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Cramér-Rao bounds and optimal design metrics for
pose-graph SLAM

Yongbo Chen, Shoudong Huang, Liang Zhao, and Gamini Dissanayake

Abstract—2D/3D pose-graph simultaneous localization and
mapping (SLAM) is a problem of estimating a set of poses based
on noisy measurements of relative rotations and translations. This
paper focuses on the relation between the graphical structure
of pose-graph SLAM and Fisher information matrix (FIM),
Cramér-Rao lower bounds (CRLB), and its optimal design
metrics (T-optimality and D-optimality). As a main contribution,
based on the assumption of isotropic Langevin noise for rotation
and block-isotropic Gaussian noise for translation, the FIM
and CRLB are derived and shown to be closely related to the
graph structure, in particular, the weighted Laplacian matrix.
We also prove that total node degree and weighted number of
spanning trees, as two graph connectivity metrics, are respectively
closely related to the trace and determinant of the FIM. The
discussions show that, compared with the D-optimality metric, the
T-optimality metric is more easily computed but less effective. We
also present upper and lower bounds for the D-optimality metric,
which can be efficiently computed and are almost independent
of the estimation results. The results are verified with several
well-known datasets, such as Intel, KITTI, sphere and so on.

Index Terms—Pose-graph SLAM, Fisher information matrix
(FIM), weighted Laplacian matrix, Cramér-Rao lower bounds
(CRLB), optimal design metrics

I. INTRODUCTION

SYNCHRONIZATION on the group of rigid body motions
in two-dimensional (2D) plane and three-dimensional

(3D) space, R2 × SO(2) and R3 × SO(3), is to estimate a
set of poses based on noisy measurements of relative rotations
and translations [1]. Multiple estimation problems, including
pose-graph SLAM, fall into this category [2]. These synchro-
nization problems in general give rise to a weighted graph
representation. In essence, there is a correlation between the
graphical structure of the 2D/3D pose-graph SLAM problem
and its corresponding measurement network.

Given a pose-graph SLAM problem, assuming we can
obtain its optimal solution using graph-based optimization
method, one question to ask is how reliable that solution
will be (i.e., accuracy compared to ground-truth and the
uncertainty of the estimated solution). Both the covariance
matrix and the FIM can be used to assess the uncertainty
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of the estimated parameters. However, compared with the
FIM, updating/storing the dense full covariance matrix is
prohibitively expensive with the growth of the dimension of
the state vector. Thus, the FIM is the top-priority choice to
evaluate the uncertainty of the SLAM solution in the maximum
likelihood (ML) estimate. Under the assumption that the
rotation noises obeying the isotropic Langevin distribution and
using the Frobenius norm based distance, the state-of-the-art
algorithms of SLAM, including SE-Sync [3] and Cartan-Sync
[4], show outstanding computational efficiency (more than an
order of magnitude faster) compared with the Gauss-Newton
(GN) based approach. Nevertheless, the corresponding FIM is
not presented in the literature.

From the graphical point of view, we know that adding
relative measurements among the poses, which is equivalent
to introducing new edges to the corresponding graph, helps
to reduce the uncertainty of the estimator. In 2D pose-graph
SLAM, the FIM has been proved to be closely related to the
graph structure of the measurements network, in particular, the
weighted Laplacian matrix [5] [6] assuming Gaussian noise
on the relative pose orientation and ignoring the wraparound
issue. In this paper, as the first contribution, we derive the
FIM based on the assumption of zero-mean isotropic Langevin
noise for orientation and block-isotropic Guassian noise for
translation in 2D and 3D pose-graph SLAM.

It is known that, in a flat Euclidean space, the classical
CRLB result for any unbiased estimator provides us with
a simple but strong relation between the covariance matrix
C and the FIM F : C � F−1 [7]. Because of the non-flat
property of the parameter space of 3D pose-graph SLAM, its
CRLB does not follow this expression. The curvature terms of
the space need to be considered to derive the rigorous CRLB.
In this paper, we derive the CRLB for 2D and 3D pose-graph
SLAM.

Because of the sparseness advantage of the FIM, the The-
ory of Optimal Experimental Design (TOED), including A-
optimality, D-optimality, E-optimality, and T-optimality, on the
FIM are widely used in decision making under uncertainty and
belief space planning with applications including autonomous
driving, surveillance and active SLAM [2]. For example, in
[8], the D-optimality, E-optimality, and T-optimality metrics
are used in active visual object reconstruction, and the T-
optimality metric is applied to solve the sensor selection
problem in Large Sensor Networks [9] [10]. The TOED is
closely related to the graphical structure of the block design
[11]. In 2D pose/feature-graph SLAM with the block-isotropic
Gaussian noise, the D-optimality metric can be bounded by an
expression related to the weighted number of spanning trees
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[6]. In this paper, we extend the results in [6] into 3D pose-
graph SLAM and also make a comparison between the T-
optimality metric and the D-optimality metric from the point
of view of the graphical structure of the measurement network.

A. Contributions

The main contributions of this paper are listed below.
• Extension of the formula derivation of the FIM and the

CRLB of the synchronization problem in [12] from the
rotation group SO(n) to the group of rigid body motions,
R2×SO(2) and R3×SO(3), based on the assumption of
isotropic Lagevin noise (for rotation) and block-isotropic
Guassian noise (for translation);

• Derivation of the relationship between the FIM of 3D
pose-graph SLAM and the weighted Laplacian matrix;

• Extension of the analysis results of the D-optimality
metric in [5] and [6] from 2D pose-graph SLAM into
3D case with R3 × SO(3) relative-pose measurements;

• Comparison of the D-optimality and T-optimality metrics
of pose-graph SLAM from the graphical perspective.

B. Outline

In Section II, we review the related works about the
pose-graph SLAM, the FIM, the CRLB and the TOED. In
Section III, we provide a mathematical formulation of the
synchronization on the group of rigid body motions in 2D
plane and 3D space, Rn × SO(n), n = 2, 3. In Section IV,
we present the FIM for 2D pose-graph SLAM and show
its strong relationship with the weighted Laplacian matrix
of the measurement graph. Furthermore, we obtain the FIM
for the 3D situation and extend the relationship with the
weighted Laplacian matrix into the R3 × SO(3) situation in
Section V. In Section VI, the CRLB of 2D and 3D pose-graph
SLAM are presented. The TOED metrics of the FIM of pose-
graph SLAM are discussed focusing on the graph topology
in Section VII. Simulation and experimental results are given
in Section VIII. Conclusions, potential applications and future
work are presented in Section IX.

C. Notations

Throughout this paper, unless otherwise noted, bold lower-
case and bold uppercase letters are reserved for vectors and
matrices, respectively. Sets are shown by uppercase letters.
S1 � S2 means matrix S1 − S2 is positive semidefinite.
The Kronecker product is denoted by ⊗. trace(?) and det(?)
represent the trace and determinant of the matrix ?. We denote
by diag(M1, ...,Mk) the block-diagonal matrix with matrices
M1, ...,Mk as blocks on its main diagonal. The squared
Frobenius norm is ‖ ? ‖2F = trace(?> · ?). ‖ ? ‖eig means the
biggest eigenvalue of the matrix ?; For a symmetric positive
definite matrix ?, ‖?‖eig = ‖?‖2. SO(n) (special orthogonal
group) and Ō(n) (orthogonal group) are respectively defined
as: SO(n) , {R ∈ Rn×n : R>R = In×n, det(R) = 1}
and Ō(n) , {G ∈ Rn×n : G>G = In×n}. dist(?, •) =
‖ log(?> · •)‖F is the geodesic distance between ? and • in
SO(n). The squared vector norm is ‖ ? ‖22 = ?> · ?, for a

vector ?. | ? | means the cardinality of the set ?. E{?} means
the mathematical expectation of ?. ∇?• means the partial
derivative of a function • with respect to parameter ?. ? n •
and ? × • respectively mean the semi-product group and the
direct product group of the group ? and the group •. ddiag(?)
sets all off-diagonal entries of a square matrix ? to zero.

II. RELATED WORK

Pose-graph SLAM leads to a non-convex optimization prob-
lem, whose (globally optimal) solution is the ML estimate for
the unknown poses. It is well-known that SLAM back-end
methods roughly fall into two categories. The first one is to
use high-efficiency iterative nonlinear optimization methods
based on GN method, Levenberg-Marquardt (LM) method
and Powell’s dogleg method, such as: g2o [13], iSAM2
[14], SLAM++ [15] and ceres [16], to obtain locally optimal
solutions. Because of its non-convex property, starting from
a poor initial guess, the iterative techniques may be trapped
into a local minimum, which corresponds to a wrong estimate.
The other one is to compute globally optimal solutions via
convex relaxations [3] [17] [18]. Some works have shown that
the duality gap of the general pose-graph SLAM problem in
practical applications is close to zero [19], which implies that
it can be solved exactly via convex relaxations. Beside pose-
graph SLAM, the similar technologies have been widely used
in other robotics and computer vision applications, such as:
3D registration [20] and structure from motion (SfM) [21].

