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Abstract—Fine-grained activities are human activities involv-
ing small objects and small movements. Automatic recognition of
such activities can prove useful for many applications, including
detailed diarization of meetings and training sessions, assistive
human-computer interaction and robotics interfaces. Existing
approaches to fine-grained activity recognition typically leverage
the combined use of multiple sensors including cameras, RFID
tags, gyroscopes and accelerometers borne by the monitored
people and target objects. Although effective, the downside of
these solutions is that they require minute instrumentation of
the environment that is intrusive and hard to scale. To this
end, this paper investigates fine-grained activity recognition in
a kitchen setting by solely using a depth camera. The primary
contribution of this work is an aggregated depth descriptor that
effectively captures the shape of the objects and the actors.
Experimental results over the challenging “50 Salads” dataset
of kitchen activities show an accuracy comparable to that of
a state-of-the-art approach based on multiple sensors, thereby
validating a less intrusive and more practical way of monitoring
fine-grained activities.

Index Terms—Index Terms: Fine-grained activity recognition,
local depth descriptors, M-SVM2 classifier, “50 Salads” activity
recognition dataset.

I. INTRODUCTION

The main aim of fine-grained activity recognition is to
correctly identify activities of limited inter-class variance,
often involving small objects and short-range movements. The
automated recognition of such activities can play an important
role in real-life applications such as the automated diarization
of events, including meetings and training sessions, the verifi-
cation of compliance to protocols and procedures, and human-
robot interaction [1]–[3]. Typical approaches to fine-grained
activity recognition leverage a variety of embedded sensors
such as RFID tags, gyroscopes, and accelerometers attached
to the body of the agents and to selected, target objects [4].
These sensors are often complemented by cameras to help
with the fine localization of objects and the measurement
of gestures and movements [5], [6]. In addition, inexpensive
depth cameras such as Play Station Eye and Microsoft Kinect
have made depth videos widely available and easily usable for
this task.
Despite the progress in this area, the use of multiple sensors
poses practical limitations to the applicability of this technol-
ogy. As a matter of fact, the requirement of equipping people

and target objects with borne sensors may prove cumbersome
or impractical in many scenarios. The use of borne sensors also
makes it possible to identify their carrier by association, which
may not be desirable in cases where privacy is paramount.
For these reasons, in this short paper we present an approach
to fine-grained activity recognition that solely leverages the
use of a depth camera. Depth images do not depict sig-
nificant personal traits of the viewed subjects and therefore
are substantially privacy-preserving. The approach is applied
to a kitchen scenario where only a single camera is placed
unobtrusively above the cooking plane, without interfering
with the actions and with no additional instrumentation. The
dataset used for the experiments is the challenging “50 Salads”
dataset which was released as part of a recent publication to
offer a unified and probing benchmark for fine-grained activity
recognition from RGB, depth and accelerometric data [4].
Figure 1 shows an example of depth frames from this dataset.
The experimental results in Section IV show that the proposed
approach is capable of achieving an accuracy comparable
to that of a state-of-the-art method that uses both cameras
and accelerometers, making it possible to apply fine-grained
activity recognition in a wide range of scenarios.

Fig. 1. Examples of depth frames from the “50 Salad” dataset.



II. RELATED WORK

The two main, interrelated issues in fine-grained activity
recognition are the localization of the objects and parts of
interest, and the characterization and modelling of their shape
and movement [7]. Accordingly, the related work is organized
over two subsections concerning object localization and fea-
ture vectors.

A. Object Localization

Previous research on object localization has exploited the
use of attached instrumentation such as RFID tags and ac-
celerometers to locate the objects of interest. Such sensors
are often used in conjunction with video cameras, so that the
localization accuracy can be increased by aligning their data
with the video data [2], [4], [8]–[12]. The training of these
combined approaches require annotation of the “bounding
boxes” of the objects in the visual data, and synchronization
with the sensor data. Other approaches are based on active
learning and require further human intervention during the
system’s training: for instance, [12] required the use of user
clicks as a means of guiding the machine toward correct
identification; [13] exploited online supervision to improve
the model; and [14] assumed knowledge of the true position
of parts at run time. To relax the requirements on video
annotation, [1] has recently proposed searching the Web for
“highlights” of the objects of interest. However, this approach
is heavily affected by the inaccuracy of the search results.
To the best of our knowledge, [15] is the only work to date
to have addressed fine-grained activity recognition without
any annotation of the frames. However, it only addresses
recognition in still images, rather than in live settings as in
the scope of this work.

