
Approaches for Efficiently Detecting
Frontier Cells in Robotics Exploration
Phillip Quin*, Dac Dang Khoa Nguyen, Thanh Long Vu, Alen Alempijevic and Gavin Paul

Centre for Autonomous Systems, University of Technology, Sydney, NSW, Australia

Many robot exploration algorithms that are used to explore office, home, or outdoor
environments, rely on the concept of frontier cells. Frontier cells define the border between
known and unknown space. Frontier-based exploration is the process of repeatedly
detecting frontiers and moving towards them, until there are no more frontiers and
therefore no more unknown regions. The faster frontier cells can be detected, the
more efficient exploration becomes. This paper proposes several algorithms for
detecting frontiers. The first is called Naïve Active Area (NaïveAA) frontier detection and
achieves frontier detection in constant time by only evaluating the cells in the active area
defined by scans taken. The second algorithm is called Expanding-Wavefront Frontier
Detection (EWFD) and uses frontiers from the previous timestep as a starting point for
searching for frontiers in newly discovered space. The third approach is called Frontier-
Tracing Frontier Detection (FTFD) and also uses the frontiers from the previous timestep as
well as the endpoints of the scan, to determine the frontiers at the current timestep.
Algorithms are compared to state-of-the-art algorithms such as Naïve, WFD, and WFD-
INC. NaïveAA is shown to operate in constant time and therefore is suitable as a basic
benchmark for frontier detection algorithms. EWFD and FTFD are found to be significantly
faster than other algorithms.

Keywords: frontier detection, frontier-based exploration, robot exploration, field robotics, mobile robots

1 INTRODUCTION

The concept of frontiers was first proposed by Yamauchi. (1997). Frontiers have since been used in
many robot exploration strategies, whether by single robots (Digor et al. (2010); Quin et al. (2013);
Shade and Newman. (2011); Paul et al., (2015); Dornhege and Kleiner. (2011); Paul et al., (2016)) or
teams of multiple robots (Faigl and Kulich. (2013); Reid et al., (2013); Hassan et al., (2018)). Since
frontier detection is a component of exploration algorithms, speeding up frontier detection will speed
up the exploration process. Allowing faster frontier detection may also improve the quality of the
decisions made by the exploration algorithms since faster decisions can be made with more recent
data. The speed of new sensors means that frontier detection is more likely to be the bottleneck to fast
robot exploration and therefore needs to be made more efficient.

Maps are often represented using occupancy grids, or connected regions (Twigg et al., (2013)), in
which cells represent a physical location in space. A cell can have several states, it can be “unknown”
meaning there may or may not be an obstacle in that cell, it can be “known freespace”, which means
there is no obstacle in it and can be safely passed through, or the cell can be “known occupied”. In the
rest of this paper “known freespace” and “known occupied” will simply be referred to as freespace
and occupied, respectively. This state is usually represented as a value from 0 to 1 representing that
cell’s likelihood of containing an obstacle. Frontiers are cells of an occupancy grid that are freespace

Edited by:
Xiaoxiang Na,

University of Cambridge,
United Kingdom

Reviewed by:
Yan Zhuang,

Dalian University of Technology, China
Dimitrios Kanoulas,

University College London,
United Kingdom

*Correspondence:
Phillip Quin

phillip.d.quin@alumni.uts.edu.au

Specialty section:
This article was submitted to

Robotic Control Systems,
a section of the journal

Frontiers in Robotics and AI

Received: 16 November 2020
Accepted: 04 January 2021

Published: 25 February 2021

Citation:
Quin P, Nguyen DDK, Vu TL,

Alempijevic A and Paul G (2021)
Approaches for Efficiently Detecting

Frontier Cells in Robotics Exploration.
Front. Robot. AI 8:616470.

doi: 10.3389/frobt.2021.616470

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 6164701

ORIGINAL RESEARCH
published: 25 February 2021

doi: 10.3389/frobt.2021.616470

http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.616470&domain=pdf&date_stamp=2021-02-25
https://www.frontiersin.org/articles/10.3389/frobt.2021.616470/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.616470/full
http://creativecommons.org/licenses/by/4.0/
mailto:phillip.d.quin@alumni.uts.edu.au
https://doi.org/10.3389/frobt.2021.616470
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2021.616470

and which have at least one neighboring cell that has an unknown
state (Yamauchi. (1997)). While there exist probabilistic
approaches to frontier detection (Liu et al. (2020)), it is out of
the scope of this paper when comparing the proposed algorithms
with other probabilistic approaches as they use different basic
data type structures.

The Naïve approach to detecting frontiers is to evaluate every
cell in the robot’s map and determine whether it is freespace and
has at least one unknown neighbor. Table 1 shows how slow this
approach is in large real-world environments such as the Freiburg
corridor environment and Freiburg campus (Wurm et al., (2010)),
whether in the 2D or 3D case. In MATLAB, on an Intel i5-6,500
3.20 GHz machine, evaluating whether a cell is a frontier or not
takes 12 microseconds. In the four example maps in Table 1, this
means evaluating each cell to determine frontiers would take
approximately 105.5 s, 1.6 h, 9.6 h, and 27 weeks, respectively.

Faster algorithms have been proposed such as Wavefront
Frontier Detector (WFD) (Keidar and Kaminka. (2012)), Fast
Frontier Detection (FFD) (Keidar and Kaminka. (2012)),
Incremental Wavefront Frontier Detector (WFD-INC) (Keidar
and Kaminka. (2014)), and Incremental-Parallel Frontier
Detector (WFD-IP) (Keidar and Kaminka. (2014)). WFD
involves beginning with the robot’s current location and
performing a Breadth-First Search (BFS) from that position
through freespace cells until frontier cells are encountered.
This algorithm has the advantage over the Naïve approach of
only evaluating the subset of the map that is freespace.

WFD-INC uses the same principle as WFD but bounds the
BFS to the active area of the most recent sequence of scans, (i.e.
the scans that have occurred since the last call to WFD-INC). In
this context, a scan refers to a 2D (or 3D) scan from a sensor such
as a laser rangefinder, LiDAR, but the frontier detection principle
is equally relevant to a depth camera or stereo vision sensor. The
active area of a scan is the bounded area defining the region of the
mapmodified by the scan; the simplest example being a bounding
box. By using a bounded area, WFD-INC runs in time
proportional to the size of the active area rather than the size
of the map. WFD-IP is very similar to WFD-INC but takes
advantage of parallel computation.

Fast Frontier Detection (FFD) by Keidar and Kaminka. (2012,
2014) involves only evaluating the cells in each individual scan,
particularly the edges of the scan range, along which any new
frontier must necessarily lie. A bounding box is built around the
scanned area. Cells that were frontiers in this bounding box
before the new scan was obtained are checked to see if they are no
longer frontiers at the current time step. This approach is faster
than WFD, but requires that frontier detection take place after
every scan. FFD is also less likely to correctly detect frontiers at

the maximum range of the sensor. Divergence in laser points at
extreme ranges means that Bresenham’s line algorithm, which is a
method for line tesselation (see Figure 1), and that is used by FFD
to determine the contour evaluated for potential frontiers, will cut
across unknown space and not cover all cells that should be
detected as frontiers (see Figure 1). This makes implementation
more complex and restricts the applicability of the strategy to
specific sensor ranges and footprints. These calculations may be
wasteful for exploration strategies that take many scans before the
algorithm recalculates frontiers to decide where to move next
(Quin et al., (2016; 2017)).

