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Abstract

We study the communication capabilities of a quantum channel under the most general channel model known as the one-shot
model. Unlike classical channels that can only be used to transmit classical information (bits), a quantum channel can be used
for transmission of classical information, quantum information (qubits) and simultaneous transmission of classical and quantum
information. In this work, we investigate the one-shot capabilities of a quantum channel for simultaneously transmitting bits
and qubits. This problem was studied in the asymptotic regime for a memoryless channel where a regularized characterization
of the capacity region was reported. It is known that the transmission of private classical information is closely related to the
problem of quantum information transmission. We resort to this idea and find achievable and converse bounds on the simultaneous
transmission of the public and private classical information. Then shifting the classical private rate to the quantum information
rate leads to a rate region for simultaneous transmission of classical and quantum information. In the case of asymptotic i.i.d.
setting, our one-shot result is evaluated to the known results in the literature. Our main tools used in the achievability proofs are
position-based decoding and convex-split lemma.

Index Terms

One-shot coding, channel coding, private capacity, quantum capacity

I. INTRODUCTION

S
HANNON modeled a noisy (classical) channel as a stochastic map WX→Y taking classical inputs to classical outputs

according to some probability distribution, pY |X(y|x) [23]. In his paper, he defined and computed the fundamental feature

of a channel, its capacity: the amount of classical information, i.e., bits, that can be reliably transmitted from a sender to a

remote receiver over a classical channel. In the limit of many independent uses of a stationary memoryless channel, Shannon

showed that its capacity in bits per use of the channel is equal to the mutual information between the input and output.

Since nature is fundamentally quantum, it seemed necessary to enhance or replace Shannon’s channel model with a quantum

channel model that takes quantum mechanics into account. Many years after Shannon in the context of quantum information

theory, a quantum channel is modelled by a completely-positive trace-preserving map (CPTP) with possibly different input

and output Hilbert spaces. Denoted by NA→B , a quantum channel with input and output systems A and B respectively, can

now be used to accomplish a variety of information-processing tasks and accordingly different capacities can be defined. In

the next two subsections, we review some concepts in the asymptotic and one-shot regimes.

A. Memoryless and stationary channels, Asymptotic Regime

Perhaps the most direct analogue of the capacity of a classical channel, C(W), is the classical capacity of a quantum channel,

C(N ), i.e., the highest rate (in bits per use of the channel) at which a sender can transmit classical information faithfully

to a remote receiver through a quantum channel with general quantum inputs and quantum outputs. The classical capacity1

was independently studied in [24] and [25] where an achievability bound, i.e., C(N ) ≥ χ(N ), known as HSW theorem was

reported, where X (N ) is the celebrated Holevo Information [26] defined as follows:

χ(N ) := max
p(x),ρ

I(X ;B)ρ,

where p(x) is a probability distribution, ρXB =
∑

x pX(x)|x〉〈x|X ⊗ NA→B(ρ
x
A) is a bipartite quantum state and I(X ;B)ρ

is the quantum mutual information (see Definition 6). The classical capacity equals the regularized Holevo information, taking

a limit over many copies of the channel. So unlike the classical channel, we don’t fully know the capabilities of a quantum

channel for transmitting classical information.

This work was presented in part in ISIT 2018, see [16].
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In certain scenarios, a sender may wish to communicate classical information to a receiver by means of a quantum channel

such that the information must remain secret from some third party surrounding the legitimate receiver. This information-

processing task gives rise to the notion of private capacity of a quantum channel. Cai-Winter-Yeung [28] and Devetak [27]

showed that the achievable rates for classical private capacity can be formulated as the difference between the Holevo information

of the sender and the legitimate receiver and that of the sender and the eavesdropper(s) as given below:

P(N ) := max
ρ

[I(X ;B)ρ − I(X ;E)ρ] ,

where ρXBE =
∑

x pX(x)|x〉〈x|X ⊗ UN
A→BE(ρ

x
A) and UN

A→BE is an isometric extension of the channel NA→B . They also

showed that the private capacity equals the regularized form of P(N ) meaning that this ability of the quantum channel is still

not fully understood.

The capacity of a quantum channel to transmit quantum information is called the quantum capacity of the channel and we

represent it by Qreg(N ). For a given quantum channel, one would like to understand the best rates (in terms of qubits per

use of the channel) at which quantum information can be transmitted over the channel. The quantum capacity theorem was

first considered in [29] and later in [30]. Subsequently, by taking advantage of the properties of the private classical codes,

Devetak [27] showed that the quantum capacity is given by the regularized coherent information of the channel:

Qreg(N ) := lim
k→∞

1

k
Q(N⊗k)

where the coherent information is defined as Q(N ) := maxφRA
I(R〉B)σ (see Definition 7) and the optimization is with

respect to all pure, bipartite states φRA and σRB = NA→B(φRA).
Devetak and Shor [19] unified the classical and quantum capacities and introduced a new information-processing task

studying the simultaneously achievable rates for transmission of classical and quantum information over a quantum channel.

Since we will follow the results of [19] closely in this paper, we mention its main theorem:

Theorem 1 ([19]): The capacity region of N for simultaneous transmission of classical and quantum information is as

follows:

Sreg(N ) := lim
k→∞

1

k
S(N⊗k),

where S(N ) is the union, over all states ρXRB =
∑

x p(x) |x〉〈x| ⊗ ρxBR arising from the channel NA→B , i.e., for x ∈
supp(p(x)), ρxRB = N (φxRA) for pure states |φx〉RA, of the (r, R) pairs obeying

0 ≤ r ≤ I(X ;B)ρ,

0 ≤ R ≤ I(R〉BX)ρ.

where r and R are the rates of the classical and quantum2 information, respectively.

The result of Devetak and Shor is generalized in [20] such that the rate of a secret key that used to achieve noiseless

private capacity, enters the tradeoff. It is known that the interplay between public classical communication, private classical

communication and secret key is rather analogous to how classical communication, quantum communication and entanglement

interact with one another. This interaction was studied in [21] from an information-theoretic perspective and the corresponding

rate regions for several realistic channels were computed.

B. General channels, One-shot Regime

All the aforementioned capacities are originally evaluated under the assumptions that the channels are memoryless and

stationary and they are available to be used arbitrarily many times. However, in many real-world scenarios, we encounter

channels which are neither stationary nor memoryless. Therefore, it is of fundamental importance to think of coding schemes

for the channels which fail to satisfy these assumptions. The independent channel uses are relaxed in [31] and [32] and general

channels with memory are studied in [48] and [49], albeit these results are derived in the form of a limit such that the error

probability vanishes as the number of channel uses goes to infinity. Later researchers considered single-serving scenarios where

a given channel is used only once. This approach gives rise to a high level of generality that no assumptions are made on the

structure of the channel and the associated capacity is usually referred to as one-shot capacity.

The one-shot capacity of a classical channel was characterized in terms of min- and max-entropies in [33]. The one-shot

classical capacity of a quantum channel is addressed by a hypothesis testing approach in [34] and [1], yielding expressions in

terms of the generalized (Rényi) relative entropies and a smooth relative entropy quantity, respectively. By taking advantage of

two primitive information-theoretic protocols, privacy amplification and information reconciliation, authors of [35] constructed

coding schemes for one-shot transmission of public and private classical information. Their results come in terms of the min-

and max-entropies. Two new tools namely position-based decoding [2] and convex-split lemma [41], are employed in [3] where

2It is the same for various information-processing tasks: subspace transmission, entanglement transmission or entanglement generation
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one-shot achievability bounds on the public and private transmission rates are reported (note that prior to this work, one-shot

bounds on the public transmission rates on both assisted and unassisted cases were reported in [2] and [1], respectively).

Recently, [36] reported tight upper and lower bounds for the one-shot capacity of the wiretap channel. This was done by

proving a one-shot version of the quantum covering lemma (see [42]) along with an operator Chernoff bound for non-square

matrices. Inner and outer bounds on the one-shot quantum capacity of an arbitrary channel are studied in [15]. The general

scenario of [15] leads to the evaluation of the quantum capacity of a channel with arbitrary correlated noise in the repeated

uses of the channel.

In this paper, we aim to study the problem of simultaneous transmission of classical and quantum information over a single

use of a quantum channel. In other words, we are interested in the one-shot tradeoff between the number of bits and qubits

that are simultaneously achievable. The root of our approach is the well-known quantum capacity theorem via private classcial

communication [27]. The basic intuition underlying the quantum capacity is the no-cloning theorem which states that it is

impossible to create an identical copy of an arbitrary unknown quantum state. We know well that associated to every quantum

channel there is an environment (Eve). If Eve can learn anything about the quantum information that Alice is trying to send to

Bob, Bob will not be able to retrieve this information, otherwise the no-cloning theorem would be violated. Hence, to transmit

quantum information, Alice needs to store her quantum information in such subspaces of her input space that Eve does not

have access to. By using this idea, Devetak [27] proves that a code for private classical communication can be readily translated

into a code for quantum communication. Note that Devetak’s proof shows the aforementioned translation in the asymptotic

regime, however, one can easily check that the same holds true in the one-shot regime and the proof follows along the same

lines. We provide a proof sketch in appendix B. Therefore, if we can come up with a protocol for simultaneously transmitting

public and private classical information, we are able to adapt it for the simultaneous transmission of classical and quantum

information.

C. Techniques and Tools

Main tools in our achievability bounds are position-based decoding and convex-split lemma. Our technique is a simple

application of superposition coding in classical information theory (not to be confused with the concept of superposition in

the quantum mechanics), along with convex-split lemma and position-based decoding. In this manner, we significantly differ

from the technique of Devetak and Shor [19], whose method was inherently asymptotic i.i.d. and could not have been adapted

in the one-shot setting.

We briefly review position-based decoding and the convex-split lemma. Assume Alice and Bob have a way of creating the

following state shared between them (in other words, they have this resource at their disposal before any communication takes

place):

ρ
⊗|M|
XA = ρ1XA ⊗ ...⊗ ρmXA ⊗ ...⊗ ρ

|M|
XA ,

where Alice possesses A systems and Bob has X systems. Here, the positions of states is denoted by superscripts. Alice wishes

to transmit the m-th copy of the state above through the channel NA→B to Bob. This induces the following state on Bob’s

side :

ρm
X|M|B

= ρ1X ⊗ ...⊗ ρmXB ⊗ ...⊗ ρ
|M|
X .

If Bob has a means by which he can distinguish between the induced states for different values of m (hypotheses), which

happens to be reduced to the problem of distinguishing between states ρXB and ρX ⊗ ρB , he is able to learn about the

transmitted message m. Position-based decoding in fact, relates the communication problem to a problem in binary hypothesis

testing. On the other hand, once Alice chooses the m-th system uniformly and sends it over the channel, the induced state on

receiver side can generally be considered as:

1

|M|

|M|
∑

m=1

ρ1X ⊗ ...⊗ ρmXB ⊗ ...⊗ ρ
|M|
X ,

convex-split lemma argues that if the number of systems, |M|, is almost equal to a quantity known as max-mutual information,

the induced state is close to the following state

ρ1X ⊗ ...⊗ ρmX ⊗ ...⊗ ρ
|M|
X ⊗ ρB,

meaning that the receiver will not be able to distinguish between the induced states and the product state above, resulting in

its ignorance about the chosen message m.

The rest of the paper is organized as follows. In Section II, we give preliminaries and definitions. A code for simultaneous

transmission of public and private information is formally discussed in Section III. This section also includes our main results.

Section IV is devoted to the description of the protocol as well as our achievability proof. Converse bounds are proven in

section V. In Section VI, we argue how the well-known asymptotic bounds can be quickly recovered by many independent

uses of a memoryless channel. We conclude the paper by a discussion in Section VII.
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II. PRELIMINARIES

We denote (quantum) systems by capital letters, and we use subscripts to denote the systems on which the mathematical

objects are defined (we may drop the subscript if it does not lead to ambiguity). The Hilbert space corresponding to a quantum

system A is denoted by HA and its dimension is shown by |HA|. Conventionally, a random variable X taking on its values

from some finite alphabet X with cardinality |X | can be associated with a (classical) system (which we also referred to as

X) whose Hilbert space has orthonormal basis labeled by x, i.e., {|x〉}x∈X and dimension |HX | = |X |. This notation is

adopted throughout the paper. The set of linear operators on HA is denoted by L(HA) and the set of non-negative operators

by P(HA). A state of system A is a positive-semidefinite operator, i.e., ρA ∈ P(HA), with trace equal to one. We denote the

set of quantum states in HA by D(HA). The identity operator acting on HA is shown by 1A. The trace norm of the linear

operator ρA ∈ L(HA) is defined as ‖ρA‖1 = Tr{
√

ρ
†
AρA} where ρ

†
A is the conjugate transpose of ρA. The support of an

operator ρ, supp(ρ), is defined to be the subspace orthogonal to its kernel. If the support of ρ in contained in that of σ, we

write ρ ⊆ σ. Let HA and HB be Hilbert spaces associated to systems A and B, respectively. We can consider the composite

system of A and B as a single system with Hilbert space HA ⊗ HB . For a bipartite state ρAB ∈ D(HA ⊗ HB), marginal

systems are defined via partial trace as TrB{ρAB} = ρA and TrA{ρAB} = ρB . For a pair of integers i ≤ j, we define the

discrete interval [i : j] := {i, i+ 1, ..., j}. For Hermitain operators M and N , M ≤ N means that (N −M) ∈ P(H).
Let us consider a binary hypothesis test discriminating between the density operator ρA (null hypothesis) and σA (alternative

hypothesis) where ρA, σA ∈ D(HA). The task is to distinguish between the two hypotheses by means of some quantum

measurement {TA,1−TA} such that 0 ≤ TA ≤ 1. The test decides in favor of ρA (resp. σA) when the outcome corresponding

to TA (resp. 1− TA) occurs. Two kinds of errors can be defined here: Type I error occurs when the true hypothesis was ρA
but σA is decided and Type II error is the opposite kind of error. The error probabilities corresponding to Type I and Type II

errors are respectively as follows:

α(TA, ρA) := Tr{(1− TA)ρA},
β(TA, σA) := Tr{TAσA}.

In the setting of asymmetric hypothesis testing, the aim is to minimize β(TA, σA) under a constraint on α(TA, ρA). This task

gives rise to the definition of the hypothesis testing relative entropy defined as follows:

Definition 1 (Hypothesis testing relative entropy [1], [15]):

Dǫ
H (ρA‖σA) := − log2 inf

0≤TA≤1,
α(TA,ρA)≤ǫ

β(TA, σA).

In quantum information theory, one often needs to measure the distance between two quantum states. Let us again consider

the task of distinguishing between two quantum states ρA and σA by means of a binary test operator 0 ≤ TA ≤ 1.

Intuitively, the closer the states are, the harder they can be distinguished. We further assume that ρA and σA are prepared

with equal probabilities. It can be easily shown that the optimal success probability in distinguishing the states equals
1
2 (1 + max0≤T≤1 Tr{TA(ρA − σA)}). The optimization problem is evaluated as follows:

max
0≤TA≤1

Tr{TA(ρA − σA)} = [{ρA − σA}+(ρA − σA)]

− [{ρA − σA}−(ρA − σA)]

:=
1

2
‖ρA − σA‖1,

where {ρA−σA}+ denotes the projector onto the subspace where the operator (ρA−σA) is non-negative, and {ρA−σA}− =
1− {ρA − σA}+3. This operational interpretation leads to a distance measure called trace distance defined below.

