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Abstract

Lean Meat Yield (LMY, %) of carcass is an important industry trait, which

currently is not routinely measured in Australian beef abattoirs. Objective

on-line technology to determine LMY is key for wider adoption. This paper

presents a proof-of-concept approach for estimating the LMY of beef carcasses

from the 3D information provided by RGB-D cameras. Moreover, a specifically

designed on-line data acquisition system for abattoir applications is presented,

consisting of three cameras moving on a scanning rig to generate 3D carcass

side reconstructions. The hindquarter is then segmented consistently across all

the 3D models to extract curvature information and LMY estimated via non-

linear regression based on Gaussian Process models. Sides from 119 carcasses at

two different commercial abattoirs were used to evaluate this approach. Results

from this preliminary study (RMSE=3.91%, R2=0.69) using curvature, P8 fat
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and HSCW indicate that 3D imaging of beef carcasses is a viable and relatively

accurate technology to estimate LMY.
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1. Introduction1

Weight and fatness are key contributors to the profitability in the Aus-2

tralian beef value chain. There is a movement towards payment systems that3

more accurately reflect what has been produced in terms of quality such as4

Meat Standards Australia (MSA) eating quality (Watson et al., 2008) and more5

recently MSA index (McGilchrist et al., 2019) and quantity (lean meat yield6

LMY, %). This movement has prompted the industry to invest in technologies7

to accurately measure this.8

In order to commercially determine LMY, extensive research has been con-9

ducted over the past few decades in Australia and around the world into the10

development of objective online measurement technologies, e.g. (Craigie et al.,11

2012; Hopkins et al., 2004). The research and development of these technologies12

has largely been driven by the need to satisfy consumer demands for quality,13

provide more accurate carcass feedback to producers and reduce labour require-14

ments for processors (Hopkins et al., 2004).15

Computed Tomography (CT) has been used to determine carcass lean and16

fat components (Kongsro et al., 2009) with a high degree of accuracy and is17

considered the gold standard. Currently, within Australia there is no industry-18

accepted method for predicting LMY of beef carcasses (Biddle et al., 2016).19

Stemming from the need to objectively assess LMY, alternative commercial20

methods have been developed.21

Video Image Analysis (VIA) is one of the most widely researched non-22

destructive, non-invasive technologies which looks at carcasses assessment (Rius-23

Vilarrasa et al., 2009). Initial VIA technology evaluated Hot Standard Carcass24

Weight (HSCW) by capturing 2D images of the lateral view of carcasses or25

sides. From these images, colour (red, blue, green scale) and dimensional data26
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are extracted to estimate yield, conformation and EUROP fat and conforma-27

tion scores (Borggaard et al., 1996; Allen, 2009). More recently VIA systems28

use striping or structured light to create full 3D reconstructions (Craigie et al.,29

2013). Based on the scientific literature it would appear that the whole beef30

body VIA technology is useful for evaluating beef carcass composition. The pub-31

lished data on VIA technology has been used to estimate Saleable Meat Yield32

(SMY) of whole carcasses (Craigie et al., 2013) or on a per cut basis (Pabiou33

et al., 2011) where SMY is defined as the saleable product including muscle, fat34

and bone. In line with Australian research objectives (Biddle et al., 2016) LMY35

is a universal measure irrespective of abattoir and market specification, and can36

be a consistent feedback mechanism to producers subject to the availability of37

suitable LMY measurement technologies.38

Recently, technologies based on Dual Energy X-Ray Absorptiometry (DEXA)39

(Gardner et al., 2018) have been developed and evaluated. This study reports40

on the development of a prototype 3D imaging approach that is a low-cost tech-41

nology alternative to the DEXA technology. Information about the internal42

properties of a carcass such as fat and muscle composition cannot be directly43

ascertained from a view of the outer surface. However, the size of muscles, and44

the presence of more or less fat, affect the curvature of the outer surface. The45

curvature of the surface of a carcass is therefore expected to be correlated to46

muscle and fat proportions. The automation of the feature extraction related47

to LMY (e.g., local curvature or volume information) is then a challenging task48

(Van Kaick et al., 2011), as it requires a consistent annotation of beef carcass49

shapes that are slightly different in terms of the shape, rotation, scale, and50

colour.51

In this paper, we introduce a system capable of densely reconstructing the52

shape of 3D carcasses using low cost red green blue and depth (RGB-D) cameras.53

A method to consistently extract 3D descriptors from the dense reconstructions54

is presented. We demonstrate correlation between a curvature descriptor from55

the segmented 3D region and LMY.56
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2. Materials and Methods57

