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Abstract—In this paper, a new control approach using an optimal
linear control with prescribed degree of stability for modular
multi-level converters (MMC) is presented and analyzed. The
proposed controller relies on a linear quadratic regulator with
integral action which brings the ability of state variable reference
tracking for modular multi-level converters. Since MMC is a
complex system with several state variables, a unified control
system design for this system is vital. The proposed controller of
this study is designed to obtain wider stability margin thanks to
the implementation of prescribed degree of stability concept to
minimize the quadratic performance index of the control structure.
By means of this method, the poles of the closed-loop system will
be shifted to the desired places in the left half side of the S-plane.
The main advantages of this control strategy compared to previous
methods are that it will be possible to control the state of energy
for each phase separately, while there will be superior tolerance to
nonlinearities and the enhanced stability margin with less
sensitivity to plant-parameter variations. The performance of the
designed controller is verified through MATLABTM simulations
(The MathWorks, Natick, MA, USA) with the nonlinear model
of MMC.

1. INTRODUCTION

The main features of modern power electronic converters
are their ability to establish sinusoidal waveforms on their
AC side with lowest amounts of harmonics, much lower
switching losses, flexibility to extend to high voltage/power
ratings, reliability to faults, etc. [1]. Toward these objec-
tives, the first report on multi-level converters was pub-
lished in 1975 [2]. Three-level converter was the first type
of multi-level converters family [3]. Following this brilliant
advancement, in the next years, several topologies for
multi-level power converters were introduced [4, 5]. So
far, between various topologies of multi-level power con-
verters, the modular multi-level converters (MMC) seems
to be the most promising solution for wide power range
applications [6–9]. Actually, this type of power converter

Keywords: multi-modular converter, advanced linear control, optimal
linear control, power converter control, prescribed degree of stability
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was first introduced by A. Lesnicar and R. Marquardt [6],
and later Saeedifard and Iravani [4] have established an
MMC-based back-to-back HVDC system and they showed
its merits under unbalanced grid conditions. The modularity
of this converter topology brings more reliability during
transient operation, and by increasing the numbers of cells,
different levels of voltage can be achieved [7–11].
However, the control complexity due to increase of the
MMC state variables is still a challenging topic [12]. One
of the main control challenges for these types of converters
is insuring that the capacitor voltage (or stored energy) is
properly controlled to obtain the required output voltage
level in the AC side and [8, 13]. As the number of mod-
ules increases, the number of the state variables that should
be controlled will increase. In this case, conventional con-
trollers will be faced to a huge complexity. Since, the total
number of all the state variables in the MMC that need a
proper control is significant, a transition from conventional
control approaches to advanced control techniques seems
to be more promising [14].

The applications of robust controllers and sliding mode
control approaches are reported in different research papers
[15–18]. The main use of these methods is their advantages
on simplicity and robustness [17, 18]. A predictive control,
based on minimizing a cost function, has been used for bal-
ancing the capacitor voltages and to minimize the circulating
currents of the MMC [19]. Since MMC is a MIMO system,
different state variables should be controlled in a proper man-
ner. At the same time, each controller should be simple and
easy for the sake of implementation. In this regard, linear
quadratic regulator (LQR) as an optimal control technique
can become a suitable candidate to control such a modular
power converter [20]. As reported in [21–23], LQR approach
with the integral action with tracking ability is appropriate
for MIMO systems and its satisfactory performance for vari-
ous applications is demonstrated.

As the main contribution of this paper, a new approach
based on an extension of LQR method with a prescribed
degree of stability is presented and analyzed. In the pro-
posed control approach, it is possible to control the energy
of each phase independently, which will bring more reli-
ability to the converter operation. In the case of several
cells, for balancing the energy of each cell, the difference
in the energy of the cell with respect to its portion of the
total energy in the leg will be considered as the state.
Therefore, it is possible to control the energy of each cell
as well. However, to provide wider margins of stability to
LQR controller, prescribed degree of stability is added to
the system. The main advantage of this strategy is that

there will be a higher tolerance and enhanced stability mar-
gin with less sensitivity to plant-parameter variations. The
proposed method can be easily extended to the MMC with
more cells. The performance and eligibilities of the pro-
posed controller are verified through MATLAB simulations
with the nonlinear model of MMC. The simulation results
show that the proposed method satisfies MMC control cri-
terions, with a satisfactory dynamic response.

