonal projection of the data onto a lower di-

mensional linear space, such that the variance of the projected data is maxi-

mized [49]. In other words, a m-dimensional PCA of dataset D is a subspace

that can maximize the average square distance of the projected data points to

their central point. As the dataset D is centered, the projected data points on

m-dimensional PCA are centered. Hence, the 1
N P

N
i�1�x̃i�T x̃i is the optimization

objective of PCA. Therefore, our optimization objective is equivalent to that of

PCA, Theorem 2 holds.

In terms of the non-linear case, after the Sm is decided, we aim to choose

a space partitioning way for Sd�m, which can tighten the partial distance lower

bound contributed by the non-linear embedding as much as possible. How-

ever, as the subspace partitioning is quite computationally expensive, in this

chapter, we set n � 2 and choose a simple partitioning way for Sd�m. Speci�-

cally, we partition the Sd�m into 2 disjoint but consecutive subspaces with bases

�wm�1, ...,wm�
�d�m�~2�� and �wm�
�d�m�~2��1, ...,wd�, respectively. Our empirical

study shows that this partitioning way already gives us a good performance for

all datasets.

4.2.5 Using PCA Technique

Theorem 1 holds for any Euclidean linear space with an orthonormal basis. Ac-

cording to Theorem 2, we choose the t-dimensional truncated PCA of dataset in

Rd for embedding (t @ d). In contrast to full PCA (i.e., the d-dimensional PCA),

choosing a truncated PCA with smaller dimensions can save more preprocess-

33

Chapter 4 4.3. EFFICIENT EXACT NNS ALGORITHM

ing time, and Theorem 1 still holds in a t-dimensional PCA space. Since the

Euclidean distance is preserved under any orthogonal linear transformation [40],

we �rst conduct PCA on the original dataset to achieve the t-dimensional PCA

space, denoted by P t, and then �rst m (m P t) dimensions (components) are

used as the subspace Sm for the linear embedding while the remaining t �m

dimensions are partitioned into n (n P t) subspaces for non-linear embedding.

Such that our embedded space Em�n is generated by the compound of the linear

and non-linear embedding, on which the NN search will be conducted.

4.3 E�cient Exact NNS Algorithm

This section presents our exact NNS algorithm. We �rst show the key idea of the

algorithm, followed by the detailed implementation of the algorithm. Finally, we

present the performance analysis.

Figure 4.3: Motivation of Exact NNS using Embedded Space

4.3.1 Motivation

Given the embedded space Em�n, a straightforward implementation is to ran-

domly choose a point and compute its distance to the query q as the distance

threshold λ. Then for each remaining point, we compute its distance lower bound

w.r.t q (i.e., the distance under Em�n), and the point will be safely excluded if

34

4.3. EFFICIENT EXACT NNS ALGORITHM Chapter 4

its lower bound is larger than λ. Otherwise, we can compute its true distance to

q and update λ. Finally, the point contributing to λ is the exact NN of query q.

There are two shortcomings of this implementation: (i) it may take many steps

to �nd a good distance threshold λ, and (ii) we need to compute the distance

lower bounds for all data points, which is still expensive even the dimensionality

of the embedded space is low.

To address the above issues, we seek help from the multi-dimensional index

techniques which can e�ciently support exact NNS and range search on relatively

low dimensional space (e.g., 8-20 dimensions). Regarding the example shown in

Fig. 4.3, we suppose the data points in the embedded space Em�n are organized

by a multi-dimensional index. Then, we can identify the true NN of the query q

by issuing one NN search and one range search in the embedded space, together

with the veri�cation of the survived candidates. Speci�cally, we �rst �nd the

nearest neighbor of q� (i.e., embedding of q in Em�n) in the embedded space,

which is p� in our example. Then we take YpqY as the initial distance threshold
λ, and issue a range query from q� with radius YpqY. Clearly, we only need to

access points within the range because the distance lower bounds of other points

are already larger than the current distance threshold. For instance, we do not

need to access the point o� in the example of Fig. 4.3. By doing this, we can �nd

a good distance threshold for better pruning performance and avoid computing

distance lower bounds for many points outside of the range search. Detailed

implementations will be introduced in the following subsection.

Remark 1. In this paper, we choose cover tree [16] as the multi-dimensional

index structure for the embedded data points due to its good performance under

our settings. Note that we use the cover tree to organize the low dimensional

embedded points in Em�n, not the high dimensional data points in Rd. It is

already reported in [54] that the performance of cover tree in high dimensional

35

Chapter 4 4.3. EFFICIENT EXACT NNS ALGORITHM

space is not competitive compared with FNN [54].

Algorithm 1: Exact NN Search (D, D̃, D�, q)

Input : D: data points in original space Rd,
D̃: data points in t-dimensional PCA space P t,
D�: data points in embedded space Em�n,
q: query point in space Rd,

Output: r � the nearest neighbor of q in D

q̃ � transfer q from space Rd to PCA space P t;1

q� � the embedded point of q in Em�n;2

p� � the nearest neighbor of q� in D�;3

p� the corresponding point of p� in D;4

min_dist �� YpqY2
; r � p;5

C � data points �o�� in D� with Yq�o�Y B YpqY;6

for each data point o� > C do7

if Yq�o�Y2
Cmin_dist then8

continue;9

dist �� Yq�o�Y2
�∆;10

õ� the corresponding points of o� in D̃;11

is_rejected � false;12

for j �� �m � 1�� t do13

dist �� dist � �q̃j � õj�2;14

if dist Cmin_dist then15

is_rejected � true;16

break;17

if is_rejected � false then18

distance veri�cation in D, that is, dist �� YoqY2
;19

if dist @min_dist then20

min_dist �� dist; r � o;21

return r;22

4.3.2 Exact NNS Algorithm

In Algorithm 1, we illustrate the details of the exact nearest neighbor search

(NNS) algorithm by using our embedding technique. In our implementation,

36

4.3. EFFICIENT EXACT NNS ALGORITHM Chapter 4

the dataset in original space Rd is represented by D, and the data points in

t-dimensional PCA space P t, denoted by D̃, are computed o�-line on the D. We

set the �rst m dimensions of the embedded space Em�n as the �rst m dimensions

of the PCA space P t, and the last n dimensions of Em�n are from n times space

partitioning on P t�m. The corresponding points in the embedded space can

also be pre-computed, denoted by D�. We use a Cover Tree [16] to organize

the embedded points, which can e�ciently support NN search and range search

when m � n is small.

At Lines 1 � 2, the query point q is mapped to the PCA space and q� is its

corresponding point in the embedded space. Line 3 retrieves the nearest neighbor

of q� in Em�n, denoted by p�, by issuing NN search on the cover tree. Note that

p� is the embedded point of p from D. In the algorithm, we use r and min_dist

to denote the current closest point of q and its threshold (i.e., squared Euclidean

distance), which are initialized at Line 5. Then we issue the range search on the

cover tree with centre at q� and radius YpqY. The data points within the search

range are kept in the set C for further processing (Line 6).

Lines 7 � 21 incrementally verify the candidate data points in C. If a data

point o cannot be pruned based on its distance lower bound (i.e., Yq�o�Y) and the
current distance threshold min_dist, we need to compute its distance to q in the

original space Rd. To reduce the veri�cation cost, we do not directly compute the

distance between o and q in Rd. We have p̃i � p�i for 1 B i B m because the �rst

m-dimensions of embedded space are from the �rst m-dimensions of PCA space

P t. Thus, we can reuse the computation of the distance lower bound Yq�o�Y
by ignoring the contribution of the last n dimensions, denoted as ∆, at Line

10. As such, we can accumulatively compute the distance in PCA space P t and

immediately terminate the distance computation when the distance computed

so far already exceeds the distance threshold (Lines 13 � 17). If the veri�cation

37

Chapter 4 4.3. EFFICIENT EXACT NNS ALGORITHM

in PCA space P t fails, we conduct the distance veri�cation in original space Rd

(Lines 18 � 19). Meanwhile, we update the distance threshold as well as the

corresponding data point (Lines 20� 21). The nearest neighbor will be returned

after all candidate points are explored. Our empirical study shows that only a

small part of candidate points in C need to experience the veri�cation in Rd.

Remark 2. Algorithm 1 can be easily extended to support k nearest neighbor

search (kNNS). Instead of NN search, we issue a kNN search at Line 3 and

p� is the k-th nearest neighbor of q� in the embedded space. Then the distance

threshold is the distance of the k-th closest data point to q seen so far.

4.3.3 Performance Analysis

The dominant cost of the pre-processing phase is the PCA computation. In the

literature, many research e�orts have been devoted to develop e�cient PCA

computation, and various exact and approximate algorithms have been pro-

posed [63, 45, 90]. In our implementation, we use the popular randomized PCA

computing algorithm [45], which takes O�Nd log t� time to compute the PCA

space P t (t @ d). In this chapter, the t is set to be 60 for all datasets. It takes

O�Ndt� time to transform data points from space Rd to the PCA space P t.

Regarding the embedded data points in Em�n (m � n P t), we simply take the

�rst m dimensions of the data points in P t (i.e., their projections in the subspace

Pm). The computation of the last n dimensions (i.e., the distances from parti-

tioned subspaces to the subspace Pm) takes time O�Ndn�. The embedded data

points are organized by cover tree with construction time O�c6N logN�, where
c is related to the intrinsic dimensionality of the m � n dimensional embedded

data [16].

The dominant cost of NN search comes from the pruning (Lines 3 � 6) and

veri�cation (Lines 7 � 21). The pruning phase consists of NN search and range

38

4.3. EFFICIENT EXACT NNS ALGORITHM Chapter 4

search on the embedded data. The NN search and range search costs on the

cover tree are bounded by O�c12 logN� and O�c12e logN�, respectively, where e
is the number of points within the range search [16]. Note that, in the worst

case, it takes O�N�m � n�� time to compute distance lower bounds for all data

points. Regarding the veri�cation phase, it contains the veri�cations in PCA

space P t and original space Rd, respectively, and it takes O�t � d� time in the

worse case to compute the distance for each survived candidate point.

The analysis for the space complexity of our proposed algorithm is quite

straightforward. As the whole dataset is loaded into main memory for pre-

processing and query processing, the space cost of our proposed algorithm is

dominated by O�Nd�.

4.3.4 Discussion

Here, we discuss some important issues related to our exact NNS algorithm.

Extension to approximate NN search. Algorithm 1 can also be easily ex-

tended to approximate k nearest neighbor search (k-ANNS). In stead of verifying

all candidates, we can limit the size of the candidate set by only keep T data

points with smallest lower bound distances. Our empirical study shows that its

performance is competitive to the well-known ANNS algorithm FLANN [91] for

high recall. This indicates that distance lower bound obtained from the embed-

ded space well preserve the distance in high dimensional space and can provide

a good access order for NNS.

Use of advanced PCA techniques. A natural question is that if we can apply

advanced PCA techniques (e.g., PCA-tree) to enhance the performance of NN

search. Same as [1], instead of one PCA space, we iteratively �nd multiple PCA

spaces for data points to ensure that each point can better �t its corresponding

PCA space. However, our initial empirical study indicates that, in addition to the

39

Chapter 4 4.4. EXPERIMENTS

high demanding pre-computational cost, the existence of multiple PCA spaces

cannot improve the search performance due to the overhead incurred. It will be

an interesting direction to investigate how to e�ectively incorporate advanced

orthogonal transformation techniques to further enhance our algorithm.

4.4 Experiments

In this section, we report and analyze the experimental results for our proposed

exact NNS algorithm.

4.4.1 Experimental Settings

Algorithms. We choose the following exact algorithms for conducting Eu-

clidean distance based exact NN search on high dimensional data for compari-

son.

� LNL is the proposed algorithm. The abbreviation stands for Linear and

Non-Linear embedding. The cover tree used in our algorithm is from the

cover tree source code1.

� OST is a PCA-based exact NNS method proposed in [76]. We implement

OST and make its performance as good as possible.

� FNN [54] is the state-of-the-art method for exact NN search on high di-

mensional data. The source code of FNN is public available2.

� HB+ is a cluster-based exact NNS algorithm proposed in [31]. The source

code is obtained from authors.

1http://hunch.net/~jl/projects/cover_tree/cover_tree.html
2http://research.yoonho.info/fnnne

40

http://hunch.net/~jl/projects/cover_tree/cover_tree.html
http://research.yoonho.info/fnnne

4.4. EXPERIMENTS Chapter 4

We do not show the comparison with cover tree [16], ANN [7] and optimized

brute force, since [54] has shown that FNN outperforms these algorithms.

Datasets N d Data Type

Audio 53,387 192 Audio

Cifar 50,000 512 Image

Deep 1,000,000 256 Image

GoogleNews 2,999,800 300 Text

Sun 79,106 512 Image

Gist 982,677 960 Image

MNIST 69,000 784 Image

Trevi 99,900 4096 Image

Nusw 268,643 500 Image

Youtube 346,194 1,770 Video

Table 4.1: Dataset Summary

Datasets. We use 10 real-life datasets with di�erent types, including image

data (Cifar3, Deep4, Sun5,Gist6,MNIST7,Nusw8, and Trevi9), audio data

(Audio10), text data (GoogleNews11), and video data (Youtube12); they are

also widely used in prior research literature to evaluate nearest neighbor query

performance. Table 4.1 summarizes these datasets. For each dataset, after

deduplication, we randomly select 200 data points and reserve them as the query

points.

Implementation details. All algorithms are implemented in standard C++

and compiled with G++ with -O3 in Linux. All experiments are performed on

a machine with Intel Xeon 3.33GHz CPU and Redhat Linux System, with 32G

3http://www.cs.toronto.edu/~kriz/cifar.html
4https://yadi.sk/d/I_yaFVqchJmoc
5http://groups.csail.mit.edu/vision/SUN/
6http://corpus-texmex.irisa.fr
7http://yann.lecun.com/exdb/mnist/
8http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
9http://phototour.cs.washington.edu/patches/default.htm
10http://www.cs.princeton.edu/cass/audio.tar.gz
11https://code.google.com/archive/p/word2vec/
12http://www.cs.tau.ac.il/~wolf/ytfaces/index.html

41

http://www.cs.toronto.edu/~kriz/cifar.html
https://yadi.sk/d/I_yaFVqchJmoc
http://groups.csail.mit.edu/vision/SUN/
http://corpus-texmex.irisa.fr
http://yann.lecun.com/exdb/mnist/
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
http://phototour.cs.washington.edu/patches/default.htm
http://www.cs.princeton.edu/cass/audio.tar.gz
https://code.google.com/archive/p/word2vec/
http://www.cs.tau.ac.il/~wolf/ytfaces/index.html

Chapter 4 4.4. EXPERIMENTS

main memory. In the experiments, all datasets and indices are �t in the main

memory and we report the average NN search time, average kNN search time

and preprocessing time.

4.4.2 Performance Evaluation

In this subsection, we compare the performance of OST [76], FNN [54], HB+ [31]

and the proposed LNL on the exact NNS task. We also conduct some experiments

to explore the potential of approximate version of LNL.

0.001

0.002

0.003

0.004

2 4 6 8 10 12 14 16 18 20

Se
ar

ch
 T

im
e

(s
ec

)

m

LNL, n=2

(a) Audio

0.001

0.002

0.003

0.004

1 2 3 4 5 6

Se
ar

ch
 T

im
e

(s
ec

)

n

LNL, m=8

(b) Audio

Figure 4.4: Search time with respect to m and n

0

0.02

0.04

0.06

0.08

0.10

0.12

Audio Cifar MNIST Sun Trevi

Se
ar

ch
 T

im
e

(s
ec

) HB+
OST
FNN
LNL

(a) medium size datasets

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Nusw Deep Youtube Gist GoogleNews

Se
ar

ch
 T

im
e

(s
ec

) HB+
OST
FNN
LNL

(b) large size datasets

Figure 4.5: Comparison of search time on all datasets

Parameter settings. For OST, FNN and HB+ algorithms, we set their exper-

imental parameters according to the suggestions by authors.

42

4.4. EXPERIMENTS Chapter 4

Next, we determine the value of m and n in LNL by conducting experiments

on Audio dataset. The other datasets follow the similar trends. Note that the

parameter t of the truncated PCA space P t is set to be 60 for all datasets. We

�rstly investigate the impact of m on NN search time with n set to be 2. Fig. 4.4

(a) shows the trade-o� between m and the average search time of LNL. Then,

we study the in�uence of n on NN search time with m � 8, which can be seen in

Fig. 4.4 (b). We can observe that increasing the m or n can tighten the distance

lower bound, but it will lead to more other computation costs from lower bound

computation and space partitioning. In our experiments, we choose m � 8 and

n � 2 for all datasets to avoid manually tuning, as this setting does achieve a

relatively good performance over all datasets.

E�ciency of NN search. Fig. 4.5 reports the searching performance of the

four algorithms on all datasets. It is clear that LNL outperforms the other three

methods on all the 10 datasets, especially on the high dimensional datasets, such

as Gist, Trevi and Youtube. On most datasets, LNL can achieve 2 to 6 times

faster than OST and FNN, and 7 to 20 times faster than HB+. For example, LNL

needs on average 0.0032s to process a query onMNIST dataset while OST, FNN

and HB+ need 0.0178s, 0.0135s and 0.04497s, respectively. Further more, the

range query allows LNL to avoid computing distance lower bound for all data

points, which can reduce a certain amount of searching cost. Note that both

LNL and OST use PCA technique, however, OST individually use the PCA on a

search tree without the consideration of the coherence between PCA components.

Hence, OST is not competitive to the proposed LNL.

Pruning power. We show the pruning power of four algorithms in Fig. 4.6.