B. Feature Vectors

The use of video data requires the design of effective
descriptors of the activities. While it is possible, in prin-
ciple, to use precise geometric models of the objects and
the agents as descriptors, their fitting onto the video data
often fails due to the cluttering in the environment and the
limited resolution of the video frames. For this reason, the
mainstream trend in recent years has been to use a variety
of local features, i.e. compound descriptors of image patches
which are mildly invariant to artifacts such as illumination
and viewpoint changes [16]. A great deal of local features
have been proposed, including, but not limited to, spatio-
temporal interest points (SIFT), speeded-up robust features
(SURF), and local binary patterns (LBP) [17]–[19] which
have proved effective not only for activity recognition, but
also for object detection and tracking. In addition, the recent
advent of consumer depth cameras has led to the proposal of
many depth-based local features aimed at encapsulating the
local 3D shape of objects. For instance, [20] has proposed
the HON4D feature, a histogram of oriented 4D normals
suitable for recognizing activities from depth video. Xia and
Aggarwal in [21] have proposed a depth-based modification
of the popular STIP detector and descriptor, and [22] has

proposed a combination of RGB and depth features. However,
local features for fine-grained activity recognition in depth
videos still constitute a subject of investigation [23].

III. PROPOSED APPROACH

In this paper, we show how depth videos alone enable
an accurate solution to fine-grained activity recognition. This
approach is demonstrated in a kitchen environment where
various actors attend to the preparation of mixed salads in
a spontaneous and realistic way. Figure 2 shows an overview
of the proposed approach, while the remainder of this section
describes the main components.

LDPT feature 
extraction

Fisher vector 
encoding

M-SVM2 multi-
class classification

Fine-grained activity label

Input frames

Fig. 2. Overview of the proposed approach.

A. The Local Depth Feature: LDPT

Local video features have proved versatile over diverse
tasks such as activity recognition, detection and tracking.
In [24], the authors have proposed a local depth feature for
tracking (LDPT) that has ranked highly in a challenging
tracking benchmark of depth videos. Since the feature
has proved able to represent the target shape under mild
deformations and viewpoint changes, we believe that it could
also be effective for representing the shape of the objects of
interest in fine-grained activity recognition. For this reason,
we choose an appropriate size for the LDPT feature and we
partition each depth frame into a grid of non-overlapping
LDPTs with H rows and V columns. While the use of
overlap between adjacent LDPTs can soften boundary effects,
we found it was not beneficial in practice.
The LDPT, in turn, consists of an HD × V D grid of “depth
patterns” (DP) [23] that encapsulate the directional derivatives
within a small square patch. Each depth pattern first sub-
divides its square patch into 3 × 3 cells, and then computes
the absolute differences between the average depth of every
pair, saving these differences in a

(
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2

)
= 36-dimensional

vector. For clarity, Figure 3 shows the hierarchy of the cells,



Fig. 3. The hierarchy of cells (smallest), depth patterns (intermediate;
numbered from 1 to 12) and LDPTs (largest). This figure should be viewed
in color.

depth patterns and LDPTs. Algorithm 1 shows the detailed
steps for computing an LDPT feature.

Algorithm 1 The algorithm for computing an LDPT feature.
Input: Depth frame region
Output: LDPT feature

1: LDPT = nil
2: loop r = 1 : VD
3: loop c = 1 : HD
4: DP (r, c) = nil

{computes the difference between every cell pair:}
5: loop k = 1 : 9
6: loop j = k + 1 :9
7: diff(k, j) = |avgdepth(k)− avgdepth(j)|

DP (r, c) = concatenate(DP (r, c), diff(k, j))

