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Abstract—Choosing appropriate references for a given topic
is an important, yet challenging task. The pool of potential
candidates is typically very large, in the order of tens of
thousands, and growing by the day. For this reason, this paper
proposes an approach for automatically providing a reference
list for a given abstract. The approach is based on an origi-
nal submodular inference function which balances relevance,
coverage and diversity in the reference list. Experiments are
carried out using an ACL corpus as a source for the references
and evaluated in terms of precision-recall, MAP and MRR. The
results show the remarkable comparative performance of the
proposed approach.

Keywords-Reference recommendation, submodular infer-
ence, monotonic submodular functions.

I. INTRODUCTION

Have you ever been overwhelmed by the large number of
research papers in your research field? Are you wondering
which ones you should read for your research, and afraid
of missing some important, new ideas? Does it feel like the
deluge is only getting worse?

To ease this challenge, this paper proposes a novel model,
named SubRef, that can recommend an effective and ade-
quate reference list for a user-provided query. The reference
list is predicted based on a combination of relevance, cov-
erage and diversity. Specifically, the relevance refers to the
relevance of the recommended articles to the user query,
which can be computed in terms of similarity between the
query and the articles’ contents; the coverage reflects the
extent to which the recommended list is able to cover the
query; and the enforced diversity across the recommended
articles prevents redundancies and overlapping within the
list. In addition, by its nature, the proposed model lends itself
to accommodate specialized recommendations (for instance,
for a given user profile: e.g., newcomer vs. expert).

The ability to provide reference recommendations that
meet out three stated criteria stems from the powerful

domain of submodular inference [1]. Submodular functions
are capable of encapsulating many desirable properties of
subsets while allowing for fast inference of good subsets
with theoretical performance guarantees. As such, they are
natural candidates for the selection of effective reference
recommendations from large corpora of documents.

The main contributions of our paper are summarized as
follows.
• We propose a novel model that recommends rele-

vant, covering and diverse references which can help,
amongst other, in the writing of scientific papers.

• We propose a class of effective submodular functions
to be used for the provision of reference recommen-
dations. We also analyze their time complexity and
provide a comparative performance evaluation.

• Thorough experiments are carried out using the ACL
Anthology Reference Corpus to validate the effective-
ness of the proposed model.

II. RELATED WORK

Reference recommendation approaches can be divided
into two main categories based on different styles of
querying: global and inline. The global recommendation
approaches predict references that are relevant to an entire
manuscript. They typically employ the whole manuscript or
significant parts thereof such as the title, abstract, author and
venue as the query [2]. By contrast, inline, or contextual,
reference recommendation approaches use the local context
of each “placeholder” to capture its specific information
requirements [3]. Although our approach can apply to both
styles of reference recommendation, we only focus on global
reference recommendation in the following.

From the perspective of the underlying technology, rec-
ommendation approaches can instead be divided into three
main groups: collaborative filtering (CF) approaches, graph-
based (GB) approaches and content-based filtering (CBF)



approaches. Each group has its own rationale for basing the
recommendations: CF mainly focuses on the recommenda-
tions or ratings of other users whose profiles are similar to
the querying user [4]. CBF calculates the similarity between
keywords extracted from the user’s query and from candidate
papers [5], [6]. In turn, GB methods construct a graph in
which authors and papers (possibly including venues and
other meta-information) are regarded as nodes, and the edges
express paper-to-paper [7], author-to-author, and paper-to-
author relationships. Recommendations are eventually pro-
vided in terms of optimal graph traversals. In addition, vari-
ous combinations of these three groups, generically referred
to as hybrid methods, have also been proposed to improve
the accuracy of the recommendation results and obtain the
better performance [8], [9].

A submodular approach to reference recommendation
has also been proposed in the literature [10]. To mollify
computational issues, it introduces a streaming algorithm
with a constant-factor approximation guarantee that uses
only a limited amount of memory. Differently from [10], in
this paper we propose a novel class of submodular functions
of limited computational cost which is capable of providing
effective recommendation lists out of large candidate pools.

III. SUBMODULARITY BACKGROUND

A. Definitions

To clarify the connection between submodularity and
reference recommendation, hereafter we recap the main
properties of submodularity.