Senarathne et al. present an algorithm called OBB based
Frontier Detector (ODF) (Senarathne et al., (2013); Senarathne
and Wang. (2015)). OFD keeps track of the updated cells and
their previous states to efficiently update the set of frontier cells.
However, when there are a large number of updated cells relative
to the edges of the new observation, cells will be evaluated
unnecessarily.

Qiao et al., (2018) introduce a frontier detection utilizing the
idea behind a randomly exploring random tree. A tree is

TABLE 1 | Example iteration times for Naïve frontier detection if cell evaluations take 1 ms, 1us, or 1 ns? The first two rows are the 2D areas of the “FR-079 corridor” and
“Freiburg campus” data sets respectively. The second two rows are the full 3D volumes of the same data sets, Hornung et al., (2013).

Dimensions (m) cm2 Cells/cm3 Voxels 1 ms 1us (s) 1 ns (s)

43.8 × 18.2 8.79 × 106 2.44 h s 8.79 0.01
292 × 167 4.88 × 108 5.6days 8.13 0.49
43.8 × 18.2 × 3.3 2.90 × 109 4.8weeks 48.35 2.90
292 × 167 × 28 1.37 × 1012 43.41years 2.25 22.76

FIGURE 1 | Rays traversing the occupancy grid (white cells are
freespace and gray cells are unknown space). Dashed lines show the cells that
the Bresenham algorithm would traverse when determining cells on the line
between ray endpoints.

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 6164702

Quin et al. Detecting Frontier Cells in Robotics Exploration

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

constructed from the current position of the robot to locate the
frontiers in the map, using the customized branching and
selection rules. When a set of frontier cells is detected, and the
robot passes through that area, all of the tree branches are then
removed to free up memory and speed up the calculation process.
Orsulic et al., (2019) propose a method of frontier detection for a
multi-robot scenario, where each of them performs frontier
detection separately in local maps. A global map is then
constructed to combine the information from all local maps
with all of the frontiers. However, a single robot performing
exploration is unable to take advantage of the multi-robot
collaborative nature of this detection algorithm.

This paper presents the details of two frontier detection
algorithms called Naïve Active Area frontier detection (NaïveAA)
and Expanding-Wavefront Frontier Detection (EWFD), which were
first introduced by the authors in a conference paper (Quin et al.,
(2014)). It also provides all new simulated and real-world
experimental results and discussions for both algorithms. A novel
algorithm for frontier detection, called Frontier-Tracing Frontier
Detection (FTFD) is also presented in this paper. The experiments
and analysis are performed for a variety of 2D cases. NaïveAA
evaluates all cells in the active area of the scan, adding or removing
cells from the set of frontier cells as needed. EWFD begins a BFS
from previously detected frontier cells in the active area, evaluating
only freespace cells that have not yet been evaluated at any previous
timestep. FTFDuses the frontiers from the previous timestep and the
endpoints of the sensor envelope as starting points for finding the
new frontiers at the current timestep. The run-time of all three
algorithms is determined theoretically and through simulations, and
compared to other state-of-the-art algorithms.

The structure of the rest of the paper is as follows. In Section 2,
the nomenclature used in the following description, proofs, and
analyses is defined. NaïveAA is then described in Section 3.
EWFD is described in Section 4 along with proofs of soundness
and completeness and theoretical analysis of best and worst case
execution times. FTFD is described in Section 5, which also
provides proofs of FTFD’s soundness and completeness and
includes theoretical analysis of the best case and worst case
execution times of FTFD. Results of simulations and using
real-world data are presented in Section 6. Section 7 contains
concluding remarks and suggestions for future work.

2 NOMENCLATURE

The set of cells in the robot’s map will be M. The size of the set M is,
therefore, |M|. The set of freespace cells in themap, after the environment
has been completely explored, is Mfree. The map is divided into cells
which can have several states; unknown, freespace, or obstacle.

The set Pfree
t is the set of known freespace at time t. Similarly,

Pobs
t is the set of known obstacles at time, t and Punk

t is the set of
unknown space at t.

Ot is the sensor observation made at time t, and S(Ot) is the
set of cells covered, (i.e. visible) by the observation Ot . At is the
“active area of the observation at time t. The active area is an
overestimate of the region covered by the sensor field of view
made for ease of computation. The simplest definition is an axis-

aligned bounding box minimally containing the origin of the
sensor observation and the sensor ray endpoints.

The limit to the number of cells observed as part of any single
sensor observation is denoted bySmax. The corresponding upper limit
to the size of the active area is Amax, such that S(Ot)≤Smax ≤Amax.

There is a subset of S(Ot) lim
x→∞

that comprises of cells that are
adjacent to cells that are not in S(Ot). This subset forms a
boundary or edge, and these cells are denoted E(Ot). The
largest size this set could ever be is Emax.

A cell is said to be neighboring another cell if it is directly
adjacent to it, sharing at least an edge or a vertex.

Finally, the set of frontier cells at time t is Ft .

3 NAÏVE ACTIVE AREA FRONTIER
DETECTION

The underlying principle of NaïveAA, presented in detail by Quin
et al., (2014), but described briefly here for completeness, is that
only cells that are in the active area need to be evaluated as having
become frontiers or no longer being frontiers. NaïveAA
(Algorithm 1), therefore, involves iterating through each cell,
c, in the active area, At , of any scans taken since the last frontier
detection step, and includes the cells immediately adjacent to the
scanned areas. Cells that are no longer a frontier are removed
from Ft , whereas cells that are new frontiers are added to Ft .

As with the other algorithms, Kosaraju’s series of Depth First
Searches (KOSARAJU_DFS) is then run to determine which
frontier cells are connected in O(|F|) time.

Algorithm 1 Naïve active area frontier detection (Quin et al.,
2014).

4 EXPANDING-WAVEFRONT FRONTIER
DETECTION

The EWFD algorithm was introduced by Quin et al., (2014), but a
compact description is provided here for completeness and for
comparison to the novel algorithm, FTFD, being presented in
this paper.

The first iteration of the EWFD (Algorithm 2), when there are no
known frontiers, is similar toWFD, in that a BFS is performed from
the robot’s position. Freespace cells are evaluated to check if they are
frontiers and, if they are indeed adjacent to an unknown cell, the cell

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 6164703

Quin et al. Detecting Frontier Cells in Robotics Exploration

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

is added to the frontier set. Freespace cells have their neighbors
added to the queue. As each cell is visited by the BFS, it is
marked as visited. This labeling is not removed after the EWFD
iteration.

