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ABSTRACT Intelligent regulation for human exercise behaviors becomes significantly necessary for
exercise medicine after the COVID-19 epidemic. The key issue of exercise regulation and its potential
development for intelligent exercise is to describe human exercise physiological behaviors in a more
accurate and sufficient manner. Here, a non-parametric modeling method with kernel-based regularization
is presented to estimate cardiorespiratory biomarkers (i.e., oxygen uptake (V̇O2) and carbon dioxide output
(V̇CO2) by merely non-invasively monitoring the indicator of exercise intensity (e.g., walking speed). Using
the kernel-based non-parametricmodeling, we show that V̇O2 and V̇CO2 behaviors in response to continuous
and diversified exercise intensity stimulations can be quantitatively described. Furthermore, the dataset
from the stairs experiment with a proper protocol is applied in the kernel parameter selection, and this
selection approach is compared with the numerical simulation approach. The comparison results illustrate an
improvement of 4.18% for oxygen uptake and 7.63% for carbon dioxide output in a half period, and 11.00%
for oxygen uptake and 12.60% for carbon dioxide output in one period when using the kernel parameter
selected from the stairs exercise. Moreover, the advantages of using the non-parametric model, the necessity
of sufficient stimulation for identification and the importance of the kernel regularization term are also
addressed in this paper. This method provides fundamental work for the practice of intelligent exercise.

INDEX TERMS Exercise medicine, intelligent exercise, non-parametric modeling, oxygen uptake, carbon
dioxide output.

I. INTRODUCTION
Since exercise medicine by American College of Sports
Medicine (ACSM) in 2007 that exercise is standardized as a
part of a disease prevention and treatment medical paradigm,
the exercise prescription has been acceptable in the clinical
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medicine [1]. The COVID-19 pandemic is currently causing
another health risk - physical inactivity [2].

Exercise prescription is based on the exercise intensity that
is often detected by Oxygen Uptake (V̇O2) and Heart Rate
(HR) [3], [4]. In aerobic exercise activities, exercise speed
combined with durative time is introduced to identify the
exercise intensity [5], [6]. Motor controlled exercise fitness
equipment (e.g., treadmill and cycle ergometer) are usually
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used to prescribe and standardize the exercise intensity. The
stimulation type of exercise intensity often includes contin-
uous and intermittent exercises determined by uniform and
various exercise intensities in the exercise workout respec-
tively. The current practice on clinical medicine mainly is
based on the open-loop or pseudo-close-loop regulation,
while human exercise physiological responses cannot be pre-
dictably bounded in association with certainly stimulated
exercise intensities. Thus, the modelling work of cardiores-
piratory responses to exercise is critically necessary for the
development of exercise intelligence in prescribed exercise
medicine.

The term ‘‘oxygen debt’’ is the first physiological interpre-
tation for human exercise and recovery by A.V. Hill [7]. The
body’s carbohydrate stores are linked to energy ‘‘credits’’.
If these stored credits are expended during the exer-
cise workout, then a ‘‘debt’’ occurrs. The greater energy
‘‘deficit’’, or use of available stored energy credits, the larger
energy ‘‘debt’’ occurs. In 2014, the equivalent physical model
of the ‘‘oxygen debt’’ hypothesis is found based on the struc-
ture of a switching resistance-capacitor circuit [8]. In the
last decades, the model identification methods such as fixed-
order linear time-invariant models are used for the model-
based control of cardiorespiratory behaviors. Based on the
parametric modelling only limited physiological information
is acquired. Thus, the exercise scene with the known exercise
intensity can be theoretically acceptable such as computer-
controlled treadmill exercise.

However, the parametric model prediction paradigm may
fail in the outdoor exercise prescription because of dynamical
variability and uncertainty of the exercise intensity lead to a
decline in modelling accuracy and robustness. Furthermore,
advanced sports formulations (e.g., interval training) have
been confirmed as an effective way to improve cardiores-
piratory fitness and prolong healthy lifetimes. In this sense,
adequate aerobic activities (e.g., swimming, stair-climb, run-
ning, cycling, etc.) with intelligent guidance are sufficient to
accommodate the complex exercise physiological behaviors
in the real world.

