
A Deep Learning Framework for Robust Semantic
SLAM

Rana Azzam, Tarek Taha, Shoudong Huang, and Yahya Zweiri

Abstract—Semantic simultaneous localization and mapping
(SLAM) is susceptible to several sources of noise that hinder
the accuracy of its trajectory and map estimates. Such sources
include inaccurate landmark pose estimation and sensor lim-
itations. In this paper, a novel deep learning based approach
is proposed to improve the accuracy of semantic SLAM by
reducing the trajectory estimation error. A deep neural network
consisting of various non-linear activation functions is structured
and pre-trained by means of an unsupervised greedy layer-
wise pre-training technique. The network is then fine-tuned
using the adaptive moment estimation (ADAM) optimizer. The
training datasets were collected using several simulated and real-
time experiments and are composed of two parts, the estimated
trajectory and the corresponding ground truth. The effectiveness
of the proposed approach was shown through simulated exper-
iments, real-time experiments, and a sequence from the TUM
RGB-D dataset. The performance of the DNN was tested with
different pre-training techniques and the proposed unsupervised
greedy layer-wise pre-training technique proved to perform the
best across training, validation, and testing datasets in terms of
reducing the mean absolute trajectory error (ATE).

Index Terms—Deep Neural Network, Semantic SLAM, Esti-
mation Error

I. INTRODUCTION

Deep neural networks (DNN) are trained to perform a
particular task using massive amounts of data. The training
process adjusts the weight-space of the network through sev-
eral epochs to ensure that the network’s predictions resemble
the target data [1]. However, arriving at the optimal weight-
space after the DNN training is extremely challenging. The
performance of the gradient descent approaches during train-
ing depends on the initial weights assigned to the network
[2]. Consequently, the research activity in the field of DNNs
remained dormant until the proposal of the greedy layer-wise
pre-training technique in 2006 [2], [3], where a restricted
Boltzman machine was used to train a deep belief network.
Afterwards, a stacked auto-encoder (SAE) architecture was
proposed in [4] to replace the restricted Boltzman machine in
an analogous pre-training approach.

Greedy layer-wise pre-training initializes the weights of
a neural network to values in the neighborhood of a local
minimum, and hence aids the optimization process and induces
better model generalization [4]. The term greedy refers to pre-
training every layer individually, irrespective of subsequent
layers in the network [4]. Accordingly, each layer is fed
with data at a different abstraction level, and hence, learns
to represent the data in a distinct manner [3]. Ultimately,
the entire model is fine-tuned altogether by means of a
gradient descent method [4]. Ever since then, DNNs have

been witnessed attaining state-of-the-art performance in a wide
range of applications, such as computer vision [5] and robotics
[6].

When a robot maneuvers in an environment while perceiv-
ing information through sensors mounted on it, simultaneous
localization and mapping (SLAM) can be performed to esti-
mate the robot’s trajectory and the map of the environment.
SLAM has been heavily studied in the past three decades and
a wide range of solutions have been proposed, like [7], [8],
[9]. Deep learning has been involved in the development of
solutions to SLAM in several ways [10] as can be seen in
[11], [12], [13], [14], [15]. Not only was it able to replace
techniques in the classical SLAM pipeline, but it motivated
the development of semantic SLAM [16], [17] which exploits
understanding of the surrounding environment [18], [19], [20]
to perform trajectory and map estimation. The quality of the
obtained estimates is affected by several factors, such as the
quality of landmark detection and localization [21], sensor
noise [22], [23], and occlusions [24]. Developing an error
model that takes into account all the factors contributing to
measurement inaccuracies is considered very challenging and
hence, estimating a highly accurate trajectory and map is
difficult.

Enhancing state estimation using deep learning approaches
can be found in very few research work. For instance, the work
presented in [25] improves the accuracy of wheel odometry
using a shallow neural network. In [6], sequential learning
was utilized to enhance the robustness of visual odometry. On
a different note, a deep neural network was proposed in [15] to
better estimate the relative poses between consecutive images
and hence improve visual localization.

In this paper, we propose a deep learning based approach
that can be used to minimize the semantic SLAM estimation
error by identifying different noise patterns and trying to
reduce them. This is done through a deep neural network that
is pre-trained using the unsupervised greedy layer-wise pre-
training technique then fine-tuned using the adaptive moments
(Adam) optimizer. The training datasets are comprised of
semantic SLAM trajectory estimations and the corresponding
ground truth which are obtained from simulated and real-time
experiments. In summary, the contributions of this paper are:

• Developing a deep learning based approach for minimiz-
ing semantic SLAM estimation errors.