Each kind of bar represents the veri�cation ratio of each algorithm, which is the

percentage of the veri�ed points after the �ltering. It can be seen that LNL has a

much stronger pruning power than OST, FNN and HB+ on most datasets. Even

43

Chapter 4 4.4. EXPERIMENTS

0

0.2

0.4

0.6

0.8

1

Audio
Cifar

MNIST
Sun Trevi

Nusw
Deep

Youtube
Gist GoogleNews

E
va

lu
at

io
n

R
at

io

HB+
OST
FNN
LNL

Figure 4.6: Pruning performance (lower the better)

on some datasets where the pruning power of the other three algorithms is very

poor, LNL can still �lter more than 50% points, such as Deep dataset. This

is because of two reasons. On one hand, LNL tends to select the point that is

closer to the query as the start point in NNS. On the other hand, for the same

points, LNL usually has a much tighter distance lower bound than the other

three algorithms.

We can see that the veri�cation ratio of LNL is a little higher than HB+ and

OST on Youtube and GoogleNews, respectively. However, the searching time

of LNL is much less than these two algorithms, which is due to the e�ciency of

our veri�cation.

Comparison with respect to k. Fig. 4.7 shows the trends of the performance

of four algorithms for kNN search with increasing k on six datasets. Although

they are all not sensitive to k, especially when k is large (e.g., C 20), LNL has the

most stable performance when k changes. This is because the pruning power of

LNL decreases slower than that of other three methods when k increases. We

can observe that the proposed LNL still performs the best among the other tree

algorithms on the kNN search task.

Pre-processing time. We show the pre-processing time for all four algorithms

44

4.4. EXPERIMENTS Chapter 4

in Fig. 4.8. FNN has the smallest preprocessing time, as it does not need to

construct any index but only need to compute the mean and variance of the

elements for each partition in the vector space. HB+ takes the highest pre-

processing time because it needs to construct the clusters which is quite time

consuming. The preprocessing time of LNL and OST are similar, since both

0

0.005

0.010

0.015

0.020

1 20 40 60 80 100

Se
ar

ch
 T

im
e

(s
ec

)

k

HB+ OST FNN LNL

(a) Audio

0

0.02

0.04

0.06

0.08

1 20 40 60 80 100

Se
ar

ch
 T

im
e

(s
ec

)

k

HB+ OST FNN LNL

(b) Cifar

0

0.02

0.04

0.06

0.08

0.10

0.12

1 20 40 60 80 100

Se
ar

ch
 T

im
e

(s
ec

)

k

HB+ OST FNN LNL

(c) MNIST

0

0.2

0.4

0.6

0.8

1 20 40 60 80 100

Se
ar

ch
 T

im
e

(s
ec

)

k

HB+ OST FNN LNL

(d) Deep

0

0.4

0.8

1.2

1.6

2.0

1 20 40 60 80 100

Se
ar

ch
 T

im
e

(s
ec

)

k

HB+ OST FNN LNL

(e) Youtube

0

0.4

0.8

1.2

1.6

2.0

2.4

1 20 40 60 80 100

Se
ar

ch
 T

im
e

(s
ec

)

k

HB+ OST FNN LNL

(f) Gist

Figure 4.7: Comparison with respect to k

of them need the PCA computation and index structure. Note that although

LNL requires more pre-processing time than FNN, it is still faster than HB+

45

Chapter 4 4.4. EXPERIMENTS

and is practical for this o�-line procedure. For example, LNL can process one

million 960-dimensional data points (e.g., Gist) in 3 minutes. Considering of

the excellent search performance of LNL, it o�ers an attractive tradeo� between

o�-line and online processing times.

10-2
10-1
100
101
102
103
104
105

Audio
Cifar

MNIST
Sun Trevi

Nusw
Deep

Youtube
Gist GoogleNews

P
re

-p
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

HB+
OST
LNL
FNN

Figure 4.8: Pre-processing time

100

101

102

103

 0 0.2 0.4 0.6 0.8 1

Sp
ee

du
p

Recall

A-LNL
FLANN
A-FNN

(a) Cifar

100

101

102

103

104

 0 0.2 0.4 0.6 0.8 1

Sp
ee

du
p

Recall

A-LNL
FLANN
A-FNN

(b) Gist

Figure 4.9: Speedup with respect to recall

Approximate Nearest Neighbor Search. We also explore the potential of

LNL by evaluating its approximate version, denoted by A-LNL, which is described

in the discussion (Subsection 4.3.4). The approximate version of FNN, namely

A-FNN, is also modi�ed in the similar way. We also include FLANN [91], which

is a widely-used and e�ciently implemented library for fast approximate nearest

neighbor search (e.g., FLANN is part of the OpenCV library).

46

4.5. CONCLUSION Chapter 4

We verify the approximate NNS performance by speedup with respect to

recall with k � 20. Let the results returned by an approximate and an exact

algorithm be X � �xiS1 B i B k� and kNN � �x�i S1 B i B k�, respectively. The

recall is de�ned as SX9kNNS
k . We let the speedup be tBF

tA
, which is the search time

of algorithm A over that of the linear scan algorithm. For A-LNL and A-FNN,

we vary T to obtain the speedup versus recall curves. For FLANN, we achieve

di�erent recall by tuning the number of veri�ed points.

Fig. 4.9 demonstrates the speedup with respect to the recall of three algo-

rithms on Cifar and Gist. We can observe that our algorithm is much better

than A-FNN, and also outperforms FLANN when the recall is over 0.6. This is

mainly due to the high quality of the candidate points of A-LNL. For example,

in order to achieve 95% recall on the Cifar dataset, A-LNL only needs to verify

less than 1,000 points while the number of veri�ed points for FLANN and A-FNN

are 1,800 and 11,000 respectively.

4.5 Conclusion

In this chapter, we investigate the problem of exact nearest neighbour search

(NNS) in high dimensional space. We design a new embedding method which

can embed the high dimensional points into a low dimensional space. Then an ef-

�cient exact NNS algorithm is developed following the �lter-and-verify paradigm

based on the embedded data. Extensive experiments on 10 real-life datasets with

various types demonstrate that our method signi�cantly outperforms the state-

of-the-art exact NNS techniques in high dimensional space. Moreover, we em-

pirically demonstrate that the distance lower bound achieved by our embedding

method suggests a good access order of data points during NNS.

47

Chapter 5

Approximate Nearest Neighbor

Search By Learned Functions

5.1 Overview

In this chapter, we introduce our proposed learning to hash methods for I/O

e�cient approximate nearest neighbour search (ANNS). This work is published

in [74] and the rest of this chapter is organized as follows. Section 5.2 introduces

our ANNS framework, including the indexing and query processing methods.

Section 5.3 and Section 5.4 present the technical details of our linear and non-

linear hashing methods that are designed for the proposed ANNS framework.

Some discussions related to our models are presented in Section 5.5. The results

of experimental evaluation for our proposed techniques are reported and analyzed

in Section 5.6. Finally, we summarize this chapter in Section 5.7.

48

5.2. OUR ANNS FRAMEWORK Chapter 5

5.2 Our ANNS Framework

This section introduces the details of our proposed indexing and query processing

methods for ANNS, followed by the performance analysis.

5.2.1 Our ANNS Solution

We also use the idea of dimensionality reduction which is similar to the action

in previous chapter, that is, using a mapping (i.e., hashing) function1 to map d-

dimensional points tom-dimensional points, where mP d. This is also known as

embedding in Machine Learning. Speci�cally, if we denote the mapping function

H � Rd
� Rm, then x� � H�x� is the corresponding embedding for point x. We

also slightly abuse the notation D� � H�D� to obtain the embeddings as a matrix
in Rm�N , where H is applied to each column of the input design matrix D.

We then index the values of the embedded vectors on each dimension individ-

ually as a sorted list. We perform the same embedding process for the query q

and then use sequential I/Os to get T candidates. Finally, we perform re-ranking

on the T candidates followed by veri�cation to return the top-k nearest points

to the query in a progressive manner.

Obviously, our method has several advantages such as leveraging sequential

I/Os, and simple and �exible enough to be implemented within a database sys-

tem where the sorted lists can be easily organized using B�-trees. The key to

make such simple method e�ective is the quality of the mapping function. We

will provide details on how to learn such data-sensitive mapping functions, both

linear and non-linear ones, in Sections 5.3�5.4.

Indexing. After applying the mapping function H, we obtain the collection

of embedded vectors D�. We then index each dimension values in a sorted list,

1In this chapter, we use mapping function and hashing function exchangeably when the
context is clear.

49

Chapter 5 5.2. OUR ANNS FRAMEWORK

Algorithm 2: Indexing(D, H, m)

Input : D � The dataset as a design matrix in Rd�N ,
H � The learned mapping function,
m � The dimensionality of the embeddings (also the number of

sorted lists)
Output: L: The m sorted lists
D�
� H�D�;1

for i� 1 to m do2

Y, I � sort �D�, i� according to the i-th dimension; /* Y, I >Rm�N,3

where Y contains the dimension values and I contains the

associated IDs */;
li � an empty list;4

for j � 1 to N do5

li�j�� �Y �i, j�, I�i, j��;6

return L � � l1, l2, . . . , lm �;7

which results in m sorted lists. The details of our indexing method can be seen

in Algorithm 2. Each entry in the list consists of only a point ID and a dimension

value, which is typically 8 bytes.

Nonetheless, we have the option to further reduce the index size by almost

50% by exploiting the external memory access characteristics. Since we consider

external memory scenario, the basic unit of access to the index is one page with

page size as b bytes. We only need to include the dimension value of the �rst

entry on each page, and omit the dimension values of the rest of the entries on the

same page. This is similar to the optimization in a clustered index in database

systems. In this way, each page consists of a dimension value and
 b4 � 1� point
IDs. We denote the page as (IDs, value).

Querying Processing. We show the query processing algorithm in Algo-

rithm 3. The searching operation starts by applying the function H to the query

q to obtain its embedding q�. Then, it locates the positions where each of the

dimension values of q� will be on the corresponding sorted lists. After that we

50

5.2. OUR ANNS FRAMEWORK Chapter 5

insert the pages closest to q� on each list into a priority queue. In the while loop,

we obtain the pages according to the priority order and access the corresponding

entries. Speci�cally, we �rstly obtain the page with the highest priority, and

remove it from the queue. Then we insert the next page closest to q� on the

same list into the priority queue. We access and bookkeep the entries of the

current page in the ascending order of their rank positions on the list. We de�ne

the rank position of a point x with respect to the query q on list li as:

ri�q, x� � N

Q
j�1

1SH�q�i�H�x�iSASH�q�i�H�xj�iS � 1, (5.1)

where the 1p is the indicator function which returns 1 if the predicate p is true,

and returns 0 otherwise. Intuitively, this is 1 plus how many other points (i.e.,

xj) has a smaller distance to query on list li than that of x. The closest point

will have a rank position of 1. For simplicity, we abbreviate ri�q, x� as r�x�
henceforth.

If a point has been seen on all the m list, we add it to the candidate set C.

When the size of the candidate set exceeds a preset value T , the searching stops.

The last step is the re-ranking followed by the veri�cation. Although all the

T candidates have all been seen on the m lists, this only indicates that they are

not too �faraway� from the query in the original space. We would like to reorder

them according to some criteria that favor those who are actually close to the

query. Here, we adopt a simple re-ranking method: we sum up the rank position

of each candidates on all the lists, and reorder all the candidates in ascending

order of this sum. Finally, we verify each candidate on the re-ranked candidate

list by calculating its distance to the query. We also keep the candidate that

has the minimum distance during the veri�cation. Note that this can be easily

extended to approximate k-nearest neighbour search (k-ANNS) with the help of

51

Chapter 5 5.2. OUR ANNS FRAMEWORK

an extra priority queue.

Algorithm 3: Querying(L, H, q, T)

Input : q � The query point in Rd,
L � The sorted lists � l1, l2, . . . , lm �,
H � The mapping function,
T � A parameter to control the size of the candidate set (to be

re-ranked and veri�ed)
Output: The approximate nearest neighbour of q
C � g;1

hits� an empty hash table;2

queue� an empty priority queue;3

isTerminated � false;4

q� � H�q�;5

for i� 1 to m do6

o� the page closest to q�i in list li;7

Insert �o, i� into queue with priority as -So.value � q�i S;8

while isTerminated � false and queue x g do9 �o, i�� the node with highest priority in queue;10

o� � the next page closest to q�i in list li;11

Remove �o, i� from queue and insert �o�, i� into queue with priority as12

-So�.value � q�i S;
for each id in o.IDs do13

hits�id�� hits�id� � 1;14

if hits�id� �m then15

C � C 8 � id�;16

if SCS A� T then17

isTerminated � true;18

break;19

Re-rank the candidates in C and verify their distances to the query;20

return The point that has the smallest distance to the query;21

5.2.2 Performance Analysis

In this subsection, we analyze the I/O complexity of the indexing and querying

processing of our ANNS framework.

52

5.3. LEARNING TO INDEX BY LINEAR HASHING Chapter 5

Let b be the page size. The I/O complexity for the indexing is O�Ndb �

Nm
b �, whereas the two terms correspond to the cost of learning the data-sensitive

mapping function H, and the cost of creating the m sorted list. We estimate

the mapping function learning cost as O�Ndb � as most model learning (including
the two we will present in the paper) requires �xed number of iterations over

the data. For the query processing algorithm, assume that we access p pages

on lists before we collected T candidates, then this phase costs O�p� sequential

I/Os, which is equivalent to O�ε � p� (random) I/Os, where ε is typically in the

range of �0.01, 0.1�. Finally, the veri�cation requires another O� rTdb � I/Os, where
r > �0,1�.

5.3 Learning to Index by Linear Hashing

In this section, we present the linear method to learn the mapping function

from the data. The idea is to preserve the ordering information in the resulting

embedding space. We will formally present the objective function based on the

order preservation idea, followed by its optimization, involving the relaxation

and stochastic gradient descent (SGD) algorithm.

5.3.1 Linear Model and Its Objective Function

We �rst consider linear mapping functions, which encompass linear projection

function considered by learning-to-hash methods [104, 120] and locality sensitive

hashing functions [24]:

h�x� �w�x (5.2)

53

Chapter 5 5.3. LEARNING TO INDEX BY LINEAR HASHING

where w > Rd is the parameter of the hash function and x is a point (column

vector). Using m such hash functions with di�erent parameters, we can obtain

the mapping function H as:

H�x� � �h1�x�, h2�x�, . . . , hm�x��� (5.3)

In order to learn these parameters wi (i > �1,m�) from the data, we will

prepare a set of training data, which consists of uniform samples from the real

query workload, or samples from the data itself if the query workload is not

available. Next, we need to de�ne the loss function such that we can learn the

wi values that achieve the minimum loss value.

Consider a given query, for any wi value, we can obtain the order induced

by rank position of all N data points based on the function hi (denoted as lsi

or simply ls if there is no ambiguity). We can also easily compute the ground

truth ordering of all data points based on the distance to query in the original

space (denoted as lo). We would like to de�ne how much penalty to apply if the

rank position ordering does not completely agree with the ground truth ordering.

Although there exists measures, such as Kendall's tau coe�cient, that de�nes the

distance between two orderings, they are not considering the page-based access

characteristics during the query processing, not di�erentiable and are costly to

compute. Instead, we design our own measure based on the idea of block order.

We divide the two ordered lists into L parts, called blocks, with each part

containing the same number of objects (assuming N is a multiple of L). After

the division, we have lo � �lo1, lo2, . . . , loL�, and ls � �ls1, ls2, . . . , lsL�, where loe and lse
(e > �1, L�) are the subset of lo and ls, respectively. Then for each block, if the

objects in loe are not preserved in the corresponding lse, this incurs a penalty of

1, otherwise, the penalty is 0. Therefore, given any ls induced by wi, we de�ne

54

5.3. LEARNING TO INDEX BY LINEAR HASHING Chapter 5

the loss function as:

J��wi� � L

Q
e�1

Q
x>loe

1r�x�>�t��e�1�,t�e� (5.4)

t � N
L is the length of the bucket, i.e., the number objects in each partition loe

�1 B e B L�. That is, we penalize points that their ranking in the original space

and in the embedding space are not in the same block. If we let the block size

be the page size, then this agrees with our page-based sequential access in the

query processing, as all point IDs will be accessed as long as they are in the same

page.

Therefore, our �nal loss function for all sorted lists can be written as:

J��W� �Qm

i�1
J��wi� � λ � YW�W � IYF , (5.5)

where YMYF � Pi,jM�i, j�2 is the Frobenius norm of a matrix and is a common

type of quadratic regularizer [94], λ is the hyper-parameter that controls the

degree of regularization, and W is the concatenation of all wi (i > �1,m�). Note
that W�W � I forces all projection vectors to be orthogonal to each other, such

that our model is able to learn m di�erent hash functions.

5.3.2 Relaxation and Optimization

The loss function (5.5) is neither convex nor smooth due to the indicator function.

This means that it is hard to optimize the function numerically. We adopt a

common approach in Machine Learning that relaxes the discrete function into a

continuous and di�erentiable surrogate loss function and optimize this surrogate

instead.

55

Chapter 5 5.3. LEARNING TO INDEX BY LINEAR HASHING

Relaxation

We utilize the fact that the sigmoid function (as shown in Fig. 5.1), σ�z� �

1
1�exp��z� , is a continuously di�erentiable approximation to the indicator function

1p.

 0.5

 1

-6 -4 -2 0 2 4 6

Figure 5.1: The Sigmoid Function

We �rst replace the absolute value function in (5.1) by taking the square

to both sides of the predicate. Afterwards, we apply the sigmoid relaxation and

obtain the approximate rank position for point x as:2

r̃�x� � N

Q
j�1

σ��h�q� � h�x��2
� �h�q� � h�xj��2� � 1 (5.6)

Similarly, the loss functions in (5.4) and (5.5) are also relaxed as

J�wi� � L

Q
e�1

Q
x>loe

�σ�t � �e � 1� � r̃�x�� � σ�r̃�x� � t � e�� (5.7)

and

J�W� �Qm

i�1
J�wi� � λ � YW�W � IYF . (5.8)

2We omit i and q in r̃i�q, x� for simplicity.