2.1. Animals, experimental design, treatments and sample collection58

This study was conducted using carcass sides from 119 cows, steers, and59

heifers across a range of breeds at two abattoirs. Summary statistics for P860

fat depth, HSCW, and LMY (CT Lean (kg) / HSCW (kg) expressed in % ) at61

each abattoir are reported in Table 1 and the distribution of LMY is provided62

in Figure 1. Carcass sides averaged 2.5 meters in length and were scanned with63

RGB-D cameras between 30 mins and 20 hours post-mortem.64

Abattoir A65

Ninety-three Angus carcass sides were scanned as part of 3 slaughters (separated66

by several months) by an operator using a hand-held prototype device and67

open source software (Newcombe et al., 2011). Only the interior surface of the68

beef side was scanned, from leg through rib cage, the external surface was not69

acquired. The left-hand side of each carcass was processed with fat trimming70

limited to only that required for hygiene purposes and kidney fat retained in71

the side. A MSA trade development officer using MSA protocols (Watson et al.,72

2008) graded all carcasses. After grading the left-hand side of the carcass was73

boned-out to determine beef primal cut, fat trim and bone weights (Perry et al.,74

2001). The untrimmed boneless primals were transported to the University75

of New England (UNE), Armidale, NSW and scanned using a Picker Ultra76

Z Spiral CT-scanner (Philips Medical Imaging Australia, Sydney NSW). The77

spiral abdomen protocol was selected with the following settings: pilot scan78

length of 512 mm, field of view set at 480mm, Index 20, kV 110, mA 150,79

revs 40, pitch 1.5 and standard algorithm. Image analysis software (Laurenson80

et al., 2013) was used to estimate lean and fat tissue weights (kg) from scanned81

images. The CT scanned lean and fat tissue weights were adjusted to untrimmed82

boneless primal weights, to correct for differences between CT predicted weights83

and scale measured untrimmed weights.84

Abattoir B85

Twenty-six carcass sides were scanned using a rig as described in Section 2.3.86
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The carcass sides scanned at abattoir B were part of a larger study that com-87

prised 60 head used to evaluate the DEXA technology (Gardner et al., 2018),88

where the scanning activity was conducted, on site, over two consecutive weeks.89

All carcass sides were conventionally chilled for 24 hours before being processed90

into smaller pieces for CT scanning. The cold weight of each quarter was mea-91

sured shortly after removal from the chiller. Forequarters were cut into 9 smaller92

primal sections while hindquarters were cut into 7 sections. Each beef carcass93

side was therefore CT scanned in a total of 16 sections, allowing all components94

to fit within the 500mm x 500mm CT aperture. The cutting lines used to cut95

each carcass side into 16 sections were based on the abattoir commercial cutting96

lines to enable subsequent dissection into saleable cuts of meat. The two sides97

of each carcass (spray-chilled and non-spray chilled sections) were CT scanned98

consecutively. CT image analysis was done according to the method described99

by Anderson et al. (2015).100

2.2. Approach Overview101

The approach presented in this paper reconstructs a 3D model of the car-102

cass side from red green blue and depth (RGB-D) images. A scanning rig has103

been designed specifically for the collection of the images in order to contribute104

towards online deployments in abattoirs. This rig is equipped with multiple105

moving RGB-D cameras which capture a large number of overlapping frames106

of the carcass side. These individual frames are then fused together to create a107

single reconstruction of the carcass side 3D shape. Once the 3D reconstruction108

is completed, a coarse-to-fine method is used to segment accurately a region109

of the 3D carcass side by transferring the annotation of a manually annotated110

template onto the carcass side reconstruction. Thereafter, curvature informa-111

tion of this region is extracted and parameterised into a histogram. These112

feature descriptors are inputs to a non-linear regression algorithm, Gaussian113

Process (Rasmussen & Williams, 2006), a supervised learning approach which114

is trained to estimate LMY of the carcass side’s 3D models against CT LMY (as115

a percentage of HSCW). A flowchart of the methodology is shown in Figure 2.116
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2.3. Data Collection Rig117

