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Abstract: The extreme form of land degradation caused by the formation of gullies is a major
challenge for the sustainability of land resources. This problem is more vulnerable in the arid
and semi-arid environment and associated damage to agriculture and allied economic activities.
Appropriate modeling of such erosion is therefore needed with optimum accuracy for estimating
vulnerable regions and taking appropriate initiatives. The Golestan Dam has faced an acute problem
of gully erosion over the last decade and has adversely affected society. Here, the artificial neural
network (ANN), general linear model (GLM), maximum entropy (MaxEnt), and support vector
machine (SVM) machine learning algorithm with 90/10, 80/20, 70/30, 60/40, and 50/50 random
partitioning of training and validation samples was selected purposively for estimating the gully
erosion susceptibility. The main objective of this work was to predict the susceptible zone with the
maximum possible accuracy. For this purpose, random partitioning approaches were implemented.
For this purpose, 20 gully erosion conditioning factors were considered for predicting the susceptible
areas by considering the multi-collinearity test. The variance inflation factor (VIF) and tolerance
(TOL) limit were considered for multi-collinearity assessment for reducing the error of the models
and increase the efficiency of the outcome. The ANN with 50/50 random partitioning of the sample is
the most optimal model in this analysis. The area under curve (AUC) values of receiver operating
characteristics (ROC) in ANN (50/50) for the training and validation data are 0.918 and 0.868,
respectively. The importance of the causative factors was estimated with the help of the Jackknife
test, which reveals that the most important factor is the topography position index (TPI). Apart from
this, the prioritization of all predicted models was estimated taking into account the training and
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validation data set, which should help future researchers to select models from this perspective.
This type of outcome should help planners and local stakeholders to implement appropriate land and
water conservation measures.

Keywords: land degradation; gully erosion; random partitioning approaches; machine learning
algorithm; jackknife test

1. Introduction

In the last few decades, modern societies have witnessed various types of degradation of natural
resources; above all, soil and water have become more prominent [1]. Land degradation through
water-induced soil erosion is the most critical threat to human life and a number of environmental
problems are occurring, particularly in the arid and semi-arid region of Iran [2]. Soil erosion is not
only an extreme form of land degradation; it is also responsible for a gradual decline in agricultural
productivity [3–5]. The formation of soil is a natural process, although the net loss of soil is much higher
than the formation of regolith due to the gradual degradation of this resource and the influence of
anthropogenic activities [6,7]. It has been estimated that almost 6 million hectares of fertile land are lost
annually on a global scale due to soil erosion [8]. In the case of Iran, it is approximately 2 to 2.5 billion
tons per year and ranks second in the world in terms of soil erosion [9]. In Iran, therefore, the rate of soil
erosion is occurring at an alarming rate, making it a national threat [10]. This enormous amount of soil
erosion is mainly due to arid and semi-arid climatic conditions and more than 75% of the area is exposed
to water-induced soil erosion, i.e., erosion in the form of gullies [10]. More specifically, there is a long
dry season with a short wet season, which influences extreme rainfall and causes maximum surface
runoff over infiltration [10]. It has also been reported that Iran is facing several intimidating gully
incisions around the world [11,12]. Various types of environmental problems, such as desertification,
sedimentation in rivers, as well as reservoirs, floods, and soil fertility losses have occurred due to
the severe impact of gully erosion [13,14]. In recent times, due to its large impact on environmental
degradation and national economic losses, the threat of gully erosion has been taken into account in an
appropriate manner. Therefore, in order to understand the mechanism of water-induced gully erosion
and to overcome this problem in an optimal way, gully erosion susceptibility mapping (GESM) is a key
strategy and must be considered as an initial task. The GESM is derived from the relationship between
different geo-environmental conditioning factors and occurrences of gullies [15].

Gully erosion is water-induced soil erosion and is one of the most destructive forms of soil erosion
in the world [16,17]. A gully can be defined as a permanent vertical deep channel with a temporary
flow of water; the depth varies from 30 cm to several meters and sometimes it is several hundred
meters long [18–20]. Apart from this, the existence of one type of gully is limited during the wet season,
which is called the ephemeral gully. Gully erosion is a very complicated process and it correlates with
many factors, such as topography, soil characteristics, lithology, rainfall, land use, and the nature of
vegetation [21–23]. Running surface water is responsible for the initiation and development of gullies
by removing soil particles and ultimately transporting them in the downslope direction [24]. Primarily,
two types of approaches have been recognized to evaluate the occurrences of gully erosion [25–27].
First, using a regression analysis, we explored the relationship between the occurrence of gully
erosion and the topographical condition. Second, gully erosion response curves were prepared using
machine learning techniques [28]. The predictive regression approach is considered to estimate and
identify the conditioning relation among variables. Regression solutions estimated using various
principles (e.g., optimization, minimal square, etc.) are not inherently similar [29]. Machine learning
may analyze vast quantities of data and identify complex changes and nature that would not be
obvious to individuals. This algorithm is well suited for resolving multi-dimensional and multi-variety
information, and can do so in complex or unpredictable situations. As this algorithm learns its skills,
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it continues to develop in terms of accuracy and performance. Machine learning needs the training of
large volumes of data, which should have been inclusive/true and of an excellent standard. There may
also be occasions when they wait to produce additional knowledge. ML requires ample time to
let algorithms learn and improve sufficiently to perform their tasks with reasonable precision and
relevance. It also requires huge sources for it to operate. This might mean extra computing power needs
for analysis. Another major obstacle is the ability to analyze the algorithm-generated output precisely.

Over the last few decades, with the arrival of remote sensing (RS), geographic information system
(GIS), and various statistical approaches, susceptible areas have been identified in various fields, such as
gully erosion [30], landslide [31], groundwater potential zone [32], etc. Basically, there are three types of
susceptibility mapping based on multi-criteria decision analysis (MCDA), statistical analysis, and more
recently the widely used machine learning algorithm. Extensive literature surveys show that different
types of models have been used throughout the world over time to map the susceptibility of gully
erosion. It is indeed necessary to remember that the MCDA models presume that the improvement of
the attribute does not influence the preferences of the different criteria. This feature, recognized by
the technical resource of reciprocal preferred autonomy, is related to the particular question, and the
nature of the research [33]. Experts must always determine if autonomy is an expectation for fields
and, if not, recommend quite complicated MCDA (multi-criteria decision analysis) systems that
integrate relationships [34]. Most importantly, knowledge-based MCDA [11] and statistical analysis
based on continuous, binary, and categorical data, such as the information value [23,35], conditional
probability [36], certainty factor [37], frequency ratio [38], evidential belief function [2], index of entropy
(IoE) [39], weights of evidence (WoE) [40], and logistic regression [2,41], has been widely used by
several researchers. In the case of the machine learning algorithm, the most successful models for
GESM are the multi-layer perception approach (MLPC) [42], multivariate adaptive regression spline
(MARS) [39], artificial neural network (ANN) [43], classification and regression trees (CART) [23],
maximum entropy (ME) [44], decision tree (DT) [45], boosted regression tree [15], stochastic gradient
treeboost (SGT) [46], random forest (RF) [47], bagging best-first decision tree [48], general linear model
(GLM) [49], maximum entropy [50], etc. In general, GESM with machine learning models is more
proficient at predicting susceptible areas than statistical analysis. Simulation focuses, in a number of
ways, on the related mechanism used, including machine learning or deep learning. Computational
products are formulated to predict missing parameters, objects, or events, as their name implies.
They sometimes rely on grouping, convergence, and object image processing algorithms [51].