Although many efficient optimization algorithms have been
developed, the achievable estimated uncertainty is not well
studied. Boumal [1] proposes the FIM for the estimation prob-
lems when the actual parameter space is a Riemannian sub-
manifolds or a Riemannian quotient manifold. In [1], Boumal
also shows two simple examples based on isotropic Gaussian
noise: synchronization on the group of translation Rn and
synchronization on the group of rotation SO(3). In his later
work [12], the conclusions are extended to the general rotation
group SO(n) based on several kinds of Gaussian-like, but non-
Gaussian, noises, especially for the isotropic Langevin noise,
which has attracted some robotics researchers’ attention. As
the state-of-the-art back-end algorithms, the convex relaxation
based SE-Sync [3] and Cartan-Sync methods [4] are built
based on the assumption of isotropic Gaussian noise (for
translation) and isotropic Langevin noise (for rotation). To
the best of our knowledge, the FIM for pose-graph SLAM
based on these noises, whose parameter space is the product
manifold Rn × SO(n), n = 2, 3, has not been analyzed.

CRLB, as a classical tool in estimation theory [22], provides
a lower bound on the variance of any unbiased estimator for
an estimated problem [12]. The traditional CRLB is defined
in a flat Euclidean space. Smith [23] extends the theory
of CRLB into the general non-flat manifold. Because the
inverse of the FIM will become singular when no anchor
is provided in the estimation problem, Xavier and Barroso
[24] use the pseudoinverse of the FIM for the anchor-free
case. Based on these new extended tools, Boumal presents
the CRLB for the synchronization of rotations SO(n) in both
the anchored and the anchor-free cases. Pose-graph SLAM
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is an anchored estimation problem in a product manifold
Rn × SO(n), n = 2, 3 commonly. As an extension of [12],
we will present its CRLB in this paper.

In fact, there are two different Lie group representations
corresponding to 2D/3D pose-graph SLAM: Rn × SO(n)
and SE(n) = Rn n SO(n). The direct product of SO(n)
and Rn manifolds Rn × SO(n) can be represented as a
(2n + 1) × (2n + 1) matrix with n + n(n−1)

2 -dimensional
minimal representation. The Rn and SO(n) group can be con-
sidered as two separated parts easily, because of the separated
Riemannian structure (decided by inner product) [25]. The
special Euclidean group SE(n) is isomorphic to Rn×SO(n),
but with different Riemannian structure (semi-product) [26].
It can be represented as a (n + 1) × (n + 1) homogeneous
transformation matrix with n + n(n−1)

2 -dimensional minimal
representation. Because of the different Riemannian structure,
these two groups have the different tangent spaces and gradient
forms, which leads to different FIM and CRLB. Compared
with SE(3), the direct product group Rn × SO(n) can keep
the bi-invariance property by the simple combined Riemannian
metric, which is defined as the sum of the metrics of Rn
and SO(n). However, the manifold SE(3) does not have
any bi-invariant metric, which results in more complicated
formulations for FIM, CRLB and curvature terms. Meanwhile,
many recent popular SLAM pose-graph optimization methods,
such as SE-sync method and initialization techniques [27],
separate the problem into two parts: the rotation estimation
and the linear least squares estimation for translation. Their
objective functions are built based on the direct product group
Rn×SO(n). Hence, in this paper, we only consider the SLAM
problem defined on the direct product group Rn × SO(n).

For the TOED, a comparison of these optimality criteria is
presented in [28] [29] [30]. In recent work, the authors show
that the monotonicity of all optimality criteria (A-optimality,
D-optimality, and E-optimality) and Shannons entropy is
greatly affected by the uncertainty representation [31]. As
a common representation, the uncertainty representations on
the Lie group SE(3) based on the Gaussian noise have also
been considered [32]. In these metrics, the D-optimality metric
and T-optimality metric do not need to perform the inverse
operation for the FIM, which leads to a lower computational
complexity. The D-optimality metric is the most popular
metric with a good performance [28]. However, from the
computational complexity perspective, the T-optimality metric
still has its obvious advantage compared with the D-optimality
metric, even though the state-of-the-art incremental technology
could be used for computing the D-optimality metric [33]. So
both metrics have great significance to the different estimation
and planning requirements. We will investigate both two
metrics based on the graphical structure of the SLAM.

In the previous work [5] [6] and [34], the authors analyze
the impact of the graphical structure on some of the desirable
attributes of some estimation problems: linear sensor network
(SN), compass-SLAM and 2D pose-graph SLAM with block-
isotropic Gaussian noise. In linear-SN and compass-SLAM,
the FIM is proportional to the reduced Laplacian matrix of the
corresponding graph, which helps to directly connect the opti-
mal design of the FIM with the structure of the measurement

graph. For 2D pose-graph SLAM with the block-isotropic
Gaussian noises, it is stated that the D-optimality metric of the
FIM can be bounded by an expression related to the weighted
number of spanning trees of the measurement graph (weighted
tree-connectivity). Based on the lower bounds, a new near-
t-optimal graph synthesis framework is put forward for the
measurement selection, pose-graph pruning problems and D-
optimality-aware SLAM front-end. In this paper, we extend
the conclusions [5], [6], [34] into 2D and 3D pose-SLAM
with Rn × SO(n), n = 2, 3 relative-pose measurements.

III. SYNCHRONIZATION ON Rn × SO(n) (POSE-GRAPH
SLAM)

In this section, we will present several concepts about
the pose-graph SLAM, including the graph preliminaries, the
problem formulation, the geometry of the parameter spaces
and the definition of the FIM.

A. Graph preliminaries for pose-graph SLAM

A directed graph G = (V, E), which is weakly connected,
is used to represent pose-graph SLAM problem naturally. In
this paper, V = {0, 1, · · · , np}, E ⊆ V×V and |E| = m. Each
node corresponds to a robot pose, and each edge (i, j) ∈ E
corresponds to a relative measurement from i-th robot pose
to j-th robot pose. A new undirected rotation graph G1 =
(V1,F), whose nodes only represent the rotations of the poses
and edges mean the relative rotation measurements, is created.
It satisfies that (i, j) ∈ F ⇒ i 6= j and (j, i) ∈ F . The
rotation graph G1 is un-directed, because the relative rotation
measurements (i, j) introduce the same information for i-th
node and j-th node.

For the i-th node, we can define three node sets V +
i , V −i

and Vi satisfying (i, j) ∈ E ⇔ j ∈ V +
i , (j, i) ∈ E ⇔ j ∈ V −i

and Vi = V −i
⋃
V +
i , so we have |V +

i | + |V
−
i | = |Vi| = di,

where di is the node degree of the i-th node. Without loss
of generality, the first pose (corresponding to 0-th node) is
assumed to be the origin of our global coordinates system.

The incidence matrix of G is denoted by A0 ∈
{−1, 0, 1}(np+1)×m. aik = −1 and ajk = 1 (the (i, k)-
th and (j, k)-th elements of A0, k means the k-th mea-
surement (edge)) are non-zero, if the k-th edge is ek =
(i, j) ∈ E . The incidence matrix after anchoring to the origin,
A ∈ {−1, 0, 1}np×m, is obtained simply by removing the
row corresponding to the first node in A0. The Laplacian
matrix and the reduced Laplacian matrix of G are respec-
tively defined as L0 , A0A

>
0 and L , AA>. It can

be shown that L0 and L are respectively positive semi-
definite and positive definite, if G is (weakly) connected. The
Laplacian matrix and the reduced Laplacian matrix of G can
be written as L0 = D0 −W0 and L = D −W , where
D0 , diag(d0, d1, . . . , dnp

), D , diag(d1, . . . , dnp
), W0 and

W are respectively the original adjacency matrix and the adja-
cency matrix after removing the rows and columns correspond-
ing to node 0. The weighted Laplacian matrix and the weighted
reduced Laplacian matrix are defined as L0

ω , A0Σ0A
>
0 and

Lω , AΣA>, where Σ0 and Σ are diagonal matrices whose
diagonal elements are the weight values of the graph edges.
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B. Synchronization on Rn × SO(n)

Synchronization on the group of the rigid body motions
in 2D plane and 3D space, Rn × SO(n), n = 2, 3, is the
problem of estimating a set of positions x0, x1, · · · , xnp

∈
Rn and rotations R0, R1, · · · , Rnp ∈ SO(n) from noisy
measurements of some relative rotations RjR

>
i and relative

coordinate transformations R>i (xj − xi).
In 2D/3D pose-graph SLAM, including the anchored pose,

the parameter space is: P = {Rn × · · · × Rn}np+1 ×
{SO(n)× · · · × SO(n)}np+1.