Definition 1 (Submodularity) A function f : 2V− > R is
submodular if for every A,B ⊆ V it holds that
f(A ∩B) + f(A ∪B) ≤ f(A) + f(B)
Equivalently, a function f : 2V− > R is submodular if

for every A ⊆ B ⊆ V and e ∈ V it holds that
∆(e | A) := (f(A ∪ e)− f(A)) ≥ ∆(e | B).
Intuitively, this definition says that the benefit achieved

for adding element e to an existing summary is greater or
equal if such a summary is smaller.

An important subclass of submodular functions are those
which are monotone, where enlarging the argument set
cannot cause the function to decrease:

Definition 2 (Monotonicity) A function f : 2V− > R is
monotone if for every A ⊆ B ⊆ V, f(A) ≤ f(B).

The concept of submodularity fits reference selection in
recommendation tasks well: in this case, V is the set of all
the candidate references, e is an element in V , and A and B
are two recommendation lists (i.e., subsets of V ). Intuitively,
there will be less “gain” for introducing another reference
into a list if such a list is already substantial. Therefore,
our aim becomes that of maximizing submodular functions,
i.e. finding maxS⊆V f(S), subject to some constraints on S.
The simplest type of constraint is the cardinality constraint,
where we require that |S| ≤ k, with k an acceptable number

of references for a scientific publication, typically in the
order of 20 to 30.

The problem of maximizing submodular functions is NP-
hard and usually approximately solved via a simple, greedy
algorithm which, however, enjoys theoretical guarantees
for its worst-case approximation. The greedy algorithm is
provided below.

The Greedy Algorithm (Algorithm 1) With S0 the empty
set, at iteration i = 1 . . . k, add element d ∈ V \ Si−1
maximizing the discrete derivative ∆(d | Si−1):

Si = Si−1 ∪ {argmaxd∆(d | Si−1)} (1)

Algorithm 1 Greedy submodular function maximization
1: S∗ ← ∅
2: A← V = {d1, d2, ...}
3: while A 6= ∅ and |S∗| < k do
4: z ← argmaxd∈AF (S∗ ∪ d)− F (S∗)
5: S∗ ← S∗ ∪ {z}
6: A← A \ {z}
7: end while

A celebrated result by Nemhauser et al. (1978) [1] proves
that the greedy algorithm provides a good approximation to
the optimal solution of the NP-hard optimization problem.

Theorem 1 (Nemhauser et al. 1978) Given a nonnega-
tive monotone submodular function f : 2V− > R+, let
S1, S2 . . . Sk be the greedily selected sets defined in Eq. 1.
Then, for any positive integer l ≤ k,

f(Sl) ≥ (1− e−l/k)maxS:|S|≤kf(S) (2)

In particular, for l = k, f(Sk) ≥ (1−1/e)maxS:|S|≤kf(S).

B. Submodular functions used in document summarization

Document summarization is a well-studied problem in
the literature, with interesting analogies with reference rec-
ommendation. Document summarization is often solved at
sentence level, whereas reference recommendation is solved
at document level with each document as a reference.
Hereafter, we describe the main submodular functions for
document summarization that can form the basis for our
proposal.

Lin and Bilmes [11] have been the first to frame docu-
ment summarization as the maximization of a submodular
function under a budget constraint. They used an objective
consisting of a coverage term combined with a penalty for
redundancy:

fMMR(S) =
∑

i∈V−S

∑
j∈S

wij − λ
∑

i,j∈S:i 6=j

wij , λ ≥ 0. (3)

in which S ⊂ V and wij is the similarity score between
sentence i and sentence j. Please note that this scoring



function is not guaranteed monotone: while the coverage
term can be easily proved to be monotone, the penalty term
may surpass it and make increments of (3) become negative.
However, a monotone behavior can still be expected for
reasonably small summaries.

In [12], the same authors studied a class of monotone
submodular functions that combine two terms: one which
encourages the summary to be representative of the corpus
and the other which positively rewards diversity. The sum-
mary score is modeled as:

F (S) = Fc(S) + λFd(S) (4)

where Fc(S) measures coverage and Fd(S) rewards diver-
sity. In turn:

Fc(S) =
∑
i∈V

min{Ci(S), αCi(S)} (5)

where Ci(S) measures of well element i is covered by
summary S, which “saturates” when it reaches a given
fraction, α, of its largest possible value, Ci(V ); and:

Fd(S) =

K∑
i=1

√ ∑
j∈Pi∩S

rj (6)

where Pi, i = 1, . . .K is a partition of the original set, V ,
and rj ≥ 0 indicates the reward of adding i to the empty set.
Since the square root grows less than linearly, this penalty
favors selecting summary elements from different clusters.