Here, we present a nonparametric model prediction that is
not based on the complexity selection of model identification,
more importantly, is neither based on model structure nor
model parameter optimization, but based on the states of mas-
sive input information. The nonparametric model prediction
essentially involves two assumptions: (1) human cardiorespi-
ratory responses to exercise can be quantified with complex
interactions between exercise intensity and HR/V̇O2/V̇CO2
responses. Any exercise includes sufficient and diversified
stimulations which always simultaneously and frequently
influence the physiological network. And (2) the dynamic
characteristics of the cardiorespiratory response originating
from the source are vulnerable to disturbance and uncertainty.
Instead of identification by fixed-order linear time-invariant
systems, we define a kernel with regularization terms on
the basis of the nonparametric modelling. To achieve this,
we use exercise intensity as the input, V̇O2 or V̇CO2 as

the output. The input-output interaction is described by
Impulse Response (IR) and its numerical realization is esti-
mated by the stable spline kernel-based regulation. The
kernel-based non-parametric method is mainly applied in
identifying how the V̇O2 or V̇CO2 response to treadmill
speed. Two approaches are compared in the selection of
the kernel parameter in this methodology. One approach is
the numerical simulation which has been proposed in our
previous paper [9], and the other approach is selecting the
parameter of the kernel in the regularization term based
on identification results when using data from the stairs
experiment.

II. METHODS
In this section, we illustrate the non-parametric modeling
method that is applied for the V̇O2 and V̇CO2 identification
during the treadmill exercise. The experiment is introduced
afterward, which contains the stairs experiment and tread-
mill experiment. Two different selection methods for the
parameter of kernel including the numerical simulation and
tuning from stairs experiment are also introduced for the non-
parametric modeling of treadmill exercise.

A. NON-PARAMETRIC MODELING OF FINITE IMPULSE
RESPONSE BASED ON KERNEL
The non-parametric modeling method based on kernel is
conducted to discern how the V̇O2 or V̇CO2 reacts to tread-
mill speed. Under the discrete case, the relationship between
treadmill speed (input) and V̇O2 or V̇CO2 (output) can be
considered as a single input single output (SISO) system
which can be calculated by impulse response (IR) as Eq. (1):

y(t) =
∞∑
τ=0

u(t − τ )g[τ ]+ ε(t), t = 1, 2, . . . ,N , (1)

where u(t) is the input (exercise phase), y(t) is the output
(V̇O2 or V̇CO2), g(τ ) represents the parameter of IR, t is the
sampling time, ε(t) is Gaussian white noise, andN is the total
number of sampling.

The θ ∈ Rm is defined which contains the Finite Impulse
Response (FIR) coefficients [10]:

θ = [g1, g2, . . . , gm]T . (2)

Based on the regression vector ϕ and θ , the FIR model
could be described as [11]:

y(t) = ϕT (t)θ + ε(t), θ ∈ Rm (3)

The Eq. (3) could be rewritten in vector form by stacking
all the elements (rows) in y(t), ϕT (t) and ε(t) to form the
vectors Y , φ and ε and obtain:

Y = φθ + ε. (4)

Then the minimum value of the cost function in terms of
estimation error can be solved by least square estimation.
Thus the estimated parameter θ is written as [10]:

θ̂ = arg min
θ∈Rm
‖Y − φθ‖2. (5)
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Eq. (5) is not appropriate enough for modeling the
V̇O2 or V̇CO2 response as the input of the system is a square
signal and the measurement of the output contain various
artifacts. Therefore, a regularization term is added to Eq. (5)
in order to regularize the estimation and guarantee the effec-
tiveness of the obtained model [12]. As the impulse response
is modeled as a zero-mean Gaussian process, the priori infor-
mation, which is contained in the kernel matrix, is introduced
in the identification process to assign a covariance [13].
Therefore, the regularization term JR(θ ), which belongs to a
Reproducing Kernel Hilbert Space (RKHS) H , is defined
as Eq. (6):

JR(θ ) = θTP−1θ , (6)

where P is a suitable kernel matrix.
The priori information in kernel matrix P−1 could help

the estimated θ̂ provide a better and smoother result when
compared to least square estimation [10].

Based on our previous work [9], the Stable Spline (SS)
kernel which is shown in Eq. (7), demonstrates a better perfor-
mance than the other kernels based on the aspects of accuracy,
sensitivity, stability and smoothness.

P(i, j) =
c
2
e−βmin(i,j) −

c
6
e−3βmax(i,j), (7)

where c ≥ 0, 0 ≤ β < 1.
The SS kernel inherits all the approximation capabilities of

the spline curve by construction [10], [14] and is intrinsically
stable. The SS kernel represents the least committing priors
when smoothness and stability is the sole information on θ .