For the pose-graph edge, (i, j) ∈ E , we have the noisy
measurement pij ∈ Rn of the relative translation measurement
between i-th and j-th poses:

pij = R>i (xj − xi) + yij , (1)

where yij ∼ N (0,Σij), meaning that yij is a random vector,
follows a zero mean Gaussian distribution with probability
density function (PDF) fij : Rn → R+:

fij(yij) =
1

(2π)n/2 det(Σij)1/2
exp(−1

2
(y>ijΣ

−1
ij yij)),

(2)
where Σij = δ2ijIn×n, δ

2
ij means the isotropic variance value.

For the edge in the rotation graph (i, j) ∈ F , we have the
noisy relative rotation measurement Hij ∈ SO(n) between
Ri and Rj :

Hij = ZijRjR
>
i , (3)

where Zij is a random rotation of which distributed function
f̂ij : SO(n) → R+ means an isotropic Langevin distribution
with mean In×n and concentration κij ≥ 0 [12]:

f̂ij(Zij) =
1

cn(κij)
exp (κij trace(Zij)) ,

c2(κij) =I0(2κij),

c3(κij) = exp(κij) (I0(2κij)− I1(2κij)) ,

Iv(2κij) =
1

2π

∫ π

−π
exp (2κij cos(θ)) cos(vθ)dθ,

(4)

where cn(κij), n = 2, 3 is a normalization constant such
that f̂ij has unit mass. Iv(2κij), v = {0, 1, 2, · · · } ∈ Z
means the modified Bessel functions [35]. We write Zij ∼
Lang(In×n, κij) to mean that Zij is a random rotation matrix
with PDF (4). This PDF satisfies the assumptions shown
in [12]: 1. smoothness and support; 2. independence; 3. bi-
invariance.

Under the independence assumption of the measurements,
the log-likelihood function of an estimand (parameters to be
estimated) θ = x ×R = (x0, · · · ,xnp ,R0, · · · ,Rnp) ∈ P ,
given the measurements y = {pij , Hij , (i, j) ∈ E}1, is given
by:

L(y;θ) =
∑

(i,j)∈E

log fij(pij −R>i (xj − xi))

+
1

2

∑
(i,j)∈F

log f̂ij(HijRiR
>
j ).

(5)

1If an edge (i, j) ∈ E , then there exists a corresponding edge (i, j) ∈ F
for the rotation graph.

The coefficient 1
2 is used to balance the informa-

tion in the un-directed rotation graph G1 and the di-
rected pose-graph G, satisfying (i, j) ∈ F ⇔ j ∈
Vi, and

∑
(i,j)∈F log f̂ij(HijRiR

>
j ) =

∑
i

∑
j∈Vi

log f̂ij(HijRiR
>
j ) = 2

∑
(i,j)∈E log f̂ij(HijRiR

>
j ).

By introducing the PDF functions (2), (4), finding the
maximum of the log-likelihood function (5) is equivalent to:

max
θ∈P

∑
(i,j)∈E

κij trace(HijRiR
>
j )

−
∑

(i,j)∈E

δ−2ij
2
‖pij −R>i (xj − xi)‖22.

(6)

C. Geometry of the parameter spaces

The FIM is a classical tool for estimation problems on
Euclidean spaces. In order to define the FIM on a manifold
Rn × SO(n), n = 2, 3, we need to define some notions and
tools to describe the parameter spaces for the synchronization.

1) Tangent space on SO(n) [36]: As a Lie group, the
dimension of its minimal representation is d = d(n) =
n(n−1)

2 (d = 1 and 3, for 2D and 3D case). We can admit
a tangent space TQSO(n), n = 2, 3 for each rotation:

TQSO(n) = Qso(n) , {QΩ : Ω ∈ Rn×n,Ω> + Ω = 0},
(7)

where Q ∈ SO(n), so(n) is the Lie algebra corresponding to
SO(n).

2) Inner product on Rn and SO(n) [12]: Based on the
Riemannian metric of the manifold Rn × SO(n), we define
the inner products on the tangent spaces of Rn and SO(n)
respectively:{
〈ρ1,ρ2〉X = ρ>1 ρ2 ρ1,ρ2 ∈ Rn

〈Ω1,Ω2〉R = trace(Ω>1 Ω2) Ω1,Ω2 ∈ TQSO(n).
(8)

Because (QΩ1)>QΩ2 = Ω>1 Ω2, we omit the tangent
subscripts Q in above equation and all related inner product
equations of this paper, for better readability. The Riemannian
metric of Rn × SO(n) is the sum of the Riemannian metrics
of Rn and SO(n), which helps to maintain the bi-invariance
property. ∀(ρ,Q) ∈ Rn × SO(n), ∀(ρi,Ωi) ∈ T(ρ,Q)(Rn ×
SO(n)), i = 1, 2, the specific expression of the Riemannian
metric of Rn × SO(n) is defined as:

〈(ρ1,Ω1), (ρ2,Ω2)〉 := 〈ρ1,ρ2〉X + 〈Ω1,Ω2〉R. (9)

3) Gradient on SO(n) [37]: Let h : SO(n) → R be a
differentiable function, we can define the gradient of h by:

grad h(Q) = Qskew(Q>Oh(Q)),

skew(?) , (?− ?>)/2,
(10)

where Oh(Q) means the gradient of h seen as a Euclidean
function in Rn×n.

The directional derivative of h at Q along QΩ can be
written as:

〈grad h(Q),QΩ〉R, (11)

where QΩ is a tangent vector in the tangent space.
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D. Definition of FIM

Definition [12]: Let θ ∈ P be unknown parameter and
f(y;θ) be the PDF of the measurement y conditioned by
θ (in this paper, the measurement noises are shown in the
PDFs (2) and (4)). Based on the log-likelihood function
L(y;θ) = log f(y;θ) shown in (5) and the orthonormal basis,
the (i, j)-th element of the FIM is defined as:

F(i,j) = E {〈gradL(y;θ), ei〉 · 〈gradL(y;θ), ej〉} , (12)

where ei and ej are the i-th and j-th bases of the tangent
space of the parameters. Expectations are taken w.r.t. the
measurement y. They will be defined based on the parameter
space [1]. It is noted that the FIM is directly decided by the
bases. For a parameter space, there may exist different bases.

IV. FIM FOR 2D POSE-GRAPH SLAM
In this section, focused on 2D pose-graph SLAM, we will

show its basis and FIM. Some further discussions are also
presented to compare with some previous work.

A. Geometry of the parameter spaces for R2 × SO(2)

As shown in Section III-C, the tools, including the tangent
space, the inner product, and the gradient, are defined for both
the 2D (R2×SO(2)) and 3D (R3×SO(3)) parameter space.
In this part, we will show the basis for the group R2×SO(2),
which is needed for the derivation of the FIM.

In 2D case, define2:

E =

[
0 −1
1 0

]
, (13)

the orthogonal basis Ex,R = (Ex0,1,E
x
0,2 · · · ,Exnp,1,E

x
np,2,

ER0 , · · · ,ERnp
) of the tangent space T(x,R)P can be fixed as:

Exi,k = (EX
i,k

>
; 02(np+1)×2), i ∈ {0, 1, · · · , np}, k = 1, 2

ERj = (02(np+1)×1;ER
j

>
), j ∈ {0, 1, · · · , np},

EX
i,k = (01×2, · · · ,01×2, 1︸︷︷︸

k−th

, 0

︸ ︷︷ ︸
i−th

,01×2, · · · ,01×2)1×2(np+1),

ER
j = (02×2, · · · ,02×2,RjE︸ ︷︷ ︸

j−th

,02×2, · · · ,02×2)2×2(np+1),

(14)
where Exi,k and ERj are corresponding to the k-axis coordinate
of the i-th pose (xi,Ri) and the rotation parameter of the j-th
pose (xj ,Rj).

2It is noted that, for 2D case, we present the FIM using the orthogonal
basis but not the orthonormal basis (orthonormal is a subset of orthogonal).
Commonly, in the FIM definition (12), the basis used is the orthonormal basis.
However, in most SLAM methods [38], [39], the rotation matrix is represented
by the minimal representation vectors φ (exp(φ∧) is the corresponding
rotation matrix, where ?∧ means the skew-symmetric matrix of ?), which
means that, for simplicity, the orthogonal basis (13) (14) is used in the 2D
case. Moreover, for the 2D rotation matrix, its corresponding Euler angle
value is approximately equal to the minimal Lie group representation using
the basis (13) (14). Thus for the 2D case in this paper, we present the results
using this orthogonal basis (13) (14) corresponding to the Euler angle. If
using the orthonormal basis E/

√
2, the derivation process is similar and the

weight values wSO(2)
ij and ψi for rotation group part in the FIM (15) will

be wSO(2)
ij /2 and ψi/2.