56

5.3. LEARNING TO INDEX BY LINEAR HASHING Chapter 5

Progressive Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a fundamental and popular numerical

optimization method. To minimize a scalar function with vector parameters,

i.e., f�w�, the Gradient Descent (GD) algorithm starts with carefully initialized

parameter values, and updates it to the next value that maximally minimizes

the function value in a small neighborhood by following the negative of the

gradient (©f � � ∂f
∂w1

, . . . , ∂f
∂wm

��) direction. SGD is its stochastic version, where

the gradient is estimated using a random sample of the training data. SGD

drastically reduces the gradient computation cost but may get noisy gradients.

In practice, a mini-batched SGD achieves the balance between GD and SGD

by estimating the gradient on a mini-batch of B random samples, where B is a

hyper-parameter.

Consider our relaxed �nal loss function (5.8), it is still non-convex. We cannot

guarantee to obtain the optimal solution and hence there are several strategies

to learn a su�ciently good solution. One strategy is to learn the entire set of

parameters W simultaneously, and another is to learn each function (i.e., the

corresponding wi) one by one in an incremental manner. We found that the

latter approach typically leads to better performance and hence we introduce its

details below.

Assum that we have learned the �rst i � 1 linear hash functions, i.e.,

�w1,w2, . . . ,wi�1 � are learned. We formulate the optimization problem for the

next function as

Jinc�wi� � J�wi� � µ � �w�

iwi � 1�2
� λ �

i�1

Q
j�1

�w�

jwi�2 (5.9)

The last two items in Eqn. (5.9) are: (i) The �rst is the additional regularization

that encourages wi to be an unit vector; (ii) The second is the orthogonality

57

Chapter 5 5.3. LEARNING TO INDEX BY LINEAR HASHING

regularization. The square is used to guarantee that the last item (i.e., the sum)

is always positive.

Next, we apply the SGD algorithm to minimize the Jinc�wi�. Firstly, we need
to obtain the gradient of the r̃�x� in (5.6) with respect to wi, which is:

©wi
r̃�x� � N

Q
j�1

σ��z�©wi
z (5.10)

where

σ��z� � σ�z� � �1 � σ�z�� (5.11)

z � �h�q� � h�x��2
� �h�q� � h�xj��2 (5.12)

©wi
z � 2��h�q� � h�x���q � x� � �h�q� � h�xj���q � xj�� (5.13)

Then the gradient of Jinc�wi� in (5.9) is:

©wi
Jinc�wi� � L

Q
e�1

Q
x>loe

�©wi
r̃�x� � �σ��z1� � σ��z2���

� 4µ�w�

iwi � 1�wi � 2λ
i�1

Q
j�1

w�

jwiwj

(5.14)

where the z1 � r̃�x� � t � e and z2 � t � �e � 1� � r̃�x�.
Now consider using the SGD with a mini-batch of size B, i.e., the mini-batch

consists of B objects randomly sampled from the training query set Q. The

gradient descent updating rule for wi is:

w
�o�1�
i �w

�o�
i � lr �

1

B

B

Q
j�1

©wi
Jinc�wi, q

j� (5.15)

where lr is the learning rate and o is the iteration index, and the� q1, . . . , qB � is

58

5.3. LEARNING TO INDEX BY LINEAR HASHING Chapter 5

Algorithm 4: Optimized Incremental SGD(D̄, Q, m)

Input : D̄: The training dataset,
Q: The training query set,
m: The number of projection vectors

Output: The parameters of the linear mapping functions W
Calculate the ground-truth lists lo for each query in Q with respect to D̄1

in Rd ;
for i � 1 to m do2

if i � 1 then3

wi � a vector where each component is sampled from the Gaussian4

distribution N�0,1�;
else5

wi � a randomly sampled vector from the null space of6 �w1, . . . ,wi�1 �;
wi �

wiº
wi

�wi
; /* normalize */;7

for j � 1 to max_iteration do8

Randomly sample a batch of queries from Q and obtain their9

associated order lists from lo;
Calculate the gradient (Eqn. (5.14)) for this batch of queries;10

Update the wi (Eqn. (5.15));11

return W � �w1, . . . ,wm �;12

a random subset of Q. We give out the complete mini-batch SGD algorithm for

learning the data-sensitive linear functions in Algorithm 4.

There is still a performance issue with the algorithm in that one iteration over

the mini-batch needs O�B �N2�, which is unacceptable if N is large. We take

the following measures to mitigate the performance problem by sub-sampling.

Speci�cally, we can interpret the �rst item in the gradient in (5.14) as the expec-

tation over all x in the dataset and then approximate it using a set of random

samples S:

Ex>D J©wi
r̃�x� � �σ��z1� � σ��z2��K (5.16)

�
1SS S Qx>S©wi

r̃�x� � �σ��z1� � σ��z2�� (5.17)

59

Chapter 5 5.4. LEARNING TO INDEX BY NEURAL NETWORK

In addition, instead of using the entire reference dataset, we use a training dataset

D̄ of size γN , which is randomly sampled from the reference dataset, to compute

the rank position and subsequently all the losses. So D̄, instead of D, is used

to invoke Algorithm 4. Therefore, with the above measures, we can reduce the

gradient computation cost to O�B � SS S � γN�, where 0 @ γ @ 1 .

Figure 5.2: The Architecture of Our Non-Linear Hash Learning

5.4 Learning to Index by Neural Network

In this section, we consider learning non-linear mapping functions via Deep Neu-

ral Networks (DNN).

5.4.1 DNN Architecture

We choose to model non-linear mapping functions by a DNN, due to its strong

modelling power and its success in numerous application areas. However, it is

more natural to train the m hash functions collectively, which essentially map

the d-dimensional point x into a m-dimensional embedding x�, or x� � H�x;θ�,
where H can deemed as a DNN and θ represents all the parameters of the DNN.

We design the architecture of our DNN as shown in Fig. 5.2. It consists of �ve

fully-connected layers, denoted as: I1-H2-H3-H4-O5. H1 is the input layer which

60

5.4. LEARNING TO INDEX BY NEURAL NETWORK Chapter 5

receives the input dataset features, and the number of input units is equal to

the dimensionality of the dataset. H2-H4 are three hidden layers, each of which

contains 512 units. ReLU is used as the activation function for each hidden layer.

O5 is the output layer containing m units.

5.4.2 Objective Function

Our DNN-based model requires us to design a new loss function rather than those

presented in the previous Section. For example, the orthogonality constraints in

our previous loss function is inapplicable for DNN.

Nevertheless, we can still apply the same order-preserving idea. We use the

following smoothly di�erentiable surrogate rank position function:

r̃�x;θ� �QN

j�1
σ�YH�q;θ�,H�x;θ�Y � ZH�q;θ�,H�xj;θ�Z� � 1 (5.18)

This function is relaxed from the 1p function. We penalize how far is the ranking

of x away from its groundtruth (in the original space) instead of whether x is

preserved in corresponding bucket.

Then, the loss function can be formulated as:

J�θ� �QN

i�1
βi log��r̃�xi;θ� � g�xi��2

� 1� (5.19)

where the g�xi� is the ranking of xi with respect to query q in the original space

Rd, βi is the weight computed for xi, de�ned as

βi � exp�� Yq, xiY
max1BjBN Yq, xjY� (5.20)

log�1 � z� is used to encourage the model to pay more attention to near-by points
rather than faraway points.

61

Chapter 5 5.5. DISCUSSION

Finally, we use the Adam optimizer [67] to train the network in a mini-batch

manner.

Note that the sub-sampling strategy introduced in the linear model is also

applied into our non-linear model to reduce the training cost. Speci�cally, a

training dataset D̄ of size γN is used to calculate the rank function r̃�x;θ� (5.18),
and the gradient of J�θ� (5.19) is computed over a random subset S of D̄.

Therefore, the training cost of our DNN-based model over a mini-batch of size

B is O�η �B � SS S � γN�, where the η is due to the computation cost of the neural

network.

Remark 3. We remark that the linear model is easier to be optimized, thus, is

faster in training than DNN-based model. However, DNN-based model can learn

complex non-linear mapping functions, which makes it have a better performance

than linear model on many datasets (see Section 5.6).

5.5 Discussion

In this section, we discuss some issues related to our ANNS framework and the

learning to hash models.

For our query processing in Algorithm 3, there are two points need to be dis-

cussed. Firstly, one could change the candidate condition such that points that

have been seen on more than �α �m� lists are added to the candidate set, remi-

niscent of the strategy used in MEDRANK [29], C2LSH [34] and QALSH [53].

However, we experimentally found that α � 1 always achieves the best perfor-

mance (see Fig. 5.4(b)). Secondly, we access each list based on the closeness of

the pages to the embedded query instead of other choices such as keeping dis-

tance lower or upper bounds as in the threshold algorithm [30]. This is because

(i) it is not always possible to keep track of the lower/upper bounds (e.g., when

62

5.6. EXPERIMENTS Chapter 5

H is a non-linear mapping function), and (ii) due to the curse of dimensionality,

the lower/upper bounds on low dimensional embedding spaces are very loose

and do not help much in early stopping the query processing in practice.

Another thing is that can our learning to hash models be applied to other

distance metrics and space? In this chapter, we focus on the ANNS in metric

space Rd, taking the Euclidean distance as distance metric. The key point of

our methods is to map original data points into sorted lists by learned functions,

followed by the sequential ANN search. The purpose of our learned functions

is to learn the similarity ordering information from the original space. From

this perspective, our framework is independent to the actual distance metric. In

other words, our models can be easily applied to other distance metrics, such

as cosine distance and inner product, by providing the corresponding original

distance order (i.e., ground-truth). Nevertheless, it is unclear whether this will

lead to good performance for other distance metrics and spaces. We will leave

this as a future work.

5.6 Experiments

In this section, we conduct comprehensive experiments to verify the e�ciency

and e�ectiveness of our proposed methods, compared with the state-of-the-art

I/O e�cient ANNS algorithms.

5.6.1 Experimental Settings

Algorithms. We compare the two proposed algorithms with four external

memory-based ANNS algorithms. Below are the algorithms evaluated in the

experiments.

� I-LSH. The random hash based incremental LSH algorithm proposed in [81].

63

Chapter 5 5.6. EXPERIMENTS

� PQBF. The ANNS algorithm proposed in [83] where the product quanti-

zation technique is employed.

� AOSKNN. The PCA based ANNS algorithm proposed in [43] where the

R-tree is employed.

� M-tree. M-tree is a general tree-based data structure that can support

ANNS in Euclidean metric space [97].

� OPFA and NeOPFA. Our proposed ANNS algorithms where we learn linear

and non-linear mapping functions (Sections 5.3 and 5.4, respectively) using

the relaxed, block-based loss functions.

Datasets and query load. Six widely-used large scale high-dimensional

datasets are used for experiments: Gist3, Deep4, UQvideo5, Tiny6, Deep1B7,

Sift1B8. Gist is an image dataset which contains about 1 million data points with 960

features. Deep contains deep neural codes of natural images, which contains about 1

million data points with 256 dimensions. UQvideo is a video dataset with each objects

being 256 dimensions. Tiny is also a image dataset which consists of around 80 million

images, each being a 384 feature vector. Deep1B contains 1 billion of 96-dimensional

DEEP descriptors [8]. Sift1M consists of 1 billion 128-dimensional SIFT feature vec-

tors. For each dataset, after the deduplication, we randomly select 1,000 data points

and reserve them as the query points. The details of each dataset are summarized in

Table 5.1.

Training and Implementation. For each dataset, we randomly sample two di�er-

ent subsets as training dataset and training query set (i.e., D̄ and Q in Algorithm 4,

respectively). Speci�cally, for Gist, Deep and UQvideo datasets, we sample 20k data

3http://corpus-texmex.irisa.fr/
4https://yadi.sk/d/I_yaFVqchJmoc
5http://staff.itee.uq.edu.au/shenht/UQ_VIDEO/
6http://horatio.cs.nyu.edu/mit/tiny/data
7http://sites.skoltech.ru/compvision/noimi/
8http://corpus-texmex.irisa.fr/

64

http://corpus-texmex.irisa.fr/
https://yadi.sk/d/I_yaFVqchJmoc
http://staff.itee.uq.edu.au/shenht/UQ_VIDEO/
http://horatio.cs.nyu.edu/mit/tiny/data
http://sites.skoltech.ru/compvision/noimi/
http://corpus-texmex.irisa.fr/

5.6. EXPERIMENTS Chapter 5

Datasets
Statistics

N d Data Type

Million
Scale

Gist 982,677 960 Image
Deep 1,000,000 256 Image
UQvideo 3,038,478 256 Video
Tiny 79,302,017 384 Image

Billion
Scale

Deep1B 1,000,000,000 96 Image
Sift1B 1,000,000,000 128 Image

Table 5.1: Statistics of Datasets

points as training dataset and 10k data points as training query set for each of them,

respectively. For Tiny, we sample 100k data points and 20k data points as training

dataset and training query set. For Deep1B and Sift1B, we sample 1M data points

and 0.2M data pints as training dataset and training query set for each of them, re-

spectively. After sampling, the remaining part of each dataset is regarded test datset

for ANNS. The batch size B is set to be 200 and 100 for linear and non-linear learn-

ing methods, respectively, for all datasets. The termination of two learning methods

depends on the convergence of the training procedure, where the max_iteration of the

linear method is set within �50,400� for the datasets evaluated. When choosing the

sub-sample S (See the end of Subsection 5.3.2), we chose the following strategy: for a

given training query q and a training dataset, denote the k-NN points of q as S�, and

the rest of the points as S�. The �nal S consists of the entire S� and a random sample

in S�.

Note that, same as [83], we apply the K-means data partition for all datasets in the

experiment for better search e�ciency. Speci�cally, the K-means clustering method is

leveraged to partition the datasets, and then the learned functions are used to index

each partition separately. After that, the partition (i.e., a subset of data points) closest

to the query point based on the Euclidean distance is selected for querying processing.

The partition number is set to be 10 for Gist, Deep and UQvideo, and 64 for the other

three datasets.

Evaluation Metrics. We use 6 important metrics to evaluate the performance of

the algorithms: ratio, recall, I/O costs, running time, pre-processing time and index

65

Chapter 5 5.6. EXPERIMENTS

Parameters Values

The number of sorted lists (m) 5,10,15,20,25,30

The number of buckets (L) 5,10,15,20,25

Orthogonality regularization factor (λ) 1,20,40,60,80

Additional regularization factor (µ) 0.1,1,2,4,6

Table 5.2: Parameter Settings of OPFA

size.

� Ratio. This is the ratio between distances of the approximate kNN results to

the query and those of the actual kNN results, to measure the quality of ANN

results, which is widely used in the literatures [34, 106, 53, 83]. Given a query q,

let �p1, p2, . . . , pk � be the approximate kNN to q returned by an ANN method,

and � o1, o2, . . . , ok � be the true kNN. Then the ratio is de�ned as:

ratio �
1

k

k

Q
i�1

Yq, piY

Yq, oiY
(5.21)

Clearly, ratio close to 1.0 means the ANNS algorithm returns better results and

vice versa. The average ratio of a set of queries is reported in the experiments.

� Recall. Recall is the ratio between the number of true kNNs found in the

approximate kNN set and the value of k. It measures how many true kNNs can

be found by ANNS methods.

� I/O cost. The page size b is set to be 4096 for all algorithms in the experiments.

We assume the index and dataset reside in the external memory before the query

is issued (i.e., cold startup). A unit I/O cost is a random I/O and we set the cost

of a sequential I/O as 0.01 for the index accessing according to the pro�ling of

our hardware system running the experiments. During the distance veri�cation,

we �rstly sort the point IDs and then sequentially access the data points in the

external memory. Thus, the cost of a sequential I/O for the veri�cation is set to

be 0.1 according to the pro�ling of our hardware system. The average I/O cost

of a set of queries is used in the experiments.

66

5.6. EXPERIMENTS Chapter 5

� Search time. It is the wall clock time for running a query. We report the

average search time among a set of test queries.

� Preprocessing time. We report the preprocessing time of the algorithms,

including the training time (i.e., the learning of hashing functions) and index

construction time (i.e., generate embeddings for every point and build index).

� Index size. We also report the size of the indexes generated by the algorithms.

Parameter Setting By default, the k value of k-ANNS is set to be 20, which may

vary from 10 to 100 in the experiments. The parameters of the algorithms are set

to default values as suggested by the original authors unless otherwise speci�ed. Par-

ticularly, for PQBF [83], the number of PQB-trees K � is set to be 64, the number of

PQB-trees θ selected to perform ANNS is set to be 4 and the ratio ε is set to be 0.4.

In AOSKNN algorithm [83], the dimensionality of PCA (m) is set to 6. The precision

ε and the relaxation factor λ is set to 0.9 and 2, respectively. In I-LSH algorithm [81],

the approximate ratio c is set to be 2 for Tiny, Deep1b and Sift1B datasets and 1.7

for other datasets for a good overall performance. The success possibility δ is set to

be 1~2 � 1~e. The setting of the candidate size T in our algorithm depends on the

value k and the corresponding dataset, which can be tuned by users for satisfactory

performance. Table 5.2 shows the possible values of the four parameters in OPFA and

their default values (in bold fonts). The impact of these parameters will be evaluated

in Subsection 5.6.2, where we also evaluate the impact of the number of lists m for

NeOPFA.

Our two ANNS algorithms are implemented in standard C++ and the source codes

of PQBF [83], AOSKNN [43], I-LSH [81] are provided by the original authors. The

source code of M-tree [97] is from GitHub (https://github.com/erdavila/M-Tree).