Then the estimation of θ is obtained as:

θ̂ = arg min
θ∈Rm

(
‖Y − φθ‖2 + γ θTP−1θ

)
, (8)

where γ is a positive scalar.
Finally, the Eq. (8) could be adapted as Eq. (9):

θ̂ =
(
PφTφ + γ Im

)−1
PφTY , (9)

where Im ∈ Rm×m is an identity matrix with the dimension of
m× m.

B. EXPERIMENT
Two experiments, namely ‘‘stairs experiment’’ and ‘‘tread-
mill experiment’’, are conducted in this research due to
the different command. The UTS Human Research Ethics
Committee (UTS HREC 2009000227) approved these exper-
iments and informed consent was obtained from all partici-
pants before commencement of data collection. The set-up of
the two experiments, hardware and the application interface
are shown in Fig. 1.

For the two experiments, the V̇O2 and V̇CO2 were both
divided by the weight (kg) for each participant to exclude
the impact of the participant’s weight on breath information.
The normalized V̇O2 and V̇CO2 are recorded as V̇dO2 and
V̇dCO2. In total, 35 untrained (non-athletes) and healthy
(no records of motor skill disorder, cardiac-respiratory dis-
order or related medications history) male participants are

FIGURE 1. Scenes of experiments, the equipment and application
interface.

recruited in this study. According to different purposes,
the participants are assigned randomly to the two experi-
ments in the aspects of age, height and HRmax to ensure the
fairness of the comparison between the two kernel parame-
ter selection methods. The treadmill experiment is designed
for identifying the relationship between the exercise phase
and V̇O2 or V̇CO2 by the non-parametric model. In order
to guarantee universality and compatibility, the sample size
of 20 participants is chosen in the treadmill experiment. The
stairs experiment is designed for selecting the appropriate
parameter in the non-parametric model, then the remaining
15 participants are assigned to the stairs experiment.

1) STAIRS EXPERIMENT
The stairs experiment is about HR maintaining between the
range of 60% to 80% of the participants’ HRmax during
the stairs exercise. In this experiment, HRmax is calculated
as [15]:

HRmax = 205.8− 0.685× age (10)

A self-designed mobile application is used to collect the
various information from 15 participants, including HR,
steps, and direction (upstairs or downstairs). The mobile
phone is placed on the ankle of participants. The Inertial
Measurement Unit (IMU) data could represent the direction
of the movement. Meanwhile, the breath data including V̇dO2
and V̇dCO2 are collected by a portable gas analyzer- Cosmed
K4b2 (Cosmed, Italy) [16]. The basic biological information
of the participants is shown in Table 1.

The participants are instructed to go upstairs and down-
stairs continuously for 12 minutes. The experiment starts
by collecting data while going upstairs. Once the partici-
pants’ HR exceeds 80% of HRmax, they are instructed to go
downstairs. When their HR is under 60% of HRmax, they
are asked to go upstairs again. The V̇O2max is monitored to
observe the ventilatory threshold VT1 and lactate threshold
VT2 [17]–[19]. There will be 2 − 4 complete periods (one
full period is from the beginning of upstairs exercise to the
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TABLE 1. Information about the 15 participants in stairs experiment.

FIGURE 2. Measured V̇dO2, V̇dCO2 and exercise direction of one participant during stairs experiment.

TABLE 2. Information about the 20 participants in treadmill experiment.

FIGURE 3. Measured V̇dO2, V̇dCO2 and speed of one participant during the treadmill experiment.

end of downstairs exercise) for an entire exercise routine for
all participants. The direction of the exercise is described as 1
when the participants are ascending (go upstairs), and 2 when
descending (go downstairs). A sample of the direction and
measured V̇dO2 and V̇dCO2 from one participant is shown
in Fig. 2. The V̇dO2 and V̇dCO2 are filtered by median filter
to remove the artifacts before identification. This experiment
ensures a continuously changing input (direction) and output
(V̇dO2 and V̇dCO2) for guaranteing a sufficient stimulation
in kernel parameter selection part.

2) TREADMILL EXPERIMENT
The treadmill experiment is about a jogging exercise on
treadmill. The V̇dO2 and V̇dCO2 data is also recorded by the
K4b2 when the 20 participants, who are not the same indi-
viduals as the stairs experiment, are jogging on the treadmill
following an exercise protocol. The physical information of
the participants is shown in Table 2.