In the current study, semi-humid, semi-arid, and Mediterranean climate types in the province
of Golestan, Iran were chosen to map the susceptibility of gully erosion due to its serious damage
and the major environmental problems caused by gully erosion. Therefore, the causes of extensive
gully erosion, their development, and susceptibility mapping for management and planning purposes
must be identified. Therefore, the objectives of our current research work were to identify the most
reliable maps of gully erosion susceptibility and to recognize the main conditioning factors responsible
for their development. Therefore, in order to meet our objectives, a maximum entropy (MaxEnt),
artificial neural network (ANN), support vector machine (SVM), and general linear model (GLM)
machine learning algorithm with 90/10, 80/20, 70/30, 60/40, and 50/50 random partitioning of training
and validation samples were selected for the purpose of estimating the susceptible part of gully erosion.
The selection of the machine learning models for gully erosion susceptibility mapping was based on
the previous literature in this region as well as the same climatic conditions [39,43,52–54]. The optimal
models suggested by the various researchers were considered for the estimation of gully erosion
susceptibility. In previous studies, researchers have attempted to increase the accuracy of the model by
considering ensemble approaches rather than a single model. In this perspective, this kind of approach
was avoided in order to avoid the problem of over-fitting. Apart from this, the study considered the
modification of existing models by considering the random partition of samples. The final result of
different GESM models was validated through the area under receiver operating characteristic curve
(AUROC). In addition, the jackknife test was used to give different GECFs importance regarding the



Remote Sens. 2020, 12, 2833 4 of 32

susceptibility to gullies. This type of machine learning algorithm is not only capable of estimating
susceptibility with adequate accuracy but is also capable of handling the large amount of data of the
predicted models. Supervised ML approaches usually involve partitioning information into multiple
parts for clustering algorithm training, validation, and final testing. Training and validation are usually
performed on a test set to discover the perfect variables for a classification model. It was accompanied
by the implementation of a classification algorithm for a different test sample with optimal factors for
estimating the generalization efficiency of the classification model. For minimal data, this differentiation
of the test dataset results in a difficult trade-off among several predictive significances in the classifier
output estimation against improved simulation analysis and significant optimal fitting. Apart from the
models, the optimum separation capacity of the samples in the appropriate manure may increase the
efficiency of the models without compromising the importance of the classifier. In terms of uniqueness,
this study is capable of estimating the importance of sample partitioning approaches to improve model
performance and to reduce predictive bias. This approach is used for the first time in gully erosion
susceptibility modeling, taking into account the optimal capacity of the model. Finally, GES maps
will provide appropriate strategies for restoration in the various sectors, i.e., agriculture, land use,
and watershed management planners, in a sustainable manner.

2. Materials and Methods

2.1. Study Area

The study area occupies an area of 790 km2 and lies between 37◦30′00” to 37◦50′00” N, and 55◦31′40”
to 56◦2′10” E in the northeast part of Golestan province. Elevation ranges between 160 and 1490 mt.
mean sea level (MSL) (Figure 1). More than half of the basin has mountainous morphology with
gentle slopes and is a part of the Alborz Mountains. The slope angle at steep slopes reaches up to
118%. The average annual rainfall varies from 346 to 610 mm, with the maximum rainfall conducted
in southern parts. The minimum and maximum temperatures are 8 and 16 ◦C. Three main climatic
characteristics of semi-humid, semi-arid, and Mediterranean are evident in the study area. Agriculture,
as the predominant land cover, is conducted in most of the study area (i.e., 45.35%), followed by
rangelands (38.07%), forests (15.95%), and residential areas (0.64%) (Table 1). Geologically, the
largest portion of the region corresponds to the grey to black shale and thin layers of siltstone and
sandstone (73.94%), followed by Ammonite bearing shale with the interaction of limestone (12.48%),
grey thick-bedded limestone, and dolomite (6.26%), and the remaining area is dominated by other
formations described in detail in Table 2.
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Figure 1. Location of the study area.

Table 1. Land use classes in the study area.

Land Use Area (he) Area (%)

Forest 12,513.04 15.95
Residential Areas 498.6 0.64

Rangelands 29,858.8 38.07
Agricultural 35,568.2 45.35

Table 2. Lithology of the study area.

Geo Unit Description Age Area (ha) Area (%)

Qm Swamp Cenozoic 2169.48 2.77

Qsw Grey to block shale and thin layers of
siltstone and sandstone Cenozoic 58,000.92 73.94

Ksn Ammonite bearing shale with
interaction of limestone Mesozoic 9786.63 12.48

Ksr Grey thick—bedded limestone
and dolomite Mesozoic 4906.5 6.26

Jmz Olive—green shale and sandstone Mesozoic 1857.68 2.37

Ekh Swamp Cenozoic 1715.73 2.19

2.2. Methodology

The present study followed several steps as follows:

(i) The gully erosion inventory map and gully erosion causality factors preparations: In the current
study, a total of 1115 gully head cut locations were identified using the high-resolution images,
field investigation, global positioning system (GPS), and a number of gullies were received
from Natural Resources and Watershed Management Organization of the Golestan Province.
The 20 environmental factors were considered for the modeling purpose.

(ii) Multi-collinearity analysis among the gully erosion factors using the variance inflation factor
(VIF) and tolerance limit was done using SPSS software.

(iii) The significance and effectiveness of factors was carried out using the MaxEnt model
(Jackknife test).
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(iv) GES maps were prepared using the MaxEnt, ANN, SVM, and GLM models.
(v) The GESM model’s performance was validated through the area under receiver operating

characteristic curve (AUROC).

The detailed methodology for estimating the susceptibility of gully erosion in the light of these
novel approaches is shown in Figure 2.

2.3. Gully Inventory Map

The gully erosion inventory map (GEIM) is the basic tool for creating the GESMs. GEIM shows
the spatial distribution of gullies and geometry. Through the historical and present gully distributions,
one can predict the future risk of the gully erosion of the area. In the present study, the RS and GIS
techniques were applied to generate the GEIM. The geographical location of gullies was partially
acquired from the archived data of Natural Resources and Watershed Management Organization of
the Golestan Province (NRWMOGP). Further, extensive field surveys were conducted supported by
geoinformatics (Google Earth images and a handheld GPS device), through which the previous gully
inventory map was amended, and an all-inclusive map was generated in ArcGIS 10.3. The produced
inventory map was then randomly split into two sets of training and validation data in five replicates,
each of which possessed a different training:validation balance. The balance values commenced
in favor of the training dataset as it held 90% of the gullies while the remaining was cast-off for
further validation, and perpetually more samples were transmitted to the validation dataset. As such,
five training:validation samples of 90:10%, 80:20%, 70:30%, 60:40%, and 50:50% were considered to
investigate how the dataset’s transient distribution can influence models’ performances. Some major
erosion-prone areas are shown in Figure 3, due to the nature and vulnerability of the erosion that we
can easily understand.

Figure 2. Flowchart of research in the study area.



Remote Sens. 2020, 12, 2833 7 of 32

Figure 3. Some of the mapped gullies in the study area. (a) Lat: 377012.3; Long 4183012. (b) Lat: 392812.6;
Long 4176965.6. (c) Lat: 389226.2; Long 4173413.5.