The rest of the paper is structured as the following. In
Section 2, mathematical presentation of the three-phase
MMC considering the AC current and energy balancing
control is reported. Later, in Section 3, the proposed opti-
mal controller with a prescribed degree of stability is
designed and presented. System analysis and simulation
results validating the proposed control approach for the
nonlinear MMC are presented and discussed in Section 4,
and finally, the paper is concluded in Section 5.

2. MATHEMATICAL MODEL OF MMC

As shown in Figure 1, one MMC consists of series-con-
nected identical modules per phase called sub-modules or
cells. The string of this series of sub-modules is called a
leg of converter. Each leg is divided into upper and lower
arms such that the number of sub-modules of each arm is
identical. The mid-point between each arm serves as the
AC phase connection point. Inductors are placed between
each arm to achieve filtering requirements and to limit

FIGURE 1. General structure of MMC in three-phase with
two cells.
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transient currents between each arm. Each sub-module may
be made up of different types of topologies with energy
storage capacitors. The basic operation principle of the
converter is inserting or bypassing the charged capacitors
in each sub-module arm to create a voltage difference
between each arm, which is the output voltage of
the converter.

An average-based model is selected in this paper [5, 8].
The mathematical presentation in this study is used for
extracting a suitable state space model which will be essen-
tial for designing a suitable LQR controller. Referring to
Figure 1, four cells per leg are selected. (two of the cells
are in the upper arm, and two more cells are in the
lower arm).

The main equations presenting the dynamic behavior of
MMC are categorized as the current control equations and
the energy balancing control equations. The linearized pre-
sentations of these equations are as follows.

2.1. Modeling of Current Controllers

The equations representing the AC currents and circulating
current are the main equations in this part. Based on the
equations, it is clear that the output AC current (is),
injected to the gird, is the addition of the upper current (ip)
and the lower (in) arm current (Eq. (1)), while the circulat-
ing current (ic) is assumed as half of the difference
between the upper current and the lower arm current (Eqs.
(2) and (3)).

is ¼ ip þ in (1)

id ¼ ip � in (2)

ic ¼ id
2
¼ ip�in

2
(3)

After a dq transformation, the equations of three-phase
system for AC currents can be as follows:

d

dt

is, a
is, b
is, c

2
4

3
5 ¼ �R

L

is, a
is, b
is, c

2
4

3
5� 1

L

ve�ac, a

ve�ac, b

ve�ac, c

2
4

3
5� 2

L

vs, a
vs, b
vs, c

2
4

3
5 (4)

Using the park transformation, the AC current equations
can be presented in dq-frame like this:

d

dt
is, d
is, q

� �
¼

�R

L
x

�x
�R

L

2
664

3
775 is, d

is, q

� �
� 1
L

ve�ac, d

ve�ac, q

� �
� 2
L

vs, d
vs, q

� �

(5)

Therefore, as explained the circulating current or differ-
ential currents can be calculated as follows:

d

dt
id, a ¼ �R

L
id, a � 1

L
vi, a þ 1

L
VDC (6)

d

dt
id, b ¼ �R

L
id, b � 1

L
vi, b þ 1

L
VDC (7)

d

dt
id, c ¼ �R

L
id, c � 1

L
vi, c þ 1

L
VDC (8)

while ve�ac is the AC component of the external control
signal or the AC current control equations and vi is the
internal control signal with its 100-Hz frequency.

vp � vn ¼ ve ¼ ve�AC þ vDe�DC (9)

vp þ vn ¼ vi (10)

Therefore, a new DC component is considered in Eq. (9)
which will be another control signal (vDe�DC). This control
signal will be applied for presenting the equations related to
the balancing of energies among the upper and the
lower arms.

2.2. Modeling of Modules Energy

In this section, all the related equations presenting the
energy behavior of each sub-module of MMC are pre-
sented. Each sub-module is modeled as an equivalent volt-
age source. The energies of sub-modules are used as
separated state variables which will be presented in the
state space model. This state space model is used for
designing the LQR controller for MMC control.