Note that we can only successfully setup the main-memory version of M-tree, and we

use it in the performance evaluation. We count the number of nodes accessed during

the querying as the I/O costs, where we set the node size of M-tree to be the page

size (i.e., 4096 bytes). The algorithms are compiled with G++ with -O3 in Linux.

67

https://github.com/erdavila/M-Tree

Chapter 5 5.6. EXPERIMENTS

All experiments are performed on a machine with Intel Xeon Gold 2.7GHz CPU and

Redhat Linux System, with 180G main memory.

5.6.2 Parameter Tuning

In this subsection, we investigate the impact of the parameters for our proposed meth-

ods, and decide the default settings by tuning parameters on Deep datasets. Note that

we do not report the parameter tuning details of neural network in NeOPFA algorithm

since it is beyond the focus of this paper.

 50

 100

 150

 200

 250

 300

 350

 400

1.03 1.05 1.07 1.09

Ratio

L=5
L=10
L=15
L=20
L=25

(a) Parameter L

 50

 100

 150

 200

 250

 300

 350

 400

1.03 1.05 1.07 1.09

Ratio

=1
=20
=40
=60
=80

(b) Parameter λ

 50

 100

 150

 200

 250

 300

 350

 400

1.03 1.05 1.07 1.09

Ratio

=0.1
=1
=2
=4
=6

(c) Parameter µ

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

1.02 1.04 1.06 1.08 1.1

I/O
 C

os
t

Ratio

m=5
m=10
m=15
m=20
m=25
m=30

(d) Parameter m

Figure 5.3: The impact of parameters of OPFA on Deep

We �rst investigate the four parameters of OPFA. The �rst three parameters are

from the linear hash function, i.e., the number of buckets L, the regularization factor

λ and factor µ. And the last one, i.e., the number of sorted lists m, is from our

ANNS framework. For the NeOPFA, we only need to tune the number of lists m in the

experiment given the setting of neural network. We tune the candidate size T to plot

68

5.6. EXPERIMENTS Chapter 5

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

1.02 1.04 1.06 1.08 1.1

I/O
 C

os
t

Ratio

m=5
m=10
m=15
m=20
m=25
m=30

(a) Parameter m

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1.02 1.04 1.06 1.08 1.10

Ratio

=0.2
=0.4
=0.6
=0.8
=1.0

(b) Parameter α

Figure 5.4: The impact of parameters of NeOPFA on Deep

the curve of I/O cost w.r.t ratio for each parameter. When tuning one parameter, the

other parameters are set to be the default values in Table 5.2.

The impact of L on OPFA is plotted in Fig. 5.3(a) where the trade-o�s between

I/O cost and ratio are reported with L varying from 5 to 25. Smaller L leads to a

larger mismatch, but less training time. In addition, larger L makes the loss function

harder to be optimized. We observe that OPFA achieves a trade-o� for L � 10, which

is used in the following experiments. Recall that λ is orthogonality regularization and

µ is the additional regularization that encourages the learned projection vectors to be

unit vectors. The impacts of λ and µ are plotted in Fig. 5.3(b)-(c). As expected, the

larger λ leads to a better ratio but incurs higher I/O cost, since the algorithm needs

to access more pages to �nd out the �rst candidate that has been seen on all m sorted

lists, and vice versa. Compared with λ, µ is smaller such that the optimization focuses

more on the loss function and the orthogonality regularization. We observe that OPFA

achieves a good overall performance when λ � 20 and µ � 2.

For the impact of m for OPFA and NeOPFA, the results are plotted in Fig. 5.3(d)

and Fig. 5.4(a). m has a signi�cant in�uence on the trade-o� between I/O costs and

accuracy where a larger m leads to better accuracy, but higher I/O cost. It is reported

that both OPFA and NeOPFA reach a good trade-o� when m � 25, and lager m cannot

distinctly achieve a better performance.

We also investigate the situation discussed in Section 5.5. That is, an object may

become a candidate after �α �m� hits, i.e., the object appears �α �m� times during the

69

Chapter 5 5.6. EXPERIMENTS

search with 0 @ α B 1. In Fig. 5.4(b), we report the trade-o�s between I/O costs and

ratio for di�erent α values given m � 25 on Deep dataset for NeOPFA. It is shown

that NeOPFA achieves the best overall performance when α � 1. This con�rms the

e�ectiveness of our search strategy in Algorithm 3.

5.6.3 Performance Comparison

In this subsection, we present comprehensive experimental results for the six algorithms

on all datasets, in terms of the six evaluation metrics. To evaluate the performance of

the algorithms on k-ANNS, k is set to be �1,10,20, . . . , 100�. Note that the experi-

mental results of AOSKNN and M-tree on Tiny, Deep1B and Sift1B datasets are not

available because they failed to build up the indices under the current system settings.

I/O Cost. Fig. 5.5 reports the I/O costs of six algorithms on six datasets where k

varies from 1 to 100. It is shown that OPFA and NeOPFA outperform the other four

ANNS techniques by a large margin especially when k C 10. The IO cost of NeOPFA

is around 68%-89.3% of OPFA on most of the datasets. Though they share the same

ANNS framework, the non-linear hash functions learnt by neural networks are more

powerful than the linear hash functions, with higher training cost (see Fig. 5.9). Note

that OPFA shows good performance for k � 1 on some datasets, however, its I/O

cost increases quickly when k C 10, which is larger than our methods. Due to the

use of random I/O, the overall performance of PQBF, AOSKNN and M-tree are not

competitive. It is interesting that PQBF outperforms AOSKNN and M-tree, which is

because of the good performance of PQ method. M-tree outperforms AOSKNN on most

of datasets. Although I-LSH can also take advantage of the sequential I/O, the poor

quality of the random hash leads to a larger number of lists to be accessed for a decent

search accuracy. Thus, the I/O cost of I-LSH is larger than our proposed algorithms,

especially on the three very large datasets.

Ratio. We evaluate the average ratio of k-ANN queries for all algorithms on six

datasets by varying k. The experimental results are plotted in Fig. 5.6. In addition

70

5.6. EXPERIMENTS Chapter 5

102

103

104

1 10 20 30 40 50 60 70 80 90 100

I/O
 C

os
t

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(a) Deep

102

103

104

105

1 10 20 30 40 50 60 70 80 90 100

I/O
 C

os
t

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(b) UQvideo

102

103

104

1 10 20 30 40 50 60 70 80 90 100

I/O
 C

os
t

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(c) Gist

102

103

104

1 10 20 30 40 50 60 70 80 90 100

I/O
 C

os
t

k

NeOPFA
OPFA

PQBF
I-LSH

(d) Tiny

102

103

104

105

1 10 20 30 40 50 60 70 80 90 100

I/O
 C

os
t

k

NeOPFA
OPFA

PQBF
I-LSH

(e) Deep1B

103

104

1 10 20 30 40 50 60 70 80 90 100

I/O
 C

os
t

k

NeOPFA
OPFA

PQBF
I-LSH

(f) Sift1B

Figure 5.5: I/O Cost with respect to k on all datasets

to the superior performance in terms of I/O costs, We still observe that NeOPFA and

OPFA also outperform the other four algorithms on the accuracy of the search results,

thanks to the high quality data-sensitive hashing functions and the sequential I/O

accesses. The large gap can be observed on Deep1B and Sift1B datasets. As expected,

NeOPFA performs better than OPFA, especially on Gist and Tiny. This is because

the new loss function used in NeOPFA can better preserve order information in the

high dimensional space and the neural network can learn sophisticated non-linear hash

functions. Among six algorithms, I-LSH has the worst performance on most of datasets

71

Chapter 5 5.6. EXPERIMENTS

1.02

1.04

1.06

1.08

1.10

1.12

1 10 20 30 40 50 60 70 80 90 100

Ra
tio

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(a) Deep

1.01

1.03

1.05

1.07

1.09

1 10 20 30 40 50 60 70 80 90 100

Ra
tio

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(b) UQvideo

1.01

1.03

1.05

1.07

1.09

1.11

1.13

1.15

1 10 20 30 40 50 60 70 80 90 100

Ra
tio

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(c) Gist

1.03

1.06

1.09

1.12

1.15

1.18

1.21

1 10 20 30 40 50 60 70 80 90 100

Ra
tio

k

NeOPFA
OPFA

PQBF
I-LSH

(d) Tiny

1.05

1.10

1.15

1.20

1.25

1.30

1 10 20 30 40 50 60 70 80 90 100

Ra
tio

k

NeOPFA
OPFA

PQBF
I-LSH

(e) Deep1B

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1 10 20 30 40 50 60 70 80 90 100

Ra
tio

k

NeOPFA
OPFA

PQBF
I-LSH

(f) Sift1B

Figure 5.6: Ratio with respect to k on all datasets

because of the use of data-independent random hash functions. Same as the I/O cost,

PQBF demonstrates better performance compared to AOSKNN and M-tree.

Recall. The experimental results of the recall with respect to k for the six algorithms

on four datasets are plotted in Fig. 5.7. Consistent with the observations in Ratio,

NeOPFA and OPFA have the highest recall when compared with the other ANNS

methods. For example, given k � 100, the recalls of NeOPFA and OPFA are 0.51 and

0.48, while the recalls of PQBF, I-LSH, AOSKNN and M-tree are 0.40, 0.31, 0.33 and

0.17, respectively, on Deep. NeOPFA has a higher recall than OPFA. PQBF performs

72

5.6. EXPERIMENTS Chapter 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 10 20 30 40 50 60 70 80 90 100

Re
ca

ll

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(a) Deep

0.1

0.3

0.5

0.7

0.9

1 10 20 30 40 50 60 70 80 90 100

Re
ca

ll

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(b) UQvideo

0.01
0.05

0.10

0.15

0.20

0.25

0.30

1 10 20 30 40 50 60 70 80 90 100

Re
ca

ll

k

NeOPFA
OPFA

PQBF
I-LSH

(c) Deep1B

0.01

0.10

0.20

0.30

0.40

1 10 20 30 40 50 60 70 80 90 100

Re
ca

ll

k

NeOPFA
OPFA

PQBF
I-LSH

(d) Sift1B

Figure 5.7: Recall with respect to k

better than AOSKNN, I-LSH and M-tree on most of datasets.

Search Time. Although the focus of this chapter is the external-memory algorithms,

we also evaluate the running time of the algorithms. Due to the space limitation, we

just report the results on two datasets, which can be seen in Fig. 5.8. It is shown that

both NeOPFA and OPFA outperform the state-of-the-art algorithms due to their I/O

e�ciency. In terms of other four algorithms, PQBF is faster than I-LSH, AOSKNN and

M-tree.

10-2

10-1

100

101

1 10 20 30 40 50 60 70 80 90 100

Se
ar

ch
 T

im
e

(S
ec

)

k

NeOPFA
OPFA

PQBF
AOSKNN

I-LSH
M-tree

(a) Gist

10-1

100

101

102

1 10 20 30 40 50 60 70 80 90 100

Se
ar

ch
 T

im
e

(S
ec

)

k

NeOPFA
OPFA

PQBF
I-LSH

(b) Tiny

Figure 5.8: Search Time with respect to k

73

Chapter 5 5.6. EXPERIMENTS

Datasets
Index Size (MB)

NeOPFA OPFA PQBF AOSKNN I-LSH M-tree

Gist 102.5 98.4 84.6 144.2 849.7 21.6

Deep 102.8 100.1 70.4 148.7 864.6 20.7

UQvideo 306.9 304.2 210.6 443.9 2,662.4 63.6

Tiny 8,092.5 8,089.6 5,836.8 - 39,014.4 -

Deep1B 102,402.4 102,400.0 75,673.6 - 491,929.6 -

Sift1B 102,402.4 102,400.0 75,673.6 - 491,929.6 -

Table 5.3: Index Sizes of All Algorithms (in Megabytes)

Index Size. The index sizes of six methods on six datasets are reported in Table 5.3.

We observe that the index size of M-tree is the smallest on Gist, Deep and UQvideo,

since it just needs to store the object IDs and some distance information for pruning.

The index size of PQBF is the second smallest, followed by our methods. The index

size of OPFA is 67.3% � 68.5% of the index size by AOSKNN, and 11.4% � 20.8% of

that by I-LSH. The index size of NeOPFA is slightly larger than OPFA because of the

parameters of neural network kept.

Preprocessing Time. We report the preprocessing time in Fig. 5.9. Preprocessing

time considers learning the mapping functions, generating the embeddings, and the

index construction for NeOPFA and OPFA. I-LSH does not need to learn the hash

functions and the generation of random hash functions is very e�cient. Thus, it has

the best performance in terms of preprocessing time. PQBF ranks the second due to

the e�ciency of PQ code generation. As expected, NeOPFA spends more time on pre-

processing than OPFA as the the neural network learning takes substantial amount of

time.

5.6.4 Summary

Based on the experimental results, we have the following observations:

� Among the six algorithms, I-LSH is the only algorithm with theoretical guarantee.

It also enjoys the e�cient sequential I/O accesses and the worst case performance

theoretical guarantee. However, the overall performance of I-LSH is far from

74

5.6. EXPERIMENTS Chapter 5

10
1

102
10

3

10
4

10
5

106
10

7

Deep UQvideo Gist Tiny Deep1b Sift1b

NeOPFA
OPFA

PQBF
AOSKNN

M-tree
I-LSH

Figure 5.9: Pre-processing Time on All Datasets

satisfactory on six real-life datasets because of the use of random hash functions.

M-tree is a general indexing technique for metric space which can support ANN

search. But, as demonstrated in experiments, its performance is not competitive

due to the random I/Os performed on the index.

� By utilizing the existing learning to hash approaches (i.e., PQ and PCA), the

hash values of PQBF and AOSKNN are data-sensitive. However, the I/O ef-

�ciency is not considered in the learning of their hash functions. Moreover,

random I/Os are invoked in the search of the index. As reported in the experi-

ments, PQBF and AOSKNN are outperformed by our proposed methods in terms

of I/O cost, accuracy and search time.

� Our proposed leaning to hash techniques directly optimize the hash functions

against the index (i.e., the lists). Thus the I/O e�ciency is considered by the

objective functions of the machine learning tasks. Moreover, sequential I/Os

are invoked during the search. These make two proposed algorithms OPFA and

NeOPFA achieve a good trade-o� between I/O cost (search time) and accuracy.

As expected, the non-linear hash functions learnt from sophisticated neural net-

work can enhance the performance, at the cost of more training time.

75

Chapter 5 5.7. CONCLUSION

5.7 Conclusion

In this chapter, we develop two I/O e�cient indexing and query processing methods

to achieve highly e�cient I/O performance for approximate nearest neighbor search

(ANNS) in high dimensional space. Our methods are based on a framework that uses

sequential I/Os for �nding candidates for a query based on indexes learned from the

data. We consider both linear and non-linear functions to construct the learned index

with novel objective functions. Comprehensive experiments on six high-dimensional

benchmarking datasets with objects up to 1 billion, show that our proposed meth-

ods outperform the state-of-the-art I/O-focused ANNS techniques in terms of I/O

e�ciency, search accuracy.

76

Chapter 6

Approximate Nearest Neighbor

Search: An Experimental

Evaluation

6.1 Overview

In this chapter, we conduct a comprehensive experimental evaluation for the state-

of-the-art approximate nearest neighbour search (ANNS) algorithms. This work is

published in [75] and the rest of this chapter is organized as follows. Section 6.2 gives

out the scope of this evaluation by imposing some constraints. Section 6.3 presents

the detailed descriptions for the 19 representative state-of-the-art ANNS algorithms

that we evaluate in this chapter. Section 6.4 introduces our new proposed graph-

based approximate method, DPG. The comprehensive and systematic experimental

evaluation is conducted in Section 6.5. Further analyses for algorithms are presented

in Section 6.6. Finally, we summarize this chapter in Section 6.7.

77

Chapter 6 6.2. EVALUATION SCOPE

6.2 Evaluation Scope

The problem of ANNS on high dimensional data has been extensively studied in vari-

ous literatures such as databases, theory, computer vision, and machine learning. Over

hundreds of algorithms have been proposed to solve the problem from di�erent per-

spectives, and this line of research remains very active in the above domains due to its

importance and the huge challenges. To make a comprehensive yet focused compar-

ison of ANNS algorithms, in this chapter, we restrict the scope of this evaluation by

imposing the following constraints.

1. Representative and competitive ANNS algorithms. We consider the state-of-the-

art algorithms in several domains, and omit other algorithms that have been dominated

by them unless there are strong evidence against the previous �ndings.

2. No hardware speci�c optimizations. Not all the implementations we obtained

or implemented have the same level of sophistication in utilizing the hardware speci�c

features to speed up the query processing. We pay more attention on the query tech-

nology itself, and weaken the implementation skills. Therefore, we modi�ed several

implementations so that no algorithm uses multiple threads, multiple CPUs, SIMD

instructions, hardware pre-fetching, or GPUs.

3. Dense vectors. We treat the input data as dense vectors, taking no account of

the speci�c processing for sparse data.

4. Support the Euclidian distance. The Euclidean distance is one of the most widely

used measure on high-dimensional datasets. It is also supported by most of the ANNS

algorithms.

5. Exact k-NN as the ground truth. In several existing works, each data point has a

label (typically in classi�cation or clustering applications) and the labels are regarded

as the ground truth when evaluating the recall of approximate k-NN algorithms. In

this chapter, we use the exact k-NN points as the ground truth as this works for all

datasets and majority of the applications.

Prior Benchmark Studies. There are two recent ANNS benchmark studies: [92]

78

6.3. THE STATE-OF-THE-ART ANNS ALGORITHMS Chapter 6

and ann-benchmark [15]. The former considers a large number of other distance mea-

sure in addition to the Euclidean distance, and the latter does not disable general

implementation tricks. In both cases, their studies are less comprehensive than ours,

e.g., with respect to the number of algorithms and datasets evaluated.