2.4. Data Preparation

Different geo-environmental factors, such as topographic, hydrological, geological, soil,
and environmental factors, are important parameters for GESM (gully erosion susceptibility mapping)
(Table 3). It is also an important step in the selection of the various appropriate geo-environmental
factors for the preparation of GESM using different machine learning models [15]. In this study,
based on a previous literature review [10,23,55], the availability of data, extensive field survey,
and multi-collinearity analysis, we selected 20 GECFs, namely the topography position index (TPI) [56],
plan curvature [57], elevation, aspect [58], slope [58], height above nearest drainage (HAND) [59],
drainage density [60], distance from stream [61], terrain ruggedness index (TRI) [42], distance from
road [62], bulk density [63], mineral soil, clay content, sand content, relative slope position (RSP) [64],
silt content, valley depth, land use, soil texture, and lithology (Figure 4a–t).
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Figure 4. Cont.
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Figure 4. Gully erosion factors are showing (a) Topography position index (TPI), (b) Plan curvature,
(c) Elevation, (d) Aspect, (e) Slope, (f) Height above nearest drainage (HAND), (g) Drainage density,
(h) Distance from stream, (i) Terrain ruggedness index (TRI), (j) Distance from road, (k) Bulk density,
(l) Mineral Soil, (m) Clay content, (n) Sand content, (o) Relative slope position (RSP), (p) Silt content,
(q) Valley depth, (r) Land use, (s) Soil Texture, (t) Lithology.

Table 3. Detailed information about the database.

Sl. No. Conditioning Factors Source Time Spatial
Resolution/Scale

1 Topography position
index (TPI) ALOSPALSER DEM 12/08/2012 12.5 mt.

2 Plan curvature ALOSPALSER DEM 12/08/2012 12.5 mt.

3 Elevation ALOSPALSER DEM 12/08/2012 12.5 mt.

4 Aspect ALOSPALSER DEM 12/08/2012 12.5 mt.

5 Slope ALOSPALSER DEM 12/08/2012 12.5 mt.

6 Height above nearest
drainage (HAND) ALOSPALSER DEM 12/08/2012 12.5 mt.

7 Drainage density ALOSPALSER DEM 12/08/2012 12.5 mt.

8 Distance from stream ALOSPALSER DEM 12/08/2012 12.5 mt.

9 Train ruggness index (TRI) ALOSPALSER DEM 12/08/2012 12.5 mt.
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Table 3. Cont.

Sl. No. Conditioning Factors Source Time Spatial
Resolution/Scale

10 Distance from road

Google Earth images, Landsat
8 satellite images by USGS and

Topographical map by
National Geographic
Organization of Iran

(www.ngo-org.ir)

17/06/2019 30 mt.

11 Bulk density
Soil and Water Research

Institute (SWRI)
(http://www.iran.swri.com)

18/06/2019 1:1,000,000

12 Mineral Soil
Soil and Water Research

Institute (SWRI)
(http://www.iran.swri.com)

18/06/2019 1:1,000,000

13 Clay content
Soil and Water Research

Institute (SWRI)
(http://www.iran.swri.com)

18/06/2019 1:1,000,000

14 Sand content
Soil and Water Research

Institute (SWRI)
(http://www.iran.swri.com)

18/06/2019 1:1,000,000

15 Relative slope
position (RSP) ALOSPALSER DEM 12/08/2012 12.5 mt.

16 Silt content
Soil and Water Research

Institute (SWRI)
(http://www.iran.swri.com)

18/06/2019 1:1,000,000

17 Valley depth ALOSPALSER DEM 12/08/2012 12.5 mt.

18 Land use

Google Earth images, Landsat
8 satellite images by USGS and

Topographical map by
National Geographic
Organization of Iran

(www.ngo-org.ir)

17/06/2019 30 mt.

19 Soil Texture
Soil and Water Research

Institute (SWRI)
(http://www.iran.swri.com)

18/06/2019 1:1,000,000

20 Lithology Geological Society of Iran
(GSI) (http://www.gsi.ir/) 14/07/2019 1:100,000

All these factors were derived from different sources. The Advanced Land Observing Satellite
(ALOS) digital elevation model (DEM) 12.5 m resolution data were downloaded from the Alaska
Satellite Facility (ASF) for the extraction of topographic and hydrological factors, such as the topography
position index (TPI), plan curvature, elevation, aspect, slope, drainage density, distance from stream,
terrain ruggedness index (TRI), and relative slope position (RSP). The geological map was collected from
Geological Society of Iran (GSI) (http://www.gsi.ir/) at a scale of 1:100,000 to generate the lithology map.
The topographic map was acquired from National Geographic Organization of Iran (www.ngo-org.ir)
at a scale of 1:1:50,000 along with Google Earth images and Landsat 8 satellite images, which were also
used to produce land use and roads network maps.

Topography position index (TPI):
More specifically, TPI is used to measure topographic slope positions. TPI is the measure

of differences between the elevation at the central point and the average elevation around it [65].

www.ngo-org.ir
http://www.iran.swri.com
http://www.iran.swri.com
http://www.iran.swri.com
http://www.iran.swri.com
http://www.iran.swri.com
www.ngo-org.ir
http://www.iran.swri.com
http://www.gsi.ir/
http://www.gsi.ir/
www.ngo-org.ir
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The following equations were used to estimate the TPI. The TPI map is shown in Figure 4a and the
value ranges from −38.8 to 54.8:

TPI =
EPixel

ESurrounding
, (1)

where EPixel is the elevation at the central point and ESurrounding is the average elevation of the
neighboring areas.

Plan curvature:
Plan curvature signifies the overland flow of water in terms of its diverging and converging, and

plays an important factor in gully erosion studies [35]. The value of plan curvature ranges from −6.1 to
9.1 (Figure 4b).

Elevation:
Elevation influences the rainfall and related runoff process, which is largely employed in geo-hazard

modelling like GESM [66]. The elevation of this region ranges from 160 to 1490 m (Figure 4c).
Slope aspect:
Solar radiation, vegetation covers, and evapo-transpiration largely depend on the slope aspect [67],

which is considered to be one of the major parameters for geo-hazard susceptibility mapping. The aspect
map of this study area is shown in Figure 4d.

Slope:
Slope angle largely affects the surface runoff, infiltration, pattern of drainage density, and soil

erosion [35,68]. Therefore, slope angle has always been used as one of the major factors for mapping
GESM. In this region, the angle of slope varies from 0% to 118% (Figure 4e).

Height above nearest drainage (HAND):
The HAND model emphasizes the relative heights beside the drainage network and influences

the soil gravitational potential [59]. HAND is calculated by using the DEM and DEM flow field in a
GIS environment [69]. The value of the HAND map ranges from 0 to 494 (Figure 4e).

Drainage density:
Drainage density has a major influence on erosion in the form of the initiation and development of

rills gullies, etc. a higher drainage density has a minimum infiltration rate and higher runoff capacity,
and vice versa [66]. Drainage density was calculated by using the following equation [70]. The value
of drainage density ranges between 0 and 3.32 km/km2 (Figure 4f):

DD =

∑n
i=1 Si

a
, (2)

where
∑n

i=1 Si indicates the total length of all drainages in km and ‘a’ is the total area of the drainage
basin in km2.

Distance from stream:
Gullies are primarily associated with the drainage system, and there is a significant positive

relationship between the distance from the stream and the occurrence of gullies [71]. The distance
from the stream map is shown in Figure 4g and the range varies from 0 to 1959 m.