Other studies have used a very similar submodular frame-
work, but slightly different design and analysis. Among
them, Dasgupta et al. [13] have formulated the objective
function as a sum of a submodular function and a non-
submodular function called dispersion, with the latter using
inter-sentence dissimilarities in different ways while target-
ing non-redundancy of the summary.

IV. SUBMODULAR REFERENCE RECOMMENDATION

Two very desirable properties of a good reference list are
relevance and non-redundancy. Traditional recommendation
systems usually measure relevance by ranking candidate
recommendations from the most relevant to the least relevant
based on a query. On the other hand, the submodular
summarization approaches reviewed in the previous section
provide summaries that are query-independent. For this rea-
son, we propose extending the submodular scoring functions
with an additional query-dependent relevance term, and we
prove that the resulting function is capable of retaining
submodularity.

A. Non-monotone Submodular Functions

The relevance term that we propose is defined as:

Fq(S) =
∑
i∈S

sqi (7)

where sqi is the similarity score between the given query,
q, and document i in the summary.

Theorem 2 (original) We prove that (7) is submodular
by this simple argument: given a summary, S, the score
increment provided by adding a new document, d, to it only
depends on the document itself and not on the summary.
Therefore, (7) satisfies the second non-strict inequality in
Definition 1 with the equal sign. In addition, any convex
combination of (7) with other submodular functions is
submodular by construction.

Our first non-monotone submodular function considers
two terms: relevance and non-redundancy. When adding a
new element, k, to an existing summary, S, the increment
of this function can be expressed as:

∆(k) = λsqk − (1− λ) max
i∈S

wik (8)

The second non-monotone submodular function considers
relevance, coverage and non-redundancy:

F (S, q) = αFq(S) + Fcr(S) (9)

where Fq(S) is as in (7), and:

Fcr(S) = λ
∑

i∈V \S

∑
j∈S

wij − (1− λ)
∑
i,j∈S

wij (10)

As we said above, wij is the similarity score between
document i and document j. In the simplest case, wij can
be set to be the TFIDF cosine similarity [14], In alternative,
the BM25 score [15] is able provide more sophisticated
similarity measurements and rankings.

B. Monotone Submodular Functions

To also encapsulate information about the authors and
references, we propose a class of functions which combine
the relevance to the query with the relations between authors
and references:

F (S) =

K∑
i=1

√ ∑
j∈Pi∩S

R(dj) (11)

R(di) = λFq(di) + (1− λ)Fau(di) (12)

where:

Fau(di) =
∑

Au(di)∩Au(q)6=∅

ω1 +
∑

dj∈cite(di),
Au(dj)∩Au(q) 6=∅

ω2 (13)



Year 2012
Papers 1186
Authors 1657
Venues 34
References 11631
Avg Cite 9.8

Table I
MAIN STATISTICS FOR THE TEST SET.

with cite(di) being the reference list of document i, Au(di)
its set of authors, and ω1, ω2 the scores credited for sharing
authors and references, respectively. With a preliminary
evaluation, we have chosen ω1 = 2.0 and ω2 = 1.0. This
function is submodular and also naturally monotone since it
does not include any penalty.

C. Complexity Analysis

V. EXPERIMENTS

A. Corpus

In order to validate our model for reference recommenda-
tion, we use the ACL Anthology Reference Corpus (AAN)
which was established by [16], a set of 22,085 papers
from computational linguistics workshops, conferences and
journals. We remove the papers which do not have titles or
abstracts in the data set, then we use the papers from 1965 to
2012 as the experimental data set. For evaluation purposes,
we use all papers in 2012 containing ACL references for the
test set. Table I summarizes the statistics of the dataset.

For our retrieval experiments, we first construct a query by
an article’s title and abstract; then, we let our model provide
the recommended references for this query and compare the
results with the actual reference list of the article.

B. Evaluation Metrics

To evaluate the quality of the reference recommendations,
we use the reference lists of the test papers as the ground
truth. Following common practice, we employ the following
evaluation metrics: Precision and Recall, which are the most
commonly used metrics in the reference recommendation
field (see survey [8]); Precision@N (P@N) which measures
the percentage of the retrieved references that is relevant
to the ground truth in the top-N recommendation list; Re-
call@N (R@N) which measures the proportion of the actual
references that are retrieved in the top-N recommendation
list; and other derived metrics. These metrics are calculated
as follows:

Precision =

∑
d∈Q |R(d) ∩ T (d)|∑

d∈Q |R(d)|
(14)

Recall =

∑
d∈Q |R(d) ∩ T (d)|∑

d∈Q |T (d)|
(15)

where Q is the test set of papers, T (d) are the ground-
truth references of paper d, and R(d) are its recommended
references.