The protocol of this experiment is shown in Fig. 3.
The participants first walk with the speed of 3 km/h for
four minutes, and then run at 8 km/h for eight minutes,
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followed by another walk at 3 km/h for eight minutes before
stopping.

C. PARAMETER SELECTION
The parameter of the kernel is a vital part to determine the
estimated model structure. Two different methods are applied
to select the parameter c and β in SS kernel as shown in
Eq. (7). The first method is numerical simulation and the sec-
ond method is parameter tuning in the stairs experiment. The
most appropriate parameter is selected to the non-parametric
modeling for the treadmill experiment.

We apply the fit ratio NRMSE (normalized root mean
square error) to obtain the goodness of fit of estimated output,
which is represented as follow:

NRMSE =

(
1−

||ŶN − YN ||
||YN −mean(YN )||

)
, (11)

where N is total number of sampling, YN is the real data
(reference) and ŶN is the estimated YN .

1) PARAMETER SELECTED FROM NUMERICAL SIMULATION
Our simulation begins with a first-order system to describe
the relationship between the O2 uptake or CO2 output and
the treadmill speed according to the description of V̇dO2 and
V̇dCO2 in previous study [9], [20] as shown in Eq. (12):

V (t) = V0 + RA[1− e−(t−TD)/τ ]. (12)

where V (t) is the V̇dO2 or V̇dCO2 at time t , V0 is the initial
value of V̇dO2 or V̇dCO2, RA is the response amplitude, TD is
the time delay, and τ is the time constant.
Thus, the system is set as Eq. (13):

Y (s) =
K

Ts+ 1
U (s), (13)

where K that follows the uniform distribution U(5, 15) is
the steady gain, and T which follows U(15, 25) is the time
constant.

The input of the system U (s) is set to be the same trend
as the stairs experiment to ensure a similar stimulation. The
simulated output Y (s) is polluted by a Gaussian white noise
with 1 dB Signal-Noise Ratio (SNR). The sampling time is
selected as 1 second.

The parameter c and β in Eq. (7) of the SS kernel men-
tioned in Section II-A are the primary targets of tuning. After
tuning the parameter in the simulation [11], we selected the
following combination of c = [100 200 300] and β =
[0.95 0.987 0.99] and the samples of the IR model are shown
in Fig. 4. After the statistics of fitness and the observation of
IR smoothness and stability, the best combination is c = 200
and β = 0.987.

2) PARAMETER TUNING FROM STAIRS EXPERIMENT
As mentioned above, the continuously changing data in stairs
experiment could ensure a enough stimulation for the system.
Therefore, the identification for V̇dO2 and V̇dCO2 in the

FIGURE 4. Impulse response from SS kernel compared to the true value
of impulse response in the simulation.

TABLE 3. The fitness of different parameter β for V̇dO2 and V̇dCO2
identification in the stairs experiment of ten participants.

stairs experiment is aimed to select the most appropriate
parameter and compare the selection process. We choose
one period from each participant to do the identification.
The identification is also conducted by the non-parametric
method. After the preliminary range selection, we find that
when β is in the range of 0.9975 − 0.999, the fitness
shows better results. Then we make further statistics about
the fitness of the parameters in this range. As the exercise
phase changes continuously during the stairs exercise, the
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FIGURE 5. Impulse response and estimated output comparison by parameter selected from stairs experiment and simulation of participant A.
(a) Impulse response for estimated V̇dO2. (b) Real and estimated V̇dO2 in half period. (c) Real and estimated V̇dO2 in full period. (d) Impulse
response for estimated V̇dCO2. (e) Real and estimated V̇dCO2 in half period. (f) Real and estimated V̇dCO2 in full period.

performance of some participants is not steady enough for
the identification part and the results are not in line with
the common situation. To guarantee the effectiveness of the
parameter selection, the results from the participants that the
fitness is below 60% are excluded. Hence, Table 3 represents
the fitness level of stairs experiment identification results
(10 out of 15 participants, whose fitness exceeds 60%). The
results from these 10 participants are chosen to construct the
model for the kernel parameter selection. Finally, we decide
that c = 200 which is same with the simulation, and β =
0.998, which is marked as red in Table 3, according to its
university for most participants’V̇dO2 and V̇dCO2.