Terrain ruggedness index (TRI):
The concavity and convexity of an area is indicated by TRI, which also influences gully erosion

occurrences [72]. Apart from this, different pedo-geomorphic processes can directly influence the
amount of TRI in a specific geomorphic region. The following equation was used to calculate TRI.
The value of TRI ranges between 0 and 37 (Figure 4h):

TRI =
√
|X|(max2 −min2), (3)

where X represents the altitude of every neighbor cell to a definite cell, and max and min are the highest
and smallest altitude among different neighboring cells.

Distance from road:
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The distance from the road is another important parameter for the gully erosion and the preparation
of the GESM. Due to the construction of the road, the stress and strain of the slope can be increased
and as a result, there were disturbances and failures of the slope [62]. The distance from the road map
is shown in Figure 4i and the value ranges from 0 to 4532 m.

Bulk density:
Bulk density is defined as the mass per unit volume of the loose powder bed [63]. Bulk density

was estimated by using the following equation. The range of the bulk density in this region varies
from 1.4 to 1.6 g/mm in the study area (Figure 4j):

BD =
M
Vo

, (4)

where M represents the mass in grams and Vo indicates the untapped apparent volume in milliliters.
Mineral soil, clay content, and sand content:
The value of mineral soil, clay, and sand varies from 16 to 35, 17 to 35, and 15 to 44,

respectively (Figure 4k–m).
Relative slope position (RSP):
RSP helps to understand the various topographical characteristics, such as flat surface, valley,

ridge-top, foot-slope, mid-slope, and upper slope [73]. The value of the RSP map for the current study
area varies from o to 1 (Figure 4n).

Silt content and valley depth:
Silt content and valley depth are also important factors for GESM. In the present study, the silt

content and valley depth varies from 31 to 55 and 0 to 391, respectively (Figure 4o,p).
Land use:
The formation of gullies and associated land degradation depends to a large extent on land use.

The land use map of the area was prepared using the maximum likelihood algorithm of the supervised
classification technique [74]. Table 2 shows different land use types and their geographical areas,
i.e., forest, agricultural land, range, and residential areas (Figure 4q).

Soil texture and lithology:
Soil texture in this study area has been categorized into four types namely clay loam, salty clay

loam, loam, and silty loam (Figure 4r). The land surface process of the area is highly influenced by
lithological characteristics and one of the most significant factors for large-scale erosion, such as the
creation and development of gullies [35,75]. In this study, six types of lithological units were found
(Figure 4s) and their description is given in Table 2.

2.5. Multi-Collinearity Assessment

Multi-collinearity analysis can be defined as the relationship between two or more variables in
the data set and the linear relationship among variables [2]. Generally, various geo-environmental
conditioning factors have been used to prepare GESM. Thus, multi-collinearity analysis was therefore
used to identify the perfect relationship between the variables. Multi-collinearity occurs when there is
a very high correlation between variables and the accuracy of the result is reduced [31]. Therefore,
high multi-collinearity factors need to be removed from the entire analysis in order to achieve
better results [76]. Various researchers throughout the world have been used in multi-collinearity
analysis to get better output by using machine learning models, i.e., in the field of GESM [28],
landslide susceptibility mapping [77], etc. Generally, the variance inflation factor (VIF) and tolerance
(TOL) are widely used to understand the multi-collinearity of a dataset. TOL and VIF were calculated
by using the following equations:

TOL = 1−R2
j , (5)

VIF =
1

TOL
, (6)



Remote Sens. 2020, 12, 2833 13 of 32

where R2
j represent the regression value of j on other different variables in a dataset. Thus, in a general

way, the multi-collinearity problem occurs when the tolerance value is <0.10 or 0.20 and VIF value is
>5 or 10.

2.6. Methods for Gully Erosion Susceptibility

2.6.1. Artificial Neural Network (ANN)

ANN is a type of machine learning model in which human minds can work in a precise way and
have always been the inspiration for it [78,79]. In general, it is a non-linear statistical data analysis
model. ANN has various algorithms to analyze and predict the statistical dataset, including multilayer
perception (MLP), which is the most up-to-date algorithm for this machine learning model [80].
The ANN model is more advanced than conventional statistical methods and involves some basic
knowledge of the structure of input data and the nature of the relationship between variables,
i.e., linear or non-linear [81]. In the MLP algorithm of the ANN model, there are three layers,
namely the input layer, hidden layer, and output layer [81]. The information of a data structure is
measured by nodes of hidden layers if the input layers are not sufficiently involved to do so [52]. In this
case, the input layers, such as the various GECFs and the gully erosion training points, are connected to
the output layer. After that, the input and hidden layer systematically predict the model structure of the
input nodes and evaluates the result in a dynamic function [82]. In the ANN model, there is a structured
code that determines the input and output nodes. In each pixel, the output nodes are equivalent to
the Boolean value, i.e., 1 or 0, where 1 indicates the possibility of gully erosion, and 0 indicates no
possibility of gully erosion. Hidden layers are used to determine the trial and error of the model [83].
The back propagation algorithm for ANN was discussed in the following equations [84]:

netl
j(t) =

∑p

i=o
(yi−1

i (t)wl
ji(t)). (7)

The net input of the jth neuron of layer l and I iteration:

yl
j(t) = f (net(l)j (t), (8)

f (net) =
1

1 + e(−net)
, (9)

e j(t) = c j(t) − a j(t), (10)

δl
j(t) = el

j(t)a j(t)
[
1− a jx(t)

]
. (11)

The δ factor for the neuron jth in the output layer ith:

δl
j(t) = yl

j(t)
[
1− y j(t)

]∑
δl

j(t)w
(l+1)
kj (t). (12)

The δ factor for the neuron jth in the hidden layer ith:

wl
ji(t + 1) = wl

ji(t) + α
[
wl

ji(t) −wl
ji(t− 1)

]
+ nδ(l)j (t)y(l−1)

j (t), (13)

where α represents the momentum rate and n represents the learning rate.

2.6.2. General Linear Model (GLM)

GLM is a statistical probability method with a logit function and it is extensively used for different
natural hazards’ modeling [55,85]. The GLM (logistic regression) is the modified version of the classic
general linear regression model [82,86]. The GLM was first introduced by Nelder and Wedderburn
in 1972 [87]. The function of GLM is much simpler; therefore, it is widely used in the broad sense of
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statistical analysis [88]. The link function (i.e., identity and logistic) between the dependent variable
and various independent variables are assumed by this statistical-based machine learning model
through a linear relationship [89]. Depending on the existence or non-existence dataset, GLM can
produce a binary data model using a logistic regression model [90]. The logit link function in GLM is
used for modelling a fractional response to handle the dataset of the binary value, i.e., 0 and 1 [54].
The function for GLM can be expressed as follows [91]:

Y = Pr(y = 1) =
eC0+C1X1+···+CnXn

1 + eC0+C1X1+···+CnXn
, (14)

where Y (logit) represents the probability of an event happening and it varies from 0 to 1; X1 . . .Xn

indicates the values of different controlling factors; and C1 . . .Cn indicates their coefficient.