The RGB-D images of the carcass sides are collected using the bespoke rig118

shown in Figure 3. Three vertical beams are spaced 120 degrees apart, forming119

a circle around a rotating base wide enough to fit a beef carcass side. Each120

vertical strut supports a rail and belt system on which a Primesense Carmine121

v1.09 RGB-D sensor is mounted, such that it can move vertically.122

During scanning, the Achilles tendon suspended carcass side, is manually123

moved along the rail into the centre of the rig. This process would be automated124

in a commercial ready product. The cameras move vertically as the base rotates125

180◦ through discrete positions, acquiring a set of vertical strips of imagery126

which cover the carcass side from all angles other than from directly above and127

below. The motion of the rig is illustrated in Figure 4. The 180◦ rotation allows128

the carcass side to continue along the rail after scanning.129

The RGB-D cameras, rig control and logging of data are all performed on130

a single unit of computing, Intel NUC Skull Canyon product running Ubuntu131

16.04. The software framework leverages the Robotic Operating System (ROS132

Kinetic Kame) (Quigley et al., 2009) which contains drivers for the cameras and133

motors as well as utilities for logging data. University of Technology Sydney -134

Centre for Autonomous Systems, have developed the additional code for con-135

trolling the rig, cameras and subsequent processing of data in C++ running as136

nodes in the ROS framework.137

2.4. 3D Reconstruction138

The method for 3D reconstruction used in this work takes a series of RGB139

and depth images as inputs, referred to as a frame, and generates a 3D point-140

cloud of a carcass side segmented from the background. Visual features with141

depth information are extracted from each RGB-D image to recover 3D points142

on the carcass side. Correspondences between frames are found through visual143

descriptors (Lowe, 2004). These correspondences are used to find the relative144

transformation between frames. Given the relative transformations of the con-145

secutive and non-consecutive frames and across cameras, an optimisation algo-146
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rithm (Kummerle et al., 2011) is used to obtain the camera trajectories (i.e.,147

position and orientation of the three cameras over time).148

The reconstructed pointcloud can then be generated from the RGB-D data149

associated with each frame. Finally, a Poisson mesh reconstruction (Kazhdan &150

Hoppe, 2013) is run over the reconstructed pointcloud to create a closed surface151

mesh. Figure 5 shows a few sample reconstructed models.152

2.5. Consistent curvature description153

The curvature description used as input to the machine learning-based re-154

gression algorithm, needs to be consistent across all the scanned carcasses, es-155

pecially when focused only in individual muscle groups. The region of interest156

is shown in red in Figure 6. In this approach, the consistency problem is solved157

by annotating one of the scanned 3D shapes, referred to as the annotated tem-158

plate, and morphing this 3D shape onto all the other 3D scanned carcass sides,159

referred to as targets to segment the region of interest. After morphing, the160

annotation is then transferred onto all the targets and used to compute the161

curvature descriptors.162

2.5.1. Consistent segmentation163

The method to achieve a consistent segmentation of the region of interest164

employs a semi-automatic coarse-to-fine approach, where the coarse alignment165

is provided using manual annotations while the refinement step is performed166

automatically.167

The morphing approach is based on non-rigid deformation (Sumner et al.,168

2007) using initially a set of corresponding sparse points to deform non-rigidly169

the template by minimising the distance between these points, while maximis-170

ing rigidity and finally refining with dense correspondences. Once the annotated171

template is finely aligned with the target, the annotation is transferred onto the172

target by finding the closest points from template to the target and copying173

the annotation. Given these annotations for all carcass sides, a curvature de-174

scriptor can be consistently obtained over the segmented region of interest. An175
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example of the consistent segmentation is shown in Figure 6.176

2.5.2. Curvature descriptor177

The approach to encoding curvature exploited in this work leverages Dar-178

boux frames defined at each point of the hindquarter and the viewpoint defined179

at the centre of the hook (Rusu et al., 2010), which anatomically correlates to180

the Achilles tendon. For a pair of 3D points pi, pj ∈ R3, a Darboux frame is181

defined in pi, with axis presented in Figure 7 and vectors:182

u = ni

v = u× pj − pi
d

w = u× v

(1)

Using the defined Darboux frame, three angular features α, φ and θ (which183

are scalars and are annotated in Figure 7) are computed between surface normals184

u, v, w and nj . The cosine of the angle between two vectors is equal to the185

dot product of these vectors divided by the product of vector magnitude, for186

example187

cosα =
njv

|nj ||v|
(2)