Definition 2 (Trace Distance [12]): The trace distance between two quantum states ρA, σA is given by:

D(ρA, σA) :=
1

2
‖ρA − σA‖1.

We frequently use the following properties of the trace distance:

• Trace distance is convex. For two ensembles {p(x), ρxA} and {p(x), σx
A}, where ρxA, σ

x
A ∈ D(HA) for all x, let ρXA :=

∑

x p(x) |x〉〈x|⊗ρxA and σXA :=
∑

x p(x) |x〉〈x|⊗σx
A be the associated classical-quantum (CQ) states, respectively. Then,

∥

∥

∥

∥

∥

∑

x

p(x)ρxA −
∑

x

p(x)σx
A

∥

∥

∥

∥

∥

1

≤
∑

x

p(x)‖ρxA − σx
A‖1.

Moreover, the following property can be easily checked:

‖ρXA − σXA‖1 =
∑

x

p(x)‖ρxA − σx
A‖1.

3In general, {ω}+ denotes the projector onto the positive eigenspace of ω and {ω}− = 1− {ω}+ .
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• Trace distance is monotone non-increasing with respect to CPTP maps. That is, for quantum states ρ and σ and the map

N , the following inequality holds:

‖N (ρ)−N (σ)‖1 ≤ ‖ρ− σ‖1.
• Trace distance is invariant with respect to tensor-product states, meaning that for quantum states ρ, σ and τ , we have that:

‖ρ⊗ τ − σ ⊗ τ‖1 = ‖ρ− σ‖1.
• Trace distance fulfills the triangle inequality; That is, for any three quantum states ρ, σ and τ , the following inequality

holds:

‖ρ− σ‖1 ≤ ‖ρ− τ‖1 + ‖τ − σ‖1.
Definition 3 (Fidelity [45], [12]): The fidelity between two states ρ, σ ∈ D(HA) is defined as:

F (ρ, σ) = ‖√ρ√σ‖1.
Definition 4 (Purified Distance [44], [38]): Let ρA, σA ∈ D(HA). The purified distance between ρA and σA is defined as:

P (ρ, σ) :=
√

1− F (ρ, σ)2,

where F (ρ, σ) is the fidelity. The purified distance is a metric on D(H). We use the purified distance to specify an ǫ-ball

around ρA ∈ D(HA), that is Bǫ(ρA) := {ρ′A ∈ D(HA) : P (ρ
′
A, ρA) ≤ ǫ}.

The purified distance is also monotone non-increasing with respect to quantum channels, obeys the triangle inequality and is

invariant with respect to tensor product states. Moreover, the following expression shows its relation to the trace distance [38]:

1

2
‖ρ− σ‖1 ≤ P (ρ, σ) ≤

√

‖ρ− σ‖1. (1)

In addition to the hypothesis testing relative entropy, several different relative entropies and variances appear in our results and

we shall consider their definitions here.

Definition 5 (Conditional von Neumann entropy): For a bipartite state ρAB ∈ D(HA ⊗HB), we define the conditional von

Neumann entropy of A given B as follows:

H(A|B)ρ := H(AB)ρ −H(B)ρ,

where

H(A)ρ := −Tr{ρA log2 ρA},
H(A)ρ is the von Neumann entropy [17], corresponding to the Shannon entropy of the eigenvalues of ρA.

Definition 6 (Quantum Mutual Information): The quantum mutual information of a bipartite state ρAB ∈ D(HA ⊗HB) is

defined as follows:

I(A;B)ρ := H(A)ρ +H(B)ρ −H(AB)ρ.

The conditional quantum mutual information of a tripartite state ρABC ∈ D(HA ⊗HB ⊗HC) is defined in an analogous way

to its classical counterpart as follows:

I(A;B|C)ρ := H(A|C)ρ +H(B|C)ρ −H(AB|C)ρ.
Definition 7 (Coherent Information): The coherent information of a bipartite state ρAB ∈ D(HA⊗HB) is defined as follows:

I(A〉B)ρ := H(B)ρ −H(AB)ρ.

The conditional coherent information of a tripartite state ρABC is defined as I(A〉B|C)ρ := H(B|C)ρ −H(AB|C)ρ and it

can be shown that I(A〉B|C)ρ = I(A〉BC)ρ. In particular, for the CQ state ρXAB =
∑

x pX(x)|x〉〈x|X ⊗ ρxAB , we have

I(A〉BX)ρ =
∑

x pX(x)I(A〉B)ρx
AB

.

Definition 8 (Quantum Relative entropy [4]): The quantum relative entropy for ρA, σA ∈ D(HA) is defined as

D(ρA‖σA) := Tr{ρA[log2 ρA − log2 σA]},
whenever supp(ρA) ⊆ supp(σA) and otherwise it equals +∞.

Fact 1 (Relation between the quantum relative entropy and the hypothesis testing relative entropy [1]): For all state ρA and

σA and ǫ ∈ [0, 1), the following inequality holds

Dǫ
H(ρA‖σA) ≤

1

1− ǫ
[D(ρA‖σA) + hb(ǫ)] ,

where hb(ǫ) := −ǫ log2 ǫ− (1− ǫ) log2(1− ǫ) is the binary entropy function.
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Definition 9 (Quantum relative entropy variance [13]): The quantum relative entropy variance for ρA, σA ∈ D(HA) is given

by:

V (ρA‖σA) := Tr{ρA[log2 ρA − log2 σA −D(ρA‖σA)]2},
whenever supp(ρA) ⊆ supp(σA) and D(ρA‖σA) is the quantum relative entropy.

Definition 10 (Max-relative entropy [40]): Max-relative entropy for ρA, σA ∈ D(HA) is defined as:

Dmax(ρA‖σA) := inf
{

λ ∈ R : ρA ≤ 2λσA
}

, (2)

where it is well-defined if supp(ρA) ⊆ supp(σA).
An important property of the max-relative entropy is its monotonicity under quantum operations.

Fact 2 (Monotonicity of max-relative entropy [40]): For quantum states ρA, σA ∈ D(HA) and any CPTP map E : L(HA) →
L(HB), it holds that

Dmax(E(ρA)‖E(σA)) ≤ Dmax(ρA‖σA).
It can be shown that the monotonicity property also holds for the hypothesis testing relative entropy in the same direction.

Fact 3 (Relation between quantum relative entropy and max-relative entropy [40]): For quantum states ρA, σA ∈ D≤(HA),
it holds that

D(ρA‖σA) ≤ Dmax(ρA‖σA).
Definition 11 (Smooth max-relative entropy [40]): For a parameter ǫ ∈ (0, 1), Smooth max-relative entropy for ρA, σA ∈

D(HA) is defined as:

Dǫ
max(ρA‖σA) := inf

ρ′
A∈Bǫ(ρA)

Dmax(ρ
′
A‖σA).

Fact 4 ([13] and [14]): Let ǫ ∈ (0, 1) and n be an integer. For any pair of states ρA and σA and their n-fold products, i.e.,

ρ⊗n
A and σ⊗n

A , the following equations hold:

Dǫ
H

(

ρ⊗n
A ‖σ⊗n

A

)

= nD (ρA‖σA)
+
√

nV (ρA‖σA)Φ−1(ǫ) +O(log n),

Dǫ
max

(

ρ⊗n
A ‖σ⊗n

A

)

= nD (ρA‖σA)
−
√

nV (ρA‖σA)Φ−1(ǫ2) +O(log n),

where Φ(x) = 1√
2π

∫ x

−∞ exp(−x2

2 )dx is the cumulative distribution function for a standard Gaussian random variable and its

inverse is defined as Φ−1(ǫ) := sup{α ∈ R|Φ(α) ≤ ǫ}.

In the following we will define new entropic quantities that the analysis of their asymptotic behaviour requires Fact 4 as well

as a useful result in information theory known as the asymptotic equipartition property (AEP). Let Xn = (X1, X2, ..., Xn) be

a sequence of independent and identically distributed (i.i.d.) random variables. The AEP states that for any 0 < ǫ < 1, any

δ > 0 and for large enough n, a randomly chosen i.i.d. sequence xn is with probability more than 1− ǫ in a δ-typical set of

sequences that satisfy

∣

∣

1

n
N(xi|xn)− p(xi)

∣

∣ ≤ δ,

where N(xi|xn) is the number of occurrences of xi in the sequence xn. To use these concepts in quantum information, the

notion of typical subspace is defined. Consider the state ρX =
∑

x p(x) |x〉〈x|. The δ-typical subspace is a subspace of the full

Hilbert space HX1
⊗ ...⊗HXn

, associated with many copies of the density operator, i.e., ρ⊗n
X =

∑

xn p(xn) |xn〉〈xn|, that is

spanned by states |xn〉 whose corresponding classical sequences are δ-typical. For an introduction to the quantum typicality

and more on the properties of the typical subspace, we refer the reader to [12].

We will present our results in terms of mutual information-like quantities defined below. We note that quantum mutual

information (Definition 6) of a bipartite state ρAB ∈ D(HA ⊗HB) can be defined alternatively by quantum relative entropy

(Definition 8) as follows:

I(A;B)ρ := D(ρAB‖ρA ⊗ ρB).

Definition 12 (Hypothesis testing-mutual information [1]): For a bipartite state ρAB ∈ D(HA ⊗ HB) and a parameter

ǫ ∈ (0, 1), from the hypothesis testing-relative entropy (Definition 1), the hypothesis testing-mutual information is defined as

follows:

IǫH(A;B)ρ := Dǫ
H(ρAB‖ρA ⊗ ρB)ρ.
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lim
n→∞

1

n
Dǫ

H(ρx
n

AB‖ρx
n

A ⊗ ρx
n

B ) = lim
n→∞

1

n
Dǫ

H

(

ρ
np(x1)±δ
AB ⊗ ...⊗ ρ

np(x|X|)±δ

AB ‖(ρx1

A ⊗ ρx1

B )⊗np(x1)±δ ⊗ ...⊗ (ρ
x|X|

A ⊗ ρ
x|X|

B )⊗np(x|X|)±δ
)

= lim
n→∞

1

n

|X |
∑

i=1

(

np(xi)± δ
)

D(ρxi

AB‖ρxi

A ⊗ ρxi

B ) =

|X |
∑

x=1

p(x)D(ρxAB‖ρxA ⊗ ρxB) := I(A;B|X)ρ. (3)

Definition 13 (Max-mutual information [10]): For a bipartite state ρAB ∈ D(HA ⊗ HB) and a parameter ǫ ∈ (0, 1), from

the max-relative entropy (Definition 10), the max-mutual information can be defined as follow:

Imax(A;B)ρ := Dmax(ρAB‖ρA ⊗ ρB)ρ.

Definition 14 (Smooth max-mutual information [10]): For a bipartite state ρAB ∈ D(HA ⊗HB) and a parameter ǫ ∈ (0, 1),
from the max-mutual information (Definition 13), we define smooth max-mutual information as follows:

Iǫmax(A;B)ρ := inf
ρ′
AB∈Bǫ(ρAB)

Dmax(ρ
′
AB‖ρA ⊗ ρB).

The following quantity is similar to smooth max-mutual information.

Definition 15 (smooth max-mutual information, (alternate definition) [2]): For a bipartite state ρAB ∈ D(HA ⊗HB) and a

parameter ǫ ∈ (0, 1), the smooth max-mutual information alternately can be defined as follows:

Ĩǫmax(B;A)ρ := inf
ρ′
AB∈Bǫ(ρAB)

Dmax(ρ
′
AB‖ρA ⊗ ρ′B).

Fact 5 (Relation between two definitions of the smooth max-mutual information, [11] and see lemma 2 in [2]): Let ǫ ∈ (0, 1)
and γ ∈ (0, ǫ). For a bipartite state ρAB , it holds that:

Ĩǫmax(B;A)ρ ≤ Iǫ−γ
max(A;B)ρ + log2

(

3

γ2

)

.

Definition 16 (Conditional smooth hypothesis testing-mutual information): Let ρABX :=
∑

x pX(x)|x〉〈x|X ⊗ ρxAB be a CQ

state and ǫ ∈ [0, 1). We define

IǫH(A;B|X)ρ := max
ρ′

min
x∈supp(ρ′

X)
IǫH(A;B)ρx

AB
,

where maximization is over all ρ′X =
∑

x p
′
X(x)|x〉〈x|X satisfying P (ρ′X , ρX) ≤ ǫ.

Definition 17 (Conditional smooth max-mutual information4): Let ρABX :=
∑

x pX(x)|x〉〈x|X ⊗ ρxAB be a CQ state and

ǫ ∈ [0, 1). The conditional smooth max-mutual information is defined as follows:

Iǫmax(A;B|X)ρ := min
ρ′

max
x∈supp(ρ′

X)
Iǫmax(A;B)ρx

AB
,

where minimization is over all ρ′X =
∑

x p
′
X(x)|x〉〈x|X satisfying P (ρ′X , ρX) ≤ ǫ.

Lemma 1: Let ρXAB =
∑

x p(x)|x〉〈x|X ⊗ ρxAB . Then the following holds:

lim
n→∞

1

n
IǫH(A⊗n;B⊗n|Xn)ρ⊗n = I(A;B|X)ρ,

Proof: The following is easily seen from the definition,

IǫH(A⊗n;B⊗n|Xn)ρ⊗n

:= max
ρ′
Xn

min
xn∈supp(ρ′

Xn )
Dǫ

H(ρx
n

AnBn‖ρxn

An ⊗ ρx
n

Bn).

In order to be able to apply the asymptotic results given in Fact 4, we first produce ρ′Xn by projecting ρ⊗n
X onto its typical

subspace and properly normalize it. We know that the resulting state is close to the initial product state. Conditioned on a

particular typical sequence xn, the state ρx
n

AnBn is in fact a tensor-product state that can be written as ρ
x(1)
AB ⊗...⊗ρx(i)AB ⊗...⊗ρx(n)AB

in which x(i), i ∈ [1 : n] indicates the i-th index in the sequence xn. From the definition of the typical sequences, we know

that for n large enough, each realization x appears almost np(x) times in each sequence. Hence, for any δ ≥ 0, as n→ ∞, by

using Fact 4 for each chosen sequence, the multi-letter formula above can be written as shown by (3) where xi, i ∈ [1 : |X |]
denotes an element of the alphabet X and the second equality follows from Fact 4 and the fully quantum AEP [14].

4Conditional alternate smooth max-information can be defined in the same way.
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Lemma 2: Let ρXAB =
∑

x p(x)|x〉〈x|X ⊗ ρxAB . Then the following holds.

lim
n→∞

1

n
Iǫmax(A

⊗n;B⊗n|Xn)ρ⊗n = I(A;B|X)ρ

Proof: The proof is very similar to that of Lemma 1. It employs the properties of the typical sequences as well as the

fully quantum asymptotic equipartition property (AEP) for smooth max-mutual information [14].

Lemma 3: For a CQ state ρXAB =
∑

x p(x)|x〉〈x|X ⊗ ρxAB , the following inequality is true.

IǫH(A;B|X)ρ ≤ 1

1− ǫ
(I(A;B|X) + hb(ǫ))ρ .