Once there exists a set of frontiers, subsequent iterations of
EWFD include an added step. Before beginning the BFS, EWFD
finds the set of frontiers from the previous timestep that is inside
the active area of the latest scan (or sequence of scans). These cells
are marked as unvisited and added to the BFS queue. Now, as
freespace cells are popped off the queue for evaluation, they are
also checked for frontier status. If they are in the frontier set but
are no longer frontiers in the current timestep, then they are
removed from the frontier set.

Should the robot ever move completely into unknown space,
then the space the robot physically occupies without collisions
can, as in the initial case, be assumed to be free, and a set of
frontiers surrounding it are known as a result. This can be
performed through the use of a simple frontier detection
approach such as NaïveAA. The sensor, for the purposes of
frontier detection, again lies within known space.

After the set of frontiers has been updated, the set of connected
frontier groups can be determined by using Kosaraju’s
connectivity algorithm, which consists of a series of Depth-
First Searches (DFS).

5 FRONTIER-TRACING FRONTIER
DETECTION

Given an initially unknown environment in which a robot
exists, it follows that since the robot occupies physical space,
that space is freespace. If there is known freespace, then there
is a set of frontiers, F0, which can also be known a priori, or
easily detected, before exploration begins. Exploration
consists of observations, Ot , made at particular times, t,

followed by frontier detection which results in a set of
frontiers, Ft .

Algorithm 2 Expanding-wavefront frontier detection (Quin
et al., 2014).

During the course of safe exploration, the sensor origin will
generally remain inside known freespace. Even in the case of
exploration approaches that permit path planning through
unknown space (Wettach and Berns. (2010)), sensor observations
are taken during robot motion such that the unknown space
becomes known space before the robot moves through it.

Should the robot ever move completely into unknown space,
then the space the robot physically occupies without collisions

FIGURE 2 | (A) An example of a “bubble”, which is not possible; (B) an example of how obstacles deform the area covered by Ot; (C) the relationship between
frontiers at t − 1 and an observation Ot.

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 6164704

Quin et al. Detecting Frontier Cells in Robotics Exploration

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

can be assumed to be free, and a set of frontiers surrounding it are
known as a result, such as by using the simple frontier detection
approach, NaïveAA. The sensor, for the purposes of frontier
detection, again lies within known space.

If the sensor origin lies on the perimeter or surface of the
sensor footprint, (i.e. the field of view (FOV) of the sensor), and if
the sensor origin covers some previously unknown space in the
sensor’s FOV, then the edges of the sensor footprint intersect with
the current known set of frontiers, Ft−1. If an observation is made
at time t, the set of obstacles and frontiers newly formed by the
observation will intersect with Ft−1.

Thus, the cells that are now newly part of the frontier as a result
of Ot will be connected to the old frontier or to obstacles that are
connected to the old or new frontier. Obstacles are considered
connected to a frontier if they neighbor a frontier cell belonging to
that frontier, or neighbor an obstacle cell connected to that frontier.

Since we assume the sensor FOV can be modeled as
sufficiently dense rays traveling outwards from a single point,
it is impossible for a pocket of space to remain unknown and
encapsulated in newly discovered freespace (see Figure 2A).

The only case in which the old and new frontiers will not be
connected is if at t, all known space, and therefore all frontiers, Ft−1
are inOt . This would result in Ft being completely disjoint from Ft−1.
For the purposes of FTFD, F0 is assumed to be the frontier set
existing after sufficient exploration has been performed such that F0
cannot be contained inside the sensor footprint.

FTFD (Algorithm 3) uses the fact that the perimeter of the latest
observation is highly likely to intersect with the previously known
frontiers. The previous frontiers that lie within the observed area, and
the sensor ray endpoints, are used as a starting point to search for new
frontiers, which lie along the observation’s perimeter. More precisely, an
observation is made at t and the robot’s map of the environment is
updated. The task is now to update the frontier set, Ft−1 to incorporate
the new information contained inOt , and to create the set of frontiers,Ft.

Ft is initially equal to Ft−1. A set of frontiers, Faa, is created,
which is a subset of the frontier cells in Ft−1 that lie inside At . A
BFS is initialized with the active area frontiers, Faa in its queue, as
well as cells intersected by the endpoints of the rays used to integrate

the latest scan into the map. At each iteration of the BFS, a cell, c is
popped off the queue. If c is an unvisited frontier, it is added to Ft ,
and its neighboring freespace cells that lie in the active area in the
map are added to the queue. If c is not a frontier, but was a frontier at
t − 1, then it is removed from Ft . If c is an obstacle, its freespace
neighbors are similarly added to the queue. The resulting pattern of
cells evaluated is shown in Figure 3A. This pattern for FTFD is
compared to that of EWFD in Figure 3B.

Exploration strategies that use frontiers often need connected frontier
cells grouped into frontier objects. This is so that the lengthof a frontier can
bedetermined, or so that a robot canbedirected towards themidpoint of a
frontier. If such frontier grouping is required, then Kosaraju’s series of
DepthFirst Searches (KOSARAJU_DFS) is performedonFt to determine
which frontier cells should be grouped together.

Algorithm 3 Frontier-tracing frontier detection.

5.1 FTFD Soundness and Completeness
It is assumed for FTFD that there are no pockets of unknown
space encapsulated within the outer perimeter of the scan

FIGURE 3 | (A) FTFD; (B) EWFD. Thick red borders are cells that are evaluated as potential frontiers, dashed borders are cells popped from the queue but
discarded before full evaluation. Blue cells are frontier cells from the previous timestep, and are also evaluated. Thick black lines denote the sensor FOV.

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 6164705

Quin et al. Detecting Frontier Cells in Robotics Exploration

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

after a scan has occurred (see Figure 2A). It can then be
proved that FTFD is complete and sound, (i.e. it will
correctly identify all frontier cells that delimit the
boundary between unknown space and the known space
that contains the robot, and it will not mislabel a cell as a
frontier when that cell is not the boundary between known
and unknown space).

Lemma 5.1. Suppose f is a frontier cell at t, which was not a
frontier cell at iteration t − 1. Then FTFD will label f as a
frontier cell.

PROOF This proof considers the R2 case for clarity, the
reasoning is equally applicable to R3.

Let Ot represent the observation made at t, and let the cells
covered by Ot be denoted S(Ot), i.e. the surface or area of Ot . Let
E(Ot) be the “perimeter” of S(Ot), i.e., the cells that are in S(Ot),
and are adjacent to cells in the robot map that are not in S(Ot).
Let Ft−1 be the set of frontier cells in the robot map at t − 1 that
represent the boundary between known physical free space, Pfree

t−1 ,
“inside” the boundary, and unknown space “outside” the
boundary. Let Fnew denote the set of newly created frontiers
that ought to be detected by FTFD, such that f ∈ Fnew, where f is a
frontier cell at t, and was not a frontier cell at t − 1.

