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Abstract—In Music Emotion Recognition (MER) research,
most existing research uses human engineered audio features
as learning model inputs, which require domain knowledge
and much effort for feature extraction. We propose a novel
end-to-end deep learning approach to address music emotion
recognition as a regression problem, using the raw audio
signal as input. We adopt multi-view convolutional neural
networks as feature extractors to learn feature representations
automatically. Then the extracted feature vectors are merged
and fed into two layers of Bidirectional Long Short-Term
Memory to capture temporal context sufficiently. In this way,
our model is capable of recognizing dynamic music emotion
without requiring too much workload on domain knowledge
learning and audio feature processing. Combined with data
augmentation strategies, the experimental results show that
our model outperforms the state-of-the-art baseline with a
significant margin in terms of R? score (approximately 16%)
on the Emotion in Music Database.

Keywords-deep learning; music emotion recognition; multi-
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I. INTRODUCTION

Facing enormous amounts of online music resources,
Music Information Retrieval (MIR) plays an important role
for music enthusiasts who wish to search and organize infor-
mation. In particular, with increasing demand for retrieving
music by emotion, Music Emotion Recognition (MER) is
one fast-growing branch of MIR, benefiting emotion-related
music applications as well as personalized experiences such
as recommendation systems, music psychology, and artificial
intelligence.

Generally, there are two kinds of emotion representation
used in MER research: the categorical approach and the
dimensional approach. The categorical approach maps emo-
tion descriptions into some typical discrete emotion terms
(such as happy, angry, sad and relaxed) [1], clusters [2] or
multiple labels [3], which turns MER into a classification
problem. By contrast, the dimensional approach allows us
to label emotion within a continuous N-dimensional space,
which turns MER into a regression problem. This approach
is thought of as better suited to reduce ambiguity issues
and to reflect time-series emotion variation [4]. One of the
typical dimensional models is a 2-dimension circumplex
plane articulated by Russell [5], with a horizontal axis of

University of Technology Sydney
Sydney, Australia
samuel.ferguson@uts.edu.au

Audio signal
\ Arousal
'
./ Valence
Figure 1. Overview of our multi-view neural networks solution. CNN

represents convolutional neural network, RNNs represents recurrent neural
networks, FC represents fully connected layer.

valence (positive-negative) and a vertical axis of arousal
(active-inactive). Then music emotion could be measured
as a pair of continuous values representing the degree of
valence and arousal. Such emotion model is widely used in
variety of emotion recognition systems [6], [7]. Since our
research focuses on time-series emotion detection, this 2-
dimension model is adopted.

As for the input of MER training models, most previous
research tends to use pre-processed audio features rather than
raw audio [8], [9]. That usually require professional-level
acoustic domain knowledge and heavy workload for feature
extraction. Considering these issues, we propose using raw
audio signal data as training model input directly. In this
way, we can avoid expending too much effort on prior
knowledge learning and hand-engineered feature processing.

To serve this purpose, we propose a novel architecture
of deep neural networks model for emotion prediction
illustrated in Fig. 1. We utilize multi-view Convolutional
Neural Networks (CNNs) that we regard as multiple feature
extractors to learn music features from raw audio auto-
matically. Then these features are aggregated and fed into
Recurrent Neural Networks (RNNs) to learn time-varying
information for dynamic emotion variation. Finally, the
result is fully connected and outputs 2 continuous values
representing arousal and valence. Based on this structure,
we term this stacked of multi-view convolutional recurrent
neural networks as MCRNN. To the best of our knowledge,
our model is the first multi-view neural networks for music
emotion recognition using raw audio signals.



II. RELATED WORK

In this section, we introduce related work about feature
engineering and training models for MER.

A. Feature Engineering

In traditional machine learning models, human engi-
neered audio features are usually used as training inputs.
Researchers explored and summarised audio features in
different categories (such as energy, timbre and rhythm), and
compute novel high-level features to benefit recognition [9]
or evaluate the usefulness of features for valence-arousal pre-
diction [10], [11]. However, collecting hundreds of features
gives rise to high time and labour cost regarding domain
knowledge learning and feature extraction.