Proof: Considering the definition of the conditional hypothesis testing-mutual information and the fact that

min
x
Dǫ

H(ρxAB‖ρxA ⊗ ρxB) ≤
∑

x

p(x)Dǫ
H(ρxAB‖ρxA ⊗ ρxB),

and also from Fact 1 for all x, we have:

Dǫ
H(ρxAB‖ρxA ⊗ ρxB) ≤

1

1− ǫ
(D(ρxAB‖ρxA ⊗ ρxB) + hb(ǫ)) ,

by plugging into the the aforementioned inequality, we can get the result. We note than in order for the above to be true, we

should have ρ′X ⊆ ρX . However, in case ρ′X goes beyond the support of ρX , it can be projected onto the support of ρX . Since

P (ρ′X , ρX) ≤ ǫ, from the monotonicity of the purified distance, it can be seen that the state after being projected will remain

ǫ-close to the initial state.

Lemma 4: Let ρXAB =
∑

x p(x)|x〉〈x|X ⊗ ρxAB . The following inequality holds.

Iǫmax(A;B|X)ρ ≥ I(A;B|X)ρ

− 2ǫ log |HA| − 2(1 + ǫ)hb(
ǫ

1 + ǫ
).

Proof: In the the following simple inequality:

max
x

Dǫ
max(ρ

x
AB‖ρxA ⊗ ρxB) ≥

∑

x

p(x)Dǫ
max(ρ

x
AB‖ρxA ⊗ ρxB), (4)

we have to deal with Dǫ
max(ρ

x
AB‖ρxA ⊗ ρxB) and try to bound it from below. Let ρ̄xAB be the state achieving the minimum in

the definition of Dǫ
max(ρ

x
AB‖ρxA ⊗ ρxB), hence

Dǫ
max(ρ

x
AB‖ρxA ⊗ ρxB) ≥ Dmax(ρ̄

x
AB‖ρ̄xA ⊗ ρ̄xB)

where P (ρxAB, ρ̄
x
AB) ≤ ǫ. From Fact 3 we further know that Dmax(ρ̄

x
AB‖ρ̄xA ⊗ ρ̄xB) ≥ D(ρ̄xAB‖ρ̄xA ⊗ ρ̄xB). Now we deploy

Alicki-Fannes-Winter (AFW) inequality [47] (an improvement over [46]) for the quantum mutual information saying that:

(from the relation between the purified and trace distances, we know that 1
2‖ρxAB − ρ̄xAB‖ ≤ ǫ)

D(ρ̄xAB‖ρ̄xA ⊗ ρ̄xB) ≥ D(ρxAB‖ρxA ⊗ ρxB)

− 2ǫ log |HA| − 2(1 + ǫ)h2(
ǫ

1 + ǫ
).

Therefore,

Dǫ
max(ρ

x
AB‖ρxA ⊗ ρxB) ≥ D(ρxAB‖ρxA ⊗ ρxB)

− 2ǫ log |HA| − 2(1 + ǫ)h2(
ǫ

1 + ǫ
),

and plugging back into the right-hand side of (4), we well get the desired result.

Lemma 5 (Convex-split lemma [41]): Fix ǫ ∈ (0, 1) and δ ∈ (0, ǫ). Let ρAB ∈ D(HA ⊗HB) and define the state τA1...AKB

as follows:

τA1...A|K|B

=
1

|K|

|K|
∑

k=1

ρA1
⊗ ...⊗ ρAk−1

⊗ ρAkB ⊗ ρAk+1
⊗ ...⊗ ρA|K|

.

If

log2 |K| ≥ Ĩ
√
ǫ−δ

max (B;A)ρ + 2 log2

(

1

δ

)

,
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then

P (τA1...A|K|B, ρA1
⊗ ...⊗ ρAk

⊗ ...⊗ ρA|K|
⊗ ρ̃B) ≤

√
ǫ,

where ρ̃B is the marginal of some state ρ̃AB ∈ B
√
ǫ−δ(ρAB). The above smooth version of convex-split lemma is taken from

[3], which improved the error parameters in the smooth version given in [2].

Lemma 6 (Hayashi-Nagaoka operator inequality [32]): Let T, S ∈ P(HA) such that (1 − S) ∈ P(HA). Then for all

constants c > 0, the following inequality holds:

1− (S + T )−
1
2S(S + T )−

1
2

≤ (1 + c)(1− S) + (2 + c+ c−1)T.

Lemma 7 (Gentle measurement lemma [6]): Let ρA ∈ D(HA) and 0 ≤ ΛA ≤ 1 be a measurement operator. If the

measurement operator decides in favor of ρA with high probability, Tr{ΛAρA} ≥ 1− ǫ for ǫ ∈ [0, 1], then
∥

∥

∥ρA −
√

ΛAρA
√

ΛA

∥

∥

∥

1
≤ 2

√
ǫ.

We note that here we consider quantum communication channels with quantum input and outputs. One may consider channels

with classical inputs and quantum outputs, i.e., CQ channels. In this case, an encoder has to be prepended to the CQ channel

such that it associates a particular input state to every classical input.

III. PROBLEM STATEMENT AND MAIN RESULTS

In this section, we first define a simultaneous public-private one-shot code, then we present our main results. Latter, we

discuss the translation of the public-private code to a classical-quantum code. Two classical messages (m, ℓ) ∈ M×L are to be

transmitted from a sender to a receiver in the presence of an eavesdropper by using a quantum channel only once, i.e., one-shot

communication is considered. The sender Alice, wishes to reliably communicate a public message m and (simultaneously) a

private message ℓ to the legitimate receiver Bob such that ℓ must not be leaked to the eavesdropper Eve. The quantum (wiretap)

channel to be used by three parties is denoted by NA→BE and it takes quantum states from HA to HB ⊗HE where Alice is

assumed to control the input system A and systems B and E are outputs received by Bob and Eve, respectively. Let M and

L be the random variables5 corresponding to Alice’s choices of the public and private messages, respectively6. We formally

define a one-shot simultaneous public-private code in the following.

Definition 18: Fix ǫ, ǫ′ ∈ (0, 1) and let r and R be the rates of the public and private messages, respectively (i.e., |M| = 2r

and |L| = 2R). A one-shot (r, R, ǫ, ǫ′)- simultaneous public-private code for the channel NA→BE consists of

• An encoding operation by Alice E :ML→ D(HA) such that

∀m ∈ M,
1

2
‖ρmLE − ρL ⊗ ρ̃mE ‖1 ≤ ǫ′, (5)

where for each message m, ρmLE and ρL are appropriate marginals of the state ρmLBE = 1
|L|
∑|L|

ℓ=1 |ℓ〉〈ℓ| ⊗ N (E(m, ℓ))
and ρ̃mE can be any arbitrary state.

• A decoding operation by Bob D : D(HB) → M̂L̂ such that

Pr
(

(M̂, L̂) 6= (M,L)
)

≤ ǫ, (6)

where M̂ and L̂ denote the estimates of the public and private messages, respectively.

A rate pair (r, R) is said to be (ǫ, ǫ′)-achievable if there exist encoding and decoding maps (E ,D) such that (5) and (6) are

fulfilled. For a given (ǫ, ǫ′), the one-shot capacity region for the simultaneous transmission of public and private information

of the channel N , Cǫ,ǫ′(N ), is the closure of all achievable rate pairs in a (r, R, ǫ, ǫ′) coding scheme. In this work, our aim

is to find upper and lower bounds on Cǫ,ǫ′(N ).
In the following, we first have Theorem 2 that establishes a lower bound on Cǫ,ǫ′(N ) referred to as achievability and then

Theorem 3 that states an upper bound on Cǫ,ǫ′(N ), i.e., the converse. This section ends with a discussion about the translation

of the private classical capacity to the quantum capacity in one-shot regime.

5M and L basically are registers which hold the public and private messages, respectively. Here with slightly abuse of notation, we refer to them as random
variables to which, corresponding classical states can be tied.

6In the literature, for example [18], the public and private messages are referred to as the common and confidential messages, respectively. If Eve were to
receive the common message, it could have been considered without jeopardizing the confidential message. Indeed, as we will see, the secrecy analysis is
guaranteed assuming Eve has detected the common (or the public) message.
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Theorem 2 (Achievability): For any fixed ǫ ∈ (0, 1), ǫ′ ∈ (0, 1), and δ, δ′ such that δ ∈ (0, ǫ), δ′ ∈ (0, ǫ′), there exists a

one-shot (r, R, 3ǫ+2
√
ǫ+

√
ǫ′, 2(ǫ+

√
ǫ)+

√
ǫ′) code for the channel NA→BE if the twin (r, R) satisfies the following bounds:

r ≤ Iǫ−δ
H (X ;B)ρ − log2(

4ǫ

δ2
),

R ≤ Iǫ−δ
H (Y ;B|X)ρ − Ĩ

√
ǫ′−δ′

max (Y ;E|X)ρ

− log2(
4ǫ

δ2
)− 2 log2(

1

δ′
),

for some quantum state ρ arising from the channel. We call the region above Ca(N ), therefore, we have

Ca(N ) ⊆ C3ǫ+2
√
ǫ+

√
ǫ′,2(ǫ+

√
ǫ)+

√
ǫ′(N ).

Theorem 3 (Converse): For any fixed ǫ ∈ (0, 1), ǫ′ ∈ (0, 1), every one-shot (r, R, ǫ, ǫ′) public-private code for the channel

NA→BE , must satisfy the following inequalities:

r ≤IǫH(X ;B)ρ,

R ≤I
√
ǫ

H (Y ;B|X)ρ − I
√
2ǫ′

max (Y ;E|X)ρ,

for some state ρXYBE =
∑

x,y p(x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρ
x,y
BE . We refer to this region as Cc(N ). In fact, we have Cǫ,ǫ′(N ) ⊆

Cc(N ).
Once there is a code for simultaneous transmission of public and private classical information, this code can be translated

into a coherent code that is capable of transmitting classical and quantum information simultaneously. In other words, the

rate pair (public classical, private classical) can be shifted to the rate pair (public classical, quantum) (or simply (classical,

quantum)). We can then translate our one-shot (public, private) code to a one-shot (classcial, quantum) code. Note that the

proof is implicit in findings of Devetak [27] such that one can mimic his procedure to see the result in one-shot setting.

Henceforth, we have a one-shot code for simultaneous transmission of classical and quantum information.

By evaluating the asymptotic behaviour of the rate region given by Theorem 2 and Theorem 3 (Section VI), we recover

Theorem 1 of [19], the well-known result of Devetak and Shor, as a corollary.

IV. ACHIEVABILITY

We consider a general quantum channel which is prepended by an encoder (modulator) that associates a particular input state

to every classical input pair. In this sense, Alice can be thought of as being in possession of an ensemble {pX,Y (x, y), ω
x,y
A }

such that the input distribution p(x, y) and the encoder need to be optimized over to get our capacity results. In our protocol,

Bob runs two successive decodings, his first decoder has |M| possible classical outputs as well as a post-measurement quantum

state. His second decoder takes the resulted states of the first decoder and its output is a classical system of dimension |L|.
Before we get into achievability proof, we describe our protocol.

A. Protocol description

Fix a joint probability distribution pX,Y (x, y) over the finite alphabets {X ×Y}, ǫ, ǫ′ ∈ (0, 1), δ ∈ (0, ǫ), δ′ ∈ (0,
√
ǫ′) and

ρXYBE =
∑

x,y p(x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρ
x,y
BE . Let

r ≤ Iǫ−δ
H (X ;B)ρ − log2(

4ǫ

δ2
),

R+ R̃ ≤ Iǫ−δ
H (Y ;B|X)ρ − log2(

4ǫ

δ2
),

R̃ ≥ Ĩ
√
ǫ′−δ′

max (E;Y |X)ρ + 2 log2(
1

δ′
).

We choose |M| = 2r, |L| = 2R and |K| = 2R̃ implying that r and R denote our public and private rates, respectively and

|K| stands for the size of a local key, a uniformly distributed random variable K , used by Alice for obfuscation purpose. Let

the sender Alice, legitimate receiver Bob and Eve be connected by means of a quantum (wiretap) channel NA→BE .

Alice wants to convey to Bob, in a single use of a quantum channel, a classical message m ∈ M and simultaneously, a

private classical message ℓ ∈ L where both messages are uniformly distributed on their corresponding sets. The message m is

public, meaning that Bob has to be able to decode it correctly with small probability of error. On the other hand, message ℓ is

private and while Bob has to receive it with negligible error probability, it must be kept secret from Eve. We clarify that our

definition of public and private messages is the same as in [19] and these correspond respectively to common and confidential

messages defined in [18]. The position-based decoding is employed in order to accomplish this information-processing task,

therefore before communication begins, Alice, Bob and Eve share the state given in (7), where Alice controls the system A,

Bob has systems (X,Y ) and Eve is in possession of (X ′, Y ′) systems. Our coding scheme is, in spirit, inferred from the
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ρ
⊗|M|
XX′(AY Y ′)⊗|L||K| :=





∑

x

p(x)|x〉〈x|X ⊗ |x〉〈x|X′ ⊗
(

∑

y

p(y|x)|y〉〈y|Y ⊗ |y〉〈y|Y ′ ⊗ ρ
x,y
A

)⊗|L||K|



⊗|M|

. (7)

well-known superposition coding in classical information theory [43]. We can think of the state (7) as the superposition of

two states, each of which is use to accomplish a certain part of the task. There are |M| bins in the first place, inside each of

them, there are |L||K| states that are divided into |L| bins, again inside each one there are |K| states.

Upon receiving the message pair (m, ℓ), Alice goes to the m-th copy of ρ
⊗|M|
XX′(AY Y ′)⊗|L||K| . There she runs the protocol

for the private capacity, by considering |L||K| copies and choosing a system A uniformly at random from the ℓ-th bin.

Upon receiving B, Bob performs a position-based decoding to obtain the public message m (and hence the correct copy of

ρXX′(AY Y ′)⊗|L||K|). The choice of the rate for public message r ensures that this is possible and gentle measurement lemma

ensures that the quantum state of the correct copy of ρXX′(AY Y ′)⊗|L||K| is almost unchanged after Bob’s decoding.

To decode ℓ, Bob performs another position-based decoding conditioned on X , meaning that having found the correct copy

of ρXX′(AY Y ′)⊗|L||K| used in the transmission, Bob applies a decoder that depends on X , and it works for all x ∈ X . For

this strategy, Bob first appeals to the definition of the conditional smooth hypothesis testing-mutual information, to assume

that the distribution over X was p′(x) (achieving the infimum in the definition) with negligible error. Then for x ∈ supp(ρX′),
he performs position-based decoding. The choice of R + R̃ guarantees the successful decoding for every x and at the same

time, the security criterion is ensured from the fact that even if Eve is aware of the correct copy of ρXX′(AY Y ′)⊗|L||K| , the

condition that convex-split lemma imposes on |K|, gives her very small information about ℓ for every x ∈ supp(ρX′) (where

here ρX′ =
∑

x pX′(x)|x〉〈x|X′ and pX′(x) is the distribution achieving the infimum in the alternate definition of conditional

smooth max-mutual information). Now we can derandomize the protocol by fixing the values in corresponding systems. Upon

derandomization, the code is publicly available.

Before we proceed to the error analysis of the direct part, we make the following remarks. The state that is fed into the

second decoder differs from the original state although negligibly, this adds to the error probability of the private message.

Moreover, since successive cancellation decoding is being performed, in the event of a failure of the first decoder, the second

decoder will fail as well. We also take the contribution of this event into account. Moreover, note that there is just one decoding

map in general, Bob’s (two) separate decodings are just a property of our protocol.