Only cells in S(Ot) will have been changed by Ot , from
their state at t − 1. Therefore, only cells in S(Ot) are
potentially in Fnew. Cells in S(Ot) are known, either
freespace or obstacles, which means E(Ot) is also
composed of either freespace cells, or obstacle cells (see
Figure 2B). By definition, a cell in S(Ot) but not in E(Ot)
can only be adjacent to other cells in S(Ot), and cannot be a
frontier. Therefore, only freespace cells in E(Ot) are
potentially members of Fnew. Furthermore, only freespace
cells in E(Ot) that are not in Pfree

t−1 and not in Ft−1 can be new
frontiers, since any freespace cell inside known space that is
not already a frontier in Ft−1 can only be adjacent to known
space. Finally, since all freespace cells in E(Ot) must be
adjacent to a cell not in S(Ot), then all freespace cells in
E(Ot) that are not in Pfree

t−1 and not in Ft−1 must be new frontier
cells, since they will be adjacent to unknown cells.

In order for new frontiers to exist at t, S(Ot) must have
covered some previously unknown space that lies outside the
frontier, Ft−1. At the same time, some part of S(Ot) must lie
inside known space, since the robot sensor must always reside in
known space. E(Ot) must therefore intersect at least once with
Ft−1 as shown in Figure 2C.

A set of cells can therefore be defined by S(Ot)∖Pfree
t−1 . This set

will be surrounded by the subset of Ft−1 that lies inside S(Ot), and
the subset of E(Ot) that lies outside Pfree

t−1 .

FTFD involves a BFS along frontier cells and obstacle cells,
starting with the cells in Ft−1∩ S(Ot), and with a subset of cells
in E(Ot). Since the cells in Ft−1∩ S(Ot) will be connected to the
set, E(Ot)∖(Pfree

t−1∪ Ft−1), then all freespace cells in E(Ot) will be
visited by the BFS. Since E(Ot) contains all possible members of
Fnew, all cells f ∈ Fnew will be evaluated and determined to be
frontiers.

Lemma 5.2. Suppose that c is a freespace cell that is not on the
boundary between known and unknown space at t, then c will not
be labeled as a frontier cell at t.

PROOF. This proof follows from Lemma 5.1. Let Ot represent
the observation taken at t, and let the cells covered by Ot be
denoted S(Ot). Let E(Ot) be the cells that are in S(Ot), and are
adjacent to cells in the robot map that are not in S(Ot). Let Ft−1 be
the set of frontier cells in the robot map at t − 1 which represent
the boundary between known space, Pfree

t−1 , “inside” the boundary,
and unknown space “outside” the boundary.

If c is not a frontier cell, there are two possible cases:
Case 1. c is an obstacle cell. Obstacle cells encountered by the

BFS in FTFD are not labeled as frontiers, so cwill not be labeled as
a frontier cell.

Case 2. c is a freespace cell. Then c is either in Pfree
t−1 or in

S(Ot), but it cannot be in E(Ot)∖(Pfree
t−1∪ Ft−1). This means c will

not be evaluated by FTFD, and cannot be labeled as a frontier at t.
If c was labeled a frontier at a previous timestep, then since it is in
the active area, it is evaluated at t and removed from the set of
frontiers.

5.2 FTFD Theoretical Analysis
At each iteration of FTFD, a constant-sized portion of the map is
evaluated. The upper bound is set by the maximum area that can
be covered by the sensor, Amax. The maximum difference in size
between Ft−1 and Ft is thus Amax, such that Ft−1 and Ft can be
considered interchangeable in terms of big-O notation.

5.2.1 Finding Relevant Frontiers in Ft−1.
A key difference between previous frontier detection approaches
and both EWFD and FTFD, is that EWFD and FTFDmake use of
the latest scan’s (or sequence of scans’) active area. This allows
them both to find the relevant frontiers from the previous time
step, and thus to detect new frontiers and remove old frontiers as
needed at the current time step.

The active area of a scan is the set of cells that contains every
cell that might have been affected by the scan. This set
therefore also includes cells adjacent to those modified by
the scan, since these might no longer have unknown neighbors,
and will have lost their frontier status. For ease of computation,

TABLE 2 | Minimum sizes of Ft for |At|< |Ft−1|(d− 1)/d to be true, based on two different sensors (Voxel resolution of 0.05m).

FOV Max ≈ Vol./ Voxels/Cells |Ft| Ft Vol./

Range Area In At) Area

43+ 2m 1.05m3 8.4 × 103 7.7 × 105 96m3

If bounding 3.16m3 2.5 × 104 4.0 × 106 502m3

Box used
180+ 2m 6.28m2 2.5 × 103 6.3 × 106 15, 775m2

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 6164706

Quin et al. Detecting Frontier Cells in Robotics Exploration

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

the active area can be estimated using a bounding box. The
active area is used to bound all operations for detecting
frontiers to the region that has changed as a result of the
latest scan.

If the set of frontiers at timestep, t − 1 is Ft−1, and the set of
cells in the active area at time, t is At , then finding all the frontiers
from the previous time step in the current scan’s (or sequence of
scans’) active area can be efficiently performed using a range
query on a balanced k-d tree (Kanth and Singh. (1997); Procopiuc
et al., (2003)) in:

O (|Ft−1|(d− 1)/d + |Ft−1∩ At |), (1)

where d is the dimensionality of the tuples. This is only a time-
saving operation compared to evaluating all cells in At if
|Ft−1|(d− 1)/d + |Ft−1∩ At |≤ |At |.

An understanding of what this means in practice can be best
acquired through specific examples, shown in Table 2. In sum, it
is unlikely that searching for the frontiers in the active area will
take longer than searching through all the cells in the active area.

5.2.2 Evaluating Cells for Frontier-Status
The BFS used by FTFD starts with the set Ft−1∩ At in its queue,
plus the cells intersected by the endpoints of the rays used to
integrate the latest scan into the map (at most E(Ot)). It will
evaluate all cells that are new frontiers or are obstacles. Since
cells have a constant number of adjacent cells, the BFS runs in
order:

O (
∣∣∣∣∣Ft−1∩ At | + |(Pobs

t ∩ At)∪ E(Ot)
∣∣∣∣∣). (2)

Since these are both smaller than the constantAmax, this can be
simplified to O(1).

5.2.3 Deleting Frontiers
At any iteration, the most frontier cells that need to be deleted is
the set Ft−1∩ At . These cells will need to have their status in the
occupancy grid changed, be removed from the ordered list of

tuples, and then be removed from the binary tree of frontier
groups. This will run in order:

O⎛⎜⎝ ︷|Ft−1∩ At |
delete from grid
︷						︸︸						︷

+︷
∣∣∣∣Ft−1 ∩ At

∣∣∣∣× log
∣∣∣∣Ft−1∣∣∣∣delete from grid

︷						︸︸						︷
⎞⎟⎠

� O(∣∣∣∣Ft−1∩ At

∣∣∣∣×log∣∣∣∣Ft−1∣∣∣∣) � O(log|Ft−1|) (3)

5.2.4 Inserting Frontiers
The most cells needing to be inserted at timestep, t is |E(Ot)|, so
that the complexity of inserting is:

O(∣∣∣∣∣Ε(Ot)∩ (Pfree
t ∖P free

t−1)∣∣∣∣×log∣∣∣∣Ft−1∣∣∣∣∣) � O(log|Ft−1|). (4)

5.2.5 Labeling Frontiers
Using the occupancy grid to represent edges of a graph, and using
the tree of frontier cells as the list of vertices, a series of DFSs can
be performed to determine the connected sets of frontier cells.
This runs in order: O(|Ft |).