6.3 The State-of-the-art ANNS Algorithms

In this section, we present the key technical details of the 19 state-of-the-art ANNS

algorithms that involve in our experimental evaluation. According to the literature

review in Chapter 2, we divide these approximate algorithms into four categories:

LSH-based, L2H-based, Partition-based and Graph-based.

6.3.1 LSH-based methods

Locality sensitive hashing is widely studied in the past due to its theoretical guarantee

and ease implementation. In this category, we evaluate three recent LSH-based meth-

ods: SRS [106], QALSH [53] and FALCONN [4]. The details of these three algorithms

are presented below.

The idea of SRS [106] is to project high dimensional data points into low dimen-

sional representations, which are then organized by a multi-dimensional index that

supports the incremental k-NN search. The 2-stable random projection is used during

the mapping stage. In the query processing step, SRS �rst perform an incremental ex-

act k-NN query on the constructed index, among which each retrieved candidate will

experience the early-termination test. Finally, the candidate with smallest distance to

query is returned.

In traditional LSH functions, the buckets are partitioned without considering the

query, which would cause that the points closer to query may be partitioned into

di�erent buckets. To address this issue, QALSH [53] proposes the query-aware LSH

functions. In the pre-processing step, QALSH performs the 2-stable random projection

for each data point, and then the B�-tree is employed to organize the projections.

79

Chapter 6 6.3. THE STATE-OF-THE-ART ANNS ALGORITHMS

When a query arrives, the projection of query is used an �anchor� for bucket partition.

Then the k-NN search is simulated as conducting a range query on the B�-tree.

FALCONN [4] is an e�cient and well-tested LSH-based ANN library, which is mainly

designed for the cosine similarity. However, it can also be used for ANN search under

Euclidean distance which is employed in this chapter. The basic idea is utilizing a

multiprobe scheme to speed up the cross-polytope LSH [111] while maintaining the

good theoretical guarantee as Spherical LSH [6]. The hash families in FALCONN are

implemented with multi-probe LSH in order to minimize the memory cost.

6.3.2 L2H-based methods

Learning to hash methods aim at learning hash functions from data distribution such

that the similarity relationship between data points can be kept in the hash coding

space. The representative methods in this category include Anchor Graph Hashing

(AGH) [82], Scalable Graph Hashing (SGH) [59], Neighbor Sensitive Hashing (NSH) [98],

Neighborhood APProximation index (NAPP) [92], Selective Hashing (SH) [37], Optimal

Product Quantization (OPQ) [38] and Composite Quantization (CQ) [127].

One critical drawback of the existing unsupervised hashing methods is that they

usually need to specify a global distance measure, which can not capture local low-

dimensional manifold structure existing in many real-world data. To handle this case,

AGH [82] adopts a neighborhood graph-based hashing strategy to automatically capture

the neighborhood structure underlying in the data to learn appropriate compact codes

in an unsupervised manner.

AGH and some graph-based hashing methods directly exploit the neighborhood

structure to guide the hashing learning procedure. However, they need to compute

the pairwise similarities between any two data points, which limits their application

for large-scale datasets. Instead, SGH [59] employs a feature transformation approach

to e�ectively approximate the whole neighborhood graph without explicitly computing

the similarity graph matrix. Thus, the O�N2� computation overhead and large memory

cost are avoided in SGH.

80

6.3. THE STATE-OF-THE-ART ANNS ALGORITHMS Chapter 6

The goal of hashing-based methods is that the original distance relationship among

data points can be preserved in the Hamming space (i.e., hash coding space) after hash-

ing projection. To achieve this, existing hashing techniques tend to place the separators

uniformly, while this may make the points close to query be assigned with di�erent

hash codes. Instead, the NSH [98] changes the shape of the projection functions which

impose a larger slope when the original distance between a pair of objects is small,

allowing the Hamming distance (i.e., projection distance) to remain stable beyond a

certain distance. In other words, if the distance between query q and point p is smaller

than a threshold, the above property will apply to q. To handle di�erent possible

queries, NSH chooses multiple pivots and limits the maximal average distances be-

tween a pivot and its closest neighbor pivot to ensure that there will be at least one

nearby pivot for any new query.

Permutation methods assess the similarity among objects based on their relative

distances to the pre-speci�ed reference points, rather than the real distance values di-

rectly. The motivation of this kind of methods is that the nearest neighbours usually

have similar pivot rankings to that of the query. The basic idea of permutation meth-

ods is to randomly choose m pivots from the data points and then for each point p,

the pivots are sorted in the ascending order of their distances from p. Such that a

permutation of the pivots is essentially a low-dimensional embedding for a data point.

In the querying stage, those points that have the permutations su�ciently close to that

of query will be retrieved, and �nally the distance veri�cation is conducted. Neighbor-

hood APProximation index (NAPP) [92] is one of the most e�cient implementation

for Permutation-based methods, which relies on inverted index for searching.

Original LSH aims at �nding points falling into a �xed radius of the query point,

i.e., radius search. For the k-NN search, the radii required for di�erent queries may vary

by orders of magnitude, which depends on the density of the region around the query.

Thus, it is hard for global hashing functions used by many learning-based methods to

capture the diverse local patterns that are crucial for k-NN search. Selective Hashing

(SH) [37] is especially designed for k-NN search problem. The key idea is to create

81

Chapter 6 6.3. THE STATE-OF-THE-ART ANNS ALGORITHMS

multiple LSH indices with di�erent granularities (i.e., radii). Then, each data point is

only stored in one selected index, with certain granularity that is especially e�ective

for k-NN searches near it. Data points in dense regions are stored in the index with

small granularity, while data points in sparse regions are stored in the index with large

granularity. In the querying step, the algorithm will push down the query and examine

the cell with suitable granularity.

Optimized Product Quantization (OPQ) [38] is an extension of product quantiza-

tion (PQ) [57], which optimizes the index by minimizing the quantization distortion

with respect to the space decompositions and the quantization codewords. Composite

Quantization (CQ) [127] is another representative learning-based algorithm, which is

the generalization of PQ. Similar to PQ, the idea of CQ is to approximate a vector using

the composition of several elements selected from several dictionaries and to represent

this vector by a short code composed of the indices of the selected elements.

6.3.3 Partition-based Algorithms

Partition-based methods have been widely studied to answer the nearest neighbour

search problem. In this category, we evaluate two representative hyperplane partition-

ing algorithms, Annoy [14] and FLANN [91]. In addition, we also evaluate a classical

pivoting partitioning method, Vantage-Point tree [18] (VP-tree), in the experiments.

FLANN is an automatic NNS algorithm con�guration method which selects the

most suitable algorithm from randomized kd-tree [103], hierarchical k-means tree [33],

and linear scan approaches for a particular data set. Di�er form traditional kd-tree, the

randomized kd-tree in FLANN utilizes a hyperplane of the selected splitting dimension

to partition the data points, among which the splitting dimension is chosen from the

dimensions that have the largest variance on input data. The search step is a depth-�rst

search algorithm prioritized by some heuristic scoring functions. For the hierarchical

k-means tree in FLANN, the key idea is to partition the data points at each level

into K regions using K-means clustering method. Then the same approach is applied

recursively to the data points in each region. FLANN selects one of the three algorithms

82

6.3. THE STATE-OF-THE-ART ANNS ALGORITHMS Chapter 6

by minimizing a cost function which considers the indexing time, searching time and

memory cost to determine the suitable algorithm.

Annoy [14] is an empirically engineered algorithm that has been used in the rec-

ommendation engine in spotify.com. The basic idea of Annoy is to construct multiple

hierarchical 2-means trees where each tree is independently constructed by recursively

partitioning the data points. The querying process is carried out by traversing trees

from the roots to the leaves closest to query with the help of a priority queue.

Di�erent from the hyperplane partitioning methods, VP-tree [18] recursively divides

data points based a randomly chosen pivot π. For each partition, a mean value r of

the distances from π to the data points of this partition is achieved. Then the pivot-

centered ball with radius r is used to divide the space: the inner objects are allocated to

the left subtree, while the outer objects are allocated to the right subtree. In querying

stage, the triangle inequality can be easily used to prune undesirable partitions, and

the k-NN search is simulated as a range search with a decreasing radius.

6.3.4 Graph-based Algorithms

The key idea of graph-based methods is to build a proximity graph as an index and

then the search can be easily performed by greedily traversing the graph. This kind

of methods enjoy the popularity of nearest neighbour search community due to its

prominent performance on the ANNS problem. In this category, we evaluate four

representative algorithms, including KGraph [28], Small World (SW) [87], Hierarchical

Navigable Small World (HNSW) [89] and Rank Cover Tree (RCT) [50].

KGraph is basically a K-NN graph where there are K out-going edges for each node

(i.e., data point), pointing to its K nearest data points. The computation of exact

K-NN graph is costly, KGraph tends to build the approximate one. The construction

relies on a simple principle: A neighbor's neighbor is probably also a neighbor. During

the indexing procedure, the neighbors' neighbors, including K-NN and reverse K-NN

points, are used to improve neighbourhood of each data point. Some optimization

techniques are used to accelerate the graph construction. The query searching could

83

Chapter 6 6.4. DIVERSIFIED PROXIMITY GRAPH

be e�ciently executed by iteratively expanding neighbors' neighbors in a best-�rst

search strategy following the edges.

A small world (SW) [87] method is essentially a variant of a navigable small world

graph. Previous K-NN graph preserves the K nearest neighbors of each node, while

SW keeps two kinds of connections for each edge. The construction of small world is

a bottom-top procedure that inserts all the data points consecutively. Speci�cally, for

each new incoming point p, the nearest neighbors of p from the current graph are �rst

retrieved, which are then connected to p. As more and more objects are inserted into

the graph, links that previously served as short-range links now become long-range

links making a navigable small world. The querying process is the greedy search with

multi-restarts.

Hierarchical navigable small world (HNSW) [89] is an extension of small world.

HNSW incrementally builds a multi-layer structure that consists of hierarchical set of

proximity graphs (layers) for nested subsets of the stored elements. The produced

structure still has the property of navigable small world graph while making the links

separated by their characteristic distance scales. The searching algorithm is an iterative

greedy search starting from the top layer and �nishing at the zero layer.

Rank cover tree (RCT) [50] is a hierarchical tree structure, which is similar to

SASH [52] and Cover Tree [16]. However, it entirely avoids to use the numerical

constraints such as triangle inequality for pruning. The index of RCT is constructed

by inserting the nodes from high levels to low levels, during which the nodes in level i

are randomly chosen from that of level i � 1 with a certain probability. The searching

algorithm starts from the root of the tree, and iteratively visits the nodes most similar

to query at each level until reaching the bottom level.

6.4 Diversi�ed Proximity Graph

The experience and insights we gained from this study enable us to engineer a new

method, Diversi�ed Proximity Graph (DPG), which constructs a di�erent proximity

84

6.4. DIVERSIFIED PROXIMITY GRAPH Chapter 6

graph to achieve better and more robust search performance.

6.4.1 Motivation

A great number of papers employed the heuristic - �for each node, the closer Voronoi

neighbors are more likely to be the neighbors� in the construction of their proximity

graph. The heuristic requires the angle between edges must be at least 60X. However,

it is a very weak constraint and can not guarantee the selected edges are su�cient for

ANN search.

The construction of K-NN graph mainly consider the distances of neighbors for

each data point, but intuitively we should also consider the coverage of the neighbors.

As shown in Fig. 6.1, the two closest neighbors of the point p are a3 and a4, and hence

in the 2-NN graph p cannot lead the search to the NN of q (i.e., the node b) although

it is close to b. Since a1, . . . , a4 are clustered, it is not cost-e�ective to retain both a3

and a4 in the K-NN list of p. This motivates us to consider the direction diversity (i.e.,

angular dissimilarity) of the K-NN list of p in addition to the distance, leading to the

diversi�ed K-NN graph. Regarding the example, including a3 and b is a better choice

for the K-NN list of p.

p

a4

a3

a1

a2

b

q

Figure 6.1: Motivation of Diversi�ed Proximity Graph

Now assume we have replaced edge �p, a4� with the edge �p, b� (i.e., the dashed line

in Fig. 6.1), but there is still another problem. As we can see that there is no incoming

edge for p because it is relatively far from two clusters of points (i.e., p is not 2-NN of

these data points). This implies that p is isolated, and two clusters are disconnected in

85

Chapter 6 6.4. DIVERSIFIED PROXIMITY GRAPH

the example. This is not uncommon in high dimensional data due to the phenomena

of �hubness�[99] where a large portion of data points rarely serve as K-NN of other

data points, and thus have no or only a few incoming edges in the K-NN graph. This

motivates us to also use the reverse edges in the diversi�ed K-NN graph; that is, we

keep an bidirected diversi�ed K-NN graph as the index, and we name it Diversi�ed

Proximity Graph (DPG).

6.4.2 Diversi�ed Proximity Graph

The construction of DPG is a diversi�cation of an existing K-NN graph, followed by

adding reverse edges.

Given a reference data point p, the dissimilarity of two points x and y in p's K-NN

list L is de�ned as the angle of �xpy, denoted by θ�x, y�. We aim to choose a subset

of κ data points, denoted by S, from L so that the average angle between two points

in S is maximized; or equivalently, S � arg maxSbN ,SS S�κPoi,oj>S θ�oi, oj�.

The above problem is NP-hard [72]. Hence, we design a simple greedy heuristic.

Initially, S is set to the closest point of p in L. In each of the following κ�1 iterations,

a point is moved from L�S to S so that the average pairwise angular similarity of the

points in S is minimized. Then for each data point u in S, we include both edges �p, u�

and �u, p� in the diversi�ed proximity graph. The time complexity of the diversi�cation

process is O�κ2KN� where N is the number of data points, and there are totally at

most 2κN edges in the diversi�ed proximity graph.

It is critical to �nd a proper K value for a desired κ in the diversi�ed proximity

graph as we need to �nd a good trade-o� between diversity and proximity. In our

empirical study, the DPG algorithm usually achieves the best performance when K �

2κ. Thus, we set K � 2κ for the diversi�ed proximity graph construction. This greedy

algorithm has the time complexity of O�κ2KN�. We actually implemented a simpli�ed

version whose complexity is O�K2N�, which has only slightly worse performance than

the full greedy version, but signi�cantly fewer diversi�cation time. Note that the search

process of the DPG is the same as that of KGraph.

86

6.5. EXPERIMENTS Chapter 6

6.5 Experiments

In this section, we present a comprehensive experimental evaluation and analysis for

the 19 state-of-the-art approximate NNS techniques.

6.5.1 Experimental Settings

Compared Algorithms

We test 19 existing representative ANNS algorithms (Section 6.3) from four categories

and our proposed diversi�ed proximity graph (DPG) method (Section 6.4). All of the

modi�ed source codes used in this experiment are public available on GitHub [107].

(1) LSH-based Methods. We evaluate Query-aware LSH [53] (QALSH1, PVLDB'15),

SRS [106] (SRS2, PVLDB'14) and FALCONN [4] (FALCONN3,NIPS'15) in this class.

(2) L2H-based Methods. We evaluate Scalable Graph Hashing [59] (SGH4, IJCAI'15),

Anchor Graph Hashing [82] (AGH5, ICML'11) and Neighbor-Sensitive Hashing [98]

(NSH6, PVLDB'15) from binary-encoded learning to hash methods. In order to do

non-exhaustive search, We organize the hash codes with the hierarchical clustering

tree[91].

We also evaluate selective Hashing [37] (SH7, KDD'15), Neighborhood APProxi-

mation index [92] (NAPP8 PVLDB'15), Optimal Product Quantization [38] (OPQ9,

TPAMI'14), and Composite Quantization [127] (CQ10, ICML'11). Note that we use

the inverted multi-indexing technique 11 [11] to perform non-exhaustive search for

OPQ.

1http://ss.sysu.edu.cn/~fjl/qalsh/qalsh_1.1.2.tar.gz
2https://github.com/DBWangGroupUNSW/SRS
3https://github.com/FALCONN-LIB/FALCONN
4http://cs.nju.edu.cn/lwj
5http://www.ee.columbia.edu/ln/dvmm/downloads
6https://github.com/pyongjoo/nsh
7http://www.comp.nus.edu.sg/~dsh/index.html
8https://github.com/searchivarius/nmslib
9http://research.microsoft.com/en-us/um/people/kahe
10https://github.com/hellozting/CompositeQuantization
11http://arbabenko.github.io/MultiIndex/index.html

87

http://ss.sysu.edu.cn/~fjl/qalsh/qalsh_1.1.2.tar.gz
https://github.com/DBWangGroupUNSW/SRS
https://github.com/FALCONN-LIB/FALCONN
http://cs.nju.edu.cn/lwj
http://www.ee.columbia.edu/ln/dvmm/downloads
https://github.com/pyongjoo/nsh
http://www.comp.nus.edu.sg/~dsh/index.html
https://github.com/searchivarius/nmslib
http://research.microsoft.com/en-us/um/people/kahe
https://github.com/hellozting/CompositeQuantization
http://arbabenko.github.io/MultiIndex/index.html

Chapter 6 6.5. EXPERIMENTS

For AGH, NSH and OPQ, we use 10% samples as training set.

(3) Partition-based Methods. We evaluate FLANN12[91] (TPAMI'14), FLANN-HKM,

FLANN-KD, Annoy13 and an advanced Vantage-Point tree [18] (VP-tree8, NIPS'13)

in this class.

(4) Graph-based Methods. We evaluate Small World Graph [87] (SW8, IS'14), Hi-

erarchical Navigable Small World [89](HNSW8, TPAMI'18), K-NN graph [28, 27]

(KGraph14, WWW'11), Rank Cover Tree [50] (RCT15, TPAMI'15), and our Diver-

si�ed Proximity Graph (DPG15).