B. Achievability Proof

As is learned in the preceding subsection, we start with a randomness assisted protocol and derandomize it later. We get

started on our proof by introducing the encoder and the decoders. We then analyze the average error probability of the public

message. Likewise, we inspect the second decoder and analyze the average error probability of the private message. Finally,

we study the secrecy requirement.

In the achievability part of our randomness assisted code, for the private message, we stick to a single criterion known as

privacy error introduced in [7], [8] and [3]. The general idea is to merge the secrecy of the private message (5) as well as

its error probability (6) into one single criterion. While this idea was used in [7] and [8] in understanding upper bounds for

private communication protocols, it had not been used in an achievability proof prior to [3]. We should note that the main

advantage of dealing with single criterion reveals when the code is to be derandomized. Our procedure is that we analyze the

error probability of Bob in detecting the private message separately from keeping Eve ignorant. This leads to two separate

criteria and then the separate criteria are merged into one single criterion. It is clear that if the joined criterion is satisfied,

each of the single criteria is also fulfilled. After we prove the correctness of these criteria for the randomness assisted code,

we immediately proceed to derandomize the code in the succeeding step that the unassisted criteria set out by Definition 18

can be inferred. The derandomization involves some procedures that appeared in [3] and [22].

Alice, Bob and Eve are allowed to share some quantum state among themselves. Moreover, Alice has access to a source of

uniform dummy randomness given in random variable K . Further, let R̃ = log2 |K|. The state initially shared between three

parties is given by equation (7), where Alice possesses the quantum systems A, Bob possesses the classical systems (X,Y )

and Eve has the classical systems (X ′, Y ′). For ease of notation, we further define ΥTXTX′TATY TY ′ := ρ
⊗|M|
XX′(AY Y ′)⊗|L||K|

with it being clear that for example ΥTA
= ρ

⊗|M|
A⊗|L||K|

7.

The encoding and decoding pairs are as follows:

• Alice performs some encoding operation E :MLA→ A. Let us denote the state in (7) after channel transmission as:
(

ρXX′(AY Y ′)⊗|L||K|

)⊗|M|−1

⊗ ρ
m,(ℓ,k)

XX′(Y Y ′)⊗|L||K|(A)⊗|L||K|−1BE
, (8)

7Due to the cumbersome notations we face, the tensor product states are shown for example as either ρ
⊗|M|
X

or ρ
X⊗|M| .
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ρ
m,(ℓ,k)

XX′(Y Y ′)⊗|L||K|(A)⊗|L||K|−1BE
:=

∑

x

pX(x)|x〉〈x|X ⊗ |x〉〈x|X′ ⊗ ρ
x,m,(1,1)
Y Y ′A ⊗ ...⊗ ρ

x,m,(ℓ,k−1)
Y Y ′A ⊗NA→BE

(

ρ
x,m,(ℓ,k)
Y Y ′A

)

⊗ ρ
x,m,(ℓ,k+1)
Y Y ′A ...⊗ ρ

x,m,(|L|,|K|)
Y Y ′A . (9)

Pe ={M̂ 6=M} :=
1

M

|M|
∑

m=1

1

2

∥

∥

∥D1
BX→M̂

(ρ
m,(ℓ,k)

X⊗|M|B
)− |m〉〈m|

M̂

∥

∥

∥

1
≤ ǫ, (12)

Ppriv :=
1

|L|

|L|
∑

l=1

1

2

∥

∥

∥D2
M̂BY→L̂

(σ
m,(ℓ,k)

XX′(Y Y ′)⊗|L||K|BE
)− |l〉〈l|

L̂
⊗ σ̂X′Y ′⊗|L||K|E

∥

∥

∥

1
≤ 2(ǫ+

√
ǫ) +

√
ǫ′, (13)

where

σ̂X′Y ′⊗|L||K|E :=
∑

x

pX(x)|x〉〈x|X′ ⊗ σ
x,m,(ℓ,k)

Y ′⊗|L||K| ⊗ σ̃
x,m
E and P (σx

Y E , σ̃
x
Y E) ≤

√
ǫ′.

where (m, ℓ, k) ∈ [1 : 2r] × [1 : 2R] × [1 : 2R̃] are the public message, the private message and a dummy index drawn

uniformly at random by the encoder and ρ
m,(ℓ,k)

XX′(Y Y ′)⊗|L||K|(A)⊗|L||K|−1BE
is given by equation (9).

• After the channel action, Bob performs a decoding operation (quantum instrument) D1 : BX → M̂B on his ΥTX
systems

as well as the received system, whose outputs are a classical system M̂ and a quantum system in D(HB) (the decoder

will be defined formally later, see (14)). The action of the quantum decoder D1
BX→M̂B

on Bob’s corresponding systems

is as follows:

D1
BX→M̂B

(ρ
m,(ℓ,k)

X⊗|M|B
) :=

|M|
∑

m′=1

|m′〉〈m′|
M̂

⊗D1,m′

BX→B(ρ
m,(ℓ,k)

X⊗|M|B
), (10)

where {|m〉}|M|
m=1 is some orthonormal basis and ρ

m,(ℓ,k)

X⊗|M|B
can be seen from (8) by tracing out uninvolved systems.

Moreover, tracing out the classical system M̂ gives the induced quantum operation D1
BX→B =

∑

m D1,m
BX→B such that

its sum is trace preserving, i.e., Tr
{

∑|M|
m′=1 D1,m′

BX→B(ρ
m,(ℓ,k)

X⊗|M|B
)
}

= 1.

Let σ
m,(ℓ,k)

XX′(Y Y ′)⊗|L||K|BE
denote the disturbed state after Bob applied his first decoder (this state will be defined formally

later, see (20)).

• Bob’s second decoder is another quantum map D2 : M̂BY → L̂ which is input the classical output of the first decoder,

the disturbed quantum output, Bob’s ΥTY
systems and outputs a classical system L̂.

D2
M̂BY →L̂

(σ
m,(ℓ,k)

XY ⊗|L||K|B
) :=

|L|
∑

ℓ=1

p
L̂
(ℓ)|ℓ〉〈ℓ|

L̂
, (11)

where {|ℓ〉}|L|
ℓ=1 is some orthonormal basis and σ

m,(ℓ,k)

XY ⊗|L||K|B
comes about by tracing out uninvolved systems in the disturbed

state.

Having defined the decoders, it is seen that the phrase in (12) indicates the probability of an erroneous detection of the public

message, while the expression in (13) captures the notions of an erroneous detection of the private message as well as the

secrecy condition of the eavesdropper (the latter is clarified below). After we derandomize the code, we see that the criteria

mentioned in Definition 18 can be set out from these criteria by using the monotonicity of the trace distance and properly

adjusting the constants.

1) Correctness of Public Message: Eq. (12): All systems are assumed to be traced out except those used by Bob’s first

decoder (we could have considered multiplying those systems by identity operator as well). To decode the public message m,
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Λm
X|M|B

:=





|M|
∑

m′=1

Γm′

X|M|B





− 1
2

Γm
X|M|B





|M|
∑

m′=1

Γm′

X|M|B





− 1
2

. (15)

Bob employs the following decoding instrument:

D1
BX→M̂B

(ρ
m,(ℓ,k)

X⊗|M|B
) (14)

:=

|M|
∑

m=1

Tr{Λm
X|M|B

ρ
m,(ℓ,k)

X⊗|M|B
}|m〉〈m|

M̂

⊗
√

Λm
X|M|B

ρ
m,(ℓ,k)

X⊗|M|B

√

Λm
X|M|B

Tr{Λm
X|M|B

ρ
m,(ℓ,k)

X⊗|M|B
}

,

where Λm
X|M|B

is given in (15), and for m ∈ [1 : |M|]:

Γm
X|M|B

= 1

1
X ⊗ 12X ⊗ ...⊗ Tm

XB ⊗ ...⊗ 1|M|
X ,

in which, Tm
XB is a test operator distinguishing between two hypotheses, ρXB and ρX ⊗ ρB and ρ

m,(ℓ,k)

X⊗|M|B
can be seen from

(7). In fact, Bob needs to discriminate between the following states for different values of m ∈ M
ρ
m,(ℓ,k)

X⊗|M|B
:= ρ

⊗|M|−1
X ⊗ ρ

m,(ℓ,k)
XB .

Note that to decode the public message m, Bob’s decoder does not care about the copy selected by Alice among |L||K| copies

(no matter which one is selected). In other words, to accomplish the protocol for transmitting the public message, it suffices to

consider |M| copies of ρXA =
∑

x PX(x)|x〉〈x|⊗ωx
A shared between Alice and Bob, where ωx

A =
∑

y p(y|x)ω
x,y
A . Besides, as

is clear from the former discussion, Bob’s first decoder faces an |M|-ary hypothesis testing problem. This |M|-ary hypothesis

testing problem can be reduced to a binary hypothesis testing problem, in which a binary test operator discriminates between

two hypotheses. However, it should not be confused with the fact that in general we deal with an |M|-ary problem.

Let TXB be a test operator in a binary hypothesis testing scenario with null and alternative hypotheses being ρXB and

ρX ⊗ ρB , respectively. Discriminator employed by Bob succeeds in guessing null and alternative hypotheses with probabilities

Tr{TXBρXB} and Tr{(1XB − TXB)(ρX ⊗ ρB)}, respectively. And accordingly, the error probabilities associated to the type

I and II errors are Tr{(1XB − TXB)ρXB} and Tr{TXB(ρX ⊗ ρB)}, respectively.

It is notation-wise useful to assume that the error probability of the hypothesis tester is ǫ− δ where δ ∈ (0, ǫ) implying that

overall probability of error (ǫ) is greater than or equal to that of the hypothesis tester. Having introduced the test operator, we

can define the following measurement operator for all m ∈ [1 : |M|]:

Γm
X|M|B = 1

1
X ⊗ ...⊗ Tm

XB ⊗ ...⊗ 1|M|
X .

If Alice sends the m-th message (copy), the probability of producing the correct message at the output equals:

Tr{Γm
X|M|B

ρ
m,(ℓ,k)

X⊗|M|B
}

= Tr{(1X1 ⊗ 12X ⊗ ...⊗ Tm
XB ⊗ ...⊗ 1|M|

X )

(ρ1X ⊗ ...⊗ ρ
m,(ℓ,k)
XB ⊗ ...⊗ ρ

|M|
X )}

= Tr{Tm
XBρ

m
XB} = Tr{TXBρXB}, (16)

where in the last equality we drop the dependence on m since it is the same for all messages. And probability of deciding in

favor of m′ 6= m when m was sent is equal to:

Tr{Γm′

X|M|B
ρ
m,(ℓ,k)

X⊗|M|B
}

= Tr{(1mX ⊗ Tm′

XB)(ρ
m,(ℓ,k)
XB ⊗ ρm

′

X )}
= Tr{Tm′

XB(ρ
m,(ℓ,k)
B ⊗ ρm

′

X )} = Tr{TXB(ρB ⊗ ρX)}, (17)

where in the last equality we remove the index m′ because this quantity is the same for all m′ 6= m. This endorses our

claim saying that we are facing a binary hypothesis testing problem. From the aforementioned measurement operators, the

square-root measurement given in (15) is formed acting as Bob’s POVM to detect the public message m. The mentioned

POVM construction and the coding scheme, known as position-based coding, first appeared in [41] and [2].

We now focus on the analysis of the error probability of the position-based decoder. The POVM elements above are unitary

permutations of one another. In particular, it can be easily shown that all of the elements can be reached by a unitary permutation
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of the first one, i.e., Λm
X|M|B

= U
π(m)

X|M|B
Λ1
X|M|B

U
π(m)†
X|M|B

in which π(.) denotes the permutatin operator [3]. Having said this,

we find the probability of error for the first message, i.e., Alice received m = 1 and has chosen and sent one of the |L||K| A
subsystems of the first copy over the channel. We emphasize again that although Alice selects a particular A subsystem out

of |L||K| copies based on reliability and security of the private message, at this point, when Bob aims to estimate the public

message, no matter which A was chosen by Alice, it does not affect Bob’s decision about the public message.

We begin by applying the Hayashi-Nagaoka operator inequality (Lemma 6) with S = Γ1
X|M|B

and T =
∑

m 6=1 Γ
m
X|M|B

(This T should not be confused with the test operator Tm
XB):

Pr(M̂ 6= 1|M = 1)

= Tr{(1X|M|B − Λ1
X|M|B)ρ

1,(ℓ,k)

X⊗|M|B
}

≤ Tr{((1 + c)(1X|M|B − Γ1
X|M|B)ρ

1,(ℓ,k)

X⊗|M|B
}

+ (2 + c+ c−1)Tr{(
∑

m 6=1

Γm
X|M|B

)ρ
1,(ℓ,k)

X⊗|M|B
}

= (1 + c)Tr{(1X|M|B − Γ1
X|M|B

)ρ
1,(ℓ,k)

X⊗|M|B
}

+ (2 + c+ c−1)Tr{(
∑

m 6=1

Γm
X|M|B

)ρ
1,(ℓ,k)

X⊗|M|B
}

= (1 + c)Tr{(11X − T 1
XB)ρ

1,(ℓ,k)
XB }

+ (2 + c+ c−1)
∑

m 6=1

Tr{Tm
XB(ρ

m,(ℓ,k)
B ⊗ ρmX)}

= (1 + c)Tr{(1XB − TXB)ρXB}
+ (2 + c+ c−1)(|M| − 1)Tr{TXB(ρB ⊗ ρX)},

where in the second last equality, the first and second terms follow from (16) and (17), respectively. Let ΠXB be the optimal

test operator in the following optimization: (see Definition 1 and Definition 12)

Iǫ−δ
H (X ;B)ρXB

:= − log2 inf
0≤TXB≤1,

α(TXB ,ρXB)≤ǫ−δ

β(TXB, ρX ⊗ ρB),

then,

Tr{(1X|M|B − Λ1
X|M|B

)ρ
1,(ℓ,k)

X⊗|M|B
}

≤ (1 + c)Tr{(1XB −ΠXB)ρXB}
+ (2 + c+ c−1)(|M| − 1)Tr{ΠXB(ρB ⊗ ρX)}

≤ (1 + c)(ǫ − δ) + (2 + c+ c−1)|M|2−I
ǫ−δ
H

(X;B)ρ .