2.2.1. Balancing of Total Energy. One of the most advanta-
geous points of the control approach designed in this work is
its ability to have three independent controls over the energy
state in each phase separated from each other. This capability
of the controller can provide more reliability in the operation
of MMC especially during defective and transient conditions.
The total energy in the MMC will be the sum of the upper
arm and the lower arm quantities. Therefore, the equation of
total energy that will be implemented in control design pro-
cedure can be written as follows:

et ¼
ð
Pdcp tð Þ þ Pdcn tð Þdt (11)

where Pdcp and Pdcn are the power of upper and lower
arms, separately. This equation can be rewritten based on
upper and lower currents, is and id , which will represent
part of the state space equations of our MM model:

d

dt
et ¼ vpip � vnin ¼ vp

is
2
þ id

2

� �
� vn

is
2
� id

2

� �
(12)

d

dt
et ¼ is

2
vp�vnð Þ þ id

2
vp þ vnð Þ (13)
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d

dt
et ¼ is

2
ve þ id

2
vi (14)

It is worthy to mention that for the controller design
step, the average value of Eq. (12) is considered.

2.2.2. Differential Energy Balancing. To guaranty the bal-
ance of DC voltage or energy among the upper arm and
the lower arm, the following equation as the differential
energy balancing equations are considered. For obtaining
the following equations, the differences between the energy
of the upper arm and the lower arm can be defined in
terms of arms’ power:

ed ¼
ð
Pdcp tð Þ þ Pdcn tð Þdt (15)

The same as before, the differential energy equations
can be rewritten based on the AC currents and differential
currents:

d

dt
ed ¼ vpip þ vnin ¼ vp

is
2
þ id

2

� �
þ vn

is
2
� id

2

� �
(16)

d

dt
ed ¼ is

2
vp þ vnð Þ þ id

2
vp�vnð Þ (17)

d

dt
ed ¼ is

2
vi þ id

2
ve (18)

2.2.3. Module Balancing. Another objective of a full con-
trolled system is the control of the energy state of each cell
of the MMC. For doing this control action, the difference
in the energy of modules with respect to its portion of the
total energy in each leg can be considered as new state.
Therefore, for several cells (here, the number of cells is
N), N–1 additional control signal with new states will be
defined for each leg. Based on this explanation, the module
balancing equation for the upper arm is as follows:

vp�j ¼ vp
N

þ Dvp�j , j ¼ 1 : N (19)

where, DvDp�j is a new DC control signal which is
responsible for controlling the energy change in each mod-
ule and

P
j D _ep�j ¼ 0: For the equation of lower arm, the

same approach will result in the following equation:

vn�j ¼ vn
N

þ Dvn�j , j ¼ 1 : N (20)

The average value for these new states will be used for
the global state space system.

Finally, a proper linearization around the operating point
of the model can lead to its suitable equations for design-
ing the LQR controller. The procedure for designing and
validations of the designed controller is explained and

discussed in the following sections. Therefore, it can be
assumed that the states of a nonlinear MMC system, named
(xðtÞ), can have a small change (x̂ðtÞ) around its rating
operational point value (X ):

xðtÞ ¼ x̂ þ X (21)

Then, considering the previous clarification, we can
obtain the state space model as follows:

_x ¼ Axþ Bu (22)

3. CONTROLLER DESIGN

3.1. Linear Quadratic Regulator

The LQR is a well-known strategy of optimal control. During
the design of LQR, to regulate the states of the linear time-
invariant model presented by Eq. (22), the following control
law can be used to control the system as MIMO model

u ¼ �K x (23)

To minimize the following cost function

J ¼
ð1
0
ðxTQxþ uTRuÞdt (24)

where R is the weighting matrix of the control action and
Q the weighting of the state. Q is a positive-semi-definite
matrix and R is a positive-definite matrix. Substituting Eq.
(23) into Eq. (22), we obtain

_x ¼ Ax� BKx ¼ ðA� BKÞx (25)

It is well known [24] that the system is stable
(or A� BK is stableÞ, if

K ¼ R�1BTP (26)

and P is a positive-definite matrix that satisfies the
reduced-matrix
Riccati equation ATPþ PA� PBR�1BTPþ Q ¼ 0:

In the state space model of the MMC, there are some
states that need to be tracked and controlled to some spe-
cific values as reference. For doing this, one supplementary
integral controller will be added. Therefore, the new state
space matrices considering these new integral actions are
shown as follows:

AI ¼
A 0

C1 0

" #
BI ¼

B

0

" #

BIdis ¼
Bdis

0

" #
C1I ¼ C1 0

� � (27)

Therefore, a new output matrix will be selected in a
way that those specific states that should be tracked can be
considered in the feedback:
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xaug ¼ x̂
ð
x̂

����
�
and y1 ¼ C1I x1

"

For this augmented state space system, a new control
law will be considered as follows:

uI ¼ R�y1ð ÞKi

s
� Kstatesx (28)

Later, the new equations of the augmented LQR control-
ler with integral actions can be modified for designing the
controller gains:

AT
I Pþ PAI � PBIR

�1BT
I Pþ Q ¼ 0 (29)

Kaug ¼ R�1BT
I P (30)

In the control design stage, the general control structure of
the LQR with an integral action is presented in Figure 2, where
the linear state space model of the MMC will be used to design
the proper controller. Later, with adding two interfaces, the con-
troller will be test with averaged model of MMC.

For example for the MMC with one cell in each arm, we
have Kaug(4� 9) that is the total augmented matrix gains which
is optimally calculated. This matrix gain should be divided into
two parts like the proportional matrix (Kstates ð4� 5Þ ) and the
integral action matrix (Ki ð4� 4Þ ) as follows:

Kaug ¼

K11 K12 K13 K14 K15 K16 K17 K18 K19

K21 K22 K23 K24 K25 K26 K27 K28 K29

K31 K32 K33 K34 K35 K36 K37 K38 K39

K41 K42 K43 K44 K45 K46 K47 K48 K49

0
BBB@

1
CCCA

Kstates ¼

K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

0
BBB@

1
CCCA,

Ki ¼

K16 K17 K18 K19

K26 K27 K28 K29

K36 K3 K38 K39

K46 K47 K48 K49

0
BBB@

1
CCCA

(31)
As a result, the proper objective function will be consid-

ered like in Eq. (32):

J ¼
ð1
0
ðxITQxI þ uTRuÞdt ¼

ð
ðJx þ JuÞdt (32)

Therefore, the weighting factors for the MMC with one
cell will be calculated as follows:

Q ¼

Qsd 0 0 0 0 0 0 0 0

0 Qsq 0 0 0 0 0 0 0

0 0 Qz 0 0 0 0 0 0

0 0 0 Q _w 0 0 0 0 0

0 0 0 0 QD _w 0 0 0 0

0 0 0 0 0 QÐ isd
0 0 0

0 0 0 0 0 0 QÐ
isq

0 0

0 0 0 0 0 0 0 QÐ
_w

0

0 0 0 0 0 0 0 0 QÐ D _w

2
6666666666666666664

3
7777777777777777775

,

R ¼ Rw:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775

The performance index J in Eq. (32) which consists of
integral sum of the performance criterion Jx and the control
efforts Ju can be presented as follows:

Jx ¼ Qsd ð̂isdÞ2 þ Qsqð̂isqÞ2 þ Qzð̂i zÞ2 þ Q _wð _̂wÞ2

þQD _wðD _̂wÞ2 þ QÐ
isd

�ð
îsd

�2

þ QÐ
iq

�ð
îsq

�2

þQÐ
_w

�ð
_̂w

�2

þ QÐ D _w

�ð
D _̂w

�2

Ju

¼ Rw

�
ðv̂macdÞ2 þ ðv̂macqÞ2 þ ðv̂mdcÞ2 þ ðv̂DwÞ2

�
(33)

The designed values for weights should be calculated
based on the following points:
� Getting the fastest dynamic response without deterio-

rating effects.
� Avoiding of saturation in any of the control variables.

3.2. Linear Controller with Prescribed Degree
of Stability

A new modified quadratic function for the system of Eq.
(22) can be defined which leads to a linear control law of
the type represented in Eq. (23), with some added charac-
teristics that the closed-loop system poles can be lied to
the left side of Re(s) ¼ –a, a> 0, in the s-plane [14, 25].