• Pre-training the developed DNN using unsupervised
greedy layer-wise training and demonstrating its supe-
riority over other pre-training approaches.



Fig. 1: Semantic SLAM with deep learning based noise minimization

• Fine-tuning the DNN to generalize well to previously
unseen data.

• Validation of the proposed filtration approach using
datasets obtained from simulation, real-time experiments,
and publicly available domains.

II. PROPOSED APPROACH

Figure 1 shows a general block diagram of the approach
proposed in this paper. A wheeled vehicle navigates in an
unknown GPS-denied environment and records its odometry
and visual measurements, obtained through an RGB-D sensor.
A motion capture system is used to obtain the ground truth
of the vehicle’s trajectory. Using odometry and visual mea-
surements, a semantic SLAM system is run to estimate the
trajectory of the vehicle. The estimations are then passed to the
proposed DNN for further refinement and error minimization.
A description of the semantic SLAM block and the DNN are
provided in the next sections.

A. Semantic SLAM

Using the measurements recorded by the robotic vehicle in
the environment, semantic SLAM estimates the trajectory and
the map of the environment using factor graph optimization.
Odometry is used to construct motion constraints which are
relative poses of the robot in the environment. In paral-
lel, RGB-D frames are processed to compute measurement
constraints. RGB frames are passed to you only look once
(YOLO) object detector [18] that detects the label and the
bounding box of objects in the image. The corresponding
depth frame is then converted to point cloud, which is clustered
to extract the points that belong to the detected object. The
geometric centroid of the object segment is used to compute
the relative position between the object and the vehicle. Since
multiple objects of the same category might be present in the
environment, a distance threshold is employed to associate
each observation to a landmark in the map.

B. DNN-based Estimation Error Minimization

In this section, the architecture of the proposed DNN,
including its depth, the size of each layer, and its activation

Fig. 2: Proposed neural network architecture

functions are presented. Then, the adopted pre-training and
fine-tuning techniques are demonstrated.

1) Proposed DNN Architecture: The architecture of the
adopted DNN, shown in Figure 2, exhibited the highest per-
formance among many other tested architectures with different
depths, activation functions, and layer sizes. It consists of
an input layer, three hidden layers, and an output layer.
The input layer takes in three inputs, the 2D position and
associated orientation of the robotic vehicle represented as
X = [xm, ym, ϑm]T . The output layer layer has three neurons,
and its activation function is sigmoid. The ground truth trajec-
tory of the robot, referred to as T = [x, y, ϑ]T is provided to
the network as a target and is recorded using a motion capture
system in real-time experiments.

The output of the network is an improved estimate of the
2D position and orientation of the robot and is referred to
as Y = [xe, ye, ϑe]

T . The three hidden layers are of the same
size, where 70 neurons reside in each layer. Employing hidden
layers of the same size was recommended in [3] due to its
convenience when using the pre-training technique that will
be presented shortly. As for the activation functions, Swish
[26] was chosen to activate the first hidden layer, the rectified
linear unit (ReLU) to activate the second hidden layer, and
sigmoid to activate the last hidden layer.

2) DNN Pre-training: Since the performance of a neural
network heavily relies on the assigned weights [27], it is
essential to guarantee that the initial weights are in the
neighborhood of a good estimate so as to ensure that the



Fig. 3: Neural network unsupervised greedy layer-wise pre-training (or SAE) approach

employed gradient descent method works well during training
[2], [4]. To that end, a pre-training technique is adopted in the
proposed approach to initialize the network’s weights.

The adopted unsupervised greedy layer-wise pre-training
technique, which is also known as SAE, is depicted in Figure
3. The proposed DNN is pre-trained in four stages, where the
DNN’s non-input layers are trained sequentially, starting from
the first hidden layer onward. Each layer is individually trained
using an SNN, which is also referred to as an auto-encoder, of
suitable input and output layers. More specifically, the input
and output layers of the SNN used to train layer (p) should
be equal in dimension to layer (p− 1) in the DNN. The size
of its hidden layer is the size of layer (p) in the DNN. For
example, to train the first hidden layer in the proposed DNN,
the employed SNN has three inputs, 70 neurons in the hidden
layer, and three outputs. The architectures of the remaining
SNNs are illustrated in Figure 3. Each SNN takes the output
of the preceding layer in the DNN as its input and output. The
inputs and outputs of the first SNN, however, are the same
as the inputs to the DNN. The weights and biases resulting
from training each SNN are assigned as initial weights to
the corresponding layers in the DNN in the fine-tuning stage
as described in the next section. At this point, the network’s
weights are initialized.