8: end loop
9: end loop

LDPT = concatenate(DP (r, c))
10: end loop
11: end loop

B. Feature Encoding

After the completion of the feature extraction stage, the local
features of each frame are encoded into a more compact and
descriptive representation called an encoding. Encodings are
a key component of visual recognition algorithms, with the
most popular being the bag-of-features, the vector of locally
aggregated descriptors (VLAD) and the Fisher vector [25]–
[27]. In [15], the authors have shown that the Fisher vector is

especially suitable for the recognition of fine-grained activities,
thanks to its ability to retain detailed information. Given a
Gaussian mixture model (GMM) with M diagonal components
and parameters {wm, µm, σm,m = 1 . . .M} (respectively,
weight, mean and standard deviation of the m-th component),
the Fisher vector encodes a set of local features, X = {xi, i =
1 . . . N}, as the gradient of their likelihood in the GMM. The
equations for the gradient with respect to the mean and the
standard deviation of the k-th component are:
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where pim is the probability of measurement xi in the m-th
component. The Fisher vector is the concatenation of these
gradients for all the M components and its dimensionality
is equal to 2MD, where D is the dimensionality of a local
feature. Given that this value is typically high, we post-process
the vector with principal component analysis to reduce the
dimensionality to a range of [300− 500].

C. Multi-Class Classification by M-SVM2

Notwithstanding the use of informative features, classifi-
cation of fine-grained activities remains a very challenging
task due to the typically small inter-class distance between
the activities. Therefore, a multi-class classifier capable of
discriminating subtle differences between classes is a critical
requirement. The support vector machine (SVM) has a strong
reputation for high empirical accuracy over multi-class prob-
lems [28]. However, its common binary decompositions are
trained separately for each class and are prone to inconsistent
predictions. Conversely, the multi-class SVM proposed by Lee
et al. in [29] is trained using a unified objective for all the
classes while guaranteeing useful statistical properties. The
main idea is to train a multi-class SVM to assign a score of 1 to
the ground-truth class and a score of −1/(K−1) to each of the
other K−1 classes. The loss function that is derived from this
sum-to-0 score is proven to be Fisher consistent, i.e. it tends
to Bayes’ optimal decision rule as the size of the training set
grows. To the best of our knowledge, this is the only multi-
class SVM loss which enjoys this property over the entire
parameter space. As a further improvement, Guermeur and
Monfrini in [30] have suggested using a quadratic form over
this loss to upper-bound the leave-one-out cross-validation
error. The resulting classifier - M-SVM2 - has outperformed a
number of other multi-class classifiers over a diverse range of
datasets and for this reason we adopt it here [30], [31]. Given
a multi-class training set xi, yi, i = 1 . . . N , with K classes,
the primal problem of M-SVM2 is given by:



argmin
w,b,ξ

1

2
‖w‖2 + Cξ>Mξ

s.t., i = 1 . . . N :

w>k xi + bk ≤ −
1

K − 1
+ ξik,∀k 6= yi

K∑
k=1

w>k xi + bk = 0

(3)

Like in a conventional SVM, (3) aims to minimize a trade-
off between a regularization term (‖w‖2) and a term account-
ing for the error over the training set (ξ>Mξ). Notations in (3)
are as follows: parameter vector w, b = {wk, bk}, k = 1 . . .K,
is the concatenation of the score parameters of each class.
Vector ξ = {ξik}, i = 1 . . . N, k = 1 . . .K, k 6= yi, is the
vector of the “slack” variables used to relax the N(K − 1)
constraints for the satisfiability of the problem. Matrix M =
{mik,jl = δi,j(δk,l + 1)} is a positive semidefinite matrix
that computes a quadratic term over the slack variables. The
inequality constraints limit the score of classes other than the
ground truth to ≤ −1/(K−1). As a consequence, the equality
constraints make the score of the true class, yi, to be greater
than or equal to a unit, guaranteeing a proper margin between
correct and incorrect classifications.

IV. EXPERIMENTS

The proposed approach has been evaluated on the challeng-
ing “50 Salads” kitchen activities dataset that was recently
released as part of a 2013 publication to offer a benchmark
for fine-grained activity recognition from RGB, depth and
accelerometer data [4]. The dataset consists of 50 videos of
an individual preparing a salad in a kitchen setting, under
the view of a Kinect camera and with several accelerometers
attached to utensils. The activities in the “50 Salads” dataset
have been labeled at two different levels of granularity using
17 and 10 different labels, and we follow the latter for direct
comparability with [4]. The ten activities are: add oil, add
pepper, mix the salad dressing, peel a cucumber, cut into
pieces, place into a bowl, mix the ingredients, serve the salad
onto a plate, add the salad dressing, and null. The challenge
with this set of classes is not its size, but the fact that all
activities only involve small arm movements and small objects,
suggesting a very significant class overlap. Figure 1 shows the
challenging scenario, where all the target objects are present at
once and only the actor’s arms are in view. On the other hand,
the camera’s position is unobtrusive and does not impinge on
the activities. Each activity instance in the dataset is further
annotated into three stages: pre-, core- and post-activity. The
total size of the dataset is approximately 500 thousand video
frames, of which around 250 thousand represent the core stage
of activities. Table I displays the video frame counts for each
activity.