2.6.3. Maximum Entropy (MaxEnt)

MaxEnt is a predictive model and is developed on the basis of the principle of entropy
maximization [92]. The principle of entropy maximization is based on the statistical and information
theory associated with this principle; it also provides an appropriate estimate of the uncertain probability
distribution [93]. It is also said that, from all probabilistic constraints, the MaxEnt model chooses
the one with the highest entropy [92]. MaxEnt is a widely used machine learning model based on
the presence-only features [94]. The presence-only feature has significance for the machine learning
model because it is far more trustworthy for inaccessible areas [95]. MaxEnt generally found for an
unidentified target allocation and true distribution (π) over all the pixels in the area’s location of X
comprised by individual pixels x [96]. In this study of GESM modelling, the MaxEnt model was
expected to identify the gully occurrence probability distribution at the area’s location of X. A brief
statistical explanation of the MaxEnt model can be found in [94,97,98], with the following equation:

P(y = 1
∣∣∣x) = P(x

∣∣∣y = 1)P(y = 1)

P(x)
, (15)

where P(y = 1
∣∣∣x) represents the probability of the gully being present at the location of x,

where P(x
∣∣∣y = 1) represents being at the site of given x, P(y = 1) is the overall prevalence, and P(x) is

the probability of picking the location x. The above equation can also be rewritten as follows:

P(y = 1
∣∣∣x) = π(x)P(y = 1)|x|. (16)

The calculation of P(x) can also be done by the probability distribution of marginalizing, such as:

P(x) =
∑

y
P(x, y) = P(x

∣∣∣y = 1)P(y = 1) + P(x
∣∣∣y = 0)P(y = 0). (17)

The generative model basically deals with P(x, y) and P(y). The simplest equation for the equal
probability (P (y = 0) = P (y = 1) = 0.5) of MaxEnt is as follows:

P(y = 1
∣∣∣x) = P(x

∣∣∣y = 1)

P(x
∣∣∣y = 1) + (P(x

∣∣∣y = 0)
. (18)

2.6.4. Support Vector Machine (SVM)

SVM was introduced by Vapnik and Chervonenk is in the year of 1963. It is a supervised machine
learning method based on the principle of statistical learning and structural risk minimization [99].
In both fields, i.e., classification and regression, SVM can be used to resolve statistical data [100].
Basically, it was used for a variety of classification functions along with error analysis and generalization
of the overall function [101]. SVM will generally find the hyperplane to distinguish between the two
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classes; in this case, gully and non-gully datasets [102]. The optimal hyper plane and training dataset
are closer to each other and called the support vectors [103]. Two concepts are employed in SVM
modelling on statistically induced problems. The very first is to separate statistical data patterns by
using a linear hyperplane separation. The second is to convert non-linear data patterns to linearly
separable data patterns using kernel functions [104].

Two SVM modelling classes were described in the following section [105,106]. Regard as a set
of linear separate training vectors xi(i = 1, 2, . . . n). Training vectors have two classes, i.e., yi = ±1.
The primary aim of the SVM is to look for an n-dimensional hyperplane, which differentiates two
classes by using the maximum gap. This can be written as:

1
2
||W||2. (19)

The following constraints of the subject are:

yi = ((w.xi) + b ≥ 1, (20)

where ||W|| represents the hyperplane, b represents the scalar base, and (.) represents the scalar product.
The cost function of SVM can be defined by using the Lagrangian multiplier, such as:

L =
1
2
||W||2 −

∑n

i=1
λi(yi(((w.xi) + b) − 1, (21)

where λi represents the Lagrangian multiplier. In the case of the non-separable function, the constraints
can be modified by introducing slack variables:

yi((w.xi) + b ≥ 1− ζi. (22)

Finally, the equation becomes as follows:

L =
1
2
||W||2 −

1
vn

∑n

i=1
ζi, (23)

where v (0, 1) is generated in order to account for misclassification [107]. In addition to this, the kernel
function K

(
xi, x j

)
was introduced by Vapnik in the year of 1995 as an explanation for the non-linear

decision boundary.

2.7. Measuring the Importance of GECFs by the Jackknife Test

In this study, the jackknife test [108] was employed to evaluate which GECFs have the strongest
consequences on the GESM predictive outcome. In general, the jackknife test was used to better
understand the pattern of gully erosion. In particular, the AUC-based statistical coefficient is reliable
on the jackknife test, which accepts practical problems in a broader sense [109]. This test identified
the most important conditioning factors in a particular model and calibrated all parameters [110].
Therefore, the jackknife test finds the major conditioning factors of gully erosion patterns by AUC.
The percentage of the relative decrease (PRD) of the AUC was used for the analysis of the contributing
factors. The equation of PRD is as follows [111]:

PRDi = 100 ∗
[AUCall −AUCi]

AUCall
, (24)

where AUCall represents the AUC value calculated from the prediction by every factor, AUCi is the
individual factor value, and PRDi is the relative decrease of AUC in the percentage when the ith factor
has been removed from the whole prediction analysis.
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2.8. Validation and Accuracy Assessment

The validation and evaluation of the accuracy assessment of GESM is very much important;
otherwise, the final output result has less significance. Thus, it is necessary to validate all machine
learning models; in this case, ANN, SVM, MaxEnt, and GLM have been validated to get better results
and analysis. The area under the receiver operating characteristic (AUROC) curve is a standard
tool that is widely used to establish the accuracy of the model [112]. The AUROC method has been
widely used to evaluate the accuracy of several natural hazard susceptibility mappings [11,113].
The ROC curve is based on two terms, i.e., events and non-event phenomena; therefore, this curve is
two-dimensional [114]. The ROC curve plotted on the X-axis known as the sensitivity based on the
false positive rate and the Y-axis known as the 1-speficity based on the true positive rate. Generally,
the sensitivity detects gullies and the specificity detects non-gullies accurately and, in both cases,
the optimum value is 1 [115]. The AUC value ranges between 0.5 (represents poor performance)
and 1.0 (represents good performance). The accuracy of AUC values were classified into four levels,
i.e., poor, fair, good, and excellent, and their ranges are 0.6 to 0.7, 0.7 to 0.8, 0.8 to 0.9, and 0.9 to 1.0,
respectively [116]. In this study, ROC curves were plotted on the basis of both datasets, i.e., training and
validation points. Here, 50:50, 60:40, 70:30, 80:20, and 90:10% split were used for GESM. The following
equations were used to complete the ROC curve:

Sensitivity =
TP

TP + FN
, (25)

Speci f icity =
TN

FP + TN
, (26)

AUC =
(
∑

TP +
∑

TN)

(P + N)
, (27)

where TP represents the true positive, FN represents the false negative, TN represents thee true negative,
FP represents the false positive, P indicates the number of total gullies, and N indicates the number of
total non-gullies.

3. Results

3.1. Multi-Collinearity Assessment

Here, a multi-collinearity assessment was conducted in order to select the appropriate factors
for gully erosion susceptibility modelling. In order to maintain the accuracy of the predicted models
and free them from bias, it was estimated that the VIF and TOL values would select the appropriate
parameters without any problems with multi-collinearity. The ranges of TOL and VIF are 0.231 to 0.923
and 1.079 to 4.749, respectively. The ranges of VIF and TOL are far from the permissible threshold,
so there is no problem with multi-collinearity in this analysis. The details of the multi-collinearity of
all selected parameters are shown in Table 4.