The final representation of the curvature descriptor is created by binning188

α, φ and θ into a histogram. This histogram of these orientations between pairs189

of surface normals is referred to as a curvature descriptor.190

2.5.3. Volumetric Descriptor191

As an alternative to curvature descriptors, we extract volumetric information192

computed using a morphed annotated template as shown in Figure 8. The193

volume computation is obtained from the 3d mesh by partitioning the space into194

a set of tethraedra. For each triangle in the mesh, a tetrahedron is generated195

using the points from the triangle and the mesh centroid. The mesh volume is196
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then obtained by integrating the sum of the signed volume of each tetrahedron.197

We aggregate all volumes extracted from the morphed annotated template into198

a signature.199

2.6. Statistical Analysis200

2.6.1. Non-linear regression for lean meat yield estimation201

Gaussian Process (GP) model (Rasmussen & Williams, 2006) is a widely used202

approach for non-linear probabilistic regression that can be seen as a distribution203

over functions. Given a set of training examples with ground truth information,204

a mean function, and a kernel function, this model aims to find the distribution205

that best fits the training set using maximum likelihood estimation.206

A GP model, with a zero-mean function and a Matérn kernel, was trained207

in a supervised manner using as input the curvature descriptor, and optionally208

other independent variables such as HSCW or P8, and as output the ground209

truth of LMY. The Matérn kernel defines the covariance between two input210

points at distance l from each other as:211

Cν = σ2 21−ν

Γ(ν)

(√
2ω

l

ρ

)ω
Kν

(√
2ν
l

ρ

)
(3)

where Γ is the gamma function, Kω is the modified Bessel function of the second212

kind of order ν, ρ is the characteristic length scale, and ν controls the smoothness213

of the final function after the covariance function has been applied.214

2.6.2. Ten-fold cross validation215

A 10-fold cross validation procedure was used (Refaeilzadeh et al., 2009).216

Data from all datasets was combined, and split into 90% training, 10% testing217

(10-fold cross validation). Given the trained GP regression model, an unseen218

carcass LMY value can be estimated by inputting a carcass side’s curvature219

descriptor to the GP model. The root mean square error (RMSE) along with220

the coefficient of determination (R2) are reported.221
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2.6.3. Genetic Algorithm222

Feature selection (reduction), is the process of finding the most relevant in-223

puts for a model. We undertake feature selection via a Genetic Algorithm (GA)224

(Whitley, 1994). The GA is configured to search the curvature descriptor space225

to select a subset of features that estimate LMY with the lowest RMSE. This226

analysis is a parameter search, which in turn requires partitioning a set of vali-227

dation data from the training data used in optimisation. It is performed using228

a hold out of data (representative of the probability distribution of the entire229

dataset with respect to LMY).230

3. Results231

The ablation study of the proposed method considering both, linear regres-232

sion and the Gaussian process regression model is given in Table 2 and Table 3,233

respectively. This study examines the cases of the curvature descriptor de-234

picted in Section 2.5.2 computed with and without consistent segmentation2 of235

the region of interest and the concatenation of the curvature descriptor with236

two independent measurements: P8 fat depth and HSCW.237

While the information provided by the P8 fat depth and the HSCW is insuf-238

ficient to estimate LMY, they provide a significant improvement of performance239

when combined with the curvature descriptor as shown in Table 3. One of the240

key points highlighted by these results is how a consistent segmentation of the241

carcass side shape significantly improves the prediction performance of the GP.242

The possibility of reducing the dimensionality of curvature descriptor with243

respect to their capability to describe LMY is evaluated via a GA. The GA244

is configured to search the curvature descriptor space to select a subset of 30245

features that estimate LMY with the lowest RMSE. This analysis is performed246

using a hold out of 10% of data which is used for validation, and with 90% for247

2Segmentation by height corresponds to cropping the carcass side at a constant distance

from the highest point to extract the region of interest.
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training the GA model. These results are noted with a (*) in Table 2 and 3,248

as they are not performed across 10 random folds, rather a hold-out of a single249

representative fold of data.250

Finally for comparison, the curvature descriptor is compared to a volumet-251

ric based feature descriptor on the task of LMY prediction. This volumetric252

descriptor and the curvature descriptor using the consistent segmentation have253

been extracted on the dataset from Abattoir B. The dataset from Abattoir A254

using hand-held scanner device only has scans of the inner part of the carcass255

sides and could not be used for the volume computations. The results of a256

regression using a Gaussian Process on all the different feature descriptors is257