In recent years, deep neural networks have proved their
powerful capability of feature learning so that some low-
level features or raw audio signals could be taken as model
inputs directly. Among them, the time-frequency representa-
tion of audio such as a mel-spectrogram has become an in-
creasingly popular feature used for MER [12], [13]. Besides
that, multimodal detection combining lyrics or music profile
information with audio features trained in deep learning
models are adopted widely to boost performance [14], [15].
Still, they need much effort for feature preparation.

B. Modelling

On the basis of dimensional Arousal-Valence (A-V) emo-
tion representation, music emotion recognition is commonly
defined as a regression problem. Before the emerging of
deep learning, machine learning methods such as Multiple
Linear Regression (MLR) and Support Vector Regression
(SVR) were applied extensively [6], [8]. More recently,
inspired by the success of deep learning in image detection,
Convolutional Neural Networks (CNNs) have been explored
as a regressor in music research [16], [17]. CNNs can learn
representations from inputs automatically for each frame or
clip of music, but fail to capture sequential information that
is a crucial factor to improve the performance of music
emotion variation detection. Due to this, RNNs have been
proposed to analyse contextual music information over time
to strengthen the fitness of regression. Especially, Long
Short-Term Memory (LSTM), Bidirectional Long Short-
Term Memory (BiLSTM) and Bidirectional Gated Reccurent
Unit (BiGRU) show superiority in sequential data processing
[18], [19]. Further, stacking these neural networks have
been implemented and gained better performance [20], [21].
In addition, multi-view representation learning, that means
learning features from multiple perspectives/views/modals,
has shown its strong advantage of improving training model
performance [22], [23]. However, there is no research apply-
ing multi-view concept to neural networks design for MER.

III. METHODOLOGY

The architecture of our MCRNN model is illustrated
in Fig. 2. It consists of two stages: feature learning and
sequence learning. Moreover, data augmentation method is
utilized to promote performance.

A. Multi-view Feature Learning

In the first part of our model, two parallel CNN modules
are employed as multi-view feature extractors. In detail,
we define these two CNN modules as fine-view CNN and
coarse-view CNN based on different kernel sizes. To adapt
the model input, both of CNNs apply one-dimensional con-
volution (Conv1D) layers to learn the same sample sequence.
For fine-view CNN, ConvID is configured with 32 x 1
kernel size and 8 strides, where the rectified linear unit
(ReLU) activation. The output of Conv1D is 8 feature maps,
further handled by the BatchNormalization[24] layer and
one-dimensional max pooling (MaxPoolinglD) layer with
8 x 1 window size to avoid overfitting issue. Meanwhile,
ConvlD in coarse-view CNN adopts 128 x 1 kernel size
and 32 strides, as well as ReLU activation applied. The
following processing is similar to fine-view CNN except
changing window size to 2 x 1 in MaxPoolinglD layer.
Different window sizes serve another purpose of tuning into
the same shape of the outputs from two CNN modules
so that they could be merged into one single tensor for
subsequent training layers.

These two views are similar to sample-level learning and
frame-level learning mentioned in [25]. The sample-level
learning uses relatively small kernel size to detect phase
variations within a frame, while frame-level learning uses
relatively long sample length to capture all possible audio
pattern in periodic waveforms. Based on this point, two
views are appropriate to learn feature representations for raw
audio input.

B. Sequence Learning

The second part of our model is sequence learning part.
Since emotion is associated with the context of music,
Bidirectional Long Short-Term Memory (BiLSTM) is con-
sidered as a better choice because of its ability to capture
both preceding and succeeding information. Besides this,
increasing the depth of LSTM neural networks is taken
into account. Additional hidden layers can recombine the
learned representation from prior layers and create new
representations at high levels of abstraction, and hence
disentangle underlying relationship in temporal structure
more easily [26]. However, we still need to balance learning
efficiency and training difficulty when increasing the size
and the depth of LSTM models. In this scenario, we adopt
two bidirectional LSTM layers with 32 output units.

