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Abstract— The ability to recognize previously mapped lo-
cations is an essential feature for autonomous systems. Un-
structured planetary-like environments pose a major challenge
to these systems due to the similarity of the terrain. As a
result, the ambiguity of the visual appearance makes state-of-
the-art visual place recognition approaches less effective than
in urban or man-made environments. This paper presents a
method to solve the loop closure problem using only spatial
information. The key idea is to use a novel continuous and
probabilistic representations of terrain elevation maps. Given
3D point clouds of the environment, the proposed approach
exploits Gaussian Process (GP) regression with linear operators
to generate continuous gradient maps of the terrain elevation
information. Traditional image registration techniques are then
used to search for potential matches. Loop closures are verified
by leveraging both the spatial characteristic of the elevation
maps (SE(2) registration) and the probabilistic nature of the
GP representation. A submap-based localization and mapping
framework is used to demonstrate the validity of the proposed
approach. The performance of this pipeline is evaluated and
benchmarked using real data from a rover that is equipped
with a stereo camera and navigates in challenging, unstructured
planetary-like environments in Morocco and on Mt. Etna.

Index Terms— Localization; Space Robotics and Automation;
Multi-Modal Perception; Visual-Based Navigation

I. INTRODUCTION

Autonomous robots operating in unstructured and un-
known environments require simultaneous localization and
mapping (SLAM). Given the information provided by one
or multiple sensors, SLAM algorithms estimate the system’s
pose as well as a representation of the environment. A key
feature of these systems is the ability to recognize previously
mapped places, allowing for the correction of the drift
inherently occurring in open-loop estimation frameworks.
Place recognition or, more specifically, loop closure detection
is a well-studied topic in robotics. The development of
appearance-based 2D local feature detectors and descriptors
has enabled many reliable and large-scale place recognition
systems using vision [1].

In this paper, we are interested in tackling the place
recognition problem encountered in planetary exploration.
Unstructured planetary alike environments make the place
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Fig. 1: The proposed method performs loop-closure detection in
challenging unstructured scenarios based on geometric representa-
tions of the environment. The input maps (a) and (c) are used to
generate Gaussian gradient maps of the terrain elevation (b) and (d),
respectively. These gradient maps are matched via a feature-based
RANSAC algorithm. The platform used in our experiments on Mt.
Etna (Italy) is shown in (e), photo courtesy of Esther Horvath. (f)
shows the successful loop-closure detection from (b) and (d) verified
from aligning input pointclouds using their poses.

recognition task extremely challenging using vision-based
systems, especially when viewpoints of the same location
differ due to the exploratory nature of the robot’s path.
In the literature, besides appearance, the 3D structure of
the environment has also been exploited for loop closure
detection. Features extracted from registered 3D point clouds
coming from stereo-systems, depth cameras or LiDARs are
commonly used in the recognition tasks. This 3D repre-
sentation, however, is usually sparse, noisy and incomplete.
Moreover, the existing 3D descriptors are in general not as
reliable as the visual features, but more importantly for our
application, are also challenged by the lack of structure of
the terrain.

The hereby proposed method aims to establish corre-
spondences for loop closure detection by leveraging the
information contained in the 3D representation of the envi-
ronment combined with 2D robust visual descriptors. Based
on gravity-aligned 3D point clouds of the robot’s vicinity,
our approach introduces a novel continuous and probabilistic
representation of the terrain elevation and its variations. This
new type of map can be sampled into an image-like data
structure, and therefore, be used to perform visual feature
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extraction and matching.
The proposed approach makes use of Gaussian Process

(GP) regression [2] in association with linear operators [3]
to build continuous representations of the gradient of the
terrain elevation. These high entropy representations, denoted
by GP gradient maps, deal with both data uncertainty and
incompleteness effectively thanks to the continuous and
probabilistic nature of GPs. Our approach takes advantage
of this high entropy gradient maps to extract visual-like
features and descriptors to find potential correspondences
with previously mapped areas. Given these correspondences,
a RANSAC-based SE(2) registration approach on the GP
gradient maps and the associated uncertainties are used to
verify the loop closure detection. A stereo-visual-inertial
SLAM system is used to demonstrate the validity and per-
formance of the proposed approach in an arid-desert and
a volcano area, emulating the challenges encountered in
planetary exploration scenarios.