The last term above is set equal to ǫ, if we solve for |M|, we end up with the following term

log2 |M| = Iǫ−δ
H (X ;B)ρ + log2

(

ǫ − (1 + c)(ǫ− δ)

2 + c+ c−1

)

,

the expression inside the log has a global maximum with respect to c, i.e., the parabola is down-side. We put first derivative

equal to zero and pick c = δ
2ǫ−δ

and by doing so finally the following bound holds:

log2 |M| ≤ Iǫ−δ
H (X ;B)ρ − log2(

4ǫ

δ2
), (18)

and average probability of error of the public message for the one-shot assisted code is

1

|M|

|M|
∑

m=1

Tr{(1X|M|B − Λm
X|M|B)ρ

m,(ℓ,k)

X⊗|M|B
} ≤ ǫ. (19)

In the following, we deal with the private message and the second decoder. Before we move on to the privacy analysis, we

make a couple of remarks. If the first decoder fails, the second decoder breaks down completely since as is intuitively clear,

it ends up with a state having zero information about the position of the sent message. We precisely evaluate the contribution

of the first decoder to the error of the second decoder. Moreover, Bob’s first decoder acts on his X systems as well as the

output of the channel. The Y systems remain intact and in fact, when Bob applies the first decoder, one can assume that

the uninvolved systems are being multiplied by the identity operators. Considering this point and the action of the POVM,

the resulting state on systems X and B are (up to normalization)
√

Λm
X|M|B

ρ
m,(ℓ,k)

X⊗|M|B

√

Λm
X|M|B

, and by taking uninvolved

systems into account, we define the state that passes to the second decoder as in (20).
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σ
m,(ℓ,k)

XX′(Y Y ′)⊗|L||K|BE

:=
∑

x

pX(x)|x〉〈x|X ⊗ |x〉〈x|X′ ⊗ σ
x,m,(1,1)
Y Y ′ ⊗ ...⊗ σ

x,m,(ℓ,k−1)
Y Y ′ ⊗ σ

x,m,(ℓ,k)
Y Y ′BE ⊗ σ

x,m,(ℓ,k+1)
Y Y ′ ...⊗ σ

x,m,(|L|,|K|)
Y Y ′ . (20)

P
(ℓ,k)

XY |L||K|B
:=





|L|
∑

ℓ′=1

|K|
∑

k′=1

N
(ℓ′,k′)

XY |L||K|B





− 1
2

N
(ℓ,k)

XY |L||K|B





|L|
∑

ℓ′=1

|K|
∑

k′=1

N
(ℓ′,k′)

XY |L||K|B





− 1
2

, (22)

where for all ℓ ∈ [1 : |L|], and k ∈ [1 : |K|],

N
(ℓ,k)

XY |L||K|B
:= |x〉〈x|X ⊗ 1(1,1)Y ⊗ ...⊗ 1(1,|K|)

Y ⊗ ...⊗ 1(ℓ,k−1)
Y ⊗ Z

(ℓ,k)
Y B ⊗ 1(ℓ,k+1)

Y ...⊗ 1(|L|,|K|)
Y . (23)

2) Correctness and secrecy of Private Message, (Privacy error) Eq. (13): Reconsider the state in (20) showing the state

resulted from transmitting the (ℓ, k)-th A subsystem through the channel (for a given m) after Bob applies his first decoder.

Remember that in the first part of the protocol it did not matter which copy out of |L||K| copies was chosen but now it does

matter as Bob and Eve try to decode the private message. Bob’s decoder for the private message ℓ is constructed as follows:

D2
M̂BY→L̂

(σ
m,(ℓ,k)

XY ⊗|L||K|B
) (21)

:=

|L|
∑

l=1

Tr{P ℓ
XY |L||K|B

σ
m,(ℓ,k)

XY ⊗|L||K|B
}|ℓ〉〈ℓ|

L̂
,

where for all x ∈ X

P ℓ
XY |L||K|B =

|K|
∑

k=1

P
(ℓ,k)

XY |L||K|B
,

and P
x,(ℓ,k)

XY |L||K|B
is given in (22), in which, for all x ∈ X , ZY B is a binary test operator distinguishing between two hypotheses

σx
Y B and σx

Y ⊗ σx
B with an error of ǫ− δ, i.e.,

Tr{ZY Bσ
x
Y B} ≥ 1− (ǫ − δ),

where ǫ ∈ (0, 1) and δ ∈ (0, ǫ). Note that the variable x appearing in the operator indicates the fact that the decoding works

for all x ∈ X .

Bob has to be able to distinguish between states σ
m,(1,1)

XY ⊗|L||K|B
, σ

m,(1,2)

XY ⊗|L||K|B
, ..., σ

m,(l,k)

XY ⊗|L||K|B
, σ

m,(|L|,|K|)
XY ⊗|L||K|B

; We will see that

this amounts to Bob being able to distinguish between the following states:
∑

x

pX(x)|x〉〈x|X ⊗ σx
Y B,

∑

x

pX(x)|x〉〈x|X ⊗ σx
Y ⊗ σx

B,

or more precisely, between state σx
Y B and σx

Y ⊗σx
B for all x ∈ X . We importantly note that after detecting the public message

m, Bob is faced a |L||K|-ary hypothesis testing problem. This scenario should not be confused by the binary hypothesis testing

above, i.e., Alice distinguishes between σx
Y B and σx

Y ⊗ σx
B for all x ∈ X , the latter happens to be a byproduct of the general

scenario once we go into the error analysis. Now see that if the pair (ℓ, k) was chosen, the action of the operator N
(ℓ,k)

Y |L||K|B
would be as follows:

Tr{N (ℓ,k)

XY |L||K|B
σ
m,(ℓ,k)

XY ⊗|L||K|B
}

=
∑

x

pX(x)Tr{Z(ℓ,k)
YB σ

x,m,(ℓ,k)
Y B },
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Iǫ−δ
H (Y ;B|X)σXY B

:= max
σ′
X

min
x∈supp(σ′

X)











− log2 inf
0≤Zx

Y B≤1,
α(Zx

Y B ,σx
Y B)≤ǫ−δ

β(Zx
Y B, σ

x
Y ⊗ σx

B)











, (24)

where σXYB =
∑

x

pX(x)|x〉〈x|X ⊗ σx
Y B and P (σ′

X , σX) ≤ ǫ′′.

and for any other operator, i.e., the private message-local key pair (ℓ, k) is confused by (ℓ′, k′), either k 6= k′, l 6= ℓ′ or

(k 6= k′, ℓ 6= ℓ′):

Tr{N (ℓ′,k′)

XY |L||K|B
σ
m,(ℓ,k)

XY ⊗|L||K|B
}

= Tr

{

|x〉〈x|X ⊗ (Z
(ℓ′,k′)
Y B ⊗ 1(ℓ,k)Y )

(
∑

x

pX(x)|x〉〈x|X ⊗ σ
x,m,(ℓ′,k′)
Y ⊗ σ

x,m,(ℓ,k)
Y B )

}

=
∑

x

pX(x)Tr{Z(ℓ′,k′)
Y B (σ

x,m,(ℓ′,k′)
Y ⊗ σ

x,m,(ℓ,k)
B )}.

We can think of the states σ
x,m
Y B and σ

x,m
Y ⊗ σ

x,m
B as the null and alternative hypotheses, respectively. As a typical procedure

in quantum error analysis, Bob forms the square-root measurement operators given in (22) acting as his POVMs to detect the

private message-local key pair (ℓ, k). It can be shown that each measurement operator P
(ℓ,k)

Y |L||K|B
is related to the first one

P
(1,1)

Y |L||K|B
by a unitary permutation of Y |L||K| systems for all x ∈ X . This fact gives rise to the following identity, for all

ℓ ∈ [1 : |L|] and k ∈ [1 : |K|]:

Tr{(1XY |L||K|B − P
(1,1)

XY |L||K|B
)σ

m,(1,1)

XY ⊗|L||K|B
}

= Tr{(1XY |L||K|B − P
(ℓ,k)

XY |L||K|B
)σ

m,(ℓ,k)

XY ⊗|L||K|B
},

meaning that the error probability is the same for all private messages, in other words, it is independent from a particular

chosen twin (ℓ, k); And again this implies that average error probability equals individual error probabilities. In what follows,

we deploy Hayashi-Nagaoka operator inequality (Lemma 6) to analyze the error probability. Let’s assume (ℓ = 1, k = 1) was

sent. Moreover, let’s choose S = N
(1,1)

Y |L||K|B
and T =

∑

ℓ′ 6=1

∑

k′ 6=1N
(ℓ′,k′)

Y |L||K|B
in Hayashi-Nagaoka inequality. We have

Tr{(1Y |L||K|B − P
(1,1)

XY |L||K|B
)σ

m,(1,1)

XY ⊗|L||K|B
}

≤ (1 + c)Tr{(1Y |L||K|B −N
(1,1)

XY |L||K|B
)σ

m,(1,1)

XY ⊗|L||K|B
}

+ (2 + c+ c−1)
∑

l′ 6=1

∑

k′ 6=1

Tr{N (ℓ′,k′)

XY |L||K|B
σ
m,(1,1)

XY ⊗|L||K|}

= (1 + c)
∑

x

pX(x)Tr{(1Y B − Z
(1,1)
Y B )σ

x,m,(1,1)
Y B }

+ (2 + c+ c−1)
∑

x

pX(x)
(

∑

l′ 6=1

∑

k′ 6=1

Tr{Z(ℓ′,k′)
Y B (σ

x,m,(ℓ′,k′)
Y ⊗ σ

x,m,(1,1)
B )}

)

= (c+ 1)
∑

x

pX(x)Tr{(1Y B − ZY B)σ
x,m
Y B }

+ (2 + c+ c−1)(|L||K| − 1)(
∑

x

pX(x)Tr{ZYB(σ
x,m
Y ⊗ σ

x,m
B )})

For each realization x, let Θx
Y B denote the measurement operator that is the answer to the optimization mentioned in

Definition 1 with α(ZY B, σ
x
Y B) := Tr{(1−ZY B)σ

x
Y B} and β(ZY B , σ

x
Y ⊗ σx

B) := Tr{ZY B(σ
x
Y ⊗ σx

B)} where by assumption

it detects the joint state with an error probability of ǫ− δ where δ ∈ (0, ǫ). This optimization can be done for all x, but from

the definition of the conditional hypothesis testing mutual information (Definition 16), the x minimizing the expression given

in equation (24) over a nearby distribution is of particular interest in error analysis; The error probability simplifies as follows:
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σ
m,ℓ

X′Y
′⊗|L||K|E

:=
1

|K|

|K|
∑

k=1

σ
m,(ℓ,k)

X′Y
′⊗|L||K|E

:=
∑

x

pX(x)|x〉〈x|X′ ⊗ σ
x,m,(1,1)
Y ′ ⊗ ...

⊗





1

|K|

|K|
∑

k=1

σ
x,m,(ℓ,1)
Y ′ ⊗ ...⊗ σ

x,m,(ℓ,k)
Y ′E ⊗ ...⊗ σ

x,m,(ℓ,|K|)
Y ′



⊗ ...⊗ σ
x,m,(|L|,|K|)
Y ′ . (25)

Tr{(1Y |L||K|B − P
(1,1)

XY |L||K|B
)σ

m,(1,1)

XY ⊗|L||K|B
}

≤ (c+ 1)
∑

x

pX(x)Tr{(1Y B −ΘY B)σ
x,m
Y B }

+ (2 + c+ c−1)|L||K|
∑

x

pX(x)Tr{ΘYB(σ
x,m
Y ⊗ σ

x,m
B )}

≤ (c+ 1)(ǫ− δ)

+ (2 + c+ c−1)|L||K|2−I
ǫ−δ
H (Y ;B|X)σXY B ,

where in the last line, the first expression is derived from the assumption that for all x, Tr{ΘY Bσ
x,m
Y B } ≥ 1− (ǫ− δ), and the

second expression follows from (24). By putting the last line above equal to ǫ (Bob’s error in detecting private message is ǫ)

and solving it for |L||K|, we get:

log2 |L||K| =Iǫ−δ
H (Y ;B|X)σXY B

+ log2

(

ǫ − (1 + c)(ǫ− δ)

2 + c+ c−1

)

.

The right-hand side of the expression above should be maximized with respect to c. Since it is a down-side parabola when it

comes to maximization, we pick its global maximum which occurs at c = δ
2ǫ−δ

. By plugging it back into the expression we

end up having:

log2 |L||K| ≤ Iǫ−δ
H (Y ;B|X)σXY B

− log2(
4ǫ

δ2
).

The derivation above ensures that in the privacy error in (13), Bob’s error in detecting private message is satisfied (note that

each separate criterion comes about by tracing out the other one).

We now turn our attention to Eve’s state and security criterion which is merged into (13). We also assume that Eve has

detected the public message. From (20), for a fixed (ℓ, k), Eve’s state is8

σ
m,(ℓ,k)

X′Y
′⊗|L||K|E

=
∑

x

pX(x)|x〉〈x|X′ ⊗ σ
x,m,(1,1)
Y ′ ⊗ ...

⊗ σ
x,m,(ℓ,k)
Y ′E ⊗ ...⊗ σ

x,m,(|L|,|K|)
Y ′ .

As we discussed before, k is a local key exclusively in possession of Alice and for a given private message ℓ, it is chosen

uniformly at random; Hence, for a given message ℓ, the state of Eve can be written as equation (25). We would like her to

learn almost nothing about the sent private message. In other words, her state becomes independent from the chosen index ℓ:

∀m, ℓ : 1

2
‖σm,ℓ

X′Y
′⊗|L||K|E

− σ̂X′Y ′⊗|L||K|E‖1 ≤
√
ǫ′, (26)

where

σ̂X′Y
′⊗|L||K|E

:=
∑

x

pX(x)|x〉〈x|X′ ⊗ σ
x,m

Y ′⊗|L||K| ⊗ σ̃
x,m
E (27)

for ǫ′ ∈ (0, 1) and some state σ̃
m,x
E that is the marginal of σ̃

m,x
Y ′E and P (σm,x

Y ′E , σ̃
m,x
Y ′E) ≤

√
ǫ′ − δ′ in which δ′ ∈ (0,

√
ǫ′). From

the invariance of trace distance with respect to tensor-product states, we can expand the security constraint (26) as given by

(28).

8Note that the state in (20) denotes the disturbed state after Bob finds the public message, without loss of generality, we also assume Eve affects the initial
state in the same way.
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1

2

∥

∥

∥

∥

∥

σ
m,ℓ

X′Y
′⊗|L||K|E

−
∑

x

pX(x)|x〉〈x|X′ ⊗ σ
x,m

Y
′⊗|L||K| ⊗ σ̃

x,m
E

∥

∥

∥

∥

∥

1

=
1

2

∥

∥

∥

∥

∥

∑

x

pX(x)|x〉〈x|X′ ⊗
(

σ
x,m,ℓ

Y
′⊗|L||K|E

− σ
x,m

Y
′⊗|L||K| ⊗ σ̃

x,m
E

)

∥

∥

∥

∥

∥

1

=
∑

x

pX(x)
1

2

∥

∥

∥σ
x,m,ℓ

Y
′⊗|L||K|E

− σ
x,m

Y
′⊗|L||K| ⊗ σ̃

x,m
E

∥

∥

∥

1

=
1

2

∑

x

pX(x)

∥

∥

∥

∥

∥

∥

1

K

|K|
∑

k=1

σ
x,m,(ℓ,1)
Y ′ ⊗ ...⊗ σ

x,m,(ℓ,k−1)
Y ′ ⊗

(

σ
x,m,(ℓ,k)
Y ′E − σ

x,m
Y ′ ⊗ σ̃

x,m
E

)

⊗ σ
x,m,(ℓ,k+1)
Y ′ ⊗ ...⊗ σ

x,m,(|L|,|K|)
Y ′

∥

∥

∥

∥

∥

∥

1

.