Considering of the comparison fairness, we would like to focus on the algorithm

perspective of the existing methods. we turned o� all hardware-speci�c optimizations

in the implementations of the methods. Speci�cally, we disabled distance computation

using SIMD and multi-threading in KGraph, -ffast-math compiler option in Annoy,

multi-threading in FLANN, and distance computation using SIMD, multi-threading,

prefetching technique implemented in the NonMetricSpaceLib, i.e., SW, NAPP, VP-

tree and HNSW). In addition, we disabled the optimized search implementation used

in HNSW.

Computing Environment. All C++ source codes are complied by g++ 4.7, and MAT-

LAB source codes (only for index construction of some learning to hash algorithms)

are compiled by MATLAB 8.5. All experiments are conducted on a Linux server with

Intel Xeon 8 core CPU at 2.9GHz, and 32G memory.

Datasets and Query Workload

We deploy 18 real datasets used by existing works which cover a wide range of applica-

tions including image, audio, video and text. We also use two synthetic datasets.

Table 6.1 summarizes the characteristics of the datasets including the number of

data points, dimensionality, Relative Contrast (RC [46]), local intrinsic dimension-

12http://www.cs.ubc.ca/research/flann
13https://github.com/spotify/annoy
14https://github.com/aaalgo/kgraph
15https://github.com/DBWangGroupUNSW/nns_benchmark

88

http://www.cs.ubc.ca/research/flann
https://github.com/spotify/annoy
https://github.com/aaalgo/kgraph
https://github.com/DBWangGroupUNSW/nns_benchmark

6.5. EXPERIMENTS Chapter 6

ality (LID [2]), and data type. RC indicates the ratio of the mean distance and NN

distance for the data points, and smaller RC value implies harder dataset. LID calcu-

lates the local intrinsic dimensionality and a higher LID value implies harder dataset.

We mark the �rst four datasets in Table 6.1 with asterisks to indicate that they are

�hard� datasets compared with others according to their RC and LID values.

Datasets N ��103� d RC LID Data Type

Nus* 269 500 1.67 24.5 Image

Gist* 983 960 1.94 18.9 Image

Rand* 1,000 100 3.05 58.7 Synthetic

Glove* 1,192 100 1.82 20.0 Text

Cifa 50 512 1.97 9.0 Image

Audio 53 192 2.97 5.6 Audio

Mnist 69 784 2.38 6.5 Image

Sun 79 512 1.94 9.9 Image

Enron 95 1,369 6.39 11.7 Text

Trevi 100 4,096 2.95 9.2 Image

Notre 333 128 3.22 9.0 Image

Yout 346 1,770 2.29 12.6 Video

Msong 922 420 3.81 9.5 Audio

Sift 994 128 3.50 9.3 Image

Deep 1,000 128 1.96 12.1 Image

Ben 1,098 128 1.96 8.3 Image

Gauss 2,000 512 3.36 19.6 Synthetic

Imag 2,340 150 2.54 11.6 Image

UQ-V 3,038 256 8.39 7.2 Video

BANN 10,000 128 2.60 10.3 Image

Table 6.1: Dataset Summary

Query Workload. Following the convention, we randomly remove 200 data points as

the query points for each dataset. The average performance of the k-NN searches is

reported. In this chapter, k is equal to 20 by default.

6.5.2 Evaluation Measures

For each algorithm, we retrieve T points based on its searching process and then

rerank these candidates using original features. The search quality is measured using

89

Chapter 6 6.5. EXPERIMENTS

recall, precision, accuracy and mAP. The recall is the ratio of the true nearest items

in the retrieved T items to k. The precision is de�ned as the ratio of the number

of retrieved true items to T . F-score (F1 score) is the harmonic mean of precision

and recall: F1 � 2 � precision � recall~�precision � recall�. Then mean average

precision(mAP) is computed as the mean of average precisions over all the queries.

Accuracy is equal to Pi�ki�0
dist�q,kANN�q��i��
dist�q,kNN�q��i�� , where q is a query, kNN�q��i� is q's i-

th true nearest neighbor, and kANN�q��i� is i-th nearest neighbor estimated by one

ANNS algorithm for q.

The search e�ciency is usually measured as the time taken to return the search

results for a query. For most of the algorithms (expect for Graph-based methods),

we could vary the number of the retrieved points T to get di�erent pair of re-

call/precision/accuracy and its corresponding search time. Since exact k-NN can be

found by a brute-force linear scan algorithm, we use its query time as the baseline and

de�ne the speedup as t̄
t� , where t̄ is query time for linear scan and t

� is the search time

at a speci�c recall or T . For instance, we come up with a speedup 10 if an algorithm

takes 1 second while the linear scan takes 10 seconds.

In addition to evaluating the search performance, we also evaluate other aspects

such as index construction time, index size, index memory cost and scalability.

6.5.3 Comparison with Each Category

In this subsection, we evaluate the trade-o�s between speedup and recall of all the al-

gorithms on Sift and Notre data in each category. Given the large number of algorithms

in the hashing-based category, we evaluate them in LSH-based and learning to hash-

based subcategories separately. The goal of this round of evaluation is to select several

algorithms from each category as the representatives in the second round evaluation

(Subsection 6.5.4).

90

6.5. EXPERIMENTS Chapter 6

LSH-based Methods

Fig. 6.2(a) and (b) plot the trade-o�s between the speedup and recall of two most

recent data-independent algorithms SRS and QALSH on Sift and Notre. Note that, as

FALCONN doesn't provide theoretical guarantee on L2 distance, we evaluate it in the

second round.

As both algorithms are originally external memory based approaches, we evaluate

the speedup by means of the total number of pages of the dataset divided by the

number of pages accessed during the search. It shows that SRS consistently outperforms

QALSH, and the similar trend is observed on other datasets. Thus, SRS is chosen as

the representative in the second round evaluation where a cover-tree based in-memory

implementation will be used.

100

101

102

 0 0.2 0.4 0.6 0.8 1

sp
ee

du
p

SRS
QALSH

(a) Sift LSH-based

10-1

100

101

102

 0 0.2 0.4 0.6 0.8 1

sp
ee

du
p

SRS
QALSH

(b) Notre LSH-based

100

101

102

103

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sp
ee

du
p

SH
OPQ
NSH
AGH
SGH

NAPP
CQ

(c) Sift L2H-based

100

101

102

103

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sp
ee

du
p

SH
OPQ
NSH
AGH
SGH

NAPP
CQ

(d) Notre L2H-based

Figure 6.2: Speedup vs Recall for LSH-based and L2H-based Methods

91

Chapter 6 6.5. EXPERIMENTS

Learning to Hash-based Methods

We evaluate seven learning to hash based algorithms including OPQ, NAPP, SGH, AGH,

NSH , SH and CQ. Fig. 6.2(c) and (d) demonstrate that, of all methods, the search

performance of OPQ beats other algorithms by a big margin. Due to the linear scan

search employed in the CQ, it shows a poor performance in terms of speedup@recall.

In fact, CQ is very competitive in recall@T , but the indexing time of CQ is extremely

high. So it is hard to apply in practice.

For most of datasets, Selective Hashing has the largest index size because it requires

multiple long hash tables to achieve high recall. The index time value of OPQ has a

strong association with the length of the sub-codeword and dimension of the data point.

Nevertheless, the index construction time of OPQ still turns out to be very competitive

compared with other algorithms in the second round evaluation. Therefore, we choose

OPQ as the representative of the learning to hash based methods.

100

101

102

103

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sp
ee

du
p

Annoy
FLANN-KD

FLANN-HKM
VP-Tree

(a) Sift Partition-based

100

101

102

103

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sp
ee

du
p

Annoy
FLANN-KD

FLANN-HKM
VP-Tree

(b) Notre Partition-based

100

101

102

103

104

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sp
ee

du
p

KGraph
RCT
SW

HNSW

(c) Sift Graph-based

100

101

102

103

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sp
ee

du
p

KGraph
RCT
SW

HNSW

(d) Notre Graph-based

Figure 6.3: Speedup vs Recall for Partition-based and Graph-based Methods

92

6.5. EXPERIMENTS Chapter 6

Partition-based Methods

We evaluate three algorithms in this category: FLANN, Annoy and VP-tree. To better

illustrate the performance of FLANN, we report the performance of both randomized

kd-tree and hierarchical k-means tree, namely FLANN-KD and FLANN-HKM, respec-

tively. Note that among 20 datasets, the randomized kd-tree method (FLANN-KD) is

chosen by FLANN in �ve datasets: Enron, Trevi, UQ-V, BANN and Gauss. The linear

scan is used in the hardest dataset Rand, and the hierarchical k-means tree (FLANN-

HKM) is employed in the remaining 14 datasets.

Fig. 6.3(a) and (b) show that Annoy and FLANN-HKM have good performance on

both datasets. For all datasets, Annoy, FLANN-HKM and FLANN-KD can obtain the

highest performance on di�erent datasets.

As the search performance of VP-tree is not competitive compared to FLANN and

Annoy under all settings, it is excluded from the next round evaluation.

Graph-based Methods

In the category of Graph-based methods, we evaluate four existing techniques: KGraph,

SW, HNSW and RCT. Fig. 6.3(c) and (d) show that the search performance of KGraph,

SW and HNSW substantially outperforms that of RCT on Sift and Notre. Because

HNSW is an improvement version of SW and can achieve better performance on all

datasets, we discard SW from the next round evaluation.

Although the construction time of KGraph and HNSW are relatively large, due

to the outstanding search performance, we choose them as the representatives of the

graph-based methods. Note that we delay the comparison of DPG to the second round.

6.5.4 Second Round Evaluation

In the second round evaluation, we conduct comprehensive experiments on eight rep-

resentative algorithms: SRS, FALCONN, OPQ, FLANN, Annoy, HNSW, KGraph, and

DPG.

93

Chapter 6 6.5. EXPERIMENTS

100

101

102

103

Nusw Gist Glov Rand Imag Deep Audio BANN Cifa Enron Msong Mnist Sift Sun Trevi UQ-V Notre Ben Yout Gauss

s
p

e
e

d
u
p

DPG HNSW KGraph Annoy Flann OPQ FALCONN SRS

Figure 6.4: Speedup with Recall of 0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

Nusw Gist Glov Rand Imag Deep Audio BANN Cifa Enron Msong Mnist Sift Sun Trevi UQ-V Notre Ben Yout Gauss

R
e

c
a

ll

DPG HNSW KGraph Annoy Flann OPQ FALCONN SRS

Figure 6.5: Recall with Speedup of 50

Comparison of Search Quality and Time

In the �rst set of experiments, Fig. 6.4 reports the speedup of eight algorithms when

they reach the recall around 0.8 on 20 datasets. Note that the speedup is set to 1.0 if an

algorithm cannot outperform the linear scan algorithm. Among eight algorithms, DPG

and HNSW have the best overall search performance and KGraph follows. It is shown

that DPG enhances the performance of KGraph, especially on hard datasets: Nusw,

Gist, Glove and Rand. As reported thereafter, the improvement is also more signi�cant

on higher recall. For instance, DPG is ranked after KGraph on four datasets under this

setting (recall 0.8), but it eventually surpasses KGraph on higher recall. Overall, DPG

and HNSW have the best performance for di�erent datasets. Not surprisingly, SRS

is slower than other competitors with a huge margin as it does not exploit the data

distribution. Similar observations are reported in Fig. 6.5, which depicts the recalls

achieved by the algorithms with speedup around 50.

Fig. 6.6 illustrates speedup of the algorithms on eight datasets with recall varying

from 0 to 1. It further demonstrates the superior search performance of DPG on high

recall. The overall performance of HNSW, KGraph and Annoy are also very competitive,

94

6.5. EXPERIMENTS Chapter 6

DPG HNSW KGraph Annoy Flann OPQ FALCONN SRS

100

101

102

103

 0.2 0.4 0.6 0.8 1

sp
ee

du
p

(a) Nusw

100

101

102

103

104

 0.2 0.4 0.6 0.8 1

sp
ee

du
p

(b) Gist

100

101

102

103

104

 0.2 0.4 0.6 0.8 1

sp
ee

du
p

(c) Glove

100

101

102

103

 0.2 0.4 0.6 0.8 1

sp
ee

du
p

(d) Rand

100

101

102

103

104

 0.2 0.4 0.6 0.8 1

sp
ee

du
p

(e) Sift

100

101

102

103

104

 0.2 0.4 0.6 0.8 1

sp
ee

du
p

(f) Msong

100

101

102

103

104

 0.2 0.4 0.6 0.8 1

sp
ee

du
p

(g) Yout

100

101

102

103

104

 0.2 0.4 0.6 0.8 1

sp
ee

du
p

(h) Gauss

Figure 6.6: Speedup vs Recall on Di�erent Datasets

followed by FLANN. It is shown that the performance of both DPG and KGraph are

ranked lower than that of HNSW, Annoy, FLANN and OPQ in Fig. 6.6(h) where the

data points are clustered. As thereafter discussed in Section 6.6, Annoy, FLANN and

OPQ essentially use the variants of k-means approach, and hence can well handle the

clustered data. HNSW uses a heuristic to increase the probability of building the links

between the clusters. FALCONN signi�cantly outperforms SRS on all datasets, and

it also surpasses the tree-based methods and learning to hash methods on some hard

datsets, such as Glove, Nusw and random. It is worth noting that FALCONN even

outperforms graph-based methods for Gauss dataset.

In Fig. 6.7, we evaluate the recalls of the algorithms against the percentage of data

points accessed. As the search of most Graph-based methods starts from random en-

95

Chapter 6 6.5. EXPERIMENTS

DPG HNSW KGraph Annoy Flann OPQ FALCONN SRS

 0.2

 0.4

 0.6

 0.8

0.01% 0.1% 1% 10% 100%

R
ec

al
l

(a) Nusw

 0.2

 0.4

 0.6

 0.8

 1

0.001% 0.01% 0.1% 1% 10% 100%

R
ec

al
l

(b) Gist

 0.2

 0.4

 0.6

 0.8

 1

0.001% 0.01% 0.1% 1% 10% 100%

R
ec

al
l

(c) Msong

 0.2

 0.4

 0.6

 0.8

 1

0.01% 0.1% 1% 10% 100%

R
ec

al
l

(d) Glove

Figure 6.7: Recall vs Percentage of Data Points Accessed

trance points and then gradually approaches the results while other algorithms initiate

their search from the most promising candidates, the search quality of Graph-based

methods is outperformed by Annoy, FLANN and even OPQ at the beginning stage.

While, bene�ting from HNSW's hierarchical structure, it could continue the search

from the element which is the local optimum in the previous layer. The entries of

each layer are carefully selected to ensure it could locate the closer points of the query

quickly.

Fig. 6.8 shows the range search quality for a speci�c recall. Smaller accuracy

indicates the closer of the results to the query, so the search quality is better. SRS and

FALCONN which are designed for c-ANN search outperform all other algorithms.

In Figs. 6.12 and 6.13, we evaluate the precision@recall and F1@recall for each

algorithm and report the mAP in Table 6.2. The results further verify our observa-

tions in Fig. 6.7. Tree-based methods and HNSW could �nd the closer neighbors after

96

6.5. EXPERIMENTS Chapter 6

DPG HNSW KGraph Annoy Flann OPQ FALCONN SRS

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14
 1.16
 1.18

 0.2 0.4 0.6 0.8 1

Ac
cu

ra
cy

(a) Nusw

 1

 1.1

 1.2

 1.3

 0.2 0.4 0.6 0.8 1

Ac
cu

ra
cy

(b) Gist

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0.2 0.4 0.6 0.8 1

Ac
cu

ra
cy

(c) Msong

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14
 1.16
 1.18

 0.2 0.4 0.6 0.8 1

Ac
cu

ra
cy

(d) Glove

Figure 6.8: Accuracy vs Recall

retrieving small points.

Comparison of Indexing Cost

In addition to search performance, we also evaluate the index size, memory cost

and construction time. Fig. 6.9 reports ratio of the index size (exclude the data points)

and the data size. Except Annoy, the index sizes of all algorithms are smaller than the

corresponding data sizes. The index sizes of DPG, KGraph, HNSW, SRS and FALCONN

are irrelevant to the dimensionality because a �xed number of neighbor IDs and pro-

jections are kept for each data point. Consequently, they have a relatively small ratio

on data with high dimensionality (e.g., Trevi). Overall, OPQ and SRS have the smallest

index sizes, less than 5% among most of the datasets, followed by FALCONN, HNSW,

DPG, KGraph and FLANN. It is shown that the rank of the index size of FLANN varies

dramatically over 20 datasets because it may choose three possible index structures.

Annoy needs to maintain a considerable number of trees for a good search quality, and

97

Chapter 6 6.5. EXPERIMENTS

 1%

10%

100%

1000%

Nusw Gist Glov Rand Imag Deep Audio BANN Cifa Enron Msong Mnist Sift Sun Trevi UQ-V Notre Ben Yout Gauss

in
d

e
x
s
iz

e
/d

a
ta

s
iz

e
 (

%
)

DPG HNSW KGraph Annoy Flann OPQ Falconn SRS

Figure 6.9: The Ratio of Index Size and Data Size (%)

101

102

103

104

105

Nusw Gist Glov Rand Imag Deep Audio BANN Cifa Enron Msong Mnist Sift Sun Trevi UQ-V Notre Ben Yout Gauss

In
d

e
x
 t

im
e

 (
s
)

one hour

one day

DPG HNSW KGraph Annoy Flann OPQ FALCONN SRS

Figure 6.10: Index Construction Time (seconds)

hence has the largest index size.

Fig. 6.10 reports the index construction time on 20 datasets. FALCONN has the

smallest index construction time among all the test algorithms. SRS ranks the second.

The construction time of OPQ is related to the dimensionality because of the calculation

of the sub-codewords (e.g., Trevi). HNSW, KGraph and DPG have similar construction

time. Compared with KGraph, DPG does not spend large extra time for the graph

diversi�cation. Nevertheless, they can still build the indexes within one hour for 16

out of 20 datasets.