In summary, the paper contributions are:
• A novel loop closure detection pipeline for unstructured

planetary environments using GP and linear operators
for point-cloud-based mapping systems.

• A representation based on continuous and probabilistic
gradient maps that enables both, 2D feature matching
and SE(2) registration in a RANSAC-based approach
that makes use of the uncertainty information to robustly
detect loop closures.

• An experimental validation of the proposed approach
in a submap-based SLAM system with real datasets
collected on Mt. Etna and in Morocco.

Fig. 1 shows an example of the input and output data from
our proposed loop-closure detection approach using data
from Mt. Etna.

The remainder of the paper is organized as follows: in
Section II, a short overview of the existing work on place
recognition with a focus on point-cloud-based methods as
well as on the usage of GPs for modelling of the environment
is presented. In Section III, the overview of the proposed
method is described, followed by the sections IV and V
where the two main components of the pipeline, i.e. the GP
gradient map representation and the loop closure validation
are explained. Section VI describes briefly the submap based
SLAM system, which we used to validate the proposed
method along with the implementation details regarding the
Gaussian gradient maps. Finally, the experiments and results
are presented in Section VII with some concluding remarks
in Section VIII.

II. RELATED WORK

Establishing loop closures in visual SLAM is traditionally
performed by detecting the similarity of the current image to
a database. Visual similarity is usually expressed as the co-
occurrence of image features such as SIFT [4], SURF [5] or
ORB [6], often detected by means of aggregation techniques
such as bag-of-words [7], VLAD [8] or the more recent
HBST [9] targeted at binary descriptors. Pure image-based
approaches suffer to relocalize while revisiting the same

places from different viewpoints and lighting conditions.
For this reason, many approaches to loop closure detection
leverage the 3D structure of the environment in the form of
point clouds, obtained from LiDAR sensors, stereo cameras
or dense multi-view stereo from monocular observations.
The authors of [10] evaluate a localization system where
LiDAR point clouds captured by a ground vehicle are
matched to point clouds from dense visual structure-from-
motion through a variety of 3D descriptors. In [11] global
localization of a camera in LiDAR maps is obtained by com-
puting and matching structural descriptors, such as the 3D
Gestalt [12], on both the map from visual SLAM and from
the aggregated LiDAR point clouds. Similarly, monocular
point clouds are matched to a global LiDAR map in [13] for
the purpose of online localization although requiring initial
pose priors.

Loop closure detection from homogeneous data (point
clouds to point clouds) is addressed in several ways. For
LiDAR scans, relocalization can be achieved using global
descriptors such as ScanContext [14] where the spatial distri-
bution of points is encoded in an image, which is matched to
a database. The approach presented in [15] relies on match-
ing local 3D features, derived from SHOT [16], followed
by a probabilistic voting step to reject false transformation
hypotheses. In [17]–[19], LiDAR clouds are discretized in
segments, representing clusters of points spatially separated
between each other. In the latest iteration of the author’s
pipeline, segments are encoded into low dimensional de-
scriptors from an auto-encoder and matched to a database
to either close loops or relocalize on a prior map. Recently,
deep learning techniques have been leveraged for point cloud
registration to either obtain more accurate local descrip-
tors [20], [21] or robust keypoints [22]. Although demon-
strating higher performances than handcrafted methods, the
computational complexity makes their implementation on
resource-constrained vehicles challenging.

Although not for loop closure detection, application of
Gaussian Processes to produce continuous and probabilistic
elevation maps from 3D point clouds has been previously
studied in the literature. In [23], GPs have been used to
model the spatial correlation of observed terrain data to
infer topography from the new observations. GP elevation
maps in [24] are used as a prior for Bayesian fusion.
Other GP-based mapping properties such as occupancy [25],
thickness [26], implicit surface [27], [28], among others, have
been extensively studied in recent years. Most of these works
exploit the probabilistic nature and the inference capabilities
to fill-up areas of missing data, to produce maps of a desir-
able resolution, to filter noise or for data fusion. Our work,
in contrast, exploits the derivative (through linear operators)
of the continuous elevation terrain to extract features of the
gradient maps and the probabilistic aspect to limit the area
of interest and validate loop closures.