The performance index in Eq. (32) is modified by the
one presented in Eq. (38):

Jo ¼
ð1
t0

eat½xTðtÞQxðtÞ þ uTðtÞRuðtÞ�dt (38)

FIGURE 2. Equivalent control diagram of the LQR with
an integral action controller.
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While in this new performance index, the parameter a
will be a constant value that can be chosen by designer
and design criterions. The same as previous definitions, R
and Q are also the positive definite symmetric and non-
negative definite symmetric constants, respectively. Then,
for minimizing Eq. (38) subject to the conditions presented
by Eq. (22), set:

x̂ðtÞ ¼ eat:x , û ¼ eat:u (39)

While Eq. (22) should be equivalent to Eq. (40):

_̂xðtÞ ¼ ðAþ aInÞx:ðtÞ þ B:ûðtÞ, x̂ðt0Þ ¼ eat0 :x0 (40)

Considering (uTR.uþ xTQ.x).eat ¼ ûT.R.ûþ x̂T.Q.x̂, and
hence, minimization with respect to Eq. (22) of Eq. (38)
will be equivalent to the minimization with respect to Eq.
(40) of the following:

Jo ¼
ð1
t0

ðx̂TðtÞ:Q:x̂ðtÞ þ ûTðtÞ:R:ûðtÞÞ (41)

Considering that:
a. The minimum of Eq. (38) (stated in terms of x0) will

be the same as the minimum of the Eq. (41) (stated in
terms of x̂ðt0Þ, taking into account that x̂ðt0Þ ¼ eat0 :x0].

b. If the optimal control for Eqs. (40) and (41) is
û ¼ f ðxÞ, accordingly u ¼ e�atf ðxeatÞ will be the
optimal control for Eqs. (22) and (38), and conversely.
The first remark here is not as significant as the second

one; it is clear that, for Eqs. (43) and (44), the optimal
control will be

ûðtÞ ¼ �Kax̂ðtÞ (42)

where

Ka ¼ R�1BTPa (43)

and Pa will be the unique non-negative definite solution of
the following modified Riccati equation:

ðAþ aInÞTPa þ PaðAþ aInÞ�PaBR
�1BTPa þ Q ¼ 0 (44)

3.2.1. Stability of the Closed-loop System. Usually, closed-
loop linear systems have to be stable. Consequently, the
design of the optimal control law has to lead to an asymp-
totically stable system as well. This can be explained
as follows:

For the system of Eqs. (22)–(24), let H be any matrix
so that Q ¼ HH 0, and let ðA, HÞ be completely observable
(i.e., H 0eATa ¼ 0 for all t implies a ¼ 0). Then, the
closed-loop system is asymptotically stable. (Besides, P is
positive definite.)

Clearly, this is an important result. However, it fails to
yield any measure of stability. The closed-loop poles are in

the left half of the s-plane, but how far they are from the
imaginary axis is not known. In Section 3.2, of course, we
seek to put a minimum distance between the closed-loop
poles and the imaginary axis.

The requirement of complete observability is vital in the
following sense; if Eq. (22) have unstable states which are
not observable, then precisely because these states do not
affect the performance index (Eq. (24)), there will be no
control action trying to stabilize these states. Accordingly,
the closed loop will be unstable. In the event that unob-
servable states are all asymptotically stable, one can, how-
ever, rely on the closed-loop system being asymptotically
stable too.

Now, let us consider the closed-loop poles of the _x ¼
A�BKað Þx : We shall assume, as before, that with H any
matrix such that HH 0 ¼ Q, the pair ðA, HÞ is completely
observable. Then, the system defined by Eqs. (39) and (42)
is surely asymptotically stable, as indicated in Section 3.1.
This system is _̂x ¼ A�BKa þ a Ið Þ x̂, and since the
poles of this system, being given by the eigenvalues of
A� BKa þ a I have negative real parts, it follows that
the poles of _x ¼ A�BK

0
x

	 

x, being given by the eigenval-

ues of A� BK
0
a (which are less by / than the eigenvalues

of A�BK
0
a þ a I

	 

), all possess real parts less than �a:

It is worthy to mention that the main benefit of the pro-
posed control with prescribed degree of stability in com-
parison with the conventional optimal regulator will be the
reduction of system’s sensitivity to the plant parameter
changes [25]. This robustness, as results in a closed-loop
control, is bigger for a> 0 than for a¼ 0.