Finally, the dense layer connects all sequential learning
results and output two regression values representing arousal
and valence from a continuous range[-1,1]. In the procedure
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Figure 2. Architecture of MCRNN model

of training, we also add dropout function (labeled in grey
color in Fig. 2) to further prevent overfitting.

C. Data Augmentation

Data augmentation (DA) is a method to generate synthetic
data to increase the diversity of data for training models.
In this way, the model could learn features from more
relevant data and reduce overfitting effectively especially
for small-scale dataset. Considering music audio charac-
teristics and implementation cost, two approaches of data
augmentation are adopted. One approach is pitch shifting
that shift the pitch of audio clips. Here we lower the pitch
of a waveform by a semitone. Such slightly perturbations
would increase sample diversity but not impact the original
music expression. Another approach is data flipping inspired
by image processing [27] and time-series application[28].
In this research, we reverse the raw audio sequences in
each annotation interval. This reversed data could enhance
sequence learning through bidirectional LSTM in our model
architecture. These two methods keep the same size of
model input without changing duration and target labels.
All synthetic data are generated from raw audio samples by
using librosa API'.

1V. EXPERIMENTS
A. Data Description

The proposed model is applied to the Emotion in Music
Database® proposed in [29]. This dataset is collected from
the Free Music Archive (FMA)3, including raw audio in
mp3 format. Removing a set of duplicates in the initial
1000 songs, 744 songs are left actually. For the target labels,
songs have been annotated via crowd-sourcing on Amazon
Mechanical Turk (AMT) in the dimensions of arousal and
valence independently, including static ratings given to the
whole 45 seconds clips and dynamic annotation for each 0.5
second of last 30-second clips. The validation of annotations

Uhttps://librosa.org/doc/
Zhttp://cvml.unige.ch/databases/emoMusic/
3https://freemusicarchive.org/

is documented in [29]. All music clips are sampled at
44100Hz. Corresponding to the dynamic annotations, 22050
sequential samples in each time step as an input are fed to
our model to predict a pair of A-V values. Meanwhile, data
augmentation methods generate 2 times more data to enrich
our training dataset.

We take the DNN model proposed in [21] as the baseline.
The dataset it used contains a subset of songs from Emotion
in Music Database where the development sets have same
source and data distribution. We argue that models applied to
these two datasets are comparable. Moreover, we reproduce
this baseline model on Emotion in Music Database. By
using same dataset and evaluation method, we could keep
two models in the same conditions so as to compare model
architectures more convincingly.

B. Evaluation

We evaluate models with 10-fold cross validation. For
each fold, we split training/validation/test sets with the ratio
of 8:1:1. In accordance with previous research, Root Mean
Square Error (RMSE) is used for model evaluation. RMSE is
a measure of the average deviation of the estimates from the
observed values, which is considered as an absolute measure
of fit. Additionally, we add R2 scores to compute coefficient
of determination, which is considered a relative measure of
fit. Through this approach, we can evaluate our model more
comprehensively.

C. Implementation Details

We define batch size of 32, use Adam [30] as the opti-
mizer with the learning rate of 0.001, and use Mean Square
Error (MSE) as the loss function. We conduct training for
each fold with early stopping strategy adopted where the
patience is set to 10 on the validation dataset, and then we
evaluate metrics on test set. The training and evaluation are
implemented using the Keras library running on top of a
tensorflow backend in python.

Apart from model definition mentioned in Section III, L2
regularization is added with setting the factor as 0.0001 to
reduce overfitting in the fine-view CNN layer. Due to no
pre-trained procedure in our MCRNN model, it is crucial to
have a good initialization during training. Here we adopt the
normal initializer proposed in [31] instead of Glorot uniform
initializer, which produces the better performance.