The total complexity per iteration of FTFD is therefore:

O(|Ft−1|(d− 1)/d + 1 + log
∣∣∣∣Ft−1∣∣∣∣+log∣∣∣∣Ft−1| + |Ft

∣∣∣∣) � O(|Ft− 1|(d−1)/d
+log|Ft−1| + |Ft |) � O(|Ft |). (5)

Over all iterations, in the worst case, |Ft | increases by a
maximum constant, Amax at each timestep and in the best
case, |Ft | remains constant over time. Therefore, the FTFD
upper and lower bounds are O(t2) and Ω(t), respectively.

6 EXPERIMENTAL RESULTS

Three sets of experiments have been conducted using the same
algorithmic implementation code, developed in MATLAB.
Experiment one uses simulated data to test the relative

FIGURE 4 | Freiburg lab environment with a prespecified trajectory for Experiment one.

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 6164707

Quin et al. Detecting Frontier Cells in Robotics Exploration

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

FIGURE 5 | Two different map setups used in Experiment two. (A) Small map top view. (B) Large map top view. (C) Small map perspective view. (D) Large map
perspective view. (E) Scanned small map. (F) Scanned large map.

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 6164708

Quin et al. Detecting Frontier Cells in Robotics Exploration

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

efficiency of the algorithms when detecting exploration frontiers
in a controlled, known, simulated environment. An image of a
known map was used to emulate the Simultaneous Localization
and Mapping (SLAM) process as a map is gradually constructed
from a sequence of sensor observations. Experiment two uses
Gazebo as the simulation engine environment and a ROS node in
MATLAB to handle the calculation of the algorithms. In this
experiment, the aim is to investigate the possible overhead in this
system setup, and to test the stability and repeatability of the
algorithms when they are fed simulated sensor data from Gazebo
that mimics real-world scenarios. Experiment three was
conducted in a 60 × 60 m real-world office environment at the
University of Technology Sydney (UTS), where a MP-700 mobile
robot equipped with a SICK-S300 laser scanner was manually
controlled to construct a map. The software and system setup was
similar to Experiment two, with most processes handled in ROS,
and the algorithms implemented in a MATLAB ROS node. The
MATLAB node handles the frontier detection calculations for
each algorithm. The main difference is that in Experiment three, a
real robot took the place of the Gazebo simulator used in
Experiment two. For all scenarios, the calculation times per
scan have been recorded alongside the total number of cells
evaluated per scan. The algorithms compared are the Naïve

approach, NaïveAA, WFD, WFD-INC*, EWFD, and the newly
proposed FTFD.

The experiments have been conducted to investigate and
validate the following ideas:

• Given a set of different frontier detection algorithms,
investigate which algorithms perform more efficiently
and effectively in several typical mobile robot scenarios,
then highlight the differences, strengths, and weaknesses of
all algorithms;

• As a robot explores an environment, the number of frontier
cells tends to increase. Therefore, it is necessary to investigate
what is the relationship between each algorithm’s calculation
time and the number of frontier cells;

• Given that the experiments have been conducted both in
simulation and on a real robot, investigate if there are
relationships or contradictions between the results
obtained from the simulated experiments and the real-
world cases;

• Determine whether the MATLAB ROS node
implementation is fit for purpose and can handle the task
of frontier detection in real-time, (i.e. faster than sensor data
can arrive) for all setups and with all algorithms in both real-
world and simulation.

In all scenarios, the experiments were conducted 10 times for
each algorithm, and the median time taken is shown. Since the
algorithms are not running on a real-time OS, occasionally (but
very infrequently) Linux system processes will cause one-off non-
repeatable spikes in processing time, in the order of tens of
milliseconds. Using the median values of 10 runs, this noise is
filtered out. Finally, to display the graphs clearly without
unnecessary empty spaces, the processing time for the first
iteration, in which the system is being set up, was excluded

FIGURE 6 | Experiment two setup.

FIGURE 7 | Experiment three real-world platform: (A) The Neobotix MP-700 mobile robot; (B) Robot and information diagram.

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 6164709

Quin et al. Detecting Frontier Cells in Robotics Exploration

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

for all algorithms. The details will be discussed further in the
result section.

6.1 Experiment 1
The first experiment was conducted purely in MATLAB using a
ground truth map image of a Freiburg lab environment of size
1,242 × 447 and shown in Figure 4 with a prespecified trajectory
for a simulated robot to move through. At each point of the
trajectory, a simulated laser scan was generated and ray-traced
into the ground truth image. From that sensor observation, a local
map was constructed to represent the current view of the
simulated robot in the environment. The newly constructed
map, and information about the active area of the latest sensor
observation, (i.e. the bounding box of the latest scan) if relevant,
was then put through each frontier detection algorithm to
calculate and determine the frontier cells grouping.

The main purpose of this experiment is to verify and analyze
the performance of each algorithm in perfect conditions with no

delay due to information transmission between multiple
computers, and no sensor noise.

The metrics measured for each algorithm were the average
calculation time of each iteration, the total number of cells
processed, and the total number of cells evaluated. The
number of cells processed is defined as the number of
cells being queried in some way, while evaluated means
each time the algorithm checks whether a cell is a frontier
or not.

Additionally, the NaïveAA, WFD-INC*, EWFD, FTFD
algorithms all use the active area as part of the frontier
detection. Therefore, the relationship between the size of
the active area and the frontier calculation time is also
evaluated by changing the maximum measuring range of
the simulated laser scan. This value was increased gradually
from 100 pixels to 500 pixels, with other parameters set to be
the same for the 5 cases. The computational time for each case
was then recorded.

FIGURE 8 | Experiment three setup. (A) Current real-world view of the robot. (B) Updating the map with the latest sensor observation (robot position indicated by
frame annotation). (C) Newly detected frontiers (in red) in the constructed map.

FIGURE 9 | Experiment one results. (A) Number of cells processed and evaluated by all algorithms. (B) Calculation time of the algorithms that consider the active
area in relation to the maximum range of the simulated sensor (measured in number of map cells).

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 61647010

Quin et al. Detecting Frontier Cells in Robotics Exploration

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

FIGURE 10 | Experiment two results for the small map case. (A) Average calculation time per iteration. (B) Calculation time as the small map is gradually explored
for all algorithms.

FIGURE 11 | Experiment two results for large map case. (A) Average calculation time per iteration. (B) Calculation time as the large map is gradually explored for all
algorithms.

FIGURE 12 | Experiment three results. (A) Average calculation time per iteration with a horizontal line representing the updating rate of the map constructed by the
SLAM algorithm. (B) Calculation time changes as the map is explored for all algorithms.

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 61647011

Quin et al. Detecting Frontier Cells in Robotics Exploration

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

6.2 Experiment 2
The second experiment was conducted in two different
environments as shown in Figure 5. Two different computers
were used in the experimental system (Figure 6). The Gazebo
simulator with the Turtlebot3 and the SLAM algorithm operated
on the first computer. Meanwhile, the other computer subscribed
to the data on the first one via a ROS network and performed
frontier detection.