3.2.2. Controller Implementation. The LQR gives a multi-
variable proportional regulator, and it would be essential to
add an integrator in the controller for eliminating the
steady-state errors between the reference signals and the
controlled state variable, which in this case is the AC cur-
rent and the energy variations. In other words, the LQR
control must have integral action. The complete block dia-
gram of one LQR with the integral action for averaged
MMC and two additional interfaces is shown in Figure 3.

FIGURE 3. General control structure.
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Detailed controller diagram are presented in Figure 4.
Based on this figure, for implementing the controller we
used two interfaces, one for using the calculated state for
feedback (interface1) and the other interface for using the
output of controller for calculating the duty cycles as input
of plant (interface2). To evaluate this controller, we have
implemented it for nonlinear model of MMC in Simscape
Power SystemsTM (The MathWorks, Natick, MA, USA).

4. SYSTEM ANALYSIS

4.1. Sensitivity Analysis

In this section, to show the validity and acceptable per-
formance of the designed linear controller for modular con-
verter, simulation is performed using a nonlinear model of
modular converter in Simscape Power SystemsTM. In other
word, the designed controller based on linear equations is

tested for control and energy balancing of a nonlinear
MMC model. The parameters used for this study case is
presented in Table 1.

According to the presented information in Table 2, a
case study for testing the performance of the controller on
tracking various step changes in different working condi-
tions is performed. Therefore, different step changes on the
input references of the systems are introduced. The main
proposed action of this test is to assess the validity of the
proposed linear model in the three-phase MMC.

According to Figure 5, the tracking and control perform-
ance for the dq components of the AC current is depicted.
It was assumed that after 0.5 sec, the AC reference current
is changing to 2 (A) for injection to the grid.

As shown in these figures, the dynamics of controller
for tracking the current is very fast and is able to track the
reference changes in less than 0.012 sec. Figure 6 is also
showing the ability of the designed controller on tracking

FIGURE 4. Detailed of controller implementation for LQR with integral action.
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the step changes of energy state references for each phase
of the multi-modular converter. It shows that after chang-
ing the AC current reference at 0.5 sec the energy states in
each phase, after a short dynamics, remain the same
as before.

It is clear that during injection of AC current, usually the
stored energy of the capacitors will start to decrease and after
a short time the controller is trying to compensate it for main-
taining the balance between AC and DC power exchange.

The three-phase shape of the injected AC current is also
depicted in Figure 7(a). As shown in this figure, the current
is totally balanced and completely matched with the chosen
reference input (2A).

Also, one comparison among the upper and lower arm
currents of the MMC is also presented in Figure 7(b). It
can be seen that the arm currents they have a DC compo-
nent while the total AC current which is injected to the
grid will be a pure AC signal. By the following figures,
Figures 8(a)–8(c), the response of the capacitor voltages
considering those different changes in the energy referen-
ces can be followed. Firstly, as shown in Table 2, total
energy of each phase is increasing separately and after that
(as shown in Figure 8(a)), for checking the ability of the
controller to follow the reference change for each individ-
ual module, the references point for each module are
changing at 5.5 and 7 sec (Figure 8(b)). Finally, as

presented in Figure 8(c), based on the orders coming from
the references, the controller is able to force all the ener-
gies coming come back to their initial reference points.

Therefore, based on the performed case study, the per-
formance and the capability of the proposed controller for
different types of contingency are tested.

FIGURE 5. Responses of dq component for the injected
AC current (Isd, Isq). (a) d-component and (b)
q-component.

Parameters Value

R 40 mX
L 2.5 mH
vs 100 V
Rload 50 X
C per module 3300 lF
VDC 700 V
N per arm 2
f s 50Hz

TABLE 1. Converter parameters for the base case study.

Reference changes Time (s) Value

AC current 0.5 2 A
Total Energy-Phase A 1 50 J
Total Energy-Phase B 1.5 35 J
Total Energy-Phase C 2 20 J
Total Energy-Phase A 9.4 �50 J
Total Energy-Phase B 9.6 �35 J
Total Energy-Phase C 9.8 �20 J
Energy of each individual modules 5.5 23.42
Energy of each individual modules 7 � 23.42

TABLE 2. Reference values for the general studied case.