102

103

104

105

106

107

Nusw Gist Glov Rand Imag Deep Audio BANN Cifa Enron Msong Mnist Sift Sun Trevi UQ-V Notre Ben Yout Gauss

M
e

m
o

ry
 C

o
s
t(

M
b

)

DPG HNSW KGraph Annoy Flann OPQ Falconn SRS

Figure 6.11: Index Memory Cost (MB)

98

6.5. EXPERIMENTS Chapter 6

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

(a) Nusw

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

(b) Gist

Figure 6.12: Precision vs Recall

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 0.2 0.4 0.6 0.8 1

F1

(a) Nusw

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 0.2 0.4 0.6 0.8 1

F1

(b) Gist

Figure 6.13: F1 score vs Recall

Fig. 6.11 reports the index memory cost of the algorithms on 20 datasets. OPQ

needs less memory resource to build index, so it is very e�cient for large-scale datasets.

6.5.5 Summary

Table 6.3 ranks the performance of the eight algorithms from various perspectives

including search performance, index size, index construction time, index memory cost,

and scalability. We also indicate that SRS is the only one with theoretical guarantee

of searching quality, and it is very easy to tune the parameters for search quality and

search time.

Below are some recommendations for users according to our comprehensive evalu-

ations.

� When there are su�cient computing resources (both main memory and CPU) for

99

Chapter 6 6.5. EXPERIMENTS

Algorithm Nusw Gist Msong Glove

DPG 0.008386 0.008586 0.01876 0.004906

HNSW 0.013122 0.012627 0.024439 0.012414

KGraph 0.008147 0.007161 0.017455 0.005867

Annoy 0.010082 0.006304 0.025659 0.019304

FLANN 0.012074 0.026154 0.069939 0.044106

OPQ 0.013121 0.004076 0.072857 0.003116

FALCONN 0.001661 0.002457 0.002444 0.002584

SRS 0.010264 0.005244 0.022778 0.002837

Table 6.2: mAP for each algorithm

the o�-line index construction, and su�cient main memory to hold the resulting

index, DPG and HNSW are the best choices for ANNS on high dimensional

data due to their outstanding search performance in terms of robustness to the

datasets, result quality, search time and search scalability.

� Except DPG and HNSW, we also recommend Annoy, due to its excellent search

performance, construction cost, and robustness to the datasets. Moreover, it can

provide a good trade-o� between search performance and index size/construction

time.

� If the construction time is a big concern, FALCONN would be a good choice

because of its small construction time and good search performance.

� To deal with large scale datasets (e.g., 1 billion of data points) with moderate

computing resources, OPQ and SRS are good candidates due to their small mem-

ory cost and construction time. It is worthwhile to mention that, SRS can easily

handle the data points updates and have theoretical guarantee, which distinguish

itself from other seven algorithms.

100

6.5. EXPERIMENTS Chapter 6

Category
Search

Performance

Search Scalability Theoretical
GuaranteeDatasize Dim

DPG 1st =1st 6th No
HNSW 1st =1st 5th No
KGraph 3rd =1st 8th No
Annoy 4th 6th =3rd No
FLANN 5th =1st 7th No
OPQ 6th 5th =3rd No
FALCONN 7th 8th 2nd No
SRS 8th 7th 1st Yes

Category
Index Index Scalability

Size Memory Time Datasize Dim

DPG 4th 7th 7th =5th =1st
HNSW 7th 6th 8th =7th 5th
KGraph 5th 7th 6th =5th =1st
Annoy 8th 4th 3rd =7th 6th
FLANN 6th 5th 5th 4th 8th
OPQ 2nd 1st 4th 1st =3th
FALCONN 3rd 2nd 1st 2nd =3th
SRS 1st 3rd 2nd 3rd 7th

Table 6.3: Ranking of the Algorithms Under Di�erent Criteria

101

Chapter 6 6.6. FURTHER ANALYSES

6.6 Further Analyses

In this section, we analyze the most competitive algorithms in our evaluations, grouped

by category, in order to understand their strength and weakness.

6.6.1 Space Partition-based Approach

Our comprehensive experiments show that Annoy and FLANN have the best perfor-

mance among the space partition-based methods. Note that FLANN chooses FLANN-

HKM in most of the datasets. In addition, OPQ divides the space by utilizing the

production of k-means on M disjoint subspaces. Therefore, all three algorithms are

based on k-means space partitioning. We de�ne the algorithms who borrow the idea of

k-means as k-means-like algorithms.

We identify that a key factor for the e�ectiveness of k-means-like algorithms is

that the large number of clusters, typically Θ�N�. Note that we cannot directly apply

k-means with k � Θ�N� because (i) the index construction time complexity of k-means

is linear to k, and (ii) the time complexity to identify the partition where the query

is located takes Θ�N� time. Both OPQ and FLANN-HKM/Annoy achieve this goal

indirectly by using the ideas of subspace partitioning and recursion, respectively.

We conduct experiments to understand which idea is more e�ective. We consider

the goal of achieving k-means-like space partitioning with approximately the same

number of non-empty partitions. Speci�cally, for Audio dataset, we consider the fol-

lowing choices: (i) Use OPQ with 2 subspaces and each has 256 clusters. The number

of e�ective partitions k (i.e., non-empty partitions) is counted. Finally, k � 18,611.

(ii) Use original FLANN-HKM to build a tree with roughly k leaf nodes. After carefully

tuning the value of branching factor L, we found the number of total leaf nodes is 18000

when L � 42. (iii) Use FLANN-HKM with L � 2 and modify the stopping condition as

the points in each leaf node is no larger than m. using this approach, the number of

all leaf nodes k could be decided. After tuning the value of m, we get k � 17898 for

L � 2. (iv) Use k-means directly with k � 18,611 to generate the partitions.

102

6.6. FURTHER ANALYSES Chapter 6

 0.2

 0.4

 0.6

 0.8

 1

0.01% 0.1% 1% 10%

re
ca

ll

Percentage of data points accessed

k-means
HKM(k=2)

HKM(k=42)
OPQ

(a) Partition Quality

10-1

100

101

102

103

 0.2 0.4 0.6 0.8 1

sp
ee

du
p

recall

1 Tree
2 Trees
5 Trees

15 Trees
50 Trees

(b) Multiple HKM Trees

Figure 6.14: Analyses of Space Partitioning-based Methods

Fig. 6.14(a) reports the recalls of the above choices on Audio against the percentage

of data points accessed. Partitions are accessed based on the ascending order of the

distances of their centers to the query. We can see that OPQ-based partition has the

worst performance, followed by (modi�ed) FLANN-HKM with L � 42, and then L � 2.

k-means has the best performance, although the performance di�erences between the

latter three are not signi�cant. Therefore, our analysis suggests that hierarchical k-

means-based partitioning is the most promising direction so far.

Our second analysis is to investigate whether we can further boost the search

performance by using multiple hierarchical k-means trees. Note that Annoy already

uses multiple trees and it signi�cantly outperforms a single hierarchical k-means tree in

FLANN-HKM on most of the datasets. It is natural to try to enhance the performance

of FLANN-HKM in a similar way.

We set up an experiment to construct multiple FLANN-HKM trees. In order to

build di�erent trees, we perform k-means clustering on a set of random samples of the

input data points. Fig. 6.14(b) shows the resulting speedup vs recall where we use up

to 50 trees. We can see that it is not cost-e�ective to apply multiple trees for FLANN-

HKM on Audio, mainly because the trees obtained are still similar to each other, and

hence the advantage of multiple trees cannot o�set the extra indexing and searching

overheads.

103

Chapter 6 6.6. FURTHER ANALYSES

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18-30 ∞

pe
rc

en
ta

ge
 (%

)

KGraph DPG

(a) Min # of hops to any 20-NNs (Yout)

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ∞

pe
rc

en
ta

ge
 (%

)

KGraph DPG

(b) Min # of hops to any 20-NNs (Gist)

Figure 6.15: minHops Distributions of KGraph and DPG

6.6.2 Graph-based Approach

Our �rst analysis is to understand why KGraph, DPG and HNSW work very well (esp. at-

taining a very high recall) in most of the datasets. Our preliminary analysis indicates

that this is because (i) the k-NN points of a query are typically closely connected in

the proximity graph, and (ii) most points are well connected to at least one of the

k-NN points of a query. (ii) means there is a high empirical probability that one of the

p entry points selected randomly by the search algorithm can reach one of the k-NN

points of the query, and (i) ensures that most of the k-NN points can be returned.

By well connected, we mean there are many paths from an entry point to one of the

k-NN point, hence there is a large probability that the �hills� on one of the path is low

enough so that the search algorithm will not stuck in the local minima.

We also investigate why KGraph does not work well on some datasets and why

DPG and HNSW works much better. KGraph does not work on Yout and Gauss mainly

104

6.7. CONCLUSION Chapter 6

because both datasets have many well-separated clusters. Hence, the index of KGraph

has many disconnected components. Thus, unless one of the entrance points used by

its search algorithm is located in the same cluster as the query results, there is no or

little chance for KGraph to �nd any near point. On the other hand, mainly due to the

diversi�cation step and the use of the reverse edges in DPG, there are edges linking

points from di�erent clusters, hence resulting in much improved recalls. Similarly, in

HNSW, the edges are also well linked.

For example, we conduct the experiment where we use the NN of the query as

the entrance point of the search on Yout. KGraph then achieves 100 percent recall. In

addition, we plot the distribution of the minimum number of hops (i.e., the length of

the shortest path, denoted as minHops) between a data point and any of the k-NN

points of a query for the indexes of KGraph and DPG on Yout and Gist in Fig. 6.15.

We can observe that

� For KGraph, there are a large percentage of data points that cannot reach any

k-NN points (i.e., those corresponding toª hops) on Yout (60.38 percent), while

the percentage is low on Gist (0.04 percent).

� The percentages of the ª hops are much lower for DPG (1.28 percent on Yout

and 0.005 percent on Gist).

� There is no ª hops for HNSW on both datasets.

� DPG and HNSW have much more points with small minHops than KGraph, which

contributes to making it easier to reach one of the k-NN points. Moreover, on

Yout, HNSW has the most points with small minHops over three algorithms,

which results in a better performance as shown in Fig. 6.6(g).

6.7 Conclusion

NNS is an fundamental problem with both signi�cant theoretical values and empow-

ering a diverse range of applications. It is widely believed that there is no practically

105

Chapter 6 6.7. CONCLUSION

competitive algorithm to answer exact NN queries in sublinear time with linear sized

index. A natural question is whether we can have an algorithm that empirically returns

most of the k-NN points in a robust fashion by building an index of size O�N� and by

accessing at most αN data points, where α is a small constant (such as 1 percent).

In this chapter, we evaluate many state-of-the-art algorithms proposed in di�erent

research areas and by practitioners in a comprehensive manner. We analyze their

performance and give practical recommendations.

Due to various constraints, the study in this chapter is inevitably limited. In our

future work, we will (i) consider high dimensional sparse data; (ii) use more complete,

including exhaustive method, to tune the algorithms; (iii) consider other distance met-

rics.

Finally, our understanding of high dimensional real data is still vastly inadequate.

This is manifested in many heuristics with no reasonable justi�cation, yet working very

well in real datasets. We hope that this study opens up more questions that call for

innovative solutions by the entire community.

106

Chapter 7

Epilogue

In this thesis, we investigate the problem of nearest neighbour search (NNS) in high

dimensional space, which is a fundamental and signi�cant technique in many applica-

tions. For the exact NNS problem, we propose a new embedding technique, combining

linear and non-linear methods, to devise a tight distance lower bound. Following the

�lter-and-verify paradigm, we develop an e�cient exact NNS algorithm using the new

lower bounding technique for pruning. In terms of the approximate NNS problem, we

propose a novel data-sensitive indexing and query processing framework with an em-

phasis on optimizing the I/O e�ciency. The proposed index is learned by two learning

to hash methods with novel objective functions. We conduct performance evaluations

on many real-world datasets to show the e�ciency and e�ectiveness of our proposed

approaches. Finally, we conduct a comprehensive and systematic experimental study

for the state-of-the-art approximate NNS methods, including 19 algorithms and 20

datasets. We present comprehensive experimental results and detailed analysis for the

comparison methods. Motivated by the evaluation, we develop a new graph-based ap-

proximate NNS algorithm that can achieve high recall and search e�ciency on majority

of the datasets under a wide range of settings.

Even though hundreds of nearest neighbour search algorithms were proposed in the

literature, with the development of Arti�cial Intelligence techniques like the deep learn-

107

Chapter 7

ing and reinforcement learning, we still have the opportunity to push this problem to

have a better performance. For example, a deep learning-based model can be designed

to devise a better embedding for the original data that can maximally preserve the sim-

ilarity information. In contrast to the traditional partition-based methods, machine

learning-based methods can be used to learn a better partition from data.

108

REFERENCES

[1] A. Abdullah, A. Andoni, R. Kannan, and R. Krauthgamer. Spectral approaches

to nearest neighbor search. In FOCS, pages 581�590, 2014.

[2] L. Amsaleg, O. Chelly, T. Furon, S. Girard, M. E. Houle, K. Kawarabayashi, and

M. Nett. Estimating local intrinsic dimensionality. In SIGKDD, 2015.

[3] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate near-

est neighbor in high dimensions. In FOCS'2006, pages 459�468.

[4] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt. Practi-

cal and optimal lsh for angular distance. In Advances in neural information

processing systems, pages 1225�1233, 2015.

[5] A. Andoni, P. Indyk, H. L. Nguyen, and I. Razenshteyn. Beyond locality-sensitive

hashing. In SODA, pages 1018�1028, 2014.

[6] A. Andoni and I. Razenshteyn. Optimal data-dependent hashing for approximate

near neighbors. In STOC, 2015.

[7] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An

optimal algorithm for approximate nearest neighbor searching �xed dimensions.

Journal of the ACM (JACM), 45(6):891�923, 1998.

[8] A. Babenko and V. Lempitsky. E�cient indexing of billion-scale datasets of deep

descriptors. In CVPR, pages 2055�2063, 2016.

109

REFERENCES

[9] A. Babenko and V. S. Lempitsky. Additive quantization for extreme vector

compression. In CVPR'2014, pages 931�938.

[10] A. Babenko and V. S. Lempitsky. Tree quantization for large-scale similarity

search and classi�cation. In CVPR'2015, pages 4240�4248.

[11] A. Babenko and V. S. Lempitsky. The inverted multi-index. In CVPR, pages

3069�3076, 2012.

[12] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the Acm, 18(9):509�517, 1975.

[13] J. L. Bentley. Multidimensional divide-and-conquer. Communications of the

Acm, 23(4):214�229, 1980.

[14] E. Bernhardsson. Annoy at github https://github.com/spotify/annoy, 2015.

[15] E. Bernhardsson. Benchmarking nearest neighbors https://github.com/

erikbern/ann-benchmarks, 2016.

[16] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor.

In Proceedings of the 23rd international conference on Machine learning, pages

97�104. ACM, 2006.

[17] M. Boguñá, D. V. Krioukov, and K. C. Cla�y. Navigability of complex networks.

Nature Physics, abs/0709.0303(abs/0709.0303), 2008.

[18] L. Boytsov and B. Naidan. Learning to prune in metric and non-metric spaces.

In NIPS, 2013.

[19] D. Cai, X. Gu, and C. Wang. A revisit on deep hashings for large-scale content

based image retrieval. 2017.

[20] M. A. Carreira-Perpinan and R. Raziperchikolaei. Hashing with binary autoen-

coders. In Computer Vision and Pattern Recognition, pages 557�566, 2015.

110

https://github.com/spotify/annoy
https://github.com/erikbern/ann-benchmarks
https://github.com/erikbern/ann-benchmarks

REFERENCES

[21] R. Caruana, N. Karampatziakis, and A. Yessenalina. An empirical evaluation of

supervised learning in high dimensions. In ICML, pages 96�103, 2008.

[22] L. Cayton. Fast nearest neighbor retrieval for bregman divergences. In

ICML'2008, pages 112�119.

[23] S. Dasgupta and Y. Freund. Random projection trees and low dimensional man-

ifolds. In STOC, 2008.

[24] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing

scheme based on p-stable distributions. In Proceedings of the twentieth annual

symposium on Computational geometry, pages 253�262. ACM, 2004.

[25] T. Do, A. Doan, and N. Cheung. Discrete hashing with deep neural network.

CoRR, 2015.

[26] T. Do, A. Doan, and N. Cheung. Learning to hash with binary deep neural

network. In ECCV'2016, pages 219�234, 2016.

[27] W. Dong. Kgraph. http://www.kgraph.org, 2014.

[28] W. Dong, M. Charikar, and K. Li. E�cient k-nearest neighbor graph construction

for generic similarity measures. In WWW, 2011.

[29] R. Fagin, R. Kumar, and D. Sivakumar. E�cient similarity search and classi�-

cation via rank aggregation. In SIGMOD, pages 301�312, 2003.

[30] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middle-

ware. Journal of computer and system sciences, 66(4):614�656, 2003.

[31] X. Feng, J. Cui, Y. Liu, and H. Li. E�ective optimizations of cluster-based nearest

neighbor search in high-dimensional space. Multimedia Systems, 23(1):139�153,

2017.

111

http://www.kgraph.org

REFERENCES

[32] C. Fu and D. Cai. EFANNA : An extremely fast approximate nearest neighbor

search algorithm based on knn graph. CoRR, abs/1609.07228, 2016.

[33] K. Fukunaga and P. M. Narendra. A branch and bound algorithms for computing

k-nearest neighbors. IEEE Trans. Computers, 24(7):750�753, 1975. hierachical

k-means tree.