B. FIM

Because of the group R2 × SO(2), there are four differ-
ent parts in the FIM: One sub-matrix corresponding to the
Euclidean space R2. One sub-matrix corresponding to SO(2)
Lie group, and other two sub-matrices related to the coupling
part of R2 Euclidean space and SO(2) Lie group. Based on
the definition (12), we can prove the following theorem:

Theorem 1. For the 2D case of the pose graph problem (6),
given the basis (14), the FIM is:

I2D =

[
LR2

w 4>w
4w L

SO(2)
w + diag{ψ1, · · · , ψnp

}

]
, (15)

where LR2

w is the sub-FIM corresponding to the Euclidean
space R2, satisfying LR2

w = LwR ⊗ I2×2. LwR is the weighted
Laplacian matrix, of which weight value wR

ij for (i, j)-th
edge is δ−2ij ; LSO(2)

w + diag{ψ1, · · · , ψnp
} is the sub-FIM

corresponding to the SO(2) Lie group, satisfying LSO(2)
w =

LwSO(2)
⊗Id×d, where d is given in Section III-C1. LwSO(2)

is
the weighted Laplacian matrix, of which weight value wSO(2)

ij

for (i, j)-th edge is 2κij
I1(2κij)
I0(2κij)

. ψi =
∑
j∈V +

i
δ−2ij ‖xi −

xj‖22, i = 1, 2, · · · , np; The (i, i1)-th block of the SO(2)
by R2 coupling sub-matrix 4w corresponding to the (np +
1 + i, i1)-th block of the FIM is:

(4w)i,i1 =


∑
j∈V +

i
δ−2ij (xi − xj)>E i = i1

δ−2ii1 (xi1 − xi)>E (i, i1) ∈ E
01×2 else.

(16)

Proof: See Appendix A in supplementary material [40].

Remark 1. It is noted that, for 2D pose-graph SLAM, if
the first node (x0, R0) is anchored, the rows and columns
corresponding to node (x0, R0) of the FIM need to be
deleted. So the FIM of the SLAM problem is related to the
weighted reduced Laplacian matrix.

C. Discussion on the FIM for 2D pose-graph SLAM

In the previous 2D work [5], [6] and [34], based on the
block-isotropic Gaussian noise and the Euler angle, we get a
similar formulation of the FIM by: I2D = J>Σ−12DJ , where J
is the Jacobian matrix of the factors of the pose-graph SLAM,
Σ2D is the block-diagonal matrix whose non-zero blocks are
the covariances of the factors of the 2D pose-graph SLAM. In
fact, there are three important differences between this work
with the previous work [5], [6], [34]:

a) Different noise assumptions: The noise for the ro-
tation part used in this work is different from the Gaussian
noise. For the Gaussian noise, we have following result: If
x ∼ N (µ,P ), we can get Gx ∼ N (Gµ,GPG>). So the
FIM can be computed by J>Σ−12DJ . This equation may not
be suitable for other kinds of noises, so we need to compute
the FIM based on its general definition shown in (12).
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b) Lie group representation instead of Euler angle:
The previous work [5], [6], [34] is built based on the Euler
angle representation for the orientation of the poses. The
measurement of the rotation part is simply written as the
subtraction of the orientation. Because of the non-uniqueness
of the Euler angle and the periodicity of the trigonometric
functions, the wraparound problem will lead the measurement
function to be complex instead of a simple subtraction. In this
work, the formulation is built based on the rotation group, so
there is no wraparound issue.

c) Expandability of results from 2D to 3D: Based on
the Gaussian noise on the Euler angle, for the 3D case, the
relative pose measurement can not be written as a simple
subtraction formulation, which is greatly different from the 2D
case, so the expandability of the original method is limited in
2D case. Based on the rigorous treatment of uncertainty on
Rn×SO(n) (isotropic Langevin noise for rotation and block-
isotropic Gaussian noise for translation), the similar but more
complex results are obtained rigorously in the 2D case and
further extended into the 3D case in the following section.

V. FIM FOR 3D POSE-GRAPH SLAM

In this section, we will present the orthonormal basis and
the FIM for 3D pose-graph SLAM.

A. Geometry of the parameter spaces for R3 × SO(3)

In 3D case, define3:

E1 =
1√
2

 0 0 0
0 0 1
0 −1 0

 ,E2 =
1√
2

 0 0 −1
0 0 0
1 0 0

 ,
E3 =

1√
2

 0 1 0
−1 0 0
0 0 0

 ,
(17)

the orthonormal basis Ex,R = (Ex0,1,E
x
0,2,E

x
0,3, · · · ,Exnp,1,

Exnp,2,E
x
np,3,E

R
0,1,E

R
0,2,E

R
0,3, · · · ,ERnp,1,E

R
np,2,E

R
np,3) of

the tangent space T(x,R)P can be fixed as:

Exi,k = (EX
i,k

>
; 09(np+1)×3), i ∈ {0, · · · , np}, k = 1, 2, 3,

ERj,k = (03(np+1)×1;ER
j,k

>
), j ∈ {0, · · · , np},

EX
i,k = (01×3, · · · ,01×3, 1︸︷︷︸

k−th

, 0, 0

︸ ︷︷ ︸
i−th

,01×3, · · · ,01×3)1×3(np+1),

ER
j,k = (03×3, · · · ,03×3, RjEk︸ ︷︷ ︸

3j+k−th

,03×3, · · · ,03×3)3×9(np+1).

(18)

B. FIM

Similar to the FIM in Section IV-B, there are four parts in
the FIM for the group R3×SO(3) of the rigid body motions

3Similar to the 2D case, in many applications,
√
2E1,

√
2E2,

√
2E3 are

used in the bases of the manifold SO(3). In that case, the weight for rotation
group part in the final FIM will be 2w

SO(3)
ij .

in 3D space. Based on the definition (12), we can prove the
following theorem:

Theorem 2. For the 3D case of the pose graph problem (6),
given the orthonormal basis (18), the FIM is:

I3D =

[
LR3

w 43D
w
>

43D
w L

SO(3)
w + diag{Ψ1, · · · ,Ψnp

}

]
, (19)

where LR3

w is the sub-FIM corresponding to the Euclidean
space R3, satisfying LR3

w = LwR ⊗ I3×3. LwR is the
same as that in Theorem 1; LSO(3)

w + diag{Ψ1, · · · ,Ψnp
}

is the sub-FIM corresponding to the SO(3) Lie group,
satisfying L

SO(3)
w = LwSO(3)

⊗ Id×d, where d is given
in Section III-C1. LwSO(3)

is the weighted Laplacian ma-
trix, of which weight value w

SO(3)
ij for (i, j)-th edge is

1
3

κ2
ij(2I0(2κij)−I1(2κij)−2I2(2κij)+I3(2κij))

2I0(2κij)−2I1(2κij)
. Ψi satisfies:

Ψi =

 ψ11
i ψ12

i ψ13
i

ψ12
i ψ22

i ψ21
i

ψ13
i ψ21

i ψ33
i

 , i = 1, 2, · · · , np

ψkli =
∑
j∈V +

i

δ−2ij (xi − xj)>RiI
k,l
3×3R

>
i (xi − xj);

(20)

Let ςkij = (δ−2ij (xi − xj)>RiEkR
>
i )>, k = 1, 2, 3, we have

the (i, i1)-th block of the SO(3) by R3 coupling sub-matrix
43D
w corresponding to the (np+1+i, i1)-th block of the FIM:

(43D
w )i,i1 =
[ ∑

j∈V +
i
ς1ij

∑
j∈V +

i
ς2ij

∑
j∈V +

i
ς3ij

]>
i = i1[

−ς1ii1 −ς2ii1 −ς3ii1
]>

(i, i1) ∈ E
03×3 else.

(21)

Proof: See Appendix B in supplementary material [40].

Similarly, for the 3D case, if the first node is anchored,
the corresponding rows and columns of the FIM need to be
deleted. So the anchored FIM is related to the weighted re-
duced Laplacian matrix. The following CRLB and discussions
on optimality metrics are focused on the pose-graph SLAM,
so the FIM is defined based on the anchored situation.

VI. CRLB FOR POSE-GRAPH SLAM

Classical CRLB gives a lower bound on the covariance
matrix C of any unbiased estimator for an estimation problem
in Rn. In terms of the FIM F = InD, n = 2, 3 of that
problem, the classical result reads C � F−1. However,
because our parameter space P is a manifold instead of a flat
Euclidean space, the CRLB takes up the more general form
C � F−1 + curvature terms [23].

Inspired by [12], we also show that when the signal-to-noise
ratio (SNR) is large enough, the curvature terms will become
negligible. The CRLB is the asymptotic bound, which means
only the leading-order curvature term has been computed. For
SLAM, the non-flat property of the parameter space comes

040006
Highlight
no italic
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from the rotation group, so, in order to limit the Taylor
truncation error, the SNR snr is heuristicly defined as4:

snr =
(np + 1− |A|)E{dist2(ZRuni, I3×3)}

9trace(ISO(3)−1)
, (22)

where ISO(3)−1 is the sub-matrix of the inverse function of
the FIM I3D

−1 corresponding to the SO(3) Lie group, |A|
means the number of anchored nodes (in general |A| = 1
for SLAM), the expectation is taken w.r.t. ZRuni, uniformly
distributed over SO(3). For the numerator, np+1−|A| means
the number of the estimated poses and E{dist2(ZRuni, I3×3)}
shows a suitable constant, which means the expected squared-
error for a bad rotational estimator based on some uniformly
random measurements (no information is available in the
random estimator). The denominator is defined because the
SNR is inversely proportional to the trace of the the rotational
block of the inverse matrix of the FIM. When the quantity of
the rotational measurements increases (large-scale ISO(3)), the
SNR snr will be large. It is well-known that it’s the rotational
part specifically that makes the SLAM problem nontrivial.
When the robot orientation is assumed to be known, the SLAM
problem can be simplified as a linear-Gaussian estimation
problem, called Compass-SLAM problem [6], whose globally-
optimal solution can be computed easily by solving a linear
least squares problem and the curvature terms will be zero.
Hence, we do not consider anything about the performance
of the position estimates in the defined SNR (22) since the
position estimate has no effect on the curvature term.