Moreover, the use of GP regression and linear operators
has already been leveraged for robotics state estimation
in [29] to create continuous and accurate pre-integrated
measurements from noisy inertial readings. In [30], GP
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Fig. 2: Overview of the proposed pipeline of place recognition for
loop-closure detection based on geometric representations of the
environment.

regression is used to recover implicit surfaces with normal
estimates for 3D surface reconstruction. In a similar way,
here, it is used to generate gradient maps. Operating on the
gradient instead of elevation directly makes the proposed
pipeline elevation-invariant, a key aspect that is leveraged
for registration in the loop closure validation process.

III. METHOD OVERVIEW

The proposed method performs loop-closure detection
given gravity-aligned 3D point clouds of the environment.
As shown in Fig. 2, our method is divided into two distinct
parts.

The first one is the application of GP regression [2] and
linear operators on kernels [3] to convert incoming point
clouds into Gaussian gradient maps of the terrain elevation.
It relies on the assumption that the true underlying geometry
can be modelled with terrain elevation maps. This assump-
tion is accurate as per the rarity of overhanging structures in
the considered scenario. The key feature of this continuous
probabilistic representation is the possibility to sample the
elevation’s variance and gradient at any point in the x-y
plane.

The second part matches newly inferred gradient maps to
previously mapped areas. A RANSAC matching procedure
is conducted upon traditional visual features extracted from
the gradient maps while leveraging the geometric (SE(2)
transformations) and probabilistic (availability of variance)
properties of the novel representation.

Note that this method is highly versatile as it is agnostic
to the mapping technique used to generate the 3D-geometry
of the environment. Therefore, one can directly apply this
pipeline to the output of any mapping system that generates
3D data regardless of the modality used (LiDAR, stereo-
vision, RGBD cameras, etc.). The loop closure detection in
the context of this paper aims at establishing the correspon-
dence between the current and previously mapped areas in
the form of submaps. Online loop closure triggering is out of
the scope of this work. In the following, for convenience, we
consider a collection of submaps Sm, with m the index of
the submap, to represent both the previously explored area
and the newly discovered one.

IV. GP GRADIENT MAP REPRESENTATION

This section introduces the derivations associated with the
generation of the gradient maps based on Gaussian Process
regression [2] and the use of linear operators on the kernel
covariance function [3].

A. Gaussian Process regression

Let us consider a terrain elevation submap Sm constituted
of Nm points pm

i =
[
xmi ymi zmi

]>
(i = 1, · · · , Nm)

with m being the index of the submap. The z-coordinate of
pm
i is represented as a function zmi = f(xm

i ) at the x and
y-coordinates of the same point, with xm

i =
[
xmi ymi

]
.

Considering the elevation function zm modelled with a
zero-mean GP [2] as

f(xm) ∼ GP
(
0, k(xm

i ,x
m
i′ )
)
,

zmi = f(xm
i ) + ηi, ηi ∼ N (0, σ2

z), (1)

where k(xm
i ,x

m
i′ ) is the kernel covariance function, the

elevation can be inferred for any x-y coordinates xm as

zm∗ (xm) = K(xm,X)
[
K(X,X) + σ2

zI
]−1

Z, (2)
var(zm∗ ) = K(xm,xm)

−K(xm,X)
[
K(X,X) + σ2

zI
]−1

K(xm,X)>, (3)

with X the matrix built by stacking the x-y coordinates xm

of the training points, Z the vector of training values zmi
at X, and K(., .) the matrix of covariances evaluated with
the kernel covariance function k(., .) between each pair of
arguments.