(28)

σ
x,m,(ℓ,k)

Y ⊗|L||K|B
= σ

x,m,(1,1)
Y ⊗ ...⊗ σ

x,m,(1,|K|)
Y ⊗ ...⊗ σ

x,m,(ℓ,k−1)
Y ⊗ σ

x,m,(ℓ,k)
Y B ⊗ σ

x,m,(ℓ,k+1)
Y ...⊗ σ

x,m,(|L|,|K|)
Y

=
∑

y11

p(y11|x)|y11〉〈y11| ⊗ ...⊗
∑

y1|K|

p(y1|K||x)|y1|K|〉〈y1|K|| ⊗ ...⊗
∑

yℓk−1

p(yℓk−1)|yℓk−1〉〈yℓk−1|

⊗ ...⊗
∑

yℓk

p(yℓk|x)|yℓk〉〈yℓk| ⊗ σ
x,m,yℓk

B ⊗
∑

yℓk+1

p(yℓk+1|x)|yℓk+1〉〈yℓk+1|...⊗
∑

y|L||K|

p(y|L||K||x)|y|L||K|〉〈y|L||K||

=
∑

y11y12...ylk...y|L||K|

p(y11|x)p(y12|x)...p(yℓk|x)...p(y|L||K||x)|y11...yℓk...y|L||K|〉〈y11...yℓk...y|L||K|| ⊗ σ
x,m,yℓk

B ,

hence

σ
m,(ℓ,k)

XY ⊗|L||K|B
=

∑

x,y11y12...ylk...y|L||K|

pXY |L||K|(x, y11...ylk...y|L||K|)|x〉〈x|X ⊗ |y11...yℓk...y|L||K|〉〈y11...yℓk...y|L||K|| ⊗ σ
x,m,yℓk

B .

(31)

From the convex-split lemma and the definition of the conditional smooth max-mutual information (see Definition 17), if

the following condition holds9,

log2 |K| = Ĩ
√
ǫ′−δ′

max (E;Y |X)σ + 2 log2(
1

δ′
), (29)

then

P (σm,ℓ

X′Y
′⊗|L||K|E

, σ̂X′Y
′⊗|L||K|E) ≤

√
ǫ′

is satisfied with σ̂X′Y ′|L||K|E defined in (27) and from the relation between purified distance and trace distance correctness

of (26) is guaranteed. Note also that P (σx,m
E , σ̃

x,m
E ) ≤ P (σx,m

Y E , σ̃
x,m
Y E ) ≤

√
ǫ′ − δ′. So far, we have shown the correctness

of two separate criteria for the assisted code. For our purposes here we would like to have a single condition for the private

message encompassing both conditions discussed lately and so in the following, by sticking to the reciepe set out by [3], we

try to merge two conditions and deal with a single privacy error. We see that the single criterion will be beneficial once we

derandomize the code and upon derandomization, the requirements set out in the definition of the unassisted code will be

fulfilled.

We saw that the average error probability is equal to the individual error probabilities:

Tr{(1XY |L||K|B − P
(ℓ,k)

XY |L||K|B
)σ

m,(ℓ,k)

XY ⊗|L||K|B
} =

1

|L||K|

|L|
∑

l=1

|K|
∑

k=1

Tr{(1Y |L||K|B − P
(ℓ,k)

XY |L||K|B
)σ

m,(ℓ,k)

XY ⊗|L||K|B
} ≤ ǫ (30)

We continue by expanding σ
m,(ℓ,k)

XY ⊗|L||K|B
=
∑

x pX(x)|x〉〈x|X ⊗ σ
x,m,(ℓ,k)

Y ⊗|L||K|B
as in equation (31).

Reconsider the optimal test operator ΘY B , we can write the following equation:

9To maintain consistency, in the following expression, we show Eve’s X′ and Y ′ systems with X and Y , respectively.
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N
(ℓ,k)

XY |L||K|B
= |x〉〈x|X ⊗ 1(1,1)Y ⊗ ...⊗Θ

(ℓ,k)
Y B ⊗ ...⊗ 1(|L|,|K|)

Y

=
∑

y11...ylk...y|L||K|

|x〉〈x|X ⊗ |y11...yℓk...y|L||K|〉〈y11...yℓk...y|L||K|| ⊗G
x,yℓk

B . (32)

(

∑

ℓ′

∑

k′

N
(ℓ′,k′)

XY |L||K|B

)− 1
2

=
∑

y11...y|L||K|

|x〉〈x|X ⊗ |y11...y|L||K|〉〈y11...y|L||K|| ⊗
(

∑

ℓ′

∑

k′

G
x,yℓ′k′

B

)− 1
2

, (33)

P
(ℓ,k)

XY |L||K|B

=

(

∑

ℓ′

∑

k′

N
(ℓ′,k′)

XY |L||K|B

)− 1
2

N
(ℓ,k)

XY |L||K|B

(

∑

l′

∑

k′

N
(ℓ′,k′)

XY |L||K|B

)− 1
2

=
∑

y11...y|L||K|

|x〉〈x|X ⊗ |y11...y|L||K|〉〈y11...y|L||K|| ⊗ Ωx,yℓk

B , (34)

where

Ω
x,(ℓ,k)
B

:=

(

∑

ℓ′

∑

k′

G
x,yℓ′k′

B

)− 1
2

G
x,yℓk

B

(

∑

ℓ′

∑

k′

G
x,yℓ′k′

B

)− 1
2

.

Tr{ΘYBσ
x
Y B} = Tr{ΘYB(

∑

y

p(y|x)|y〉〈y| ⊗ σ
x,y
B )}

=
∑

y

p(y|x)Tr{〈y|Θx
YB |y〉σx,y

B }

=
∑

y

p(y|x)Tr{Gx,y
B σ

x,y
B },

where G
x,y
B

:= 〈y|Θx
Y B|y〉. In an analogous way:

Tr{ΘYB(σ
x
Y ⊗ σx

B)} =
∑

y

p(y|x)Tr{Gx,y
B σx

B}.

The above derivations lead the test operator to be considered as ΘY B =
∑

y |y〉〈y|Y ⊗G
x,y
B , i.e., the operator classical on Y

achieves the same optimal values as any general operator. Next we try to embed the test operator in the N
(ℓ,k)

XY |L||K|B
as given

in (23) and expanded as in (32). Observe the structure of the POVM given in (33). And finally our POVM has the form given

in equation (34). To build a POVM on the full space, we add Ω0
B = 1B −∑ℓ

∑

k Ω
x,(ℓ,k)
B to the set {Ωx,(ℓ,k)

B }|L|,|K|
ℓ=1,k=1. By

combining (31) and (34), we find that

Tr{(1Y |L||K|B − P
(ℓ,k)

XY |L||K|B
)σ

m,(ℓ,k)

XY ⊗|L||K|B
}

=
∑

x,y11...y|L||K|

pX(x)p(y11|x)...p(y|L||K||x)

× Tr{(1B − Ωx,yℓk

B )σx,m,yℓk

B }
and from (30), the equality of the average and the individual error probabilities, yields equation (35).

By taking advantage of the POVMs {Ωx,(ℓ,k)
B }|L|,|K|

ℓ=1,k=1, the following measurement channels are defined

D′2
B→L̂(ωB) :=

|L|
∑

ℓ=1

|K|
∑

k=1

Tr{Ωx,yℓ,k

B ωB}|ℓ〉〈ℓ|L̂, (36)
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1

|L|
1

|K|

|L|
∑

ℓ=1

|K|
∑

k=1

Tr{(1Y |L||K|B − P
(ℓ,k)

XY |L||K|B
)σ

m,(ℓ,k)

XY ⊗|L||K|B
}

=
1

|L|
1

|K|

|L|
∑

ℓ=1

|K|
∑

k=1

∑

x,y11...y|L||K|

pX(x)p(y11|x)...p(y|L||K||x)Tr{(1B − Ωx,yℓk

B )σx,m,yℓk

B }

=
∑

x,y11...y|L||K|

pX(x)p(y11|x)...p(y|L||K||x)





1

|L|
1

|K|

|L|
∑

ℓ=1

|K|
∑

k=1

Tr{(1B − Ω
x,yℓ,k

B )σx,m,yℓk

B }



 ≤ ǫ. (35)

∑

x,y11...y|L||K|

pX(x)p(y11|x)...p(y|L||K||x)
[

1

|L|
1

|K|
∑

ℓ

∑

k

1

2

∥

∥

∥D′2
B→L̂K̂(σx,m,yℓk

B )− |ℓ〉〈ℓ|
L̂
⊗ |k〉〈k|

K̂

∥

∥

∥

1

]

≤ ǫ. (38)

∑

x,y11,...,y|L||K|

pX(x)p(y11|x)...p(y|L||K||x)





1

|L|

|L|
∑

ℓ=1

1

2

∥

∥

∥

∥

∥

∥

(Tr
K̂
◦ D′2

B→L̂K̂)





1

|K|

|K|
∑

k=1

σ
x,m,yℓk

B



− |ℓ〉〈ℓ|
L̂

∥

∥

∥

∥

∥

∥

1





=
∑

x,y11,...,y|L||K|

pX(x)p(y11|x)...p(y|L||K||x)





1

|L|

|L|
∑

ℓ=1

1

2

∥

∥

∥

∥

∥

∥

D′2
B→L̂





1

|K|

|K|
∑

k=1

σ
x,m,yℓk

B



 − |ℓ〉〈ℓ|
L̂

∥

∥

∥

∥

∥

∥

1



 ≤ ǫ.

(39)

D′2
B→L̂K̂(ωB) :=

|L|
∑

ℓ=1

|K|
∑

k=1

Tr{Ωx,yℓ,k

B ωB}|ℓ〉〈ℓ|L̂ ⊗ |k〉〈k|
K̂
, (37)

where ωB is a general quantum state and Tr
K̂
◦ D′2

B→L̂K̂
= D′2

B→L̂
. Note that in (36) the probability of getting a particular

ℓ equals
∑|K|

k=1 Tr{Ωx,yℓk

B ωB}. By direct calculations, it can be seen that:

Tr{(1B − Ω
x,yℓ,k

B )σ
x,m,yℓ,k

B }

=
1

2

∥

∥

∥D′2
B→L̂K̂(σ

x,m,yℓ,k

B )− |ℓ〉〈ℓ|
L̂
⊗ |k〉〈k|

K̂

∥

∥

∥

1
,

averaging over ℓ, k and (x, y1,1...y|L|,|K|) and using (35), we get equation (38). In equation (38), if we take the average over

k inside the trace distance and trace out K̂ system, by the convexity and monotonicity of the trace distance, we obtain the

equations in (39).

Considering the POVM {Ωx,yℓk

B }|L|,|K|
ℓ=1,k=1, the probability of getting ℓ′ conditioned on the fact that (ℓ, k) was sent is equal to

∑K
k′=1 Tr{Ωx,yℓ′k′

B σ
x,yℓk

B } and it is clear from the uniformity of the local key that the probability of getting l′ given that l was

sent, equals Pr(l′|l) = 1
|K|
∑|K|

k=1

∑|K|
k′=1 Tr{Ωx,yℓ′k′

B σ
x,m,yℓk

BE } = 1
|K|
∑|K|

k=1

∑|K|
k′=1 Tr{Ωx,yℓ′k′

B σ
x,m,yℓk

B }. Note that evidently
∑|L|

ℓ′=1 Pr(ℓ
′|ℓ) = 1. If the trace above was only applied to the B system, we would have :

1

|K|

|K|
∑

k=1

|K|
∑

k′=1

TrB{Ωx,yℓ′,k′

B σ
x,m,yℓ,k

BE } = Pr(ℓ′|ℓ)uℓ
′,ℓ
E ,

where

u
ℓ′,ℓ
E

:=

1
|K|
∑|K|

k=1

∑|K|
k′=1 TrB{Ωx,yℓ′,k′

B σ
x,m,yℓ,k

BE }
Pr(ℓ′|ℓ) .

And by summing up over all ℓ′ we get: (see that
∑|K|

k′=1

∑|L|
ℓ′=1 TrB{Ωx,yℓ′,k′

B σ
x,m,yℓ,k

BE } = σ
x,m,yℓ,k

E for a given pair (ℓ, k))

|L|
∑

ℓ′=1

Pr(ℓ′|ℓ)uℓ
′,ℓ
E =

1

|K|

|K|
∑

k=1

σ
x,m,yℓ,k

E .
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1

|L|

|L|
∑

l=1

1

2

∥

∥

∥

∥

∥

∥

D′2
B→L̂





1

|K|

|K|
∑

k=1

σ
x,m,yℓ,k

BE



− |ℓ〉〈ℓ|
L̂
⊗ 1

|K|

|K|
∑

k=1

σ
x,m,yℓ,k

E

∥

∥

∥

∥

∥

∥

1

=
1

|L|

|L|
∑

ℓ=1

1

2

∥

∥

∥

∥

∥

∥

|L|
∑

ℓ′=1

Pr(ℓ′|ℓ)|ℓ′〉〈ℓ′|
L̂
⊗ u

ℓ′,ℓ
E − |ℓ〉〈ℓ|

L̂
⊗

|L|
∑

ℓ′=1

Pr(ℓ′|ℓ)uℓ
′,ℓ
E

∥

∥

∥

∥

∥

∥

1

≤ 1

|L|

|L|
∑

l=1

|L|
∑

ℓ′=1

Pr(ℓ′|ℓ)
[

1

2
‖|ℓ′〉〈ℓ′|

L̂
⊗ u

ℓ′,ℓ
E − |ℓ〉〈ℓ|

L̂
⊗ u

ℓ′,ℓ
E ‖1

]

=
1

|L|

|L|
∑

ℓ=1

|L|
∑

ℓ′=1

Pr(ℓ′|ℓ)
[

1

2
‖|ℓ′〉〈ℓ′|

L̂
− |ℓ〉〈ℓ|

L̂
‖1
]

=
1

|L|

|L|
∑

ℓ=1

∑

ℓ′ 6=ℓ

Pr(ℓ′|ℓ) = 1

|L|

|L|
∑

ℓ=1

1

2

∥

∥

∥

∥

∥

∥

D′2
B→L̂





1

|K|

|K|
∑

k=1

σ
x,m,yℓ,k

B



− |ℓ〉〈ℓ|
L̂

∥

∥

∥

∥

∥

∥

1

, (40)

∑

x,y1,1,...,y|L|,|K|

pX(x)p(y1,1|x)...p(y|L|,|K||x)





1

|L|

|L|
∑

ℓ=1

1

2

∥

∥

∥

∥

∥

∥

D′2
B→L̂





1

|K|

|K|
∑

k=1

σ
x,m,yℓ,k

BE



− |ℓ〉〈ℓ|
L̂
⊗ 1

|K|

|K|
∑

k=1

σ
x,m,yℓ,k

E

∥

∥

∥

∥

∥

∥

1



 ≤ ǫ.

(41)

1

2

∥

∥

∥

∥

∥

σ
m,ℓ

XY ⊗|L||K|E
−
∑

x

pX(x)|x〉〈x|X ⊗ σ
x,m

Y ⊗|L||K| ⊗ σ̃
x,m
E

∥

∥

∥

∥

∥

1

=
1

2

∥

∥

∥

∥

∥

∥

1

|K|

|K|
∑

k=1

∑

x,y11...y|L||K|

pX(x)pY |X(y11|x)...pY |X(y|L||K||x)|x〉〈x|X ⊗ |y11...y|L||K|〉〈y11...y|L||K||Y |L||K| ⊗ (σx,m,yℓk

E − σ̃
x,m
E )

∥

∥

∥

∥

∥

∥

1

=
1

2

∥

∥

∥

∥

∥

∥

∑

x,y11...yℓk

pX(x)pY |X(y11|x)...pY |X(y|L|,|K||x)|x〉〈x|X ⊗ |y11...y|L||K|〉〈y11...y|L|,|K||Y |L||K| ⊗





1

|K|

|K|
∑

k=1

σ
x,m,yℓ,k

E − σ̃
x,m
E





∥

∥

∥

∥

∥

∥

1

=
∑

x,y11...y|L||K|

pX(x)pY |X(y11|x)...pY |X(y|L||K||x)





1

2

∥

∥

∥

∥

∥

∥

1

|K|

|K|
∑

k=1

σ
x,m,yℓk

E − σ̃
x,m
E

∥

∥

∥

∥

∥

∥

1





=
∑

x,y11...y|L||K|

pX(x)pY |X(y11|x)...pY |X(y|L||K||x)





1

2

∥

∥

∥

∥

∥

∥

|ℓ〉〈ℓ|L′ ⊗ 1

|K|

|K|
∑

k=1

σ
x,m,yℓk

E − |ℓ〉〈ℓ|L′ ⊗ σ̃
x,m
E

∥

∥

∥

∥

∥

∥

1



 ≤
√
ǫ′, (42)

Hence, the following equation follows:

D′2
B→L̂





1

|K|

|K|
∑

k=1

σ
x,m,yℓ,k

BE



 =

|L|
∑

ℓ′=1

Pr(ℓ′|ℓ)|ℓ′〉〈ℓ′|
L̂
⊗ u

ℓ′,ℓ
E ,

and by tracing out Eve’s system:

D′2
B→L̂





1

|K|

|K|
∑

k=1

σ
x,m,yℓ,k

B



 =

|L|
∑

ℓ′=1

Pr(ℓ′|ℓ)|ℓ′〉〈ℓ′|
L̂
.