As measurements for the experiments, we first extracted
the LDPT features of Section III-A. The size of the cell was
set to 5 × 5 pixels and HD and V D were set to 3 and 4,

TABLE I
DATASET ACTIVITIES AND VIDEO FRAME COUNTS

Main Activity Fine-Grained Activity # Frames # Core
add oil 24463 7100

prepare add pepper 11544 5404
a dressing mix dressing 17291 12578

peel cucumber 57021 35934
cut and mix cut into pieces 194600 123836
ingredients place into bowl 53462 27113

mix ingredients 20525 14138

serve salad serve salad 31237 16956
add dressing 19227 9730
null 62754 N/A

Total 492124 252789

respectively. This made the total area covered by an LDPT
equal to (5 ∗ 3 ∗ 3 =) 45 × (5 ∗ 3 ∗ 4 =) 60 pixels which is
appropriate for the typical size of the objects in these frames.
The vector dimensionality of an LDPT was therefore HD ∗
V D ∗

(
3∗3
2

)
= 432. Each depth frame was then partitioned in

a grid of H = 9 and V = 10 LDPTs, centred in the frame.
This resulted in a total covered area of 405 pixels in height
and 600 in width which adequately captured all the viewable
activities in the scene. The LDPT features of each frame were
then encoded using M = 16 components, resulting in a large
Fisher vector of 2DM = 2 ∗ 432 ∗ 16 = 13, 824 dimensions.
We therefore reduced this dimensionality by PCA to the top
300 principal components. For the classification, we used the
M-SVM2 algorithm from package MSVMpack [31] with 5-
fold cross-validation which returns a realistic estimation of
the run-time accuracy. As cross-validation parameters, we used
constant C over range [1, 10] and the linear, polynomial and
RGB kernels as the kernel.

A. State of the Art on the Dataset

The state-of-the-art accuracy on the “50 Salad” dataset is
held by the approach presented in [4]. This approach exploits
the RGB and depth videos from a vertical view of the kitchen
bench and seven Axivity WAX3 wireless accelerometers at-
tached to the following utensils: a knife, a mixing spoon, a
peeler, a small spoon, a glass, an oil bottle and a pepper
dispenser. A set of four types of features is computed by
combining the visual and accelerometric data:
• Object Use (OU): a binary variable indicating whether

the object is accelerating or not, used as a proxy for the
object being in use at all (7 variables in total);

• Acceleration Statistics (AS): mean, energy, standard de-
viation and entropy for each of the three axes (relative to
free fall) and estimated pitch and roll (relative to gravity)
(20D per object; 140D for all objects);

• Device Locations (DL): accelerometers are localized in
the visual field of the camera by matching the measured
acceleration of a device with the acceleration estimated
along visual point trajectories (2D per object; 14D for all
objects);

• Visual Displacement Statistics (VS): mean, energy, stan-
dard deviation and entropy for the visual displacement



components in x and y (8D per object; 56D for all
objects).

B. Experimental Results and Discussion

Table II shows the recall, precision and F1 score obtained
with the proposed approach for each activity class. Fig. 4 dis-
plays the corresponding confusion matrix (the complete matrix
of ground-truth vs prediction percentages). Table II shows that
there are significant differences in recall and precision between
the classes: for instance, class “peel cucumber” reaches an
89.0% recall average, while class “serve salad” only achieves
55.2%. This can be explained by the different extent of class
evidence in the depth data, where a repetitive activity such as
peeling may prove easier to spot than an isolated action. On
the other hand, Table II shows that the differences in F1 score
are far less remarked and that the proposed approach achieves
an F1 score above 50% for all classes but one. These results
have been obtained with cross-validation parameters C = 5
and the linear kernel.