A. CRLB for 2D pose-graph SLAM

Before the discussion about the CRLB of the synchroniza-
tion of the manifolds R2×SO(2), we introduce a lemma [41]:

Lemma 1. Let M = M1 × M2 be the product of two
Riemannian manifolds, R be its curvature tensor, and R1, R2

be curvature tensors for M1 and M2 respectively, then one
can relate R, R1 and R2 by:

R(X,Y ) = R1(X1, Y1) +R2(X2, Y2), (23)

where Xi, Yi ∈ T (Mi), i = 1, 2 and X = X1 + X2, Y =
Y1 + Y2 ∈ T (M), T (?) means the tangent space of ?.

Based on Lemma 1, we can prove that the curvature tensor
of the parameter space P1 = {R2 × · · · ×R2}np

×{SO(2)×
· · · × SO(2)}np

is equal to the sum of the multiple curvature
tensors of the group {R2 × · · · × R2}np and the group
{SO(2) × · · · × SO(2)}np . As the (product) Lie group, the
curvature tensors of the parameter space P1 on the tangent
space T(x,R)P1 is given by a simple formula [12]:

〈R(X̄, Ω̄)Ω̄, X̄〉 =
1

4
‖[X̄, Ω̄]‖2F , (24)

where [X̄, Ω̄] is the Lie bracket of X̄ and Ω̄, two vectors
(not necessarily orthonormal) in the tangent space T(x,R)P1.
Because of the Lie brackets and the bases (14), it is easy to

4Because the SNR will be used in the 3D case only, we only show the
formulation for 3D pose-graph.

find that these two groups are both flat and their curvature
tensors are 0. So the curvature tensor of the space P1 is 0.

The CRLB for 2D pose-graph SLAM on R2 × SO(2) is:

C � F−1 + curvature terms = F−1 + 0 = F−1. (25)

So we can see that, for the parameter space P1, its CRLB
formula is the same as the classical CRLB result for the flat
Euclidean space shown as C � F−1.

B. CRLB for 3D pose-graph SLAM

Different from the R2 × SO(2) group, the manifold R3 ×
SO(3) is not a flat space. So we need to compute the curvature
terms. Based on Lemma 1, we known that the curvature tensor
of the parameter space P3 = {R3 × · · · ×R3}np

×{SO(3)×
· · · × SO(3)}np

is equal to the sum of the curvature tensor
of the manifold {R3 × · · · × R3}np

and the manifold P2 =
{SO(3) × · · · × SO(3)}np

. The Euclidean space R3 is flat
with a 0 curvature tensor, so the curvature tensor of the space
P3 is determined by the curvature tensor of the manifold P2.

Based on Theorem 4 in [23], CRLB follows: C ≥ F−1 −
1
3 (Rm(F−1)F−1 +F−1Rm(F−1)), where the operator Rm:
R6np×6np

→ R6np×6np
involves the Riemannian curvature

tensor of the parameter space. The operator Rm(F−1) =
1
4diag{0, ddiag(ISO(3)−1)} of the parameter space P2 for the
anchored rotation synchronization has been shown by [12].

Following the same formulation as in [12], we can get the
curvature tensor of 3D pose-graph SLAM:

C � F−1 − 1

12
(ddiag(L̃)F−1 + F−1ddiag(L̃)),

L̃ =

[
0 0

0 ISO(3)−1

]
6np×6np

.
(26)

It is easy to find that when snr is large enough, compared
with F−1, the function ddiag(L̃)F−1+F−1ddiag(L̃) is much
smaller. So it is negligible.

VII. OPTIMAL EXPERIMENTAL DESIGN METRICS FOR
POSE-GRAPH SLAM

In this section, we will discuss and compare the T-/D-
optimal design metrics of 2D/3D pose-graph SLAM and show
the tight bounds of these metrics.

A. T-optimality design metric

1) T-optimality design metric for the 2D case: T-optimality
criterion maximizes the trace of the FIM. Based on the 2D FIM
(15), we can get its T-optimality design metric:

trace(I2D) = trace(LR2

w ) + trace(LSO(2)
w ) +

np∑
i=1

ψi. (27)
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2) T-optimality design metric for the 3D case: Based on
the 3D FIM (19), the T-optimality design metric is:

trace(I3D) = trace(LR3

w ) + trace(LSO(3)
w ) +

np∑
i=1

trace(Ψi).

(28)
We can find that, in these three parts, only one part∑np

i=1 trace(Ψi) includes the state vector xi, xj , Ri. In
fact, because of the special structure about Ψi, we have:∑np

i=1 trace(Ψi) =
∑np

i=1

∑
j∈V +

i
δ−2ij ‖xj − xi‖22. The proof

is shown in Appendix F of supplementary material [40].
3) Further analysis: We know that the measurement func-

tion is: pij = R>i (xj − xi) + yij . In general, we have:

δ−2ij ‖xj − xi‖
2
2 = δ−2ij ‖pij − yij‖

2
2 ≈ δ−2ij ‖pij‖

2
2. (29)

Introduce (29) into the T-optimality metric (27) and (28),
we have:

trace(InD) ≈ trace(LRn

w ) + trace(LSO(n)
w )

+

np∑
i=1

∑
j∈V +

i

δ−2ij ‖pij‖
2
2, n = 2, 3.

(30)

Based on this approximation (30), we can see that the
trace of the FIM is weakly related to the state vector ob-
tained by the estimated result. So, in general, the T-optimality
metric can be easily computed using above equation without
considering the SLAM result. For many real-word datasets,
compared with the other parts,

∑np

i=1

∑
j∈V +

i
δ−2ij ‖pij‖22 or∑np

i=1

∑
j∈V +

i
δ−2ij ‖xj −xi‖22 is relatively small. So we have:

trace(InD)→ trace(LRn

w ) + trace(LSO(n)
w )

=

np∑
i=1

∑
j∈Vi

(
dw

SO(n)
ij + nwR

ij

)
.

(31)

B. D-optimality design metric

D-optimality design is to use the log-determinant of the
covariance matrix as an objective function. However, the deter-
minant of a high-dimensional dense matrix is really expensive
to compute. Due to the sparse structure of the FIM, we al-
ways compute log(det(C)) via log(det(F )): log(det(C)) ≈
log(det(F−1)) = − log(det(F )). Some references show that
the D-optimality metric can keep monotonicity during the
exploration [28]. Besides, the D-optimality metric and the
entropy have an explicit relationship [29]. The D-optimality
metric is a useful metric for quantifying the uncertainty of
the estimated robot poses and the generated map in an active
SLAM problem. In this part, we will derive the bounds of the
D-optimality metric, which are easier to compute and can be
used to approximate the original metric.

Some results about D-optimality design metric for the
synchronization of the group R2×SO(2) based on the block-
isotropic Gaussian noise has been discussed in [6]. Because
the situation using the isotropic Langevin noise on R2×SO(2)
is similar to the ones of [6], in this part, we only show the
extended result for the group R3 × SO(3).

Theorem 3. Considering the 3D pose-graph SLAM problem
in Section III-B, its D-optimality design metric log(det(I3D))
of the FIM has a lower bound lb and an upper bound ub:

lb ≤ log(det(I3D)) ≤ ub, (32)

where lb = log(det(LR3

w )) + log(det(L
SO(3)
w )), ub =

log(det(LR3

w )) +
∑3np

i=1 log(λi(L
SO(3)
w ) + λ∞), λ∞ =

‖diag{Ψ1, · · · ,Ψnp
}‖eig and λi(L

SO(3)
w ) means the i-th

eigenvalue of LSO(3)
w .

Proof: Based on the Schur’s determinant formula [6] and
(19), because LR3

w is invertible, we have:

log(det(I3D)) = log(det(LR3

w )) + log(det(LSO(3)
w +

diag{Ψ1, · · · ,Ψnp
} −43D

w LR3

w

−1
43D
w

>
)).