The Turtlebot3 was manually controlled to move around the
simulated environment while the SLAM algorithm is also active.
The map constructed by the SLAM algorithm for this experiment
has a size of 20 by 20 m with a resolution of 0.05 m. The first
computer synchronized the generated map and the necessary
parameters such as the current robot pose, active area, and laser
scan data and then published them through the ROS network.
The second computer then collected the data and implemented
them for each of the frontier detection algorithms in turn. To
ensure a repeatable data set over multiple attempts in this
experiment, the data from the first computer was recorded in
a rosbag and then played back to all the frontier detection
algorithms.

The main purpose of this simulated experiment is to validate
the efficiency of the algorithms in a more realistic scenario where
there exist delays caused by the SLAM algorithms and
information transmission between different machines, and the
sensor data and robot movement is similar to reality. This
scenario also provides a basis for comparison with Experiment
three, which will be mentioned in the following section, to
validate the relationship between the simulation and real-
world results.

6.3 Experiment 3
The third experiment was conducted in the real-world using a
NeobotixMP-700mobile robot shown in Figure 7. The robot was
driven manually controlled by a human operator around a large
office environment inside UTS as shown in Figure 8. Laser scan
data from a SICK LRF was collected and fused with odometry
data from wheel encoders to incrementally build a map of the
environment using ROS SLAM packages. Each scan was sent to
the MATLAB ROS node to calculate the exploration frontiers by
sequentially using the suite of detection algorithms. In order to
have a consistent movement trajectory and a repeatable data set,
the exploration frontiers calculation of each algorithm was
performed on a previously recorded rosbag containing all the
required parameters. The sensor mounted on the MP-700 robot
has a field of view of 180° and amaximum range of 30 m. Themap
constructed by the SLAM algorithm for this scenario was limited
to 200 by 200 m with a resolution of 0.05 m.

7 RESULTS

First, from the Experiment one average calculation time shown in
Figure 9A, it is clear that the number of cells processed and
evaluated by both the Naïve and WFD algorithms are
significantly higher than for the other algorithms. On the
other hand, EWFD and FTFD are both drastically faster as
they evaluate fewer cells than the other algorithms. This
performance advantage will eventually result in the
considerably lower overall processing time as shown
Experiment two results for the small map (Figure 10) and the
large map (Figure 11).

FIGURE 13 | Average calculation time in only the first iteration of each
algorithm.

TABLE 3 | Properties and suggestions for using different frontier detection algorithms. Yes* is used to indicate where one algorithm performs markedly better than the others
for a particular property.

Properties Naïve NaïveAA WFD WFD-INC EWFD FTFD

Performance stable as map size grows No No Yes Yes Yes Yes
Faster when run after no map change No No No No Yes Yes
Performance stable as active area increases N/A No N/A No Yes Yes*
Capable of detecting pockets Yes Yes Yes Yes No No
Ease of software implementation Yes* Yes No No No No
Must run after every scan No No No No No Yes
High update rate No No No No Yes Yes*
Suitable for open-spaced map No Not ideal No No Not ideal Yes
Suitable for maps with multiple narrow paths or corridors No Not ideal No No Yes Yes
Ideal for maps with low resolutions No Yes No Yes Yes Yes
Suitable for maps with high resolutions No No No No Yes Yes*

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 61647012

Quin et al. Detecting Frontier Cells in Robotics Exploration

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

The Experiment one comparative plot of the sum of frontier
detection time over all steps in the exploration (Figure 9B)
demonstrates a strong relationship between the size of the
active area and the total processing time for each of the
algorithms in which the active area is considered. However,
this relationship effect is smaller for EWFD and FTFD
compared to the NaïveAA and WFD-INC*.

Both Figures 10A and 11B indicate that the average
calculation time of each iteration of the NaïveAA, WFD-INC*,
EWFD, and FTFD algorithms is lower than the update rate of
5 Hz used by the simulated SLAM algorithm. It is noted that 5 Hz
is not the maximum rate possible, but is adequate for the robot
speed in the experiments and can be guaranteed in all cases for all
experiments. Since this research focuses on the frontier detection
calculation time, the SLAM update and publish rate does not
affect the results.

The processing time of both the Naïve andWFD algorithms is
noticeably longer than other algorithms. Moreover, the novel
approach, FTFD, produces a better overall result compared to the
other approaches in terms of time and processed cells vs
evaluated cells. Results from both the small and large maps in
Experiment two (Figures 10B,11B) suggest that there is no
relationship between the number of explored cells and the
calculation time of each iteration on all algorithms since the
calculation time for both map cases remains relatively stable as
more sections of the map are revealed.

Figures 12 and 10 illustrate the similarity between the results
of the second and third experiments. In both experiments, EWFD
and FTFD have the best performance, with the Naïve and WFD
being the most time consuming of all of the algorithms. In the
real-world Experiment three, as the map size is 200 by 200 m with
a resolution of 0.05 m, the image of the map reaches 4,000 by
4,000 pixels, all algorithms exhibit a drop in performance

compared to the Gazebo simulated Experiment two where the
maps are smaller. However, most of the algorithms are
significantly faster than the update rate of the SLAM
algorithm, which is 2 Hz (0.5 s). The only exception is the
Naïve algorithm, with an average calculation time of more
than 1 s, which means it cannot keep up with the update rate.

Finally, the average calculation time for the first iteration of
each algorithm is shown in Figure 13. Comparing with the results
from Figure 12A, it is clear that most algorithms (except Naïve
and WFD) required a relatively higher amount of time to set up
the initial variables and, in the case of both EWFD and FTFD, to
locate the first set of frontier cells.

8 DISCUSSION

The results obtained from the different experiments provide
insights into the overall performance of the different frontier
detection algorithms. Importantly, it is clear that the results from
both simulation Experiments (1 and 2) and the real-world
Experiment three are in agreement. Therefore, it is appropriate to
synthesize these results and comparatively discuss and highlight the
algorithms’ strengths and weaknesses. A summary of properties and
suggestions for each algorithm is shown in Table 3. It is noted that
while all the algorithms can be run in 3D, their relative effectiveness
has not been tested on 3D data within the scope of this paper.

First of all, it is reasonable to conclude that there is a close
relationship between the number of cells processed and evaluated
and the computational time. Therefore, as the map either
becomes more detailed, (i.e. high-resolution maps) or the
sensor covers more area at the same time (i.e. large active
area), algorithms that evaluate the smallest number of cells
should be prioritized, such as the newly proposed Frontier-
Tracing Frontier Detection (FTFD) or Expanding-Wavefront
Frontier Detection (EWFD).

However, considering the complexity of implementing both
EWFD and FTFD, in scenarios where the resolution of the
constructed map is relatively low, or the sensor’s maximum
range is short, Naïve Active Area should be considered, due to
its simplicity in implementation while also being able to yield
similar performance, comparing with both EWFD and FTFD.