D. STATISTICAL ANALYSIS
In order to verify that the fitness of the models is significantly
different between the two parameter selecting approaches,
the statistical analysis is necessary. After the fitness of identi-
fication results from treadmill experiment by different param-
eter selecting approaches is calculated, the histogram and
normal probability of the fitness is plotted in Matlab to deter-
mine whether the fitness follows a normal distribution. As the
results of normality shows, the Wilcoxon Rank Sum test is
used because the fitness does not follow normal distribution.
Generally, p < 0.05 means h = 1, and the fitness is
considered as statistically significant.

III. RESULTS
In this section, the identification results about the V̇dO2 and
V̇dCO2 in the treadmill experiment are discussed. The com-
parison between estimation fitness when using the parameter
β from stairs experiment and simulation are also be presented.

We applied the non-parametric model identification
method for both the ascending period and entire period of
V̇dO2 and V̇dCO2 in the treadmill experiment. The impulse
response and the estimated results (ascending period and
entire period) of V̇dO2 and V̇dCO2 from one representative
participant are shown in Fig. 5. Based on the IR in these two
figures, themodel is more flexible when the parameter β from
stairs experiment is used. Furthermore, the estimated output
is closer to the real output both for V̇dO2 and V̇dCO2 during
both ascending and entire period.

As the parameter β in the non-parametric model is selected
by two different approaches-tuning from stairs exercise and
selecting from numerical simulation, the performance of
these two selection approaches need to be investigated.
Hence, after the non-parametric model with the selected
parameters is applied in the treadmill experiment during
the onset period and the full onset-offset period, the fitness
between real output and estimated output is calculated. The
comparison of the estimated fitness is displayed in Fig. 6
to show the performance of the two parameter selection
approaches. The figures illustrate that all the output esti-
mation fitness when using the parameter β from the stairs
experiment is higher than using the parameter β from the
simulation for both V̇dO2 and V̇dCO2. The fitness improve-
ment by kernel parameter from stairs experiment compared
with parameter from numerical simulation are summarized
in Table 4.
The histogram and the normal probability of the estimation

fitness for V̇dO2 and V̇dCO2 in treadmill experiment during
half or one period are shown in Fig. 7. The estimation fitness
is acquired by using different parameter selection approaches
(selecting from numerical simulation and tuning from stairs
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FIGURE 6. Estimated V̇dO2 and V̇dCO2 fitness comparison by parameter selected from stairs experiment and simulation of 20 participants in
(a) Ascending period and (b) Full period.

FIGURE 7. Histogram of estimation fitness by parameter selected from stairs experiment and simulation of 20 participants.
(a) V̇dO2 Fitness in full period. (b) V̇dO2 Fitness in half period. (c) V̇dCO2 Fitness in full period. (d) V̇dCO2 Fitness in Half Period.

TABLE 4. The improvement of estimation fitness using kernel parameter
from stairs experiment.

exercise) and demonstrate that the identification fitness is
commonly higher when using the parameter selected from
the stairs exercise than numerical simulation. The Wilcoxon
Rank Sum test is applied because the estimation fitness does

TABLE 5. Wilcoxon rank sum test of estimation fitness comparison when
using β from simulation and stairs experiment.

not follow the normal distribution. As the Wilcoxon Rank
Sum test results shown in Table 5, all four outputs satisfy with
the general condition, indicating that the results is statistically
significant.
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IV. DISCUSSION
A. THE PERFORMANCE OF NON-PARAMETRIC MODEL
The advantage of using the non-parametric modeling method
when the system structure is uncertain as opposed to the clas-
sical linear modeling method [8], [21], [22], was presented in
various ways. In previous studies, the commonly usedmethod
for modelling V̇dO2 or V̇dCO2 is a mono-exponential func-
tion [20], [23] and the parameters are determined by nonlinear
least-squares regression. Julian et al. [24] studied the effects
of the constraints in this traditional mono-exponential model.
The importance of the constraints is also demonstrated in
our study. Furthermore, The impulse response of the model
generated by the two approaches illustrates the characteristics
of a non-first-order system and this is demonstrated directly
in Fig. 5. By contrast, the IR model using the parameter β
from the stairs experiment fluctuates to a greater extent than
the simulation. The oxygen uptake identification results of
the stairs experiment using the linear model from the work of
Jan et al. [22] showed a mean fitness of 62.5%. The fitness
results using the non-parametricmodel in this paper, as shown
in Table 3, are 6.21% higher. As the non-parametric model is
applied, the amount of information is sufficient to fully utilize
the priori information and this ensures the complexity of the
IR model for estimation. The priori information in the kernel
provides the support to estimate the structure of the system.
In addition, the regularization term contains the kernel matrix
which eliminates the possibility of overfitting.