FIGURE 6. Energy-balancing change (in phases a, b and
c) after AC current injection at t¼ 0.5 sec.
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4.2. Analysis with Parameter Variations

In this section, for validating the performance of the con-
troller with the proposed control based on prescribed
degree of stability against the parameter variations, the
simulations are repeated under significant change of plant
parameter from their rating values. These new values are
presented in Table 3. It should be note that plant response
under these selected values for parameters is oscillatory
and more close to stability limits. Therefore, in this way it
would be easier to compare and to see the effect of pre-
scribed degree of stability control for improving the system
performance during parameter changes.

For this case study, first we design a normal LQR with
integral action for the MMC, and then as a second step,
the modified controller based on the prescribed degree of
stability will be implemented. As explained before, the
feedback control law of Eq. (22) is modified by Eqs.
(41)–(44) and it will be used for the system with the pre-
scribed degree of stability. It is assumed that in this simu-
lation, the value of a constant is equal to 15.

Simulation results for the system with normal LQR con-
troller are presented in Figures (5)–(8). These results show
the ability of designed LQR for controlling the MMC.

As it was explained, the prescribed degree of stability
concept is added to the LQR controller for more improve-
ment in the dynamic performance and eigenvalues of the

FIGURE 7. Injected currents: (a) three-phase AC current
and (b) arm currents. (Red trace: AC current Is, Blue trace:
Upper arm current Ip and Green trace: Lower arm In).

FIGURE 8. Energy states for different modules of MMC:
(a) an increase in the voltage of capacitors (energy) for

Parameters Value

R 10 mX
L 20 mH
vs 100 V
C per module 3300 lF
VDC 700 V
N per arm 2
f s 50Hz

TABLE 3. Parameter of MMC for second case.
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system. As shown in Figure 9 and Table 4, after imple-
menting the proposed control, the eigenvalues of the sys-
tem can shifted to the left side of the s plane for having a
better performance.

Another comparison is presented in Figures 10(a) and
10(b), for the controls with and without prescribed degree
of stability. Based on the results, it is clear that the system
with normal LQR shows a higher peak of overshoot, but

by adding the proposed control concept significant
improvement in the dynamic response of the system will
be accessible when overshoot and time response could be
improved, thus being tested the robustness of the pro-
posed strategy.

5. CONCLUSION

In this study, a new control design for a systemic modeling
and control of three-phase MMCs which is based on the
state space equations and optimal linear quadratic control
was presented and discussed. This control method is imple-
mented to an average-based MMC model and a complete
set of equations to design a suitable LQR with an integral
action is presented. To improve the overall system stability,
the concept of prescribed degree of stability is introduced
by modifying its regular LQR controller to obtain decent
dynamic response. Finally, the proposed controller is
assessed and verified through the developed simulation
platform. Results show that the system speed is increased,
at the same time the dynamic oscillations are rapidly
damped out and the system’s sensitivity to the plant-param-
eter variations is significantly reduced.

FIGURE 9. Eigenvalues of the system: with (a) the normal
LQR controller and with (b) the proposed con-
trol approach.

Eigenvalues LQR LQR-Prescribed

1 �474 þ j654 �580 þ j649
2 �474 – j654 �580 – j649
3 �473 þ j340 �579 þ j335
4 �473 – j340 �579 – j335
5 �434.77 �644.89
6 �434.77 �603 þ j763
7 �434.77 �603 – j763
8 �535.63 �603 þ j763
9 �535.91 �603 – j763
10 �535.90 �603 þ j763
11 �535.90 �603 – j763
12 �10.300 �304.60
13 �4.000 �304.61
14 �4.360 �304.63
15 �4.360 �304.63
16 �10.20 �304.63
17 �10.20 �304.63
18 �2.450 �200.53
19 �2.450 �200.08
20 �178.50 �200.09
21 �178.50 �200.10
22 �178.53 �200.52
23 �178.53 �200.52
24 �178.53 �200.03
25 �178.53 �200.03
26 �2.450 �200.03
27 �2.450 �200.03

TABLE 4. Parameter values of MMC for simulated case.

FIGURE 10. Current components: (a) d component of
injected current in dq frame for second case study and (b)
q component of injected current in dq frame for second
case study.
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