Secondly, when themap contains large open areas, (e.g. Experiment
twomaps - Figure 5), FTFD outperforms EWFD clearly as FTFD only
evaluates the perimeter of each laser scan while EWFD processes the
area. However, if themap containsmultiple corridors or narrow paths,
(e.g. Experiment three map - Figure 14), then EWFD is comparatively
similar to FTFD, as the number of cells covered by the scan area and
perimeter are now more equal.

Thirdly, as shown in Figures 10B and 11B, there is no
significant relationship between frontier detection calculation
time and the expansion of the map, (i.e the discovery of more
free space). However, in theory, more free cells should mean an
increase in processing time as there are more cells to be
evaluated.

Finally, the results confirm that Naïve Active Area should be used
as a benchmark for all future frontier detection algorithm for its
simplicity, robustness, and efficiency, compared to Naïve frontier

FIGURE 14 | Scanned map of Experiment three.

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 61647013

Quin et al. Detecting Frontier Cells in Robotics Exploration

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

detection, whose performance degrades with the size of the map.
Furthermore, when it comes to performing frontier detection after
each observation (which is common practice in exploration tasks),
FTFD should be considered, as it functions most effectively after
each laser scan and is also the algorithm with the highest efficiency
among those evaluated. Additionally, as shown in Figure 12, it is
reasonable to conclude that the MATLAB ROS Node is suitable for
handling the task of frontier detection, since all algorithms in all real
and simulated maps were able to calculate the frontier cells within
the map update rate of the SLAM algorithm, other than Naïve in the
largest real-world map.

9 CONCLUSION

This paper proposed a novel approach to the problem of frontier
detection by introducing the Frontier-Tracing Frontier Detection
(FTFD) algorithm, while also providing comparisons between this
novel approach and a few notable frontier detection algorithms.
Simulations, along with real-world experiments, were conducted to
provide insightful conclusions to the performance of the proposed
algorithm, in comparison with the other approaches. The FTFD
approach utilizes the perimeter of the current sensor observation
in combination with the laser scan endpoints and the previously
known frontiers to perform frontier detection. To validate the
efficiency of FTFD and other approaches, three different
experiments were implemented with relevant data collection for
the overall computational time, the number of cells processed and
evaluated, etc. From the results obtained, the insights can be
summarized as follows. First of all, it is recommended that the
frontier detection algorithm should be chosen based on the
properties of the map and whether the speed of frontier detection
is a crucial factor for the current application. More suggestions on
which algorithm should be used for different cases are summarized in
Table 3, based on the behaviors and properties of each algorithm.
Results did not show a clear relationship in computational time and
the exploration of the map for any algorithm. In other words,
more free space does not proportionally increase the overall
calculation time for the Naïve, NaïveAA algorithms. Finally,
NaïveAA should be considered as a new benchmark for
evaluating future frontier detection algorithm due to its
speed, robustness, and efficiency over Naïve frontier

detection, while FTFD is best suited for applications that
require frontier detection to be implemented after each
observation.

Though the presented algorithms will work in 3D, it is not
immediately obvious how much advantage EWFD and FTFD
would provide compared to other algorithms when used in 3D
environments. Further experiments using 3D data still need to be
performed in future. The authors also intend to test each frontier
detection algorithm when used as part of a holistic robot
exploration framework. This will allow an evaluation of the
effects, if any, that shorter computation times and higher rates
of frontier detection may have on the behavior and efficiency of
autonomous exploration. Also, it would be interesting to
determine whether dynamically selecting between available
frontier detection algorithms, depending on the situation, can
further improve results.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

PQ: Original author who designed the proposed algorithm and
the set of experiments. He was also responsible for writing
Sections 1–5 of the paper. DN and TV: Implemented the
experiments, collected and analysed the data. They also wrote
Sections 6 and 7 of the paper. GP and AA: Supervised the
project and provided guidance, feedback on every aspect of the
project. GP also helped with the writing of all sections of
the paper.

FUNDING

This work is supported, in part, by the Australian Research
Council Linkage Grant (No. LP100200750), the NSW Roads
and Maritime Services, and the Center for Autonomous
Systems at the University of Technology, Sydney.

REFERENCES

Digor, E., Birk, A., and Nüchter, A. (2010). Exploration strategies for a robot with a
continously rotating 3D scanner. Proceedings of the Second International
Conference on Simulation, modeling, and programming for autonomous
robots, SIMPAR’10, Darmstadt, Germany, 15–18 November, 2010. Berlin,
Germany: Springer-Verlag, 374–386. doi:10.1007/978-3-642-17319-6_35

Dornhege, C., and Kleiner, A. (2011). A frontier-void-based approach for
autonomous exploration in 3D. In 2011 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), Kyoto, Japan, 1–5 November,
2011, 351–356. doi:10.1109/SSRR.2011.6106778

Faigl, J., and Kulich, M. (2013). On determination of goal candidates in frontier-
based multi-robot exploration. 2013 European Conference on Mobile Robots

(ECMR), Barcelona, Spain, 25-27 Sept. 2013, 210–215. doi:10.1109/ECMR.
2013.6698844

Hassan, M., Liu, D., and Paul, G. (2018). Collaboration of multiple autonomous
industrial robots through optimal base placements. J. Intell. Rob. Syst. 90,
113–132. doi:10.1007/s10846-017-0647-x

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. (2013).
OctoMap: an efficient probabilistic 3D mapping framework based on octrees.
Aut. Robots 34, 189. doi:10.1007/s10514-012-9321-0

Kanth, K. V. R., and Singh, A. K. (1997). Optimal dynamic range searching in non-
replicating index structures. In Proceedings of the International Conference on
Database Theory, Delphi, Greece, 8–10 January, 1997. 257–276. doi:10.5555/
645503.656269

Keidar, M., and Kaminka, G. A. (2014). Efficient Frontier detection for robot
exploration. Int. J. Robot Res. 33, 215–236. doi:10.1177/0278364913494911

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 61647014

Quin et al. Detecting Frontier Cells in Robotics Exploration

https://doi.org/10.1007/978-3-642-17319-6_35
https://doi.org/10.1109/SSRR.2011.6106778
https://doi.org/10.1109/ECMR.2013.6698844
https://doi.org/10.1109/ECMR.2013.6698844
https://doi.org/10.1007/s10846-017-0647-x
https://doi.org/10.1007/s10514-012-9321-0
https://doi.org/10.5555/645503.656269
https://doi.org/10.5555/645503.656269
https://doi.org/10.1177/0278364913494911
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

Keidar, M., and Kaminka, G. A. (2012). Robot exploration with fast
Frontier detection: theory and experiments. Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent
Systems—Volume, Valencia, Spain, June, 2012, 1, 113–120. doi:10.
5555/2343576.2343592

Liu, L., Fryc, S., Wu, L., Vu, T., Paul, G., and Vidal-Calleja, T. (2020). Active and
interactive mapping with dynamic Gaussian process implicit surfaces for mobile
manipulators https://arxiv.org/abs/2010.13108.