The structure of the system under the protocol in our
experiments is of higher complexity than the first-order sys-
tem or time-invariant system and this is demonstrated by
the identification results. In the numerical simulation part
for parameter selecting, we acquired the β value under the
assumption that the system is a first-order system based
on the previous study [20]. Our previous study [9] also
revealed that in the single ascending or descending period,
the system is close to a first-order system, but there are still
exceptions because of the individual difference. However,
in this research, the physiological information contains two
periods of ascending (0 − 3 − 8 km/h) or a full period with
ascending and descending (3 − 8 − 3 km/h). This means
that the information is not enough to determine the struc-
ture of the system which is more complicated than a single
onset or offset period. Hence, ideal results can be achieved
by using the non-parametric model, and results demonstrate
that the system is no longer a first-order system or that it may
vary when the period changes. The higher improvement in
terms of estimation in one period, as shown in Table 4, also
demonstrates that the non-parametric model is effective for
the complicated system.

B. THE PARAMETER OF KERNEL MATRIX IN
NON-PARAMETRIC MODEL
The parameter of the kernel matrix in the non-parametric
model should be selected carefully since the regulariza-
tion term within the kernel matrix plays a significate role

in identification. For the impulse response estimation, the ker-
nel P possesses a large condition number which leads to
numerical problems, such as failure or inaccuracy of the
Cholesky decomposition of P [11]. Compared with the
numerical computation method in Gulob and Van Loan’s
study [25], this problem could be tackled in an active way
based on our priori information about P in the impulse
response estimation. If the parameter of the kernel that con-
trols the decaying rate of P are very small, the kernel may
have a large condition number. Under this circumstance,
the extra constraint on these parameters should be enforced
in order to guarantee the tolerably large condition number
which is designed to avoid numerical problems. To achieve
such a goal, the selected value of parameter β in kernel matrix
from the stairs experiment is compared with the value chosen
from the simulation to create a more appropriate constraint.
The extra constraints limit the search region of the parameter.
The research of Chen, Ohlsson et al [26] demonstrates that the
extra constraints do not cause the performance issues in the
regularized least squares estimation.

The fitness of identification results is higher in
Fig. 6-Fig. 7 when using the parameter β from the stairs
experiment, which is also demonstrated by the fitness com-
parison in Table 4. As well, the estimated output in Fig. 5
shows that the estimation when using the parameter β from
the stairs experiment observes some slight changing trends in
relation to the V̇dO2 or V̇dCO2. The reason for the higher
fitness is that sufficient stimulation is important for the
modeling. Data from the stairs experiment ensures that there
is sufficient input, which is a continuously changing step
response for the system. The direction switching strategy
guarantees the randomness of the input. The selection of the
participants’ HRmax from the 60% to 80% range is designed
to ensure a maximum range of stimulation. The uncertainty of
a random input couldmake the informationmatrix substantial
in a limited time. The input signals from the stairs experiment
are of enough intensity and duration. The dynamic relation-
ship between the exercise phase and V̇dO2 or V̇dCO2 during
the stairs experiment is obvious enough because of their
continuously changing nature. By contrast, the frequently
changing treadmill speed can make the participants uncom-
fortable. However, this shortcoming does not exist in the stairs
experiment. Accordingly, this is the reason for using the stairs
experiment for the parameter selection.

V. LIMITATIONS OF THE STUDY
The parameter selection procedure for the stairs exercise was
achieved by tuning in a certain range. In future works, this
part could be selected adaptively.

VI. CONCLUSION
To summarize, we applied the kernel-based non-parametric
method to identify the dynamics of V̇dO2 and V̇dCO2
responses to treadmill speed. In order to guarantee a suffi-
cient stimulation for modeling, the parameter β selected from
the stairs experiment is constructed and compared with β
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selected from simulation. The data from the stairs experiment
is collected by a self-designed application, and this exper-
iment protocol ensures a continuously changing input and
physiological signal. The results demonstrate the benefits of
using the non-parametric modeling method when the system
structure cannot be described by a simple model. The fitness
comparison also illustrates that when using the parameter β
from the stairs experiment, the estimation results are better
than the ones from the simulation. This is because the switch-
ing protocol provides a sufficient level of random stimulation
and the stairs experiment provides continuously changing
data.
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