3.2. Gully Erosion Susceptibility Modelling

Gully erosion susceptibility was estimated by considering the ANN, GLM, MaxEnt, and SVM
machine learning algorithms for this region. The overall data were randomly divided into different
ratios (90/10, 80/20, 70/30, 60/40, and 50/50) as training and validation data to estimate the outcome
of all predicted models with optimum accuracy. The all output raster of the susceptibility map was
reclassified into different qualitative classes (very high, high, moderate, low, and very low) considering
Jenks’ natural break classifier technique in the GIS environment.
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3.2.1. Gully Erosion Susceptibility Modelling Using Artificial Neural Network (ANN)

The GESMs were prepared by using the ANN method in different sample ratios as training and
validation data. In ANN, the overall data was randomly classified as training and validation data in
different ratios (90/10, 80/20, 70/30, 60/40, and 50/50). The areal percentage in the ANN (90/10 ratio)
model for very low, low, moderate, high, and very high gully erosion susceptible areas are 40.52%,
35.27%, 11.01%, 6.5%, and 6.7%, respectively (Figures 5a and 6a). In the case of the ANN (80/20 ratio)
model, the areal coverage for very low, low, moderate, high, and very high gully erosion susceptible
areas are 64.47%, 3.90%, 4.30%, 8.13%, and 19.24%, respectively (Figure 5b). In the ANN (70/30 ratio)
model, the areal percentage of very low, low, moderate, high, and very high gulling susceptible
areas are 27.87%, 37.02%, 15.05%, 9.48%, and 10.57%, respectively (Figure 5c). The areal coverage
percentage in the ANN (60/40 ratio) model for very low, low, moderate, high, and very high gully
erosion susceptible areas are 39.09%, 23.94%, 13.75%, 10.23%, and 12.99%, respectively (Figure 5d).
The areal coverage in the ANN (50/50 ratio) model for very low, low, moderate, high, and very high
gully erosion susceptible areas are 44.07%, 9.05%, 8.52%, 19.14%, and 19.21%, respectively (Figure 5e).

3.2.2. Gully Erosion Susceptibility Modelling Using the General Linear Model (GLM)

The GESMs was prepared by using the GLM method in different sample sizes (random partitioning
of the samples) as training and validation data. In GLM, the overall data was randomly classified
as training and validation data in different ratios (90/10, 80/20, 70/30, 60/40, and 50/50). The areal
percentage in the GLM (90/10 ratio) model for very low, low, moderate, high, and very high gully erosion
susceptible areas are 23.93%, 23.10%, 21.19%, 17.78%, and 13.92%, respectively (Figures 6b and 7a).
The areal percentage in the GLM (80/20 ratio) model for very low, low, moderate, high, and very high
gully erosion susceptible areas are 25.19%, 22.76%, 20.46%, 16.81%, and 14.77%, respectively (Figure 6b).
The areal percentage in the GLM (70/30 ratio) model for very low, low, moderate, high, and very high
gully erosion susceptible areas are 24.44%, 23.18%, 20.74%, 16.79%, and 14.86%, respectively (Figure 6c).
The areal percentage in the GLM (60/40 ratio) model for very low, low, moderate, high, and very high
gully erosion susceptible areas are 24.73%, 22.83%, 20.37%, 17.47%, and 14.59%, respectively (Figure 6d).
The areal percentage in the GLM (50/50 ratio) model for very low, low, moderate, high, and very high
gully erosion susceptible areas are 25.44%, 23.39%, 20.57%, 16.15%, and 14.47%, respectively (Figure 6e).

Figure 5. Gully erosion susceptibility mapping using the ANN model: (a) 50/50, (b) 60/40, (c) 70/30,
(d) 80/20, and (e) 90/10.
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Table 4. Multi-collinearity analysis of the gully conditioning factors.

Conditioning Factors
Collinearity Statistics

Tolerance VIF

TPI 0.923 1.079
HAND 0.921 1.118
Valley depth 0.916 1.124
Lithology 0.915 1.127
Land use 0.888 1.279
RSP 0.823 1.483
Bulk density 0.813 1.492
Distance from road 0.778 1.532
Soil texture 0.754 1.611
Plan 0.745 1.721
Distance from stream 0.743 1.865
Mineral Soil 0.739 1.897
Slope 0.728 1.932
Drainage density 0.425 2.364
TRI 0.387 2.624
Elevation 0.346 2.715
Aspect 0.345 2.817
Silt 0.233 3.534
Clay 0.313 3.696
Sand 0.231 4.749

Figure 6. Gully erosion susceptibility mapping using the GLM model: (a) 50/50, (b) 60/40, (c) 70/30,
(d) 80/20, (e) 90/10.
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Figure 7. Gully erosion susceptibility mapping using the MaxEnt model: (a) 50/50, (b) 60/40, (c) 70/30,
(d) 80/20, (e) 90/10.

3.2.3. Gully Erosion Susceptibility Modelling Using Maximum Entropy (MaxEnt)

The GESMs were prepared by using the MaxEnt method in different sample sizes as training and
validation data. In MaxEnt, the overall data was randomly classified as training and validation data in
different ratios (90/10, 80/20, 70/30, 60/40, and 50/50). The areal percentage in the MaxEnt (90/10 ratio)
model for very low, low, moderate, high, and very high gully erosion susceptible areas are 21.81%,
23.30%, 22.50%, 19.65%, and 13.75%, respectively (Figures 6c and 8a). The areal percentage in the
MaxEnt model (80/20 ratio) is 23.94%, 23.10 %, 21.05%, 17.61%, and 14.30%, respectively, for very low,
moderate, high, and very high gully erosion susceptible areas (Figure 7b). The areal percentage in the
MaxEnt (70/30 ratio) model for very low, low, moderate, high, and very high gully erosion susceptible
areas are 22.32%, 21.80%, 22.14%, 19.81%, and 13.93%, respectively (Figure 7c). The areal percentage
in the MaxEnt (60/40 ratio) model for very low, low, moderate, high, and very high gully erosion
susceptible areas are 22.51%, 21.29%, 22.02%, 20.29%, and 13.90%, respectively (Figure 7d). The areal
percentage in the MaxEnt (50/50 ratio) model for very low, low, moderate, high, and very high gully
erosion susceptible areas are 23.39%, 22.14%, 22.63%, 17.95%, and 13.89%, respectively (Figure 7e).

3.2.4. Gully Erosion Susceptibility Modelling Using Support Vector Machine (SVM)

The GESMs were prepared by using the SVM method in different sample sizes as training and
validation information. In SVM, the overall data was randomly classified as training and validation
data in different ratios (90/10, 80/20, 70/30, 60/40, and 50/50). The areal percentages in the SVM
(90/10 ratio) model for very low, low, moderate, high, and very high gully erosion susceptible areas are
29.89%, 20.78%, 18.32%, 15.99%, and 15.02%, respectively (Figure 8a). The areal percentages in the SVM
(80/20 ratio) model for very low, low, moderate, high, and very high gully erosion susceptible areas are
30.66%, 20.98%, 17.56%, 15.94%, and 14.86%, respectively (Figures 8b and 9d). The areal percentages in
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the SVM (70/30 ratio) model for very low, low, moderate, high, and very high gully erosion susceptible
areas are 29.15%, 20.81%, 18.41%, 16.55%, and 15.08%, respectively (Figure 8c). The areal percentages in
the SVM (60/40 ratio) model for very low, low, moderate, high, and very high gully erosion susceptible
areas are 28.29%, 21.24%, 18.45%, 16.64%, and 15.38%, respectively (Figure 8d). The areal percentages in
the SVM (50/50 ratio) model for very low, low, moderate, high, and very high gully erosion susceptible
areas are 28.81%, 21.45%, 18.23%, 16.03%, and 15.48%, respectively (Figure 8e).

Figure 8. Gully erosion susceptibility mapping using the SVM model: (a) 50/50, (b) 60/40, (c) 70/30,
(d) 80/20, (e) 90/10.