(33)

Similar to the proof of Theorem 3 in [6], we can
show 43D

w LR3

w

−1
43D
w
> � 0 and diag{Ψ1, · · · ,Ψnp

} −
43D
w LR3

w

−1
43D
w
> � 0 are orthogonal projection matrices,

then we have:

lb = log(det(LR3

w )) + log(det(LSO(3)
w )) ≤

log (det(I3D)) ≤ log(det(LR3

w )) + log ( det ( LSO(3)
w

+ diag{Ψ1, · · · ,Ψnp
} ) ) < ub = log(det(LR3

w ))

+ log(det(LSO(3)
w + λ∞I3np×3np

))

= log(det(LR3

w )) +

3np∑
i=1

log(λi(L
SO(3)
w ) + λ∞).

(34)

Some discussions about λ∞ are shown as follows:

Corollary 1. The biggest eigenvalue λ∞ in Theorem 3 is
smaller than max

i=1,2,··· ,np

1
2

∑
j∈V +

i
δ−2ij ‖xj − xi‖22.

Proof: Based on the Rayleigh quotients [42] and Ap-
pendix F in supplementary material [40], we know that the
variational description of the maximal eigenvalue λ∞(Ψi) of
the real symmetric matrix Ψi, i = 1, · · · , np is:

λ∞(Ψi) = max
x 6=0

x>Ψix

x>x
=

max
x6=0

xT
∑
j∈V +

i
Ψ(i,j)x

x>x
≤
∑
j∈V +

i

max
x6=0

x>Ψ(i,j)x

x>x

=
∑
j∈V +

i

λ∞(Ψ(i,j)) =
∑
j∈V +

i

1

2
δ−2ij ‖xj − xi‖

2
2.

(35)

All eigenvalues of a block diagonal matrix are the eigen-
values of all block matrices on the diagonal [43], so we have:

λ∞ = max
i=1,2,··· ,np

λ∞(Ψi)

≤ max
i=1,2,··· ,np

1

2

∑
j∈V +

i

δ−2ij ‖xj − xi‖
2
2.

(36)

C. Discussion and comparison

1) Efficiency of the metric:
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a) T-optimality metric: The parameters wSO(n)
ij and wR

ij

are constant. To simplify the discussion, we assume that these
parameters are the same in every measurement for each pair
of (i, j). Set: cω = dw

SO(n)
ij + nwR

ij , based on (31), we have:

trace(InD) ≈
np∑
i=1

∑
j∈Vi

cω = cω
np∑
i=1

|Vi|, n = 2, 3, (37)

where
∑np

i=1 |Vi| means the total node degree of the graph.

Based on the approximation between the T-optimality metric
and the node degree (37), we can get a simple conclusion:
for fixed number of poses, minimizing the T-optimality metric
is close to gathering as many measurements as possible.
Moreover, we can also see the limitation of the T-optimality
metric: when two graphs have the same total node degree and
same node number, the T-optimality metric can not be used
to distinguish their uncertainty levels. Two graphs in Figure 1
illustrate this.

Fig. 1: Two examples of pose-graphs (with x0 as anchor)

Because of the same nodes and the same total node degree,
graph 1 and graph 2 have the similar T-optimality objective
function based on the equation (37). However, it is easy to
know that graph 2 is much better than graph 1 because of the
good loop closure. The uncertainty of poses x4 to x7 in graph
1 is larger than the ones in graph 2. So in some situations, the
T-optimality metric is not very valuable.

b) D-optimality metric: For most pose-graph SLAM
problems, the relative translations ‖xi−xj‖22 are usually small,
so we have ub → lb. Based on the bounds (34), we can get:
log(det(InD)) → lb = log(det(LRn

w )) + log(det(L
SO(n)
w )).

We can get the following theorem:

Theorem 4. Considering the 2D/3D pose-graph SLAM prob-
lem in Section III-B, ξ , max

i=1,2,··· ,np

∑
j∈V +

i
δ−2ij ‖xj − xi‖22

(2D) or ξ , max
i=1,2,··· ,np

1
2

∑
j∈V +

i
δ−2ij ‖xj − xi‖22 (3D) and

λmin(L
SO(n)
w ) is the minimal eigenvalue of LSO(n)

w , define
ε = log(det(InD)) − log(det(LRn

w )) − log(det(L
SO(n)
w )).

Then we have,

0 ≤ ε ≤ dnp log(1 + ξ/λmin(LSO(n)
w )). (38)

Proof: Based on the equations (34) and (36), we have:

ε = log(det(InD))− log(det(LRn

w ))− log(det(LSO(n)
w ))

≤ log(det(LSO(n)
w + ξIdnp×dnp

))− log(det(LSO(n)
w ))

= log

dnp∏
i=1

λi(L
SO(n)
w ) + ξ

λi(L
SO(n)
w )

≤ log
(

1 + ξ/λmin(LSO(n)
w )

)dnp

= dnp log
(

1 + ξ/λmin(LSO(n)
w )

)
,

(39)
where λi(L

SO(n)
w ), i = 1, 2, · · · , dnp are the eigenvalues of

L
SO(n)
w , λmin(L

SO(n)
w ) is the minimal eigenvalue of LSO(n)

w .

Based on Kirchhoff’s matrix tree theorem [44], it is easy
to know that det(LRn

w ) and det(L
SO(n)
w ) are equivalent to the

weighted number of spanning trees of the translation graph and
the rotation graph. So, for a weighted graph G in pose-graph
SLAM, the D-optimality design is almost equal to maximizing
the weighted number of spanning trees of the graph G (also
named weighted tree connectivity).

Remark 2. The similar 2D pose-graph SLAM results with
the Gaussian noise about the relationship between the D-
optimality metric with the weighted tree connectivity have
been discussed in [6]. In this paper, we extend it into the 3D
pose-graph SLAM situation. Thus, results and all the further
algorithms derived from these results (including k − ESP+

problem [6]) can be extended to 3D case.

2) Computational complexity:
a) T-optimality metric: After constructing the FIM, the

computational complexity of the trace of the FIM is O(np).
In some special scenarios and applications, such as the active
SLAM, some parts and some functions of the FIM can be
reused in an incremental method. The complexity can be
further reduced to O(Lp), where Lp is the predicted horizon
(MPC framework). It is easy to see that the T-optimality metric
is a computational cost-effective metric.

b) D-optimality metric: We can see that the bounds lb
and ub of the D-optimality metric of the FIM are almost
independent of the values of the pose xi and Ri, which leads
to robust performance. Beyond that, the update and operations
on these bounds are easier than the real D-optimality metric
of the FIM. In this part, we talk about the computational
complexity of these bounds in 3D case (2D case is similar).

For the lower bound, we have two parts: log(det(LR3

w )) and
log(det(L

SO(3)
w )). Using the sparse Cholesky decomposition

with a good fill-reducing permutation (Algorithm 1 in [6]),
they can be computed much faster than the log-determinant
function of the dense matrix O(n3p); However, because LR3

w

and LSO(3)
w have the same sparse structure, we can simply

modify the original Algorithm 1 in [6] to a more efficient new
algorithm (Algorithm 1).

In Algorithm 1, (?)i,i means the i-th diagonal element of
the matrix ?. The same order l in Algorithm 1 can also be
used to compute the upper bound. This algorithm is similar
to the Algorithm 1 in [6]. The only difference is to re-use the
result of the column approximate minimum degree reordering
algorithm because of the same sparse structure.
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Algorithm 1 Lower bound computation for D-optimality
metric (3D case)

1: procedure LB(LwSO(3)
,LwR )

2: l← COLAMD(LwSO(3)
) . Column approximate

minimum degree permutation
3: L1 ← SparseCholesky(LwSO(3)

(l, l)) . Sparse
Cholesky factor based on l for LwSO(3)

4: L2 ← SparseCholesky(LwR(l, l)) . Sparse
Cholesky factor based on the same l for LwR

5: return 6
∑
i (log(L1)i,i + log(L2)i,i)

For the upper bound ub, there are three parts:
log(det(LR3

w )), λi(L
SO(3)
w ) and λ∞. For λi(L

SO(3)
w ),

we can use the Lanczos algorithm [45] and Fast Multi-pole
Method [46] for the sparse Hermitian matrix (FIM is a
sparse Hermitian matrix). The Lanczos algorithm can help to
generate a tridiagonal real symmetric matrix from the matrix
L
SO(3)
w in complexity O(d̄nmpnp) or O(d̄nn

2
p) if mp = np

[47], where d̄n is the average number of nonzero elements in
a row of the matrix LSO(3)

w , mp is the number of iterations in
the Lanczos algorithm (as default, let mp = np [45]). For the
generated tridiagonal matrices, the Fast Multi-pole Method
computes all eigenvalues in just O(np log np) operations.
So the computational complexity of λi(L

SO(3)
w ) is totally

O(d̄nn
2
p) + O(np log np); For λ∞, we have shown the

analytical results λ∞ ≈ max
i=1,2,··· ,np

1
2

∑
j∈V +

i
δ−2ij ‖pij‖22,

which have the computational complexity O(np).
The above discussion is based on the operations on the

whole Laplacian matrix. Similar to the T-optimality metric,
in some special scenarios and applications, such as the active
SLAM, the incremental computation using the matrix deter-
minant and re-use of calculation method (rAMDL) has been
introduced into the computation of the D-optimality metric
of the FIM [33]. Without the loop-closure, its computational
complexity is reduced to O(L3

p), where Lp is usually constant
and independent of the pose number np.