We move forward with the chain of inequalities ending up in (40), where the first inequality follows from the convexity of the

trace distance and the second equality emerges because of the invariance of the trace distance with respect to tensor-product

states. This result together with (39) leads to the inequality given by (41). This is equivalent to the criterion dealing with Bob’s

error in detecting the private message. We continue by expanding Eve’s security condition as given in (42), where the last

equality comes about by using the invariance of trace distance with respect to tensor-product states.

We deal with two important expressions in (41) and (42), the former is Bob’s error in detecting the private message and

the later is the security of Eve. Now it is time to unify two criteria into the so-called privacy error. To this end, let’s consider

(41) and (42) together with their imposed bounds on the cardinalities of |L| and |K|. We employ triangle inequality for the
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∑

x,y1,1,...,y|L|,|K|

pX(x)pY |X(y1,1|x)...pY |X(y|L|,|K||x)





1

2

∥

∥

∥

∥

∥

∥

D′2
B→L̂





1

|K|

|K|
∑

k=1

σ
x,m,yℓ,k

BE



− |ℓ〉〈ℓ|
L̂
⊗ σ̃

x,m
E

∥

∥

∥

∥

∥

∥

1



 ≤ ǫ +
√
ǫ′,

(43)

∥

∥

∥

∥

∥

(
∑

m

|m〉〈m|M ′ ⊗D2,m

BY→L̂
)(D1

BX→M̂B
(ρ

m,(ℓ,k)

X⊗|M|B
))− (|m〉〈m|M ′ ⊗D2,m

BY →L̂
)(D1

BX→M̂B
(ρ

m,(ℓ,k)

X⊗|M|B
))

∥

∥

∥

∥

∥

1

=

∥

∥

∥

∥

∥

∥

∑

m′ 6=m

|m′〉〈m′|M ′ ⊗D2,m′

BY →L̂
(D1,m′

BX→B(ρ
m,(ℓ,k)

X⊗|M|B
))

∥

∥

∥

∥

∥

∥

1

≤
∑

m′ 6=m

∥

∥

∥
|m′〉〈m′|M ′ ⊗D2,m′

BY →L̂
(D1,m′

BX→B(ρ
m,(ℓ,k)

X⊗|M|B
))
∥

∥

∥

1

≤
∑

m′ 6=m

∥

∥

∥D1,m′

BX→B(ρ
m,(ℓ,k)

X⊗|M|B
)
∥

∥

∥

1
≤ ǫ. (44)

trace distance to merge them into the privacy error as given in (43) (remember that in the assisted code, there is no difference

between average and individual error probabilities). This immediately implies the privacy criterion given in (13) in the sense

that if this holds, the single criterion in (13) also holds.

We are now done with the assisted code. As we proceed to derandomize the code, it will be clear that the procedure employed

to unify two error criteria is helpful. Before we proceed to derandomize the code, we would like to consider two extra error

terms. The error probability of the second decoder depends on the error probability of the first decoder in two directions, first,

the second decoder is fed a state close to the actual received state and second, the second decoder applies a quantum instrument

depending on the estimate of the transmitted message m. This can, without losing the generality, be written as follows:

D2
M̂BY→L̂

:=
∑

m

|m〉〈m|M ′ ⊗D2,m

BY →L̂
.

In the following we show how this fact contributes to the error probability. First one is the difference between the received

state and the disturbed state being fed into the second decoder. Since the probability of error of the first decoder is at most ǫ,

we know from gentle measurement lemma that:
∥

∥

∥σ
m,(ℓ,k)

XY ⊗|L||K|B
− ρ

m,(ℓ,k)

XY ⊗|L||K|B

∥

∥

∥

1
≤ 2

√
ǫ,

and for the second term we have the chain of inequalities given by (44); where the equality follows from the the observation

in (10), the first and second inequalities follow the convexity and monotonicity of trace distance, respectively. Adding these

two terms to (43) will result in Ppriv ≤ 2(ǫ+
√
ǫ) +

√
ǫ′.

3) Derandomization: We can now fix the classical registers and obtain a protocol without shared randomness, i.e., deran-

domize the code. The derandomization is a standard technique and its mathematical details are given in the appendix.

V. CONVERSE

In this section we give upper bounds for the capacity region Cǫ,ǫ′(N ).
Proof of theorem (3): Two messages m ∈ M and ℓ ∈ L are sent through the channel NA→BE and their estimates are

M̂ and L̂, respectively. From definition (18), an (ǫ, ǫ′)-code satisfies Pr(M 6= M̂) ≤ ǫ. A hypothesis testing problem can be

associated to the problem of detecting m leading to an expression for the error probability of the public message. To see how

it works out, consider a binary hypothesis testing problem in which null and alternative hypothesis are

ρMM ′ =
1

|M|

|M|
∑

m=1

|m〉〈m|M ⊗ |m〉〈m|M ′ and

ρM ⊗ ρM ′ =
1

|M|

|M|
∑

m=1

|m〉〈m|M ⊗ 1

|M|

|M|
∑

m=1

|m〉〈m|M ′ ,

respectively. It is easily seen that type I error, i.e., deciding in favor of ρM ⊗ ρM ′ while the true state was ρMM ′ , is exactly

equal to the error probability Pr(M 6= M̂) which is less than or equal to ǫ by assumption. On the other hand, type II error,
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deciding ρMM ′ on ρM ⊗ ρM ′ , equals 1
|M| (the distribution over message set is uniform). Then from the definition of the

hypothesis testing mutual information, we have the following:

r ≤ IǫH(M ;M ′)ρ.

where r = log |M| is the rate of the public message. Furthermore, from the quantum DPI, we have:

IǫH(M ;M ′)ρ ≤ IǫH(M ;B)ρ

Finally, using the injectivity of the encoder, we define a random variable X whose distribution is built by projecting the

distribution of M on its image on X and zero otherwise. Setting X =M , we get the following:

r ≤ IǫH(X ;B)ρ.

In regards to the private rate R = log |L|, consider the following chain of inequalities:

ǫ ≥ Pr{(M,L) 6= (M̂, L̂)}
=
∑

m,ℓ

p(m)p(ℓ)
∑

(m̂,ℓ̂) 6=(m,ℓ)

p(m̂, ℓ̂|m, ℓ)

≥
∑

m,ℓ

p(m)p(ℓ)
∑

ℓ̂ 6=ℓ

p(ℓ̂|m, ℓ)

=
∑

m

p(m)Pr(L̂ 6= L|M = m),

where the first line is due to the assumption. From Markov’s inequality, we know that with probability at least 1 − √
ǫ, the

following holds for a randomly generated m ∈ M:

Pr(L̂ 6= L|M = m) ≤ √
ǫ.

Then following the same strategy as for the public rate, we consider a binary hypothesis testing problem distinguishing between

ρm
LL̂

and ρmL ⊗ ρmL conditioned on previously specified m, we will have:

R ≤ I
√
ǫ

H (L; L̂|M = m)ρ.

Then, to get I
√
ǫ

H (L; L̂|M)ρ, according to Definition 16, we can optimize the expression with respect to ρ′M where P (ρM , ρ
′
M ) ≤√

ǫ. Then from the monotonicity of the hypothesis-testing relative entropy applied to L̂ system, we have:

I
√
ǫ

H (L; L̂|M)ρ ≤ I
√
ǫ

H (L;B|M)ρ.

By the same argument that we defined X :=M , we also define Y := L and so the following results:

R ≤ I
√
ǫ

H (Y ;B|X)ρ. (45)

On the other hand, from the secrecy condition (5), we know that for every m, the following is true:

1

2
‖ρmLE − ρL ⊗ ρ̃mE ‖1 ≤ ǫ′,

and from the relation between the purified distance and the trace distance it holds that:

P (ρmLE, ρL ⊗ ρ̃mE ) ≤
√
2ǫ′.

From the definition of the smooth max-relative entropy we see that D
√
2ǫ′

max (ρ
m
LE , ρL ⊗ ρ̃mE ) = 0. And by considering the

optimization in Definition 17 over ρ′M such that P (ρ′M , ρM ) ≤
√
ǫ′, we have I

√
2ǫ′

max (L;E|M) = 0. Setting M := X and

L := Y as before and plugging into (45), the following bound on the private rate holds:

R ≤ I
√
ǫ

H (Y ;B|X)− I
√
2ǫ′

max (Y ;E|X). (46)
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VI. ASYMPTOTIC ANALYSIS

We evaluate our rate region in the asymptotic limit of many uses of a memoryless channel. The capacity theorem for

simultaneous transmission of classical and quantum information was proved by Devetak and Shor [19]. In this section, we

recover their result from our theorems. We define the rate region of the simultaneous transmission of the classical and quantum

information as follows:

C∞(N ) := lim
ǫ,ǫ′→0

lim
n→∞

1

n
Cǫ,ǫ′(N⊗n).

Let C(N ) be the set of rate pairs (r′, R′) such that

r′ ≤I(X ;B)ρ,

R′ ≤I (Y ;B|X)ρ − I (Y ;E|X)ρ

where all the entropic quantities are computed over all ρXYBE :=
∑

x,y p(x, y) |x〉〈x| ⊗ |y〉〈y| ⊗ NA→BE(ρ
x,y
A ) arising from

the channel. Then the capacity region C∞(N ) is the (normalized) union over ℓ uses of the channel N as below:

C∞(N ) =

∞
⋃

ℓ=1

1

ℓ
C(N⊗ℓ). (47)

In the rest of this section, our aim is to prove the capacity region above. Before doing so, we slightly modify the expression

for the private rate in Theorem 2 by using Fact 5. Note that Fact 5 deals with unconditional expressions, however, conditional

expressions are trivial noting their definitions. Therefore, the following holds:

Ĩ
√
ǫ′−δ′

max (Y ;E|X) ≤ I
√
ǫ′−δ′−γ

max (Y ;E|X)

+ log2

(

3

γ2

)

,

where γ ∈ (0,
√
ǫ′ − δ′). And so the achievability of the private rate appears as follows:

R ≥ Iǫ−δ
H (Y ;B|X)− I

√
ǫ′−δ′−γ

max (Y ;E|X)

− log2(
4ǫ

δ2
)− 2 log2(

1

δ′
)− log2

(

3

γ2

)

.

Like all capacity theorems, the proof of the aforementioned capacity region is accomplished in two steps, direct part that

we show all such rates are achievable, i.e., the right-hand side of the equation (47) is contained (⊆) inside C∞(N ) and the

converse part that goes in the opposite direction saying that those rates cannot be exceeded, i.e., C∞(N ) is contained inside

the union on the right-hand side of (47).

For the direct part, we use our one-shot lower bounds on the capacity region and apply quantum AEP for the (conditional)

smooth hypothesis testing- and max-mutual information. From Theorem 2, for m uses of the channel N (or as one may like

to think of it, one use of the superchannel N⊗m), the following lower bound on the capacity region Cǫ,ǫ′(N⊗m) can be seen:

m
⋃

ℓ=1

Ca(N⊗ℓ) ⊆ C3ǫ+2
√
ǫ+

√
ǫ′,2(ǫ+

√
ǫ)+

√
ǫ′(N⊗m),

where Ca(N⊗ℓ) is the set of all twins (r′, R′) satisfying:

r′ ≤ Iǫ−δ
H

(

Xℓ;B⊗ℓ
)

− log2(
4ǫ

δ2
),

R′ ≤ Iǫ−δ
H

(

Y ℓ;B⊗ℓ|Xℓ
)

− I
√
ǫ′−δ′−γ

max (Y ℓ;E⊗ℓ|Xℓ)

− log2(
4ǫ

δ2
)− 2 log2(

1

δ′
)− log2

(

3

γ2

)

.

Since the region above is basically a lower bound on the capacity region, we are free to assume that the sequences of the

random variables are generated in an i.i.d. fashion according to the corresponding distributions. This empowers us to make

use of quantum AEP as described below. From Fact 4 we have

lim
ǫ→0

lim
m→∞

1

m
Iǫ−δ
H

(

Xm;B⊗m
)

= I(X ;B).
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Likewise, applying Lemma 1 and Lemma 2 give rise respectively to the following identities:

lim
ǫ→0

lim
m→∞

1

m
Iǫ−δ
H

(

Y m;B⊗m|Xm
)

= I(Y ;B|X),

lim
ǫ′→0

lim
m→∞

1

m
I
√
ǫ′−δ′−γ

max (Y m;E⊗m|Xm) = I(Y ;E|X).

Plugging back into the respective equations, we obtain

C(N ) ⊆ lim
ǫ,ǫ′→0

lim
m→∞

1

m
Cǫ,ǫ′(N⊗m),

where C(N ), as defined before, consists of rate pairs (r′, R′) satisfying

r′ ≤I(X ;B)ρ,

R′ ≤I(Y ;B|X)ρ − I(Y ;E|X)ρ.

Last step of the direct part is to consider a superchannel N⊗ℓ (ℓ independent uses of the channel N ) and let n = mℓ and

repeat the above argument, i.e., use the superchannel m times. Finally by letting n → ∞ and evaluating the union of the

regions, we obtain the desired result.

To prove the converse, we consider our upper bounds given in Theorem 3 in the case of n uses of the channel N and we

have:

Cǫ,ǫ′(N⊗n) ⊆
∞
⋃

n=1

Cc(N⊗n)

where Cc(N⊗n) includes all ordered twins (r′, R′) satisfying

r′ ≤ IǫH
(

Xn;B⊗n
)

, (48)

R′ ≤ IǫH(Y n;B⊗n|Xn)− I
√
2ǫ′

max

(

E⊗n;Y n|Xn
)

. (49)

To upper bound right-hand side of (48) we apply Fact 1. The first term on the right-hand side of (49) can be upper bounded

by making use of lemma (3) and for the second term, we use Lemma 4 replacing |HA| with |Y|n. The inequalities are as

follows:

r′ ≤ 1

1− ǫ

(

I(Xn;B⊗n) + hb(ǫ)
)

,

R′ ≤ 1

1− ǫ

(

I(Y n;B⊗n|Xn) + hb(ǫ)
)

− I
(

E⊗n;Y n|Xn
)

+ 2n
√
2ǫ′ log |Y|+ 2(1 +

√
2ǫ′)hb(

√
2ǫ′

1 +
√
2ǫ′

).