Figure 9. Area percent classes in the ANN (a), GLM (b), MaxEnt (c), and SVM (d) model.
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3.3. Assessing the Importance of the Factors

The importance of the variables for estimating the GESMs was estimated with the help of the
jackknife AUC values. The maximum importance variables for gully erosion susceptibility are the
topography position index (TPI), relative slope position (RSP), valley depth, height above nearest
drainage (HAND), land use, drainage density, distance from river, plan curvature, and distance
from road respectively. The lowest importance variables for gully erosion susceptibility are lithology,
sand content, soil texture, slope, and elevation (Figure 10). The maximum and minimum importance
variables for gully erosion susceptibility are the topography position index and lithology, with AUC
values of 0.67 and 0.52, respectively. This type of assessment is helpful to estimate the importance of
the variables and the influences of it in a dynamic way.

Figure 10. Jackknife test for important factors.

3.4. Validation of the Models

The accuracy of all predicted models was measured with the help of the area under curve (AUC)
of the receiver operating characteristics (ROC) curve. It is a reliable tool for the accurate estimation of
model performance. In the ANN model, the AUC values for the training datasets of 90/10, 80/20, 70/30,
60/40, and 50/50 are 0.885, 0.910, 0.872, 0.917, and 0.918, respectively (Figure 11). In the ANN model,
the AUC values for the validation datasets of 90/10, 80/20, 70/30, 60/40, and 50/50 random partition are
0.867, 0.804, 0.837, 0.825, and 0.868, respectively (Figure 12).
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Figure 11. Area under the curve based on training datasets in the ANN (a), MaxEnt (b), SVM (c),
and GLM (d) model.

Figure 12. Area under the curve based on validation datasets in the ANN (a), MaxEnt (b), SVM (c),
and GLM (d) model.

In the case of the GLM model, the AUC values for the training datasets of 90/10, 80/20, 70/30, 60/40,
and 50/50 random partitioning are 0.826, 0.834, 0.837, 0.813, and 0.833, respectively. In the GLM model,
the AUC values for the validation datasets of 90/10, 80/20, 70/30, 60/40, and 50/50 random partition are
0.818, 0.788, 0.790, 0.837, and 0.816, respectively.

In the case of the MaxEnt model, the AUC values for the training datasets of 90/10, 80/20, 70/30,
60/40, and 50/50 random partitioning are 0.809, 0.821, 0.810, 0.786, and 0.808, respectively. In the
MaxEnt model, the AUC values for the validation datasets of 90/10, 80/20, 70/30, 60/40, and 50/50
random partition are 0.784, 0.764, 0.799, 0.819, and 0.796, respectively.
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In the case of the SVM model, the AUC values for the training datasets of 90/10, 80/20, 70/30, 60/40,
and 50/50 random partitioning are 0.870, 0.877, 0.875, 0.859, and 0.866, respectively. In the SVM model,
the AUC values for the validation datasets of 90/10, 80/20, 70/30, 60/40, and 50/50 random partition are
0.864, 0.819, 0.828, 0.835, and 0.834, respectively.

4. Discussion

Gully erosion is one of the common environmental issues caused by the natural environment,
but the mechanism for the formation and development of gullies can accelerate by anthropogenic
activities [23,52]. In the arid and semi-arid environment, the formation and development of gullies
is the most problematic issue with global concerns that are related with ecological imbalances of the
particular environment. The loss of fertile soil due to severe erosion not only reduces the amount of soil
but also reduces soil fertility and associated agricultural productivity [42]. The climatic characteristics
of this region relate to the semi-arid, semi-humid, and Mediterranean nature. The impact of extreme
climatic conditions is therefore significant and has an impact on the large-scale erosion in the form of
gullies. The formation and development of gullies is caused by different environmental conditions and
their importance should be analyzed for appropriate modelling and management purposes [117].

The unpredictability of each outcome is mainly due to mechanisms beyond the researcher’s
influence. Predictive accuracy is mostly based on the instability of both the quality of the data and the
selection of the model [118]. Multiple factors can also be attributed to the unpredictability of gully
erosion vulnerability models: (i) Insufficient experience of the physical environment and its associated
mechanism, which must be analyzed; (ii) the distance over which the analysis can indeed be performed
in each of these time or space; (iii) the randomization of the estimation method for the development of
a model where gullies exist or are lacking; and (iv) an approximation for some computational method
for the physical phenomenon [119]. In this work, our main objective was to highlight the susceptible
areas with lees or marginal uncertainty within the predicted models.

In today’s research, the application of different machine learning algorithms is one of the reliable
predicting tools for predicting the susceptibility of various natural hazards and disasters. For this
purpose, different machine learning algorithms have been developed by different decision science
researchers. In this regard, the spatial perspective of decision-making was considered to be the most
reliable component in the various disciplines. Various machine learning models (e.g., ANN, GLM,
MaxEnt, and SVM) are used in this study to estimate areas susceptible to gully erosion. In order
to estimate results for better accuracy, the training and validation data were randomly divided
into different quantities (e.g., 90/10, 80/20, 70/30, 60/40, and 50/50). ANN 50/50 is the best training
and validation dataset model, although all models are associated with higher accuracy. According
to the training datasets, apart from the ANN 50/50, other optimal models are ANN 60/40 (0.917),
ANN 80/20 (0.910), and ANN 90/10 (0.885). According to the validation datasets, the most optimal
model is ANN 50/50 (0.868) and other optimal models are ANN 90/10 (0.867), SVM 90/10 (0.864), and
ANN 70/30 (0.837). The importance of all conditioning factors was estimated with the help of the
jackknife test from the MaxEnt model. Jackknife checks the individual gully erosion conditional factor’s
significance in the creation of the predicted models relative to all conditioning factors (red bars) for
each predictor variable alone (blue bars), and the decrease in the training benefit when the variable is
excluded from the overall model (navy green bars). The topography position index (TPI), relative slope
position (RSP), valley depth, and height above nearest drainage (HAND) were recorded consistently as
the key determinants of gully erosion, as also was the case in similar research [50,120–122]. The AUC
values in the jackknife test of TPI, RSP, valley depth, and HAND are 0.67, 0.665, 0.65, and 0.64,
respectively. Apart from this, the lower importance is associated with geological components like
lithology (0.52) in gully erosion susceptibility modelling. The variable importance of other condition
factors, i.e., aspect, bulk density, clay content, elevation, drainage density, distance from stream,
land use, mineral soil, plan curvature, distance from road, sand, silt, slope, soil texture, and TRI,
are 0.58, 0.56, 0.615, 0.62, 0.635, 0.63, 0.635, 0.585, 0.625, 0.62, 0.54, 0.575, 0.565, 0.552, and 0.575,
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respectively. From an evaluative point of view, the topographic indices themselves are not attributes
that could be integrated with erosion at the same time. Strategic planners are therefore unable to start
estimating soil erosion susceptibility on the basis of topographic indices. As a result, not only is the
spatial dimension of erosion shown in the form of gullies, but it is also capable of giving us a theoretical
framework and its associated cause–effect relationship between variables and associated erosion.
Apart from this, the topographic variables may influence other factors of the condition that may have
an influential role in the process of erosion. In this analysis, the maximum values of the TPI are most
favorable for the development of large- and medium-sized gullies in the Golestan Dam Watershed as a
whole. The relative slope position is one of the dominant factors in the control of pedogeomorphic
processes and associated erosion. Higher valley depth is an important factor that directly accelerates
the rate of large-scale erosion. In the wet season, the higher depth of the valley is recommended to
severe erosion in the form of gullies, where rainfall and its associated runoff can play an essential role
in this respect. Rainfall with high kinetic energy is associated with extensive erosion in most of the
arid and semi-arid environments. It is also responsible for chemical weathering, which has an indirect
effect on the rate of formation and development of the gully. This process confirms the transformation
of the various minerals into secondary minerals. In this region, the process of water-induced erosion is
accelerating to a height above the nearest drainage point. It is capable of controlling and determining
river activity and associated erosion where primary direction and orientation play a vital role in the
erosion process. The presence of vegetation in this region is very marginal in nature, and only a
small part of the area is associated with agricultural activity, indicating the presence of bare soil and
mountain topography with higher slopes. This association is most favorable to large-scale erosion in
various forms of erosion, e.g., the creation and development of rills and gullies, etc. The absence of
vegetation cover helps to create the maximum amount of runoff, which is directly and indirectly linked
with erosion and its associated sedimentation. Higher amounts of rainfall and runoff indicated the
greeter probability of erosion in any region. The maximum amount of the drainage network and the
existence of gullies are positively linked with each other. The effects of rainfall and drainage during the
wet season are not only favorable to the development of new gullies but are also responsible for the
expansion of existing gullies. The formation of ephemeral gullies during the wet season is one of the
main causes of serious erosion and loss of topsoil. The creation of ephemeral gullies and the associated
loss of soil is a major problem in any arid and semi-arid environment. Furthermore, the impact of
the road network is the result of the anthropogenic destruction of natural hydrological processes,
establishing impervious soil surfaces accumulates runoff and results in large-scale soil erosion [41].