provided in Table 4. As shown in the table, the curvature descriptor using the258

consistent segmentation outperforms the volume based feature descriptors with259

a lower RMSE and higher R2 . This is emphasized by the high-dimensionality260

of the curvature descriptor making it more difficult to be trained on smaller261

datasets.262

4. Discussion263

This preliminary study has demonstrated that it is feasible to densely re-264

construct the shape of a 3D carcass using low cost RGB-D cameras to estimate265

LMY (RMSE=4.34%, R2=0.62) between measured CT LMY and estimates of266

LMY (Figure 9). Figure 9a indicates that there was no bias in the slope and267

that the residuals in Figure 9b show that most carcasses lie within ± 5%.268

Using the curvature descriptor trained via a Gaussian process, the LMY as269

a percentage of total HSCW was successfully estimated from RGB-D images270

of the exterior of the carcass side. Linear regression models are not flexible271

enough to handle the complexity of the problem at hand, as shown in Table 2.272

A Gaussian process model performs better in this case as it suitable for non-273

linear regression problems and can handle high dimensional feature vectors as274

shown in Table 3.275

Combining the curvature descriptor with the P8 fat depth and HSCW re-276
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sulted in RMSE =3.91% and R2=0.69, indicating that fatness and HSCW277

provide independent observations to curvature, and assist in estimating LMY.278

Dimensionality reduction to select elements of curvature descriptor that are279

more related to LMY further enhances the estimation capability RMSE=3.73%,280

R2=0.74. However, additional data is required to evaluate. As a comparison,281

preliminary results reported on DEXA (Gardner et al., 2018) on predicting CT282

Fat %, on dataset B used in this paper, showed RMSE=3.2% and R2=0.88.283

Currently, to the authors knowledge, there have not been any reported stud-284

ies on estimating LMY for beef carcasses using either 2D or 3D cameras. How-285

ever, there are several studies and commercial companies with products in esti-286

mating SMY, conformation and EUROP fat and conformation scores (Borggaard287

et al., 1996; Craigie et al., 2013; Pabiou et al., 2011). While SMY relates to288

weight and by virtue volume, LMY represents the quantity of solely muscle as289

a component of the volume.290

To indicate the capacity of volume in estimating LMY, a subset of data291

(n=27) was used. The 3D carcass sides were processed using the proposed292

morphing approach, thereby extracting consistent volumes across all carcasses.293

The capacity of volume to estimate LMY was very low R2=0.07. Caution needs294

to be applied due to the low number of samples and revisited with additional295

data.296

Under commercial abattoir processing operations, the carcass side needs to297

be 3D scanned within 30-60 seconds to keep up with chain speed (Toohey et al.,298

2018) and avoid creating a bottleneck on entry to chillers. As a result of these299

constraints, approaches such as the hand-held scanner employed in collecting300

Abattoir A in this study are not commercially viable even though they result301

in high quality 3D models. Scanning manually took at least 30 minutes per302

carcass side, required manual intervention, as well as an additional operator to303

keep the carcass side from swinging.304

The rig with three cameras, having motion around the carcass side, obtains305

over 5000 distinctively different camera views (i.e., camera poses). This is equiv-306

alent of having 5000 cameras distributed around the carcass side. The system307
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can handle a swinging carcass side, in this preliminary study the acquisition308

time was in order of 3-5 minutes. The acquisition time was a conservative ap-309

proach for experimental purposes to ensure completeness of the 3D model given310

the limited number (n=119) of CT data to train the system. Improvements311

to the software process are aiming to reduce the scanning time, whereas the312

approach to estimate LMY is agnostic to source high quality 3D reconstruction313

(e.g., dense and noise-free meshes) of the surface of the carcass side.314

Finally, the current rig occupies a footprint of radius 1.7m and operation is315

completely safe for humans and carcasses. The rig has been tested by acquisi-316

tion in two chiller rooms at abattoirs reported in this study, and an additional317

abattoir where n=19 and CT data across the whole side was not collected.318

5. Conclusion319

Even though the results presented here are preliminary and use a prototype320

rig set up, the outcomes indicate that further work using 3D technology to321

estimate LMY is warranted. This preliminary work demonstrated that the322

proposed approach can estimate LMY (compared with CT LMY, RMSE=3.91%323

R2=0.69). This technology can provide a cost-effective approach to evaluate324

LMY with minimal barriers to adoption (e.g., footprint). More data covering325

the full range of LMY and further comparisons with other technologies is needed326

to demonstrate the full capability of the technology described in this work.327
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Figure 1: Number of carcasses with computed tomography lean meat yield (LMY, %) values

at one unit intervals data for Abattoir A (green) and Abattoir B (red).
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Figure 2: Flowchart of the methodology proposed in this approach of using red green blue

and depth (RGB-D) images to develop 3 Dimensional (3D) reconstructions and subsequently

estimate lean meat yield (LMY, %).
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Figure 3: A beef carcass side being scanned by the custom-built rig.