B. Gaussian gradient maps

In order to propose a method that is invariant with re-
spect to the elevation of the submaps’ origin, the proposed
framework generates a representation of the gradient of the
submaps’ elevation. Overall this helps the feature matching
robustness, and allows for the use of difference-based metrics
to register gradient maps together. The x and y gradients of
zm are directly inferred from the GP model (1) by applying
the differentiation linear operator to the covariance kernel as
introduced in [3]:

∂zm

∂xm
=
∂K(xm,X)

∂xm
[
K(X,X) + σ2

zI
]−1

Z, (4)

∂zm

∂ym
=
∂K(xm,X)

∂ym
[
K(X,X) + σ2

zI
]−1

Z. (5)

From these continuous representations, the proposed
method infers the elevation variance and the gradient
submaps as mono-channel image-like data-structures. For
a submap Sm, Imv denotes the variance image-like data-
structure inferred from (3), and Img the elevation’s gradient

computed from (4) and (5) using g =
√

∂zm

∂xm

2
+ ∂zm

∂ym

2
.

Fig. 3 shows an example of a gradient map and the associated
terrain variance. As the figure shows, gradient maps produce
a higher entropy representation compared to simple elevation
maps. Thus, visual features are more present in these maps.

V. LOOP-CLOSURE DETECTION

Given two instances of Gaussian gradient maps, Idg and Iqg ,
the proposed method classifies a pair of maps as loop-closure
or not by attempting a feature-based registration between
Idg and Iqg . Note that the superscript d corresponds to the
index of a submap in the database of previously explored
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Fig. 3: Example of gradient map generation from a 3D point cloud.
(a) and (d) are two different viewpoints of the input 3D point
cloud. (b) and (c) are the GP continuous representations of the
terrain’s elevation and the associated variance (from (2) and (3)).
(e) represents an intermediate step (from (4)) needed to compute
the GP gradient map shown in (f).

areas, and the superscript q corresponds to the index of the
query submap. First, 2D keypoints are extracted individually
in Idg and Iqg . The keypoint detection leverages the gradient
maps’ variances, Idv and Iqv , by applying masks to reject
keypoint candidates that are far from the GP training data
(high variance areas). Each keypoint is associated with a 2D
descriptor computed on the gradient map instances Idg and
Iqg . As illustrated in Fig. 4, the descriptors are matched across
both gradient maps based on a brute-force strategy and L2

proximity metric.
This last step results in a set A of keypoint associations

ai across both maps. Given this set A, the proposed method
attempts the SE(2) registration of Iqg to Idg in a RANSAC
algorithm shown in Alg. 1. The different elements employed
are:
• SelectRandomAsso: the random selection of a pair of

associations aa and ab from A.
• GetSE2Transform: the estimation of a SE(2) transfor-

mation Ti, given a subset of A, based on centroid
alignment and SVD.

• GetInliers: the identification of the inlier set of associa-
tion Ai, given A and a SE(2) transformation Ti, based
on 2D distance threshold.

• ComputeSSDMetric: the computation of the similarity
metric hi between two registered gradient maps as the
Sum of Squared gradient Differences (SSD) weighted
by the inverse of the product of the corresponding
variances hi = Σ

xd,q

(Iq
g (Tix

d,q)−Id
g (x

d,q))2

Iq
v(Tixd,q)Id

v (x
d,q)

.

• AcceptTransformation: the decision true/false to ac-
cept the estimated transformation Ti based on the SSD
metric hi and the number of inliers found |Ai|.

The output of this procedure is the maximum number of
inliers found n and the associated SSD similarity metric
h. Empirically we found that setting a threshold on the

Fig. 4: Visualization of the loop-closure check via gradient map
matching. Top row: Input gradient submaps from Etna3 dataset
(overlaid with corresponding variance in red and blue for intuitive
visualization). Middle row: 2D descriptor (SURF) correspondences
in low variance areas between the two gradient submaps. Bottom
row: Gradient maps aligned after finding the loop closure (overlaid
with both submaps’ variance for intuitive visualization).

number of inliers appeared to be the most effective metric to
classify two maps as loop closure. Extensive tests have been
conducted in our experiments to best define this threshold.
Note that this pipeline is agnostic to the choice of feature
descriptor. In our implementation, we use Speeded Up Ro-
bust Features (SURF) as their blob detection ability matches
the smooth nature of the Gaussian gradient maps.

VI. IMPLEMENTATION

This section contains a brief introduction of the mapping
system used in our experiments, as well as implementation
details regarding the Gaussian gradient maps and the overall
computation time.