Multiplying by 1
n

and taking the limits n→ ∞ and ǫ, ǫ′ → 0, (changing n with ℓ) the desired result is achieved.

A. private information to coherent information

Here we argue that the private rate that has been given in terms of the difference between two mutual-information like

quantities, is in principle, the coherent information appearing in [19]. To see how this plays out, consider an ensemble

of quantum states E = {pX(x), |φx〉RA}x∈X where X is a random variable with alphabet X and distribution pX(x) and

A and R are quantum systems such that R plays the role of a reference system. Assuming an auxiliary classical system

σX =
∑

x pX(x)|x〉〈x|X , the following state can be associated to the ensemble:

σXRA =
∑

x

pX(x)|x〉〈x|X ⊗ |φx〉〈φx|RA. (50)

If channel NA→BE acts on this state, we get the following coherent state:

NA→BE(σXRA) =
∑

x

pX(x)|x〉〈x|X ⊗ |φx〉〈φx|RBE ,

and the conditional coherent information on it, is evaluated as follows:

I(R〉BX) := −H(R|BX) = H(B|X)−H(RB|X)

(a)
= H(B|X)−H(E|X),

where (a) follows from the fact that the state |φx〉〈φx|RBE is a pure state (conditioned on X).
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We proceed with applying the Schmidt decomposition to the pure states {|φx〉RBE}x∈X with respect to the cut R|BE . Let

{|yx〉R} and |ψx,y〉BE be orthonormal bases for R and BE systems. Then from Schmidt decomposition we have that

|φx〉RBE =
∑

y

√

pY |X(y|x)|yx〉R ⊗ |ψx,y〉BE .

We want to get a decoherent version of the state |φx〉RBE by measuring the R system in the basis {|yx〉R}. Since after the

measurement, R system becomes a classical system, hereafter we show it by Y . Let |φ̄x〉Y BE denote the decoherent state

resulting from the measurement, then

φ̄xY BE =
∑

y

pY |X(y|x)|yx〉〈yx|Y ⊗ |ψx,y〉〈ψx,y|BE ,

and let the decoherent state σ̄XRBE be as follow:

σ̄XY BE =
∑

x

pX(x)|x〉〈x|X

⊗
∑

y

pY |X(y|x)|yx〉〈yx|Y ⊗ |ψx,y〉〈ψx,y|BE .

This state is the same as was held by Bob and Eve after decoding for the public message. If the correctness of the following

equality can be proven, which turns out to be straightforward, we can argue about the correctness of our claim,

I(R〉BX)σ = I(Y ;B|X)σ̄ − I(Y ;E|X)σ̄. (51)

The right-hand side of (51) can be expanded as follow:

I(Y ;B|X)σ̄ − I(Y ;E|X)σ̄
(a)
= H(B|X)−H(B|X,Y )−H(E|X) +H(E|X,Y )

(b)
= H(B|X)−H(E|X),

where (a) follows by the definition of the conditional mutual information and (b) is due to the fact that conditioned on X and

Y , the state on BE is a pure state. Observe the last expression is a function solely of the density operator given in (50). It is

evident that for the regularized formula, we consider n-fold states in our proof instead. This proves our claim.

VII. CONCLUSION

We studied the one-shot capacity of a quantum channel for simultaneous transmission of classical and quantum information.

Our main tools are position-based decoding and convex-split lemma. We first consider the problem of simultaneous transmission

of public and private classical information and then we discussed that the private rate can be translated into quantum capacity.

We also provided converse bounds. By evaluating our achievability and converse bounds in asymptotic i.i.d. regime, we

recovered the well-known results in the literature.

APPENDIX A

DERANDOMIZATION OF THE CODE

We aim to derandomize the assisted code. As mentioned in the introductory section, this development follows the procedure

used in [3] and [22]. We start with the public message. We saw that the optimal operator ΠXB is such that Tr{ΠXBρXB} ≥
1− (ǫ−δ) and Tr{ΠXB(ρX ⊗ρB)} = 2−I

ǫ−δ
H

(X;B)ρ , we rewrite the two error types with slightly different notations as follows

:

Tr{ΠXBρXB} = Tr

{

ΠXB

∑

x

pX(x)|x〉〈x|X ⊗ ρxB

}

=
∑

x

pX(x)Tr{〈x|ΠXB |x〉XρxB}

=
∑

x

pX(x)Tr{W x
Bρ

x
B},
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ρ
m,(l,k)

X⊗|M|B
:= ρ1X ...⊗ ρ

m,(l,k)
XB ⊗ ...⊗ ρ

|M|
X =

∑

x1,...,x|M|

pX(x1)...pX(x|M|)|x1....x|M|〉〈x1...x|M||X1...X|M|
⊗ ρ

m,(l,k)
B . (52)

Γm
X|M|B

= 1

1
X ⊗ ...⊗ Tm

XB ⊗ ...⊗ 1|M|
X =

∑

x1

|x1〉〈x1|X ⊗ ...⊗
(

∑

xm

|xm〉〈xm|X ⊗W xm

B

)

⊗ ...⊗
∑

x|M|

|x|M|〉〈x|M||X

=
∑

x1...x|M|

|x1...x|M|〉〈x1...x|M||X ⊗W xm

B . (53)

in which the operator W x
B is defined as W x

B := 〈x|ΠXB |x〉X . In an analogous way, we have that

Tr{ΠXB(ρB ⊗ ρX)} = Tr

{

ΠXB

∑

x

pX(x)|x〉〈x|X ⊗ ρB

}

=
∑

x

pX(x)Tr{〈x|ΠXB |x〉XρB}

=
∑

x

pX(x)Tr{W x
BρB}.

These expressions imply that it is sufficient to take the optimal test to be ΠXB =
∑

x |x〉〈x|X ⊗W x
B with aforementioned W x

B ;

In other words, the test ΠXB can achieve the same error probability as any other ΠXB would do. We proceed with dissecting

each term involved in Tr{(1X|M|B−Λm
X|M|B

)ρ
m,(l,k)

X⊗|M|B
} where ρ

m,(l,k)

X⊗|M|B
is given in (52). By assuming the particular structure

for the optimal test operator that we just introduced, the operator Γm
X|M|B

appears as given in (53). And





|M|
∑

m′=1

Γm′

X|M|B





− 1
2

=





|M|
∑

m′=1

∑

x1...x|M|

|x1...x|M|〉〈x1...x|M||X ⊗W
xm′

B





− 1
2

=





∑

x1...x|M|

|x1...x|M|〉〈x1...x|M||X ⊗
|M|
∑

m′=1

W
xm′

B





− 1
2

=
∑

x1...x|M|

|x1...x|M|〉〈x1...x|M||X ⊗





|M|
∑

m′=1

W
xm′

B





− 1
2

,

and finally

Λm
X|M|B

=





|M|
∑

m′=1

Γm
X|M|B





− 1
2

Γm′

X|M|B





|M|
∑

m′=1

Γm′

X|M|B





− 1
2

=
∑

x1...x|M|

|x1...x|M|〉〈x1...x|M||X ⊗∆m
B ,

where

∆m
B :=





|M|
∑

m′=1

W
xm′

B





− 1
2

W xm

B





|M|
∑

m′=1

W
xm′

B





− 1
2

.

Note that the obtained POVM, {∆m
B }|M|

m=1, can be completed by adding ∆0
B = 1 −∑|M|

m′=1 ∆
m′

B . By putting everything that

has derived so far into the error term, we will have:

Tr{(1X|M|B − Λm
X|M|B

)ρ
m,(l,k)

X⊗|M|B
}

=
∑

x1,...,x|M|

pX(x1)...px|M|
Tr{(1B −∆m

B )ρ
xm,(l,k)
B }.
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ǫ +
√
ǫ′ ≥ 1

|L|

|L|
∑

ℓ=1

∑

x,y11,...,y|L||K|

pX(x)pY |X(y11|x)...pY |X(y|L||K||x)





1

2

∥

∥

∥

∥

∥

∥

D′2
B→L̂





1

|K|

|K|
∑

k=1

σ
x,m,yℓk

BE



− |ℓ〉〈ℓ|
L̂
⊗ σ̃

x,m
E

∥

∥

∥

∥

∥

∥

1





=
∑

x,y11,...,y|L||K|

pX(x)pY |X(y11|x)...pY |X(y|L||K||x)





1

|L|

|L|
∑

l=1





1

2

∥

∥

∥

∥

∥

∥

D′2
B→L̂





1

|K|

|K|
∑

k=1

σ
x,m,yℓ,k

BE



− |ℓ〉〈ℓ|
L̂
⊗ σ̃

x,m
E

∥

∥

∥

∥

∥

∥

1







 .

(55)

1

|L|

|L|
∑

l=1





1

2

∥

∥

∥

∥

∥

∥

D′2
B→L̂





1

|K|

|K|
∑

k=1

σ
x,m,yℓ,k

BE



− |ℓ〉〈ℓ|
L̂
⊗ σ̃

x,m
E

∥

∥

∥

∥

∥

∥

1



 ≤ ǫ +
√
ǫ′. (56)

By assuming a uniform distribution on the message set, averaging it over all messages results in

1

|M|

|M|
∑

m=1

Tr{(1X|M|B − Λm
X|M|B

)ρ
m,(l,k)

X⊗|M|B
}

=
1

|M|

|M|
∑

m=1

∑

x1,...,x|M|

pX(x1)...pX(x|M|)

× Tr{(1B −∆m
B )ρ

xm,(l,k)
B }

=
∑

x1,...,x|M|

pX(x1)...pX(x|M|)

×
[

1

|M|Tr{(IB −∆m
B )ρ

xm,(l,k)
B }

]

,

the last expression above shows averaging over all codebooks and we know that
∑

x1,...,x|M|

pX(x1)...pX(x|M|)

×
[

1

|M|Tr{(1B −∆m
B )ρ

xm,(l,k)
B }

]

≤ ǫ,

which in turn, says that there exists at least one particular set of values of {x1, ...x|M|} such that

1

|M|

|M|
∑

m=1

Tr{(IB −∆m
B )ρ

xm,(l,k)
B } ≤ ǫ. (54)

This conclusion is known as the Shannon trick. The sequence {x1...x|M|} serves as the codebook used to transmit the public

message.

As for the second part, we take (43) and average over all private messages as given in (55). And we again employ Shannon

trick to conclude that there exists at least one sequence of values (y1,1...y|L|,|K||x) such that equation (56) holds.

We can now argue that there exist values (x1...x|M|) serving as public codebook for the transmission of the public message

and conditioned on a particular codeword of the public codebook, there exist values (y1,1...y|L|,|K|) serving as private codebook

ensuring that the privacy criterion holds. Now we have a codebook of size |M||L||K|, {x1, ..., x|M|, y1, ..., y|L||K|}, that is

publicly available serving as our deterministic codebook for simultaneous transmission of public and private messages.

APPENDIX B

ONE-SHOT QUANTUM CAPACITY: IMITATING DEVETAK’S ASYMPTOTIC PROOF

As we mentioned in the introduction, a one-shot version of Devetak’s asymptotic proof of quantum capacity follows along

the same lines [27] . Here we briefly outline the proof and the general idea. We shall freely use the notation introduced so far.

We have now seen that there exists a good codebook {x(ℓ, k)}ℓ∈L,k∈K selected from a distribution p(x) and a corresponding

POVM {Ωℓ,k
B } such that once Alice transmits a state corresponding to x(ℓ, k) over the channel NA→BE , Bob is able to reliably

work out both Alice’s message ℓ and the local key k and at the same time, Eve happens to learned very little about Alice’s

message ℓ. This holds true for the rates of the private message log2 |L| and the local randomness log2 |L| as are specified.

Now a quantum code can be obtained by a “making coherent” of this code (see [50] for coherifying general protocols).
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The first idea of making protocols coherent is that classical words/letters x become basis states |x〉 of the Hilbert space.

Functions f : x→ f(x) thus induce linear operators on Hilbert space, but only permutations (one-to-one functions) are really

interesting, since they give rise to unitaries (isometries, resp.). The second idea is thus to make classical computations first

reversible, by extending them to one-to-one functions. The last step is to use the local decodings, which exist by the classical

theorem. In summary, ”making coherent” means we can take a classical protocol working on letters and turn it into a bunch

of unitaries acting as permutations on the basis states, and that we can run perfectly well on superpositions.

From the recipe outlined above, Alice’s messages ℓ ∈ L become a basis {|ℓ〉A1
}ℓ∈L of the Hilbert space. Suppose that Alice

shares a state |ϕ〉RA1
with a reference system R:

|ϕ〉RA1
:=
∑

i,ℓ∈L
αi,ℓ |i〉R |ℓ〉A1

,

where |i〉R and |ℓ〉A1
are some orthonormal bases for R and A1, respectively. A number of different information-processing

tasks can be considered as quantum communications. The strongest definition of quantum capacity, however, corresponds to

a task known as entanglement transmission. According to this task, Alice aims to transfer her share of entanglement with a

reference system to Bob with Alice no longer entangled with the reference, i.e., the following state:

|ϕ〉RB
:=
∑

i,ℓ∈L
αi,ℓ |i〉R |ℓ〉B ,

where now Bob holds the B system. Suppose there is an ensemble of quantum states {p(x), |ψx〉A}. Alice uses her classical

code to create a quantum codebook whose codewords are as follows:

∣

∣φℓ
〉

A
:=

1
√

|K|
∑

k∈K
eγℓ,k

∣

∣

∣ψ
x(ℓ,k)

〉

A
,

where the states
∣

∣ψx(ℓ,k)
〉

A
are from the aforementioned ensemble and x(ℓ, k) belong to the (classical) private codebook.

Alice’s action would be to coherently copy the value of ℓ in register A1 to another register A2. She then applies some

isometric encoding from A2 register to A. These two steps are performed with the following map:
(

∑

ℓ

|ℓ〉〈ℓ|A2
⊗
∣

∣φℓ
〉

A

)(

∑

ℓ

|ℓ〉〈ℓ|A1
⊗ |ℓ〉A2

)

,

Alice then transmits the codeword over the channel giving rise to the following state:
∑

i,ℓ∈L
αi,ℓ |i〉R |ℓ〉A1

∣

∣φℓ
〉

BE
.

From the classical protocol we know that Bob can detect both the message ℓ and the local key k with high probability. Bob

constructs a coherent version of his POVM as follows:
∑

ℓ,k

√

Ωℓ,k
B ⊗ |ℓ〉B1

|k〉B2
.

From gentle measurement lemma, the state after Bob’s decoding will be close to the following state:

∑

i,ℓ

∑

k

1
√

|K|
αi,ℓ |i〉R |ℓ〉A1

eδℓ,k
∣

∣

∣φx(ℓ,k)
〉

BE
|ℓ〉B1

|k〉B2
.

On the other hand, from secrecy requirement, it can be seen that there exists some isometry on Bob’s B and B2 systems such

that after its application, Eve’s system will be decoupled from the rest and the following state will result:
∑

i,ℓ

αi,ℓ |i〉R |ℓ〉A1
|ℓ〉B1

.

So far they have successfully implemented an approximate coherent channel from systems A1 to A1B1. Alice is allowed to

use a forward classical channel to communicate with Bob in order to turn the above coherent channel to a quantum channel.

Alice’s strategy is to first perform a Fourier transform on the register A1 then measure the register in the computational basis

and communicate the classical output to Bob. Bob will perform a controlled unitary based on the classical letter he received

and the desired state will be achieved. Note than it can be shown that there exists a scheme that does not require the use of

this forward classical channel.
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