In addition, the Average Precision (AP) computes a
precision-recall trade-off by calculating the precision at each
point in the recommended list where a ground-truth article
appears [17]. The AP can be expressed as:

AP (d) =
∑

i∈[1,|R(d)|]

Precision(d)@N(i)

|T (d)|
(16)

where Precision(d) is the precision for document d and
N(i) is the minimum number of top recommendations
required to include reference i. In turn, the Mean Average
Precision (MAP) averages the AP value over the entire test
set:

MAP =
∑
d∈Q

AP (d)

|Q|
(17)

Eventually, the Mean Reciprocal Rank (MRR) is the
average of the reciprocal ranks of the recommendations
for all documents in the test set. The reciprocal rank of a
recommendation is the inverse of the rank position of the
first correct recommendation for a test paper. The MRR is
calculated as:

MRR =
1

|Q|
∑
d∈Q

1

rankd
(18)

C. Experimental Settings

For a comprehensive comparison, we have evaluated the
proposed model in a number of variants together with
various baselines and a state-of-the-art method:

ES-TFIDF: The similarity score based on TFIDF is a
common method to search related documents. For every
query in the test set, we use it to rank all the documents
and select the top N .

ES-BM25: BM25 is a well-known ranking method for
measuring the relevance of documents to a query based
on their content. The newest version of the popular Elas-
ticsearch (ES)1 uses BM25 as its default similarity score.
The authors state that there can be significant advantages
in using BM25 over TFIDF as similarity measurement, at
least in some cases [18]. For this reason, we use BM25 for
calculating the similarity score between the query and the
documents. In the experiments, we set bias term b to 0.75
and bias term k1 to 1.2 (the ES default).

TopicCite: TopicCite is a state-of-the-art reference rec-
ommendation approach which leverages a joint model of
feature regression and topic learning. [2].

SubRef-QFRv1: our model as per Equation 8. As values
for λ we have used range (0.0, 1.0) in 0.1 steps. λ = 0.0

1https://www.elastic.co/



Lambda No.Correct MRR MAP P@100 R@100
0.0 3674 0.4418 0.1228 0.0310 0.3159
0.1 3783 0.4433 0.1270 0.0319 0.3253
0.2 3947 0.4461 0.1318 0.0333 0.3394
0.3 4101 0.4495 0.1358 0.0346 0.3526
0.4 4265 0.4529 0.1412 0.0360 0.3666
0.5 4469 0.4569 0.1472 0.0377 0.3842
0.6 4629 0.4608 0.1523 0.0390 0.3980
0.7 4765 0.4649 0.1573 0.0402 0.4097
0.8 4820 0.4715 0.1594 0.0406 0.4144
0.9 4766 0.4739 0.1580 0.0402 0.4098
1.0 4585 0.4729 0.1516 0.0386 0.3942

Table II
SUBREF-QFRV1 BY LAMBDA

Lambda No.Correct MRR MAP P@100 R@100
0.0 826 0.3697 0.0601 0.0070 0.0710
0.1 1170 0.3778 0.0629 0.0099 0.1006
0.2 1806 0.3922 0.0703 0.0152 0.1553
0.3 2490 0.4093 0.0811 0.0210 0.2141
0.4 3064 0.4264 0.0947 0.0258 0.2634
0.5 3526 0.4406 0.1084 0.0297 0.3031
0.6 3917 0.4508 0.1219 0.0330 0.3368
0.7 4194 0.4592 0.1329 0.0354 0.3606
0.8 4356 0.4672 0.1413 0.0367 0.3745
0.9 4489 0.4700 0.1475 0.0378 0.3859
1.0 4585 0.4729 0.1516 0.0386 0.3942

Table III
SUBREF-QFRV2 BY LAMBDA

Lambda No.Correct MRR MAP P@100 R@100
0.0 4265 0.4612 0.1281 0.0360 0.3667
0.1 4844 0.4885 0.1431 0.0408 0.4165
0.2 4913 0.5073 0.1521 0.0414 0.4224
0.3 4936 0.5036 0.1559 0.0416 0.4244
0.4 4938 0.4944 0.1550 0.0416 0.4246
0.5 4937 0.4772 0.1543 0.0416 0.4244
0.6 4936 0.4576 0.1497 0.0416 0.4244
0.7 4936 0.4418 0.1462 0.0416 0.4243
0.8 4936 0.4297 0.1445 0.0416 0.4244
0.9 4937 0.4277 0.1433 0.0378 0.4245
1.0 5192 0.4375 0.1565 0.0438 0.4464

Table IV
SUBREF-QAIV1 BY LAMBDA

means that the scoring function only scores non-redundancy
and λ = 1.0 means that function only scores query rele-
vance, which makes it equivalent to the baseline methods.