A. Submap-based SLAM

In order to evaluate the performance of our pipeline, we
employ our submap-based SLAM framework [31], where
gravity-aligned 3D submaps are incrementally built from
aggregated stereo clouds and positioned according to visual-
inertial pose estimates. The size of submaps is bounded either
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Algorithm 1: Loop-closure classification based on
SE(2) registration between two Gaussian gradient maps.

Input :
• Idg , Iqg , Idv , Iqv : Gradient maps and associated variance
• A: Set of keypoint associations between Idg and Iqg

Output:
• n: maximum number of inliers found
• h: associated SSD metric
• T: associated SE(2) transformation estimate

foreach until Max Nb Iterations do
{aa, ab} = SelectRandomAsso(A);
Ti = GetSE2Transform({aa, ab});
Ai = GetInliers(A, Ti);
Ti = GetSE2Transform(Ai);
hi = ComputeSSDMetric(Ti, Idg , Iqg , Idv , Iqv );
if AcceptTransformation(|Ai|, hi) and |Ai|> n then

n = |Ai|;
h = hi;
T = Ti;

return T, n, h;

by limits on the trajectory length from their respective origins
or on the pose uncertainty. This ensures that the resulting
point clouds are locally accurate. Submap origins are joined
consecutively in a graph by relative visual-inertial constraints
and, in the original implementation, inter-submap matches
[32] establish loop closure constraints. In this work, we eval-
uate the feasibility of establishing the loop closure between
submaps using a GP representation instead of matching 3D
keypoints using CSHOT descriptors as in [32].

B. Gaussian gradient maps and Computation

Our implementation is built upon the use of the square-
exponential kernel

k(xm
i ,x

m
i′ ) = σkexp

(
− (xm

i − xm
i′ )>(xm

i − xm
i′ )

2lk

)
(6)

to generate the GP gradient submaps. The hyperparame-
ters σk, lk, and σz (data noise from (1)) are respectively
initialized with the elevation’s empirical variance for the
submap, a manually-set length-scale (around 0.1 m), and
the typical elevation accuracy of the submapping system,
before being fine-tuned as described in [2]. The submaps
are arbitrarily downsampled to 5000 points in order to
reduce the computation time. The query point inferences
are performed with a spatial resolution of 0.03 m/pixel over
the minimum x-y bounding box of each point cloud. Our
current implementation computes each GP gradient map
in approximately five minutes, and the RANSAC matching
takes around seven minutes for a database of 14 submaps.
The computations were performed on a laptop with Intel
Core i7-6700HQ CPU. The overall computation time can be
greatly reduced, as mentioned in the future work discussed
in Section VIII.

VII. EXPERIMENTS AND DISCUSSION

The pipeline was tested with five datasets. Four were
collected with the Lightweight Rover Unit (LRU) (Fig 1)

(a) DLR Sensoric Unit of Planetary
Exploration Rovers (SUPER)

(b) Morocco Experiment Site

(c) Etna3 Image frame (d) Morocco Image frame

Fig. 5: DLR Sensoric Unit of Planetary Exploration Rovers (SU-
PER) at the experiment site in Morocco (a) and the location at which
the particular dataset from Morocco was collected (b). Impressions
of the Etna (c) and Morocco (d) landscapes as seen from the
navigation camera. Notice the lack of unique visual features in (c)
and the harsh lighting conditions in (d).

during the 2017 Etna demo space mission under the scope
of the ROBEX project [33]. The LRU is a lightweight space
rover prototype equipped with an IMU, wheel odometry
and a stereo camera as the primary sensor for mapping.
A detailed description of the LRU with its hardware and
software architecture can be found in [34].
The fifth dataset used has been collected in a planetary
analogue environment in Morocco in 2018. The hand-held
sensor suite employed (same as the one integrated into the
rover) is shown in Fig. 5a. This dataset has been specifically
collected to validate mapping and navigation algorithms in
particularly challenging unstructured environments. Different
datasets collected in Morocco are in the process of being
made publicly available for the robotics community.
From hereon we refer to the five datasets as Etna1, Etna2,
Etna3, Etna4 and Morocco. To give an impression of the
trajectories from these datasets, ground-truth position tracks
as computed from DGPS are shown in Fig. 6. To give an
impression of views from the navigation camera instead, see
Fig. 5c, and Fig. 5d.