Orsulic, J., Miklic, D., and Kovacic, Z. (2019). Efficient dense Frontier detection for
2-d graph slam based on occupancy grid submaps. IEEE Robot. Autom. Lett. 4,
3569–3576. doi:10.1109/lra.2019.2928203

Paul, G., Liu, L., and Liu, D. (2016). A novel approach to steel rivet detection in
poorly illuminated steel structural environments. 2016 14th International
Conference on Control, Automation, Robotics and Vision (ICARCV),
Phuket, Thailand, 13-15 November, 2016, 1–7. doi:10.1109/ICARCV.2016.
7838630

Paul, G., Quin, P., To, A. W. K., and Liu, D. (2015). A sliding window approach to
exploration for 3d map building using a biologically inspired bridge inspection
robot. 2015 IEEE International Conference on Cyber Technology in
Automation, Control, and Intelligent Systems (CYBER), Shenyang, China,
8-12 June 2015. 1097–1102. doi:10.1109/CYBER.2015.7288098

Procopiuc, O., Agarwal, P., Arge, L., and Vitter, J. (2003). Bkd-tree: a dynamic
scalable kd-tree. Advances in spatial and temporal databases, Berlin Germany:
Springer, 2750, 46–65. doi:10.1007/978-3-540-45072-6_4

Qiao, W., Fang, Z., and Si, B. (2018). Sample-based Frontier detection for
autonomous robot exploration. 2018 IEEE International Conference on
Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12-15 Dec.
2018, 1165–1170. doi:10.1109/ROBIO.2018.8665066

Quin, P., Alempijevic, A., Paul, G., and Liu, D. (2014). Expanding wavefront
Frontier detection: an approach for efficiently detecting Frontier cells.
Proceedings of Australasian Conference on Robotics and Automation,
Melbourne, Australia, December 2014.

Quin, P., Paul, G., Alempijevic, A., and Liu, D. (2016). Exploring in 3d with a
climbing robot: selecting the next best base position on arbitrarily-oriented
surfaces. 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Daejeon, South Korea, 9-14 October 2016, 5770–5775. doi:10.
1109/IROS.2016.7759849

Quin, P., Paul, G., Alempijevic, A., Liu, D. K., and Dissanayake, G. (2013). Efficient
neighbourhood-based information gain approach for exploration of complex
3d environments. Proceedings of IEEE International Conference on Robotics
and Automation (ICRA), Karlsruhe, Germany, 6-10 May 2013, 1335–1340.
doi:10.1109/ICRA.2013.6630745

Quin, P., Paul, G., and Liu, D. (2017). Experimental evaluation of nearest neighbor
exploration approach in field environments. IEEE Trans. Autom. Sci. Eng. 14,
869–880. doi:10.1109/tase.2016.2640228

Reid, R., Cann, A., Meiklejohn, C., Poli, L., Boeing, A., and Braunl, T. (2013).
Cooperative multi-robot navigation, exploration, mapping and object
detection with ros. 2013 IEEE Intelligent Vehicles Symposium IV, Gold
Coast, QLD, Australia, 23-26 June 2013, 1083–1088. doi:10.1109/IVS.2013.
6629610

Senarathne, P. G. C. N., and Wang, D. (2015). Incremental algorithms for safe and
reachable Frontier detection for robot exploration. Robot. Autonom. Syst. 72,
189–206. doi:10.1016/j.robot.2015.05.009

Senarathne, P., Wang, D., Wang, Z., and Chen, Q. (2013). Efficient Frontier
detection and management for robot exploration. 2013 IEEE International
Conference on Cyber Technology in Automation, Control and Intelligent
Systems, Nanjing, China, 26-29 May 2013, 114–119. doi:10.1109/CYBER.
2013.6705430

Shade, R., and Newman, P. (2011). Choosing where to go: complete 3D exploration
with stereo. Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, 9–13 May 2011, 2806–2811. doi:10.
1109/ICRA.2011.5980121

Twigg, J. N., Fink, J. R., Yu, P. L., and Sadler, B. M. (2013). Efficient base station
connectivity area discovery. Int. J. Robot Res. 32, 1398–1410. doi:10.1177/
0278364913488634

Wettach, J., and Berns, K. (2010). Dynamic Frontier based exploration with a
mobile indoor robot. Robotics (ISR), 41st International Symposium on and 6th
German Conference on Robotics (ROBOTIK), Munich, Germany, 7–9 June
2010, 1–8.

Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., and Burgard, W. (2010).
OctoMap: a probabilistic, flexible, and compact 3D map representation for
robotic systems. Proceedings of the ICRA 2010 workshop, Anchorage, AK,
United States, January 2010.

Yamauchi, B. (1997). A frontier-based approach for autonomous exploration. In.
Proceedings 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation CIRA’97. “Towards New
Computational Principles for Robotics and Automation”, Monterey, CA,
United States, 10-11 July 1997, 146–151. doi:10.1109/CIRA.1997.613851

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Quin, Nguyen, Vu, Alempijevic and Paul. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Robotics and AI | www.frontiersin.org February 2021 | Volume 8 | Article 61647015

Quin et al. Detecting Frontier Cells in Robotics Exploration

https://doi.org/10.5555/2343576.2343592
https://doi.org/10.5555/2343576.2343592
https://arxiv.org/abs/2010.13108
https://doi.org/10.1109/lra.2019.2928203
https://doi.org/10.1109/ICARCV.2016.7838630
https://doi.org/10.1109/ICARCV.2016.7838630
https://doi.org/10.1109/CYBER.2015.7288098
https://doi.org/10.1007/978-3-540-45072-6_4
https://doi.org/10.1109/ROBIO.2018.8665066
https://doi.org/10.1109/IROS.2016.7759849
https://doi.org/10.1109/IROS.2016.7759849
https://doi.org/10.1109/ICRA.2013.6630745
https://doi.org/10.1109/tase.2016.2640228
https://doi.org/10.1109/IVS.2013.6629610
https://doi.org/10.1109/IVS.2013.6629610
https://doi.org/10.1016/j.robot.2015.05.009
https://doi.org/10.1109/CYBER.2013.6705430
https://doi.org/10.1109/CYBER.2013.6705430
https://doi.org/10.1109/ICRA.2011.5980121
https://doi.org/10.1109/ICRA.2011.5980121
https://doi.org/10.1177/0278364913488634
https://doi.org/10.1177/0278364913488634
https://doi.org/10.1109/CIRA.1997.613851
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Approaches for Efficiently Detecting Frontier Cells in Robotics Exploration
	1 Introduction
	2 Nomenclature
	3 Naïve Active Area Frontier Detection
	4 Expanding-Wavefront Frontier Detection
	5 Frontier-Tracing Frontier Detection
	5.1 FTFD Soundness and Completeness
	5.2 FTFD Theoretical Analysis
	5.2.1 Finding Relevant Frontiers in Ft−1.
	5.2.2 Evaluating Cells for Frontier-Status
	5.2.3 Deleting Frontiers
	5.2.4 Inserting Frontiers
	5.2.5 Labeling Frontiers

	6 Experimental Results
	6.1 Experiment 1
	6.2 Experiment 2
	6.3 Experiment 3

	7 Results
	8 Discussion
	9 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