SubRef-QFRv2: our model as per Equation 9. We have
used α = 5.0 and λ as above.

SubRef-QAIv1: our model as per Equation 11, with
partition P obtained by clustering the venues.

SubRef-QAIv2: our model as per Equation 11, with
partition P obtained by clustering the authors.

For all comparisons, we use budget k = 100. This value
is rather large and is chosen to favor recall over precision,
in the assumption that the average user would prefer a brief
manual refinement of an abundant list over an unbounded

Lambda No.Correct MRR MAP P@100 R@100
0.0 4585 0.4729 0.1516 0.0386 0.3942
0.1 4626 0.4754 0.1529 0.0390 0.3977
0.2 4671 0.4778 0.1543 0.0393 0.4016
0.3 4728 0.4809 0.1563 0.0399 0.4065
0.4 4797 0.4833 0.1591 0.0404 0.4124
0.5 4868 0.4919 0.1629 0.0410 0.4185
0.6 4946 0.5017 0.1687 0.0417 0.4252
0.7 5036 0.5164 0.1742 0.0425 0.4330
0.8 5131 0.5179 0.1798 0.0433 0.4411
0.9 5192 0.4949 0.1787 0.0438 0.4464
1.0 5190 0.4374 0.1564 0.0437 0.4463

Table V
SUBREF-QAIV2 BY LAMBDA

search for false negatives.

D. Parameter Tuning

In this section, we study the impact of parameters α
and λ in our non-monotone submodular functions. In the
QFRv1 function, λ is the trade-off between relevance and
non-redundancy. In the QFRv2 function, α is the trade-off
between relevance and a coverage and non-redundancy com-
bination, while λ trades off coverage and non-redundancy.
In functions QAIv1 and QAIv2, λ is the trade-off between
the relevance and the importance of the author clusters.
As values, for α we have empirically chosen 5.0 based
on preliminary trials. For λ, we report all results in range
[0.0,1.0] in 0.1 steps. In turn, the trade-off between coverage
and diversity in Equation 11 is encapsulated by the square
root term.

E. Performance Comparison

All results are shown in Tables II to VI. It is evident that
the submodular functions with suitably-chosen parameters
significantly outperform the baseline methods in all cases.
The state-of-the-art method TopicCite still outperforms our
method in the available metrics. However, TopicCite is a
fully trained method of signficant computational cost, while
our method does not require any training and runs in linear
time. All experiments have been carried out on a high-
performance computer with a 12-core Intel Xeon(R) CPU
E5-2697 v4 @ 2.30GHz with an 8 x 16 GB DIMM ECC
DDR4 @ 2400MHz RAM.

VI. CONCLUSION

In this paper, we have presented a novel approach for
submodular inference of reference recommendations, an
important information retrieval application. Our experiments
have proven that submodular functions that had first been
proposed for document summarization also give significant
benefits in reference recommendation and are able to out-
perform relevant baselines. Although our results have not
yet overcome state-of-the-art methods, there are many po-
tential directions for further developing this work, including



Method Budget MRR MAP P@100 R@100
ES-TFIDF 100 0.2768 0.0640 0.0178 0.1814
ES-BM25 100 0.4729 0.1516 0.0386 0.3942
TopicCite Unknown 0.5713 Unknown Unknown 0.5035

SubRef-QFRv1 100 0.4739 0.1594 0.0406 0.4144
SubRef-QFRv2 100 0.4700 0.1475 0.0378 0.3860
SubRef-QAIv1 100 0.5073 0.1565 0.0438 0.4464
SubRef-QAIv2 100 0.5179 0.1798 0.0438 0.4464

Table VI
PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS.

integrating a step of submodular inference into existing
methods and training the parameters automatically against
loss functions. We plan to incorporate these features in our
approach in the near future.
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