A. Evaluation metrics

We evaluate the performances of our loop closure detector
using the precision-recall metric:

P =
Tp

Tp + Fp
R =

Tp

Tp + Fn
, (7)

where Tp is the number of correct submap matches validated
by the proposed method, Fp is the number of wrong matches,
and Fn is the number of true submap matches which were
not detected. We choose to determine whether a match is
true or false from the spatial overlap of submaps, which are
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(a) Etna1 (b) Etna2

(c) Etna4 (d) Morocco

Fig. 6: Ground-truth trajectories of the datasets computed using
DGPS data (not shown for Etna3 due to missing data). Trajectories
are colored according to the timestamps. The start positions are
shown with a red circle and the end positions with a red square.

positioned in world coordinates using the estimated poses
from our SLAM system [31]. We consider the output of
SLAM accurate enough to validate the approach. Specifi-
cally, we compute a bounding box for each submap in the x
and y global coordinates. Let A(Sm) and A(Sn) be areas of
the bounding boxes for submaps Sm and Sn. The overlap
o(Sm, Sn) is defined as the Intersection over Union (IoU):

o(Sm, Sn) =
A(Sm) ∩ A(Sn)

A(Sm) ∪ A(Sn)
∈ [0, 1]. (8)

Resulting from empirical considerations about our data, for
the Etna datasets we decide that true matches are those for
which o(Sm, Sn) > 0.3, and for Morocco where we choose
a minimum overlap of 0.1. Although it is guaranteed that
submaps which have little to none overlap are false matches,
overlapping submaps which have no unique 3D structure
will not be matched regardless of the parameter choices for
our algorithm. Therefore, performances will be penalized in
terms of recall in most datasets. Precision-recall curves are
generated by varying the minimum number of inlier SURF
matches n between GP gradient maps from 1 to 20.

B. The inadequacy of visual-only approaches

Traditional loop closure detection based on image features
and bag-of-words demonstrates excellent performances in
datasets oriented towards autonomous driving. Nonetheless,
the extreme visual aliasing and strong viewpoint differences
encountered in planetary exploration scenarios pose great
challenges for visual-only place recognition algorithms. To
demonstrate this, we evaluated the state-of-the-art incre-
mental loop-closure detector iBoW-LCD [35] on images
from our Etna and Morocco datasets as well as on the

Fig. 7: Results for place recognition with the state-of-the-art, visual-
only iBoW-LCD approach [35]. We compare precision-recall curves
obtained from the KITTI autonomous driving dataset with those
obtained from our data. We conclude that traditional visual place
recognition is perfectly adequate in the context of autonomous
driving, but the performance drops significantly on images cap-
tured by a planetary exploration rover in challenging unstructured
environments.

first sequence from the KITTI dataset [36]. We extracted
1500 ORB features per frame and adapted the parameters
recommended in the paper to achieve the best performances
in each dataset. True matches were labelled based on the
spatial and viewpoint proximity of the camera pose related to
each frame. Fig 7 shows the precision-recall curves obtained
with iBoW-LCD applied to our datasets and the KITTI00
sequence. The appearance-based place recognition method
performs well on the KITTI sequence thanks to the specific
motion of the car and the distinctive features present in man-
built environments. However, iBoW-LCD performed poorly
on the Etna and Morocco datasets due to the ambiguous
visual appearance and the proximity of the viewpoints with
the ground. Furthermore, on the Morocco sequence, visual-
only loop-closure detection through standard appearance
approaches is not possible as the camera trajectory repeats
the same path from an almost opposite direction. This ex-
periment demonstrates the necessity for alternative solutions.
In the following subsection, we will show how our proposed
approach based on GP gradient maps helps to overcome the
limitations of traditional place recognition methods.