VIII. EXPERIMENTAL RESULTS

In this section, we validate the correctness of our results
and evaluate the performance of the bounds based on a variety
of 2D/3D rigid body motion synchronization problems drawn
from pose-graph SLAM. The datasets in this section are based
on the open sources of the literature [3].

All experiments are performed on a HP EliteDesk 800 G2
desktop with an Intel Core i5-6500 3.20 GHz processor and
8 GB of RAM running Windows 10 Enterprise. Our experi-
mental implementations are written in MATLAB R2016a.

A. Relation between optimality metrics with graph topology

In this experiment, we verify the results in Section VII-A3
and VII-C1a, which show that the T-optimality metric has
a strong and direct relationship with the total node degree
of the pose-graph as well as the D-optimality metric has a
better performance in the uncertainty evaluation than the T-
optimality metric. We use a small example with eight nodes
to demonstrate this. A regular octagon is constructed based on

(a) Inital pose-graph (b) Pose-graph added 3 edges
Fig. 2: Pose-graph example

these eight poses. The variances of the translation δ2ij and the
concentrations κij of all measurements are set as 1 × 10−4

and 5×103, respectively. The initial pose graph only includes
the odometer without the additional measurements, as shown
in Fig. 2a. Then, we begin to add the measurements gradually
from 1 edge to 21 edges without repetition. For example in
Fig. 2b, we add 3 additional measurements. Then, for every
graph, we can evaluate the trace and the log-determinant of the
FIM after using SE-sync [3] to solve the SLAM problem. The
optimality metric values (black points) and their corresponding
total node degree (red line) are shown in Fig. 3 and 4. Each
black point means the optimality metric corresponding to
a pose-graph with the same 8 poses and unique additional
measurements. For example, if the measurement number is
10, which means that we need to add 3 new measurements
to the original graph shown in Fig. 2a and Fig. 2b. Based on
combinatorics, we can generate all possible pose graphs with
different measurements but the same poses, and then evaluate
every pose graph using the optimality metric.

Fig. 3: Direct relationship between T-optimality metric with total node degree

In Fig. 3, we can find that the T-optimality metric is almost
proportional to the total node degree of the whole pose graph,
because the term

∑np

i=1

∑
j∈V +

i
δ−2ij ‖pij‖22 is relatively small.

The T-optimality metric values of the graphs, which have the
same node degree, are similar. Directly using T-optimality
metric may lead the obvious local minimal problem in its
applications, such as the complex active SLAM problem. In
Fig. 4, we can see that the D-optimality metric has a weaker
connection with the total node degree compared with the T-
optimality metric. We sort the D-optimality metric values of
all possible graphs with m = 12 and m = 13 measurements.
It can be seen that the D-optimality metric values with 13
measurements are smaller than the ones with 12 measurements
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Fig. 4: Part relationship between D-optimality metric with total node degree

(pay attention to the red circle part). This situation is common
for many real pose-graph SLAM problems. Even with fewer
measurements, the SLAM problem with better network struc-
ture can have a better D-optimality metric, whose physical
meaning is the volume of the covariance uncertainty.

B. T-/D-optimality metrics in active SLAM application

In this simulation, in order to further explore the applied
efficiency of the T-/D-optimality metrics, we compare them
in the active SLAM task, as shown in Fig. 5. Based on 100
random simulations with different designed way-points, we
find that the optimal one selected by the T-optimality metric is
commonly the same as the one picked out by the D-optimality
metric (77%). Fig. 5 shows a result of which black and blue
lines are respectively selected by the D-optimality metric and
the T-optimality metric. The black path will lead more loops
than the blue path, which leads to the smaller covariance
value of the poses (black line: 1.2497 × 10−3 m, blue line:
1.2701× 10−3 m). However, we also find that, when we pick
out top 5 paths which have the big T-optimality metrics in
every simulation as a set Ξ, the optimal one selected by the D-
optimality metric will belong to Ξ with a very high probability
(100%, 100 simulations). The above results show that these
two metrics have a strong positive correlation, but still have
some differences. The D-optimality metric is better than the
T-optimality metric in the uncertainty evaluation.

Even though, sometimes, the T-optimality metric has the
poorer performance than the D-optimality metric, it can be
computed very fast. We can only use the diagonal elements
of the FIM to compute the T-optimality metric. For the
D-optimality metric, we need to construct the whole FIM
and then compute the log-determinant function, which will
obviously introduce the high computational complexity. It
respectively costs 5.3934s and 0.4398s to compute the D-
optimality metric and the T-optimality metric of 20 candidate
paths with 170 poses and about 5206 measurements. The main
advantage of the T-optimality metric is the better computa-
tional efficiency. So in our current work [49], we use the T-
optimality metric or the weighted node degree to deal with
the large-scale search for rough candidate actions, and the D-
optimality or its lower bound (weighted tree connectivity) is
applied for sophisticated search within a small elite group.

Fig. 5: Active SLAM task using two metrics. An unmanned aerial vehicle
(UAV) moves from the first pentagram (0, 2, 0.2), passes several pre-defined
way-points (blue pentagrams), and meanwhile performs the SLAM task in
the whole process. The green circles, the red stars, and the red points are
respectively the real UAV trajectory, the estimated trajectory, and the detected
features. The features will be detected when they locate in the sensor range of
the UAV and we can get the relative pose measurements based on the common
features between two poses. Using SE-sync, the obtained pose graph with
the red nodes and the blue edges is shown in the small left-down figure.
Finally, when it reaches (4, 4.5, 0.5), the UAV aims to select the future
paths by evaluating the T-/D-optimality metrics. 20 random candidate paths
(green lines) with the same number of the additional poses are generated
and evaluated. The optimal paths based on different metrics are selected. The
black and blue lines are the paths respectively selected by the D-optimality
and T-optimality metrics.

C. Bound efficiency on D-optimality metric

In this section, we evaluate the bound efficiency and com-
putational advantage on a variety of classical heterogeneous
pose-graph SLAM benchmarks. These datasets include: the
synthetic datasets (3D: sphere, torus, and tiny/small/normal
grid datasets) and the real-world datasets (2D: CSAIL, Intel
Research Lab, manhattan (M3500), KITTI, city10000, and
ais2klinik datasets; 3D: garage, cubicle, and rim datasets).

For the lower bound, the proposed Algorithm 1 is used to
compute it. The largest eigenvalue of the weighted Laplacian
matrix is obtained using the QR decomposition with the same
ordering. Results for these experiments are shown in Table I
(2D) and Table II (3D). We present the number of the poses
and the measurements, the log-determinant of the FIM, its
upper and lower bounds, and their computational time5.

On each of these examples, the log-determinant of the FIM
is bounded within lb and ub correctly. At the same time, lb and
ub are very close to original metric in many datasets, especially
for the lower bound lb. We can also find that, benefiting from
the great dimensionality reduction, the computation of the
upper and lower bounds of the log-determinant of the FIM
is much cheaper than the ones of the original D-optimality
metric. Because the dimension of the weighted Laplacian
matrix is one-fourth (2D)/one-sixth (3D) of that of the full
FIM, this great computational gap is sensible.

5It is noted that these results do not include the computational time of
constructing process of the FIM and Laplacian matrix.
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TABLE I: D-optimality metric results for the 2D pose-graph SLAM datasets

Original FIM Upper bound Lower bound
Dataset # Poses # Measurements Metric value Time [s] Value Time [s] Value Time [s]

CSAIL 1045 1172 1.9860×104 2.3284×10-3 1.9876×104 9.2391×10-4 1.9858×104 3.6712×10-4

Intel 1728 2512 3.0194×104 6.0744×10-3 3.0352×104 4.0055×10-3 3.0155×104 2.0743×10-3

manhattan 3500 5453 7.1124×104 3.3530×10-1 7.1193×104 7.3602×10-3 7.1104×104 4.5105×10-3

KITTI 4541 4677 1.1697×105 8.9039×10-3 1.1703×105 4.6468×10-3 1.1695×105 3.1092×10-3

city10000 10000 20687 1.6667×105 9.0052×10-2 1.6816×105 2.4292×10-2 1.6520×105 2.0664×10-2

ais2klinik 15115 16727 2.3642×105 3.6301×10-2 2.3975×105 1.4693×10-2 2.3567×105 1.3116×10-2