V. PERFORMANCE DISCUSSION

In this section, we analyse input types and model struc-
tures based on experimental results. Then we conduct abla-
tion study to demonstrate the effectiveness of our solution.

A. Performance Results Analysis

First, we compare models with different input types. The
metrics in Table I show that DNN [21] model using raw au-
dio as input outperforms DBLSTM[19] and CRNN-NB[20]



Table I
RMSE OF DIFFERENT NEURAL NETWORK MODELS IN AROUSAL AND
VALENCE DIMENSION

Model Model Input Type | Arousal | Valence | Average
DBLSTM[19] engineered features 0.225 0.285 0.255
CRNN-NB[20] | engineered features 0.231 0.279 0.255

DNNI21] raw audio 0.214 0.240 0.227

DNN# raw audio 0.218 0.227 0.223

MCRNN raw audio 0.212 0.219 0.215

2Reproduced DNN on Emotion in Music Database

Table 11
R2 SCORES COMPARISON WITH THE BASELINE IN AROUSAL AND
VALENCE DIMENSION

Model Arousal | Valence Average
DNN# 0.405 0.08 0.243
MCRNN 0.430 0.133 0.282

2Reproduced DNN on Emotion in Music Database

models that use human engineered audio features as input. In
the Emotion in Music Database, raw audio inputs contribute
to good performance especially in valence recognition. So
we argue that using raw audio signals with appropriate deep
neural networks could model features well and gain better
performance comparing with traditional engineering-feature-
based models in this application.

Then, we compare our MCRNN model with DNN model
in the same dataset based on RMSE and R? scores. Table
I shows that our model gains lower RMSE scores than the
baseline model in both of arousal and valence dimension
with 4% improvement averagely. Regarding the R? scores
as shown in Table II, the metric increases approximately
16% on the average. Especially in valence dimension, the
result shows the great increment of 66%. Further, to prove
statistical significance of model improvement, we carry out
paired t-test on 10 folds of RMSE and R? scores for these
two models, the p-value is less than 0.023 and 0.028 respec-
tively. Compared with our model, DNN model only focuses
on frame-level feature extraction but ignore phase variation
in sample level. The results confirm that learning sample-
level features could benefit valence recognition more.

B. Ablation Study

We conduct ablation study to evaluate the effect of
multi-view structure and data augmentation. The results are
illustrated in Fig. 3. Based on R%? and RMSE scores on
the aspects of arousal, valence and their average, it can be
seen that multi-view CNNs model outperforms single-view
models. By using multi-view architecture, the data detected
from different perspectives could reveal more complemen-
tary information thereby enhancing modeling capability to
learn more comprehensive features than those of single-
view learning solution making. On the other hand, data
augmentation takes effect on improving emotion prediction.
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Figure 3. Ablation study based on MCRNN model measured by R? and
RMSE of Arousal, Valence and their average. 4 situations are compared.
That is, our MCRNN solution, single coarse-view CNN, single fine-view
CNN, multi-view CNNs without data augmentation.

VI. CONCLUSION

This paper introduces novel multi-view neural networks
trained in an end-to-end manner using raw audio signal
directly to predict dynamic music emotion in dimensional
arousal-valence space. In contrast with conventional music
recognition methods, our solution does not use human en-
gineered audio features, thus avoiding professional acoustic
knowledge learning and intense feature engineering effort.
Moreover, our model employs multi-view convolutional
neural networks stacked by double bidirectional LSTM
layers, which could capture more features from multiple
perspectives combined with time-series analysis to improve
the recognition performance. Also, we apply data augmen-
tation methods (pitch shifting and data flipping) to increase
the diversity of training data for this small-scale dataset
to enhance model training performance. The experimental
results demonstrate that our MCRNN model could achieve
better performance than models using pre-processed audio
features and models using single-view architecture.
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