Table III compares the results from the proposed approach
with the original results of the dataset’s authors and a popular,
standard SVM baseline (libsvm [32]) in terms of recall and
precision. The table shows that the proposed approach out-
performs various combinations of visual and sensor features
from [4], and achieves a recall higher than all of them (offset
by a lower precision). The recall improvement over the best
combination of visual and sensor features is 6 percentage
points, while the decrease in precision is 8 percentage points,
making the results roughly equivalent and supporting our main
claim that our approach, based solely on a depth camera,
achieves approximately the same results as an approach using a
depth/RGB camera and accelerometers on every target object.
Another important remark about this comparison is that the
results of [4] were obtained using different cross-validation
parameters for each fold, whereas we only use one setting for
all folds. While our choice may slightly penalize our reportable
test accuracy, it is more realistic since a run-time system
is only allowed one setting. Table III also shows that the
adoption of the recent M-SVM2 algorithm allows us to achieve
a marked improvement over the standard SVM baseline.

TABLE II
RECALL, PRECISION AND F1 SCORE FOR EACH ACTIVITY CLASS WITH

THE PROPOSED APPROACH.

Class Label Recall % Precision % F1 score %
add oil 74.0 +− 16.0 47.5 +− 2.2 57.1 +− 6.0

add pepper 88.3 +− 3.4 57.4 +− 5.9 63.6 +− 5.6
mix dressing 85.9 +− 5.1 51.0 +− 4.8 64.0 +− 5.1

peel cucumber 89.0 +− 2.7 49.4 +− 8.2 63.2 +− 6.8
cut into pieces 74.1 +− 5.5 68.7 +− 5.7 71.2 +− 5.2
place into bowl 69.8 +− 11.5 48.6 +− 7.7 57.2 +− 8.8
mix ingredients 66.4 +− 10.4 66.9 +− 9.4 65.9 +− 4.4

serve salad 55.2 +− 9.2 59.1 +− 13.5 56.0 +− 6.7
add dressing 80.7 +− 16.8 58.0 +− 5.3 66.6 +− 6.1

null 50.7 +− 6.2 82.6 +− 1.6 62.6 +− 4.8

TABLE III
COMPARISON OF RECOGNITION PERFORMANCE.

Feature Type Recall % Precision %
OU + DL [4] 51 +− 3 51 +− 2
OU + VS [4] 54 +− 2 53 +− 4
DL + VS [4] 57 +− 4 54 +− 3
DL + AS [4] 61 +− 5 64 +− 3
OU + AS [4] 63 +− 5 66 +− 3
AS + VS [4] 67 +− 5 67 +− 3

OU + AS + VS [4] 67 +− 5 68 +− 3
libsvm 68 +− 4 57 +− 5

Our Approach 73+− 4 56+− 1

Finally, for internal comparison, Table IV shows the accu-
racy improvement achieved by applying PCA to the Fisher
vectors. The recall and precision proved much higher than not
using PCA (by 27 and 13 percentage points, respectively). This
is in accordance with the results of [15] that had shown that
Fisher vectors are highly compressible. In initial experiments,
we had also compared this with the popular VLAD and bag-of-
words encodings, but we had achieved much lower accuracies,
both with and without PCA.

TABLE IV
RECALL AND PRECISION FOR THE PROPOSED METHOD WITH AND

WITHOUT PCA.

Feature Type Recall % Precision %
Proposed approach without PCA 46 +− 2 43 +− 2

Proposed approach + PCA 73+− 4 56+− 1

Fig. 4. Confusion matrix for the proposed method. Rows and columns
represent ground-truth and predicted class labels, respectively. Numbers
represent frequencies in percentages and the cells’ gray-levels visually encode
the frequencies from 0% = black to 100% = white.

V. CONCLUSION

In this paper, we have proposed a novel approach for
fine-grained activity recognition from depth video. The



recognition pipeline includes a novel feature (LDPT), Fisher
vector encoding and a contemporary SVM classifier. The
experimental results over a probing dataset of kitchen
activities have shown that the proposed approach is capable
of providing accuracy comparable to that of a state-of-the-art
approach that uses a combination of depth/RGB video and
accelerometers. We believe that these results pave the way
for less intrusive and more pervasive implementations of
fine-grained activity monitoring. In addition, the sample
frames displayed in Fig. 1 give visual evidence that depth
data are very privacy-preserving and can mollify concerns in
relation to the adoption of fine-grained activity classification
in a variety of environments, including privacy-sensitive
organizations such as hospitals and aged care facilities.
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