C. GP gradient maps vs. 3D feature matching

Here we evaluate the proposed pipeline for loop closure
detection against a traditional approach based on matching
3D features extracted from submap point clouds. To this end,
keypoints are sampled from high curvature regions as in [37]
and matched across submap pairs using SHOT and CSHOT
features. The resulting keypoint matches are then filtered
from outliers using a RANSAC approach as implemented
in the PCL library [38], setting the probability of selecting
an outlier-free model to 0.99.

Fig. 8 shows the precision-recall curves for the Etna and
Morocco sequences. As can be observed for all tests, except
for Etna4 in Fig. 8d, all the curves for our method start

1900

Authorized licensed use limited to: University of Technology Sydney. Downloaded on March 30,2021 at 00:02:39 UTC from IEEE Xplore.  Restrictions apply. 



(a) Etna1 (b) Etna2

(c) Etna3 (d) Etna4

(e) Morocco

Fig. 8: Precision-recall curves comparing the performance of the
proposed GP gradient method with 3D descriptor matching as well
as random classifier.

at 100% precision. The curves show that our approach is
more accurate and conservative than the baseline: for a set
of input parameters, the gradient maps pairs that pass the
RANSAC test for SURF matching will likely be all true,
while many validated matches from CSHOT+RANSAC and
SHOT+RANSAC are wrong even for the more conservative
descriptor matching thresholds. Fig. 9 reports the precision
obtained in all datasets as a function of the minimum number
of inlier SURF matches after RANSAC ninl. The plot shows
that for ninl ≥ 4, submap matches can be selected with
100% precision on all datasets except for Etna4, which
the precision-recall curves in Fig. 9 prove to be a very
challenging scenario for loop closure detection. Indeed on
Etna4 performances are very limited also for appearance-
based methods, see Fig. 7. For ninl ≥ 5 all the selected
matches are instead correct, achieving the highest precision
among the tested baseline approaches.

The two matching submaps that were correctly identified
from Etna3 with this method are shown in Fig. 10 as an
example. Notice how for Etna3, loop closures can not be
established with the tested appearance-based method [35],
see Fig. 7. The benefits provided by our method against both
3D feature matching and visual methods especially emerge
when the camera traverses a path from opposite directions,
such as for the traverse in Morocco (see Fig.6). In this case,

Fig. 9: Average precision across all the datasets as a function of the
threshold on the number of inliers in the proposed RANSAC-based
matching.

Fig. 10: The two identified loop closure candidates from Etna3 i.e.
submaps 5 and 6 in red and blue, rest of the submaps from the
session in grey aligned using pose estimation results. The numbers
represent the submap index and the position of each submap local
reference frame estimated by the visual-inertial odometry is marked
with a ’+’ symbol.

overlapping submaps do not share significative structures that
can be matched, such as rocks, as they are reconstructed on
opposing viewpoints. In addition, images captured from close
positions observe different portions of the environment. Our
approach is instead able to deal with missing observations
and produce correct submap matches.

VIII. CONCLUSIONS

In this paper, we presented a method to detect loop
closures in unstructured planetary environments based on
Gaussian gradient maps. The novel Gaussian gradient rep-
resentation is a continuous probabilistic representation of
the environment’s terrain elevation based on GP regression
and the application of linear operators on the kernel. This
method allows image-like inferences of the terrain’s elevation
alongside its associated variance. The gradient maps are
then matched through a SE(2)-constrained feature-based
RANSAC algorithm that leverages the uncertainty knowl-
edge of the terrain. The method and its robustness to noisy
input data have been validated in five challenging datasets
outperforming traditional 3D feature matching.
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Future works include the integration of this pipeline into a
real-time multi-modal and multi-session mapping framework
leveraging both visual and structural similarities to better
generalize to a wider range of scenarios, as well as extending
it to heterogeneous sensor setups (LiDAR, stereo and RGB-D
cameras). To this end, work will also be conducted to reduce
the computational cost of the overall pipeline. At the method
level, one can easily consider inducing points as in [39] to
breakdown the cubic complexity of the GP gradient map
generation. The use of bag-of-words techniques like [35] can
greatly reduce the number of RANSAC matching attempts
performed. In terms of implementation, many operations
are highly parallelizable (GP inferences, RANSAC runs,
matching score, etc.) and would benefit from optimized
computation on GPU.
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