3) DNN Fine-tuning: Although pre-training better initial-
izes the weights of the DNN, it suffers from sub-optimality,
especially for the weights in the first hidden layers [3].
Therefore, global network fine-tuning is carried out to replace
stochastic weights, resulting from unsupervised learning in the
pre-training process, with more deterministic ones by means of
the backpropagation algorithm [2]. The optimization process
in this case is much simpler compared to optimizing random
initial weights and yields better generalization [4].

The DNN is trained by updating the weights for each entry
in the dataset through several training epochs using backprop-
agation. Backpropoagation [28] is a widely used supervised
learning technique for neural networks, where the differences
between the DNN’s predictions and the corresponding target
outputs are employed to adjust the internal weights of the
network.

III. EXPERIMENTAL VALIDATION

In this section, the proposed approach is validated through a
set of simulated and real-time experiments, including publicly
available datasets. After preparing the datasets, an automated
search for the optimal DNN structure was conducted by
varying the number of layers, number of neurons per layer,
the activation functions, and the initial random seeds. More
than 2000 different DNN structures with three, four, and five
hidden layers were trained and tested. The structure shown in
Figure 2 demonstrated the highest accuracy among all other
structures, where the mean absolute trajectory error (ATE)
was the lowest. Comparisons between three alternatives for
pre-training the adopted structure were then conducted, more
specifically unsupervised greedy layer-wise pre-training, su-
pervised greedy layer-wise pre-training, and backpropagation.

The rest of this section is organized as follows: The exper-
imental set-up used to record the training dataset is presented
in Section III-A. In Section III-B, the structure of the training
datasets is described. Section III-C includes comparisons of
different pre-training techniques used to initialize the net-
work’s weights, including unsupervised greedy layer-wise pre-
training (or SAE), supervised greedy layer-wise pre-training,
and backpropagation. Finally, the proposed approach is tested
on a SLAM sequence from the TUM RGB-D dataset [29].

A. Experimental Set-up
An 80m long trajectory of a ground vehicle was recorded in

a simulated 10 × 10 m2 static environment that is populated
with multiple instances of objects from three different cat-
egories; people, monitors, and bottles. The ground vehicle is
equipped with wheel encoders and an RGB-D camera mounted
on top.

For real-time experiments, a Pioneer 3AT robot maneuvered
a trajectory of 60 m long in a 9×6 m2 previously unexplored
environment, where a motion capture system was installed.
Multiple instances of two different object categories, chairs
and monitors, were placed in the environment.

B. Dataset Preparation
The dataset used for training the network is composed

of data from both simulated and real-time experiments. It



contained a total of 6751 samples, each consists of two
parts; the estimated 2D position of the robotic vehicle and its
orientation, which are computed by semantic SLAM, and the
corresponding ground truth. The dataset was randomly split
into three parts; 80% for training, 10% for validation to aid
the model’s regularization [27], and 10% for testing.

C. Network Pre-Training

In this section, a comparison between three network pre-
training techniques is conducted. The architecture presented
in Figure 2 was pre-trained using unsupervised greedy layer-
wise pre-training, supervised greedy layer-wise pre-training,
and backpropagation. In supervised greedy layer-wise pre-
training, the network is pre-trained in four stages, followed
by fine-tuning using the backpropagation algorithm. First, the
first hidden layer is trained given the input and the target
of the DNN. Then, the first hidden layer is frozen, the
second hidden layer is added, and the new network is trained,
given the DNN’s input and target. The same is repeated to
train the remaining layers, including the output layer. The
DNN is finally fine-tuned using backpropagation. In the last
approach, the weights of the network are randomly initialized
and backpropagation is used to update them.

In all cases, the weights to any DNN or SNN were ran-
domly initialized. To that end, and to fairly compare the pre-
training approaches, each network was pre-trained and fine-
tuned several times using different seeds, and the best results
for each were used for comparison. The mean ATE was used
to evaluate the trajectory filtered by any network. Figure 4
shows the distribution of error values for each run using the
three different pre-training techniques.