20



Set of 
images from 
camera 1 
when rig 
has rotated 
0 degrees.

Set of 
images from 
camera 2 
when rig 
has rotated 
0 degrees.

Figure 4: The rig and camera configuration. Arrows show the possible motion of the three

cameras and the rotation of the rig assembly around the base. On the left and right are

example RGB images captured by the RGB-D cameras during the scanning of a beef carcass

side.

21



Figure 5: Reconstructed 3D models of beef carcass sides.
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Figure 6: Illustration of the consistent segmentation procedure. A template is carefully

annotated to select a specific area of the carcass side. This template is then morphed into all

the other carcass sides (i.e., targets) and the annotation is then used to extract the region of

interest consistently across all the dataset.
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Figure 7: Darboux frame created using the pair of points pi and pj . The histogram of angles

α, φ and θ between pairs of surface normals is referred to as a curvature descriptor.
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Figure 8: Illustration of the consistent volumetric computation procedure. Similarly to

Figure 6, a template is annotated and morphed into the targets. This template is then cut

virtually into pieces and the volume and surface area for each part is computed and aggregated

into a signature.
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(a)

(b)

Figure 9: Plots showing (a) CT measured lean meat yield (LMY ,%) versus estimated LMY

with a 1:1 (dashed line) and (b) residuals (measured – estimated) vs estimated LMY values,

colours are indicative of carcasses from abattoir A (green) and B (red)
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Table 1: Statistics of carcass traits (n = 119) divided into statistics for Abattoir A (n = 93)

and Abattoir B (n = 26)

Trait Range Mean Standard Deviation

Abattoir A

Left side HSCW (kg) 82 - 222 157.11 35.06

P8 (mm) 1 - 20 8.68 5.28

CT LMY (%) 40.16 - 66.58 53.33 5.31

Abattoir B

Left side HSCW (kg) 153 - 365 268.94 50.75

P8 (mm) 1 - 35 10.65 8.61

CT LMY (%) 50.17 - 70.63 63.43 4.93
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Table 2: Analysis using Linear regression (n = 119), * was evaluated on a subset of (n = 26)

carcass sides acquired at abattoir B.

Independent methods(s) RMSE (%) R2

baseline - P8 + HSCW 6.90 0.01

segmentation by height - curvature descriptor 6.88 0.38

segmentation by height - curvature descriptor + P8 + HSCW 5.60 0.48

consistent segmentation - curvature descriptor 9.78 0.32

consistent segmentation - curvature descriptor + P8 + HSCW 5.20 0.62

*using feature reduction (GA) - curvature descriptor 4.75 0.53

*using feature reduction (GA) - curvature descriptor + P8 + HSCW 4.24 0.62
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Table 3: Analysis using Gaussian process regressor (n = 119), * was evaluated on a subset

of (n = 26) carcass sides acquired at abattoir B.

Independent methods(s) RMSE (%) R2

baseline - P8 + HSCW 6.68 0.08

segmentation by height - curvature descriptor 4.57 0.60

segmentation by height - curvature descriptor + P8 + HSCW 4.40 0.62

consistent segmentation - curvature descriptor 4.34 0.62

consistent segmentation - curvature descriptor + P8 + HSCW 3.91 0.69

*using feature reduction (GA) - curvature descriptor 3.73 0.74

*using feature reduction (GA) - curvature descriptor + P8 + HSCW 3.66 0.69
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Table 4: Feature descriptors comparison using a Gaussian process regressor. The volumetric

features could not be computed on dataset A (as only the inner part of the carcass side was

scanned), therefore, this comparison has been performed on n=27 from dataset B.

Independent methods(s) RMSE (%) R2

consistent segmentation - curvature descriptor 4.37 0.33

consistent segmentation - Volume1 5.13 0.07
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