TABLE II: D-optimality metric results for the 3D pose-graph SLAM datasets

Original FIM Upper bound Lower bound
Dataset # Poses # Measurements Metric value Time [s] Value Time [s] Value Time [s]

tiny-grid 9 11 2.4562×102 2.1558×10-4 2.7561×102 2.9866×10-2 2.4163×102 1.4115×10-4

small-grid 125 297 4.4452×103 3.6373×10-3 4.8488×103 3.1836×10-2 4.3815×103 4.3020×10-4

garage 1661 6275 2.0618×104 3.9511×10-2 3.6618×104 3.6117×10-2 1.5845×104 2.2989×10-3

sphere 2500 4949 9.9105×104 7.4856×10-2 1.0607×105 7.4023×10-2 9.9054×104 6.7317×10-3

torus 5000 9048 2.4986×105 1.9488×10-1 2.6526×105 1.0156×10-1 2.4985×105 1.6390×10-2

cubicle 5750 16869 2.3729×105 2.1579×10-1 3.1839×105 5.2156×10-2 2.3685×105 1.4141×10-2

grid 8000 22236 4.2613×105 3.2318×100 4.4902×105 1.5065×10-1 4.2610×105 9.0280×10-2

rim 10195 29743 4.7257×105 4.1626× 10-1 5.8622×105 6.5298×10-2 4.7209×105 4.1260×10-2

It is easy to find that, except the ‘garage’ dataset6,
the log-determinant of the whole FIM gets closed to
its lower bound (in 103%), because of the small term∑np

i=1

∑
j∈V +

i
δ−2ij ‖pij‖22. So in the real applications of the

D-optimality metric, such as the active pose-graph SLAM
[48], we suggest using the tight lower bound, whose physical
meaning is the sum of the weighted number of the spanning
trees of two graphs, to replace the original objective function.

Besides the computational time of obtaining these metrics,
we also show the computational time of constructing the whole
FIM, the weighted Laplacian matrix for R2 and R3 parts and
the weighted Laplacian matrix for SO(2) and SO(3) parts.
They are used to compute the metrics. Table III and Table
IV show the computational time. The results show that the
sparser weighted Laplacian matrices for the lower bound are
much easier to be constructed than the whole FIM.

TABLE III: Matrix constructing time for the 2D SLAM datasets

Time [s]

Dataset Whole FIM Weighted Laplacian matrices

CSAIL 8.8581×10-2 1.5723×10-2

Intel 1.3518×10-1 1.9283×10-2

manhattan 2.3982×10-1 2.6794×10-2

KITTI 2.2071×10-1 2.5118×10-2

city10000 7.3709×10-1 6.3875×10-2

ais2klinik 6.3033×10-1 5.4222×10-2

D. Efficiency of CRLB

In this section, our main purpose is to validate that the
CRLB is reachable using SE-sync method (which belongs

6The ‘garage’ dataset has a poor measurement network, whose weighted
values of measurement edges are small (large covariance), and the translation
values between different poses are large. Both of these two properties make
that the term

∑np

i=1

∑
j∈V +

i
δ−2
ij ‖xj − xi‖22 is relatively large compared

with the term log(det(LRn

w )) + log(det(L
SO(n)
w )). This situation is not

very common in the real world datasets.

TABLE IV: Matrix constructing time for the 3D SLAM datasets

Time [s]

Dataset Whole FIM Weighted Laplacian matrices

tiny-grid 7.1865×10-2 2.0968×10-2

small-grid 1.1677×10-1 1.9557×10-2

garage 9.6897×10-1 5.3639×10-2

sphere 8.3076×10-1 4.8680×10-2

torus 1.3884×100 7.3766×10-2

cubicle 2.3300×100 1.1033×10-1

grid 3.0566×100 1.1413×10-1

rim 4.0647×100 1.7824×10-1

to maximum likelihood estimator) [3]. These experiments are
based on ‘tiny-3Dgrid’ and ‘CSAIL’ datasets.

In order to compute the covariance by the statistical way, we
need a ground truth and then sample noises to it. The ground
truth is obtained by the optimization results of original datasets
presented in [3] using SE-sync. Then, we set these estimated
poses as the ground truth. After obtaining the ground truth,
the random noises obeying the isotropic Gaussian distribu-
tion and the isotropic Lagevin distribution are generated. We
use ‘normrnd’ MATLAB function to generate the isotropic
Gaussian distribution. For the isotropic Lagevin distribution,
the noises are generated by the Acceptance-Rejection Method
(ARM) [50]. Then we can add these noises into our relative
measurements by the edge data using following equations:

Hij =ZijRjR
>
i ,Zij ∼ Lang(In×n, kc · κij)

pij =R>i (xj − xi) + yij ,yij ∼ N (0, δ2ijIn×n),
(40)

where kc is the coefficient to determine the uncertainty level
of the rotation measurement. kc · κij is the concentration of
the noise7.

7It is noted that we only consider the uncertainty level of the rotation
measurement in our SNR definition (22).
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For the estimated results, the trace of covariance is:

trace(C) = E{
np∑
i=1

(
dist(Ri, R̄i)

2 + ‖xi − x̄i‖22
)
}, (41)

where ?̄ means the ground truth of ?. Every measurement
dataset can generate a value using (41), then repeat many
times to obtain the mathematical expectation E{trace(C)} by
average. Finally, we can compute and compare the CRLB and
the average mean squared error (MSE) for every pose.

For the 2D situation, we use the ‘CSAIL’ dataset to obtain
the average MSE and CRLB. The initial κij and δ−2ij are
respectively set as 150 and 140. The coefficient kc changes
from 1 to 20. The simulations are repeated 100 times to get
the covariance matrix. The results are shown in Fig. 6.

Fig. 6: Comparison of the CRLB with the mean squared error (MSE =
trace(C)

np
) of known estimators for the synchronization of np = 1045 poses

with m = 1172 measurements and one anchor based on the ‘CSAIL’ dataset.
The MSE using the SE-sync method appears to reach the CRLB.

For the 3D situation, we use the ‘tiny-3Dgrid’ dataset to
obtain the covariance, CRLB with curvature terms and CRLB
without curvature terms. κij is set as 12.5 and the coefficient
kc changes from 1 to 20. Based on the Monte Carlo simulation,
the processes are repeated 50 times. The simulation results are
shown in Fig. 7.

Fig. 7: Comparison of the CRLB with the mean squared error (MSE =
trace(C)

np
) of known estimators for the synchronization of np = 9 poses with

m = 11 measurements and one anchor based on the ‘tiny-3Dgrid’ dataset.
The MSE using the SE-sync method appears to reach the CRLB.

The above two simulations show two key points. The first
one is that the CRLB is reachable when the SNR is large

enough. The other one is that, compared with the F−1, the
curvature tensor of the parameter space P3 is negligible.

IX. CONCLUSION, POTENTIAL APPLICATIONS AND
FUTURE WORK

Based on the assumption of the isotropic Langevin noise for
rotation and the block-isotropic Gaussian noise for translation,
the FIM and CRLB of 2D/3D pose-graph SLAM, which are
formulated as the synchronization on Rn × SO(n), n = 2, 3,
are derived and shown to be closely related to the weighted
Laplacian matrix of pose-graph SLAM. Then, the TOED
metrics, including T-optimality and D-optimality, are dis-
cussed. It shows that the T-optimality metric is almost directly
determined by the total node degree, and the D-optimality
design is almost equivalent to maximizing the weighted tree-
connectivity. We find that the T-optimality metric is cheaper
than the D-optimality metric, but the D-optimality metric has
a better performance in terms of the uncertainty evaluation.
Furthermore, the lower and upper bounds of the D-optimality
metric are presented, which are cheaper and can be used
to approximate the original metric. The experiment results,
which verify our standpoints, are performed based on both
the synthetic datasets and the real-world datasets.

There are multiple kinds of potential applications using our
obtained results. Two examples of the applications are active
SLAM and measurement selection.

Active SLAM is a decision making problem where the
robot’s trajectory is chosen both to improve the SLAM results,
and meanwhile, to perform other tasks such as coverage or
exploration [51]. The optimal design metrics of the FIM and
the covariance matrix are the most common objective function
in active SLAM [52] and other belief space planning problems
[33]. The computation complexity of the objective function is
one of the key issues in active SLAM. This paper presents the
new metrics, including weighted node degree and weighted
tree connectivity, in 2D/3D situation for active SLAM, which
helps to improve the real-time ability [51]. In future, we will
apply these metrics to perform the on-line active SLAM using
some plat-forms, like quad-rotor UAV and other robots.

Because of the limitation of the weight, size, power budgets,
and on-board hardware capability of the robot, for the scalable
and long-term autonomy, the measurement selection is one
of several mechanisms through which the SLAM systems
can achieve resource adaptation. In [6], based on the 2D
result, the measurement selection problem, which is proved
to be a sub-modular optimization problem, is solved by the
greedy algorithm and the convex relaxation method. This edge
selection problem shows its enormous potential applications in
the front/back-end computational reduction [6] and resource
assignment in cooperative SLAM [53].

The results presented in this paper are only the first step to-
wards the use of graph topology in areas such as active SLAM,
measurement selection, anchor selection, and so on. Similar to
our work [51], we are trying to use these technologies into the
planning and decision making pipelines. The further study on
the FIM, CRLB and optimal design metric for SE(3) (special
Euclidean) group will be another interesting research direction.
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