Figure 5 depicts the trajectories estimated by the network
when pre-trained using backpropagation, unsupervised and su-
pervised greedy layer-wise pre-training approaches and Table I
shows the corresponding minimum, maximum, and mean ATE.
The input to the network in all cases is the trajectory estimated
by semantic SLAM which is shown in Figure 5d. As can be
noticed, the estimated trajectory by the network exhibits much
higher accuracy than the path estimated by semantic SLAM
in all three cases, where the mean ATE dropped to almost one
third that of the input. However, the network that was pre-
trained using the unsupervised greedy layer-wise pre-training
showed superior performance compared to the other two. The
resulting mean ATE was around 10 cm, compared to 11 cm
for both backpropagation and supervised greedy layer-wise
pre-training. Hence, for the targeted problem and the selected
DNN architecture, unsupervised greedy layer-wise approach
is the most suited for pre-training the DNN. This is attributed
to initializing the weights of the DNN near a good solution
and hence backpropagation will perform better compared to
starting from a completely random solution.

The Pearson correlation coefficient was computed to eval-
uate the regression performance of the proposed DNN and
it was close to 1 for all outputs. The model’s convergence
can be evidently shown in Figure 6, which shows the training
accuracy of the DNN during the fine-tuning stage.

TABLE I: ATE comparison for tested approaches

Approach Max
ATE
(m)

Min ATE
(m)

Mean
ATE
(m)

Semantic SLAM 1.1179 0 0.3024
DNN - unsupervised pre-training 0.8288 8.44e-04 0.0998
DNN - supervised pre-training 0.6946 6.63e-04 0.1119
DNN - backpropagation 0.8334 0.0012 0.1149

D. Performance Analysis on Different Dataset

To confirm the generality of the model and its ability to
enhance semantic SLAM estimations from previously unseen
datasets, several simulated and real-time semantic SLAM
experiments were conducted. In addition, the semantic SLAM
algorithm was run on the fr2/pioneer slam sequence from the
TUM RGB-D dataset [29], where several objects appeared in
the environment and were used as landmarks. The outcomes
of such experiments were passed to the DNN for further
refinement. For each dataset, the DNN was fine-tuned to
achieve the sought performance. During fine-tuning, the first
two hidden layers are frozen, while the last two are set to
be trainable. Unlike trainable layers, the weights of a frozen
layer do not change during fine-tuning. The data used for fine-
tuning is a set of 10 − 20% randomly selected samples from
each dataset.

Figure 7 shows the results of filtering a set of trajectories
computed by semantic SLAM during multiple simulated and
real-time experiments. The first row includes the trajectories
that were fed to the DNN while the filtered trajectories are
depicted in the lower part of the same figure.

In all cases, the model was able to generalize well to new
datasets where it was able to refine the estimations of different
trajectories computed by semantic SLAM. The mean ATE
decreased from 0.21 m to 0.03 m in experiment 1, from
0.11 m to 0.03 m in experiment 2, from 0.04 m to 0.01 m
in experiment 3, and from 0.5 m to 0.07 m in experiment 4
which is a recorded sequence from the TUM RGB-D dataset.

IV. CONCLUSION

In this paper, a deep learning based approach to enhance
semantic SLAM estimations was proposed. A DNN was
structured using various nonlinear activation functions and
pre-trained using the unsupervised greedy layer-wise pre-
training approach. The adopted pre-training approach demon-
strated higher performance than other approaches including
the supervised greedy layer-wise pre-training approach and
backpropagation. This is attributed to initializing the DNN’s
weights near a good solution, rather than a random one. The
proposed DNN was trained using the ADAM optimizer, which
is known to be resource-efficient, on a dataset that includes
samples from simulated and real-time experiments. Combining
data from both simulations and real-time experiments in the
training dataset led to better model generalization when tested
on simulated and real data. The proposed approach has proven
work well in several simulated and real-time experiments in-
cluding the publicly available fr2/pioneer slam sequence from
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(a) Backpropagation pre-training
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(b) Supervised pre-training
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(c) Unsupervised pre-training

Fig. 4: ATE distribution of multiple training results. Blue boxes indicate values between the 25th and 75th percentiles, dotted
black lines extend from the 9th to the 91st percentiles, and red whiskers represent the remaining values. The median of the
error values in indicated as a horizontal line inside each box.
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Fig. 5: Comparison between pre-training techniques, (a) Proposed DNN with backpropagatoin pre-training, (b) Proposed DNN
with supervised pre-training, (c) Proposed DNN with unsupervised pre-training, (d) Semantic SLAM output
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Fig. 6: Training accuracy across training and validation sets

the TUM RGB-D dataset and was able to notably improve
the accuracy of the estimated robot trajectory, compared to
semantic SLAM estimates.

In the future, the approach proposed in this paper can be
integrated with semantic SLAM in an online manner which
will facilitate error minimization in real time.
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