[34] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive hashing scheme based

on dynamic collision counting. In Proceedings of the 2012 ACM SIGMOD Inter-

national Conference on Management of Data, pages 541�552. ACM, 2012.

[35] R. Gan. Scalable k-nn graph construction for visual descriptors. In Computer

Vision and Pattern Recognition, pages 1106�1113, 2012.

[36] J. Gao, H. V. Jagadish, W. Lu, and B. C. Ooi. DSH: data sensitive hashing for

high-dimensional k-nnsearch. In SIGMOD, 2014.

[37] J. Gao, H. V. Jagadish, B. C. Ooi, and S. Wang. Selective hashing: Closing the

gap between radius search and k-nn search. In SIGKDD, 2015.

[38] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization. IEEE Trans.

Pattern Anal. Mach. Intell., 36(4):744�755, 2014.

[39] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via

hashing. In VLDB, pages 518�529, 1999.

[40] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU Press,

2012.

[41] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A

procrustean approach to learning binary codes for large-scale image retrieval.

IEEE Trans. Pattern Anal. Mach. Intell., 35(12):2916�2929, 2013.

[42] R. M. Gray and D. L. Neuho�. Quantization. IEEE Transactions on Information

Theory, 44(6):2325�2383, 1998.

112

REFERENCES

[43] Y. Gu, Y. Guo, Y. Song, X. Zhou, and G. Yu. Approximate order-sensitive k-nn

queries over correlated high-dimensional data. TKDE, 30(11):2037�2050, 2018.

[44] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang. Fast approximate

nearest-neighbor search with k-nearest neighbor graph. In IJCAI, pages 1312�

1317, 2011.

[45] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness:

Probabilistic algorithms for constructing approximate matrix decompositions.

SIAM review, 53(2):217�288, 2011.

[46] J. He, S. Kumar, and S. Chang. On the di�culty of nearest neighbor search. In

ICML, 2012.

[47] J. He, W. Liu, and S. Chang. Scalable similarity search with optimized kernel

hashing. In SIGKDD, pages 1129�1138, 2010.

[48] J. Heo, Z. Lin, X. Shen, J. Brandt, and S. Yoon. Shortlist selection with residual-

aware distance estimator for k-nearest neighbor search. In CVPR'2016, pages

2009�2017.

[49] H. Hotelling. Analysis of a complex of statistical variables into principal compo-

nents. Journal of educational psychology, 24(6):417, 1933.

[50] M. E. Houle and M. Nett. Rank-based similarity search: Reducing the dimen-

sional dependence. IEEE transactions on pattern analysis and machine intelli-

gence, 37(1):136�150, 2014.

[51] M. E. Houle and M. Nett. Rank-based similarity search: Reducing the dimen-

sional dependence. IEEE TPAMI, 37(1):136�150, 2015.

[52] M. E. Houle and J. Sakuma. Fast approximate similarity search in extremely

high-dimensional data sets. In ICDE, pages 619�630, 2005.

113

REFERENCES

[53] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng. Query-aware locality-

sensitive hashing for approximate nearest neighbor search. Proceedings of the

VLDB Endowment, 9(1):1�12, 2015.

[54] Y. Hwang, B. Han, and H.-K. Ahn. A fast nearest neighbor search algorithm

by nonlinear embedding. In Computer Vision and Pattern Recognition (CVPR),

2012 IEEE Conference on, pages 3053�3060. IEEE, 2012.

[55] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the

curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium

on Theory of computing, pages 604�613. ACM, 1998.

[56] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. idistance: An adap-

tive b+-tree based indexing method for nearest neighbor search. ACM Transac-

tions on Database Systems (TODS), 30(2):364�397, 2005.

[57] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor

search. IEEE Trans. Pattern Anal. Mach. Intell., 33(1):117�128, 2011.

[58] H. Jegou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in one billion

vectors: Re-rank with source coding. In ICASSP'2011, pages 861�864.

[59] Q. Jiang and W. Li. Scalable graph hashing with feature transformation. In

IJCAI, pages 2248�2254, 2015.

[60] Z. Jin, Y. Hu, Y. Lin, D. Zhang, S. Lin, D. Cai, and X. Li. Complementary

projection hashing. In ICCV'2013, pages 257�264, 2013.

[61] Z. Jin, D. Zhang, Y. Hu, S. Lin, D. Cai, and X. He. Fast and accurate hashing

via iterative nearest neighbors expansion. IEEE Trans. Cybernetics, 44(11):2167�

2177, 2014.

114

REFERENCES

[62] Y. Jing and S. Baluja. Visualrank: Applying pagerank to large-scale im-

age search. IEEE Transactions on Pattern Analysis and Machine Intelligence,

30(11):1877�1890, 2008.

[63] I. T. Jolli�e. Principal component analysis and factor analysis. Principal com-

ponent analysis, pages 150�166, 2002.

[64] A. Joly and O. Buisson. Random maximum margin hashing. In CVPR'2011,

pages 873�880.

[65] A. Joly and O. Buisson. A posteriori multi-probe locality sensitive hashing.

In Proceedings of the 16th International Conference on Multimedia 2008, pages

209�218, 2008.

[66] Y. Kalantidis and Y. S. Avrithis. Locally optimized product quantization for

approximate nearest neighbor search. In CVPR'2014, pages 2329�2336.

[67] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[68] N. Kitaev, �. Kaiser, and A. Levskaya. Reformer: The e�cient transformer.

arXiv preprint arXiv:2001.04451, 2020.

[69] J. M. Kleinberg. Navigation in a small world. Nature, 406(6798):845, 2000.

[70] W. Kong and W. Li. Isotropic hashing. In 26th Annual Conference on Neural

Information Processing Systems, pages 1655�1663, 2012.

[71] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classi�cation with deep

convolutional neural networks. In Advances in neural information processing

systems, pages 1097�1105, 2012.

[72] C.-C. Kuo, F. Glover, and K. S. Dhir. Analyzing and modeling the maximum

diversity problem by zero-one programming*. Decision Sciences, 24(6):1171�

1185, 1993.

115

REFERENCES

[73] M. Li, Y. Zhang, Y. Sun, W. Wang, I. W. Tsang, and X. Lin. An e�cient exact

nearest neighbor search by compounded embedding. In International Conference

on Database Systems for Advanced Applications, pages 37�54. Springer, 2018.

[74] M. Li, Y. Zhang, Y. Sun, W. Wang, I. W. Tsang, and X. Lin. I/o e�cient approx-

imate nearest neighbour search based on learned functions. In 2020 IEEE 36th

International Conference on Data Engineering (ICDE), pages 289�300. IEEE,

2020.

[75] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin. Approx-

imate nearest neighbor search on high dimensional data - experiments, analy-

ses, and improvement. IEEE Transactions on Knowledge and Data Engineering,

32(8):1475�1488, 2020.

[76] Y.-C. Liaw, M.-L. Leou, and C.-M. Wu. Fast exact k nearest neighbors search

using an orthogonal search tree. Pattern Recognition, 43(6):2351�2358, 2010.

[77] K. Lin, J. Lu, C. Chen, and J. Zhou. Learning compact binary descriptors with

unsupervised deep neural networks. In CVPR'2016, pages 1183�1192, 2016.

[78] Y. Lin, R. Jin, D. Cai, S. Yan, and X. Li. Compressed hashing. In CVPR'2013,

pages 446�451, 2013.

[79] V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou. Deep hashing for compact

binary codes learning. In CVPR'2015, pages 2475�2483, 2015.

[80] W. Liu, C. Mu, S. Kumar, and S. Chang. Discrete graph hashing. In Annual

Conference on Neural Information Processing Systems 2014, pages 3419�3427.

[81] W. Liu, H. Wang, Y. Zhang, W. Wang, and L. Qin. I-LSH: I/O e�cient c-

approximate nearest neighbor search in high-dimensional space. In ICDE, pages

1670�1673, 2019.

116

REFERENCES

[82] W. Liu, J. Wang, S. Kumar, and S. Chang. Hashing with graphs. In ICML,

pages 1�8, 2011.

[83] Y. Liu, H. Cheng, and J. Cui. Pqbf: I/o-e�cient approximate nearest neighbor

search by product quantization. In Proceedings of the 2017 ACM on Conference

on Information and Knowledge Management, pages 667�676. ACM, 2017.

[84] J. Lu, V. E. Liong, and J. Zhou. Deep hashing for scalable image search. IEEE

Trans. Image Processing, 26(5):2352�2367, 2017.

[85] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe LSH:

e�cient indexing for high-dimensional similarity search. In VLDB, pages 950�

961, 2007.

[86] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Intelligent probing for

locality sensitive hashing: multi-probe lsh and beyond. Proceedings of the Vldb

Endowment, 10(12):2021�2024, 2017.

[87] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov. Approximate nearest

neighbor algorithm based on navigable small world graphs. Inf. Syst., 45:61�68,

2014.

[88] Y. A. Malkov and D. A. Yashunin. E�cient and robust approximate nearest

neighbor search using hierarchical navigable small world graphs. CoRR, 2016.

[89] Y. A. Malkov and D. A. Yashunin. E�cient and robust approximate nearest

neighbor search using hierarchical navigable small world graphs. IEEE transac-

tions on pattern analysis and machine intelligence, 2018.

[90] P.-G. Martinsson, V. Rokhlin, and M. Tygert. A randomized algorithm for

the decomposition of matrices. Applied and Computational Harmonic Analysis,

30(1):47�68, 2011.

117

REFERENCES

[91] M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for high dimen-

sional data. IEEE Transactions on Pattern Analysis and Machine Intelligence,

36(11):2227�2240, 2014.

[92] B. Naidan, L. Boytsov, and E. Nyberg. Permutation search methods are e�cient,

yet faster search is possible. PVLDB, 8(12):1618�1629, 2015.

[93] G. Navarro. Searching in metric spaces by spatial approximation. VLDB J.,

11(1):28�46, 2002.

[94] J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business

Media, 2006.

[95] M. Norouzi and D. J. Fleet. Cartesian k-means. In CVPR'2013, pages 3017�3024.

[96] R. Panigrahy. Entropy based nearest neighbor search in high dimensions. In

SODA, pages 1186�1195, 2006.

[97] C. Paolo, P. Marco, and Z. Pavel. M-tree: An e�cient access method for simi-

larity search in metric spaces. PVLDB, pages 426�435, 1997.

[98] Y. Park, M. J. Cafarella, and B. Mozafari. Neighbor-sensitive hashing. PVLDB,

9(3):144�155, 2015.

[99] M. Radovanovic, A. Nanopoulos, and M. Ivanovic. Hubs in space: Popular near-

est neighbors in high-dimensional data. Journal of Machine Learning Research,

11:2487�2531, 2010.

[100] S. Ramaswamy and K. Rose. Adaptive cluster distance bounding for high-

dimensional indexing. IEEE Transactions on Knowledge and Data Engineering,

23(6):815�830, 2011.

[101] R. Salakhutdinov and G. Hinton. Semantic hashing. International Journal of

Approximate Reasoning, 50(7):969�978, 2009.

118

REFERENCES

[102] F. Shen, Y. Xu, L. Liu, Y. Yang, Z. Huang, and H. T. Shen. Unsupervised deep

hashing with similarity-adaptive and discrete optimization. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2018.

[103] C. Silpa-Anan and R. I. Hartley. Optimised kd-trees for fast image descriptor

matching. In CVPR, 2008.

[104] D. Song, W. Liu, R. Ji, D. A. Meyer, and J. R. Smith. Top rank supervised binary

coding for visual search. In Proceedings of the IEEE International Conference on

Computer Vision, pages 1922�1930, 2015.

[105] R. F. Sproull. Re�nements to nearest-neighbor searching in k-dimensional trees.

Algorithmica, 6(4):579�589, 1991.

[106] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin. SRS: solving c-approximate

nearest neighbor queries in high dimensional euclidean space with a tiny index.

PVLDB, 8(1):1�12, 2014.

[107] Y. Sun, W. Wang, Y. Zhang, and W. Li. Nearest neighbor search benchmark

https://github.com/DBWangGroupUNSW/nns_benchmark, 2016.

[108] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and e�ciency in high dimensional

nearest neighbor search. In SIGMOD, pages 563�576. ACM, 2009.

[109] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. E�cient and accurate nearest neigh-

bor and closest pair search in high-dimensional space. ACM Transactions on

Database Systems (TODS), 35(3):20, 2010.

[110] K. Terasawa and Y. Tanaka. Spherical LSH for approximate nearest neighbor

search on unit hypersphere. In WADS'2007, pages 27�38.

[111] K. Terasawa and Y. Tanaka. Spherical lsh for approximate nearest neighbor

search on unit hypersphere. In Workshop on Algorithms and Data Structures,

pages 27�38. Springer, 2007.

119

https://github.com/DBWangGroupUNSW/nns_benchmark

REFERENCES

[112] W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychome-

trika, 17(4):401�419, 1952.

[113] H. Wang, J. Cao, L. Shu, and D. Ra�ei. Locality sensitive hashing revisited:

�lling the gap between theory and algorithm analysis. In CIKM, pages 1969�

1978, 2013.

[114] J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao, and D. L. Lee. Billion-scale com-

modity embedding for e-commerce recommendation in alibaba. In Proceedings

of the 24th ACM SIGKDD, pages 839�848. ACM, 2018.

[115] J. Wang, W. Liu, S. Kumar, and S. Chang. Learning to hash for indexing big

data - A survey. Proceedings of the IEEE, 104(1):34�57, 2016.

[116] J. Wang, W. Liu, A. X. Sun, and Y. Jiang. Learning hash codes with listwise

supervision. In ICCV'2013, pages 3032�3039, 2013.

[117] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity search: A survey.

CoRR, abs/1408.2927, 2014.

[118] J. Wang, J. Wang, N. Yu, and S. Li. Order preserving hashing for approximate

nearest neighbor search. In MM'2013, pages 133�142.

[119] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen. A survey on learning to

hash. CoRR, 2016.

[120] Q. Wang, Z. Zhang, and L. Si. Ranking preserving hashing for fast similarity

search. In Twenty-Fourth International Joint Conference on Arti�cial Intelli-

gence, 2015.

[121] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS, pages 1753�

1760, 2008.

120

REFERENCES

[122] G. Wu, L. Liu, Y. Guo, G. Ding, J. Han, J. Shen, and L. Shao. Unsupervised

deep video hashing with balanced rotation. In Twenty-Sixth International Joint

Conference on Arti�cial Intelligence, pages 3076�3082, 2017.

[123] Y. Xia, K. He, F. Wen, and J. Sun. Joint inverted indexing. In ICCV, pages

3416�3423, 2013.

[124] Z. Xia, X. Feng, J. Peng, and A. Hadid. Unsupervised deep hashing for large-scale

visual search. In International Conference on Image Processing Theory TOOLS

and Applications, pages 1�5, 2017.

[125] J. Yang, W. L. Zhao, C. H. Deng, H. Wang, and S. Moon. Fast Nearest Neighbor

Search Based on Approximate k-NN Graph. 2018.

[126] P. N. Yianilos. Data structures and algorithms for nearest neighbor search in

general metric spaces. In SODA, pages 311�321, 1993.

[127] T. Zhang, C. Du, and J. Wang. Composite quantization for approximate nearest

neighbor search. In ICML'2014, pages 838�846.

[128] Y. M. Zhang, K. Huang, G. Geng, and C. L. Liu. Fast knn graph construc-

tion with locality sensitive hashing. In Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, pages 660�674, 2013.

[129] W. L. Zhao, J. Yang, and C. H. Deng. Scalable nearest neighbor search based

on knn graph. 2017.

[130] Y. Zheng, Q. Guo, A. K. H. Tung, and S. Wu. Lazylsh: Approximate nearest

neighbor search for multiple distance functions with a single index. In SIGMOD,

pages 2023�2037, 2016.

121

	Title Page
	Certificate of Authorship/Originality
	Acknowledgements
	Publications
	Table of Content
	List of Figures
	List of Tables
	Abstract
	Introduction
	Exact Nearest Neighbor Search
	Approximate Nearest Neighbor Search by Learning to hash
	Approximate Nearest Neighbor Search: An Experimental Study

	Literature Review
	Exact Nearest Neighbor Search
	Approximate Nearest Neighbor Search
	Hashing-based Methods
	Partition-based Methods
	Graph-based Methods

	Problem Statement
	Problem Definition
	Notations

	Exact Nearest Neighbor Search by Compounded Embedding
	Overview
	Embedding and Distance Lower Bound
	Motivation
	Embedding Method
	Correctness of Distance Lower Bound
	Optimization of Distance Lower Bound
	Using PCA Technique

	Efficient Exact NNS Algorithm
	Motivation
	Exact NNS Algorithm
	Performance Analysis
	Discussion

	Experiments
	Experimental Settings
	Performance Evaluation

	Conclusion

	Approximate Nearest Neighbor Search By Learned Functions
	Overview
	Our ANNS Framework
	Our ANNS Solution
	Performance Analysis

	Learning to Index by Linear Hashing
	Linear Model and Its Objective Function
	Relaxation and Optimization

	Learning to Index by Neural Network
	DNN Architecture
	Objective Function

	Discussion
	Experiments
	Experimental Settings
	Parameter Tuning
	Performance Comparison
	Summary

	Conclusion

	Approximate Nearest Neighbor Search: An Experimental Evaluation
	Overview
	Evaluation Scope
	The State-of-the-art ANNS Algorithms
	LSH-based methods
	L2H-based methods
	Partition-based Algorithms
	Graph-based Algorithms

	Diversified Proximity Graph
	Motivation
	Diversified Proximity Graph

	Experiments
	Experimental Settings
	Evaluation Measures
	Comparison with Each Category
	Second Round Evaluation
	Summary

	Further Analyses
	Space Partition-based Approach
	Graph-based Approach

	Conclusion

	Epilogue
	References