The erosion-prone gulling areas of this region were successfully assessed with an appropriate
algorithm and random partitioning of the samples in order to maintain optimum accuracy.
Prediction model accuracy was disturbed by a non-linear relationship, which is complex in
nature [123,124]. Due to its role in the representation and disclosure of hidden properties and interactions,
ANNs, implemented in an appropriate manner, can provide a robust replacement [112,125,126].
In contrast to any conventional simulation, ANN also has no limitations on the source and residual
proportions [127,128]. The fault and lack of information can be resolved by ANN, and the presence of
this type of inadequacy is capable of predicting the scenario with higher accuracy [129].

Models Prioritization

The final task was to select the optimal models according to their performance and related
accuracy level. For this purpose, the prioritization of all predicted models for both training and
validation databases was carried out with regard to the performance and robustness of accuracy.
The prioritization method is generally used as a sub-catchment priority in morphometric studies with
the consideration of different elements [130]. The same method was considered for the selection of the
optimal model and the categorization of the models by performance. Based on training datasets that
consider AUC values, the most optimal model is ANN 50/50 (0.918) followed by ANN 60/40 (0.917),
ANN 80/20 (0885), ANN 90/10 (0.885), SVM 80/20 (0.877), SVM 70/30 (0.872), SVM 90/10 (0.87),
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SVM 50/50 (0.866), SVM 60/40 (0.859), GLM 70/30 (0.837), GLM 80/20 (0.834), GLM 50/50 (0.833),
GLM 90/10 (0.826), MaxEnt 80/20 (0.821), GLM 60/40 (0.813), MaxEnt 70/30 (0.810), MaxEnt 90/10 (0.809),
MaxEnt 50/50 (0.808), and MaxEnt 60/40 (0.786). Based on the validation datasets considering AUC
values, the most optimal model is ANN 50/50 (0.868) followed by ANN 90/10 (0.867), SVM 90/10 (0.864),
GLM 60/40 (0.837), ANN 70/30 (0.837), SVM 60/40 (0.835), SVM 50/50 (0.834), SVM 70/30 (0.828),
ANN 60/40 (0.825), MaxEnt 60/40 (0.819), SVM 80/20 (0.819), GLM 90/10 (0.818), GLM 50/50 (0.816),
ANN 80/20 (0.804), MaxEnt 70/30 (0.799), MaxEnt 50/50 (0.796), GLM 70/30 (0.79), GLM 80/20 (0.788),
MaxEnt 90/10 (0.784), and MaxEnt 80/20 (0.764) (Table 5).

Table 5. Area under the curve values of training and validation data in different divisions.

Row Models
AUC Prioritizing

Training Validation Priority Based
on Training

Priority Based
on Validation

1 GLM 90/10 0.826 0.818 14 10
2 GLM 80/20 0.834 0.788 12 16
3 GLM 70/30 0.837 0.79 11 15
4 GLM 60/40 0.813 0.837 16 4
5 GLM 50/50 0.833 0.816 13 11
6 MaxEnt 90/10 0.809 0.784 18 17
7 MaxEnt 80/20 0.821 0.764 15 18
8 MaxEnt 70/30 0.81 0.799 17 13
9 MaxEnt 60/40 0.786 0.819 20 9

10 MaxEnt 50/50 0.808 0.796 19 14
11 ANN 90/10 0.885 0.867 4 2
12 ANN 80/20 0.91 0.804 3 12
13 ANN 70/30 0.872 0.837 7 4
14 ANN 60/40 0.917 0.825 2 8
15 ANN 50/50 0.918 0.868 1 1
16 SVM 90/10 0.87 0.864 8 3
17 SVM 80/20 0.877 0.819 5 9
18 SVM 70/30 0.875 0.828 6 7
19 SVM 60/40 0.859 0.835 10 5
20 SVM 50/50 0.866 0.834 9 6

5. Conclusions

This region is severely confronted with the extreme problem of land degradation in different
forms of erosion like the formation of rills, gullies etc. That is why not only the economy of this region
is affected but the natural environment and its associated ecosystem are also affected a number of times.
Apart from large-scale erosion, construction, such as roads, rail, and bridges, is also associated with
large-scale erosion. Various machine learning approaches with random sample partitioning have been
made to estimate the most accurate vulnerable regions with maximum possible accuracy. The main
objective of this research was to determine the optimal model of gully erosion susceptibility in this
region and the development of conceptual backgrounds for the orientation and partitioning of the
data for prediction with maximum accuracy. Apart from this, with the random partitioning of the
training and validation datasets, we are able to know the data handling model nature and its associated
optimal capacity. In this research, the ANN (50/50) is the most optimal model for both training and
validation data sets. The second and third optimal model considering the validation datasets were
ANN 90/10, and SVM 90/10, respectively. Though, the ANN model in different random partitioning
was not capable of estimation with maximum accuracy. This approach should be applicable in any
part of the world with different climatic conditions. The role of the gully erosion conditioning factors
is very much optimistic for the creation and development of gullies. In this region, the importance
of the topographic parameters is the maximum for susceptibility to gully erosion compared to other
parameters. Apart from secondary sources, an extensive field visit was carried out to validate the
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entire models’ outcome in a more precise way. The nature of the erosion and its impact on society was
also identified at the time of the field visit. The impact of erosion in agricultural resources and the role
of the stakeholders are the most conflicting issues in terms of sustainable land management practices.
According to the ANN 50/50 model, 3.6.87% of the area of this watershed is associated with very high
to moderate gully erosion susceptible zones. Most of the erosion-prone areas of this region are located
near the drainage network. So, special watershed management strategies have to be incorporated
in the vulnerable regions to escape this type of situation. It may be helpful to develop a conceptual
background based on a theoretical perspective on the erosion of the gully, which may be applicable in
different regions. Obviously, this type of outcome should be useful and applicable to decision-makers
and local stakeholders in order to avoid this kind of serious problem by considering appropriate
measures. The contribution and task of future research is to develop a model with the appropriate
modification of the algorithm and partitioning of the samples and to link it to the socio-political
environmental dilemma.
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