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Abstract—Robust and efficient visual localization is es-
sential for numerous robotic applications. However, it re-
mains a challenging problem especially when significant
environmental or perspective changes present, as there are
high percentage of outliers, i.e. incorrect feature matches,
between the query image and the map. In this paper, we pro-
pose a novel 2-entity RANSAC framework using 3D-2D point
and line feature matches for visual localization with the aid
of inertial measurements and derive minimal closed form
solutions using only 1 point 1 line or 2 point matches for
both monocular and multi-camera system. The proposed
2-entity RANSAC can achieve higher robustness against
outliers as multiple types of features are utilized and the
number of matches needed to compute a pose is reduced.
Furthermore, we propose a learning-based sampling strat-
egy selection mechanism and a feature scoring network to
be adaptive to different environmental characteristics such
as structured and unstructured. Finally, both simulation
and real-world experiments are performed to validate the
robustness and effectiveness of the proposed method in
scenarios with long-term and perspective changes1.

Index Terms—Camera pose estimation, random sample
consensus (RANSAC), robust localization.

I. INTRODUCTION

LOCALIZATION is a fundamental capability for mobile
robots with applications to driverless cars, unmanned

aerial vehicles and so on [1] [2]. Visual localization attracts
more attention as the cameras are low-cost, lightweight and
versatile compared with Light Detection and Ranging (Li-
DAR). The general idea of visual localization is to recover
the translation and rotation of the query camera based on
feature matches using various descriptors (e.g. FAST [3], SIFT
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1https://youtu.be/Zqgxntz11hI

[4], ORB [5], and some learning-based descriptors [6] [7] [8]
etc.). Outliers are unavoidable between the feature matches,
which severely affect the accuracy of the estimated pose. The
typical way to achieve robust estimation against outliers is
random sample consensus (RANSAC) [9]. However, with the
serious appearance changes in long-term localization [10] [11],
RANSAC is neither reliable nor efficient as the outlier rate is
high. There are two factors affecting the success probability of
RANSAC. One is the number and rate of inliers, i.e. correct
feature matches (higher is better), and the other is the minimal
number of matches needed to compute the pose (smaller is
better). Much effort has been paid to improve the success
rate of RANSAC and in result advance the robustness of the
localization.

For the first, number and rate of inliers, previous works
utilize various types of features simultaneously (e.g. points,
lines and planes) [12] [13]. There are also works exploiting
the observation of multiple views in the multi-camera system
to increase the number of inliers [14] [15]. However, these
methods in fact utilize independent feature types or features
from independent cameras. Thus the actual inlier number does
not increase. For the second factor, people are searching for
minimal solutions using minimal number of 3D-2D feature
matches to estimate camera pose. Specifically, there are meth-
ods using 4 points [16], 3 points [17] [18] and 3 lines [19].
The minimal solutions combining point and line matches are
proposed in [20]. By making use of inertial measurements,
the minimal number can be further reduced. Thus the 2-point
minimal solutions are studied in [21] and [22]. But [21] utilizes
the relative measurement of yaw angle which is only available
between two consecutive images, thus cannot be applied in
localization. And [22] only considers point matches which is
sensitive to appearance variations.

In this paper, we combine point and line features from
multiple camera views and propose a mixed sampling strategy
to utilize all features jointly for pose estimation as illustrated
in Fig. 1. In addition, we propose a feature scoring network
to effectively improve the inlier rate during feature sampling.
Furthermore, we reduce the number of both point and line
matches from 3 to 2 by aligning the direction of gravity
with the aid of inertial measurements. Note that most existing
methods solve 3D-2D problem in two steps, calculating the 3D
coordinates of the features in camera frame and estimating the
pose by 3D-3D registration [17] [16]. It is hard to introduce
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inertial measurements. Therefore it is non-trivial to present the
minimal closed form solutions exploiting only 2 entities for
both monocular and multi-camera system. Embedding these
methods into RANSAC framework, we propose a 2-entity
RANSAC for long-term robust visual localization. The main
contributions of this paper are summarized as follows:
• We derive the minimal closed form solutions to 3D-2D

pose estimation utilizing 1 point 1 line or 2 point matches
with the aid of inertial measurements for both monocular
and multiple camera system.

• We propose a robot visual localization system by em-
bedding the solutions into RANSAC and propose two
modules including a learning-based selection mechanism
and feature scoring network to complete the system.

• The effectiveness and efficiency of the proposed method
are verified on both synthetic and challenging real world
sessions with seasonal and perspective changes.

• The source code of proposed monocular and multiple
camera algorithms are available on github2 which is a
contribution to the community for comparative study.

This paper completes our previous work [23] by generaliz-
ing the minimal solutions from mono-camera system to multi-
camera system. We also extend the strategy selection mech-
anism to an end-to-end learning-based method and present
a new feature scoring network to perform a weighted 2-
entity RANSAC. More thorough simulation and real world
experiments for both monocular and multiple camera system
are designed to demonstrate the practicability of the proposed
method. The rest of this paper is organized as follows. In Sec-
tion II we give a detailed statement of the visual localization
problem and the framework of the proposed method. Section
III gives the derivation of the closed form minimal solutions
for monocular and multi-camera system. The description about
the learning-based sampling strategy selection mechanism and
the feature scoring method is given in Section IV. Then the
synthetic and real world verifications are presented in Section
V. Finally, we summarize the conclusion in Section VI.

II. PROBLEM STATEMENT AND FRAMEWORK

Visual localization considered in this paper refers to es-
timating the 6DoF (degrees of freedom) camera pose using
3D-2D feature matches between the query image and the pre-
built map. The map consists of map images and 3D point and
line features which are reconstructed from the visual features
during map building. Then the visual localization with the aid
of inertial measurements can be formulated as follows.

The 3D map is built by running a visual inertial simulta-
neous localization and mapping (VI-SLAM) and its reference
frame is denoted as Wm. A visual inertial navigation system
(VINS) is performed in the current query session of which
the origin is defined as Wq . Denoting the reference frame of
the query camera as Cq , the visual localization problem is to
estimate the pose of the query camera in the world reference
frame, i.e. TWmCq . With the aid of inertial measurements,
the direction of gravity between Wm and Wq can be easily

2https://github.com/slinkle/2-Entity-RANSAC

Fig. 1: The framework of 2-entity RANSAC localization.

aligned, thus the pitch and roll angle of TWmCq are the same
as the corresponding measurements of TWqCq denoted as β̃
and γ̃. Thanks to the global observability of pitch and roll,
the localization problem can be expressed in 4DoF as

TWmCq = [Rz(α)Ry(β̃)Rx(γ̃)|(T1 T2 T3)
T ] (1)

where α and (T1, T2, T3) represent the unsolved yaw angle
and translation. In the rest of this paper, we intend to solve
the inversion of the pose, i.e. TCqWm

of which the unknown
parameters remains the same. As one 3D-2D feature match
can provide two independent constraints, the problem can
be solved using two non-degenerate feature matches, which
derives the 2-entity minimal solutions.

To deal with outliers, we embed the proposed minimal
solutions to RANSAC [9] framework, which can give a robust
result by sampling elements in the input dataset and voting
for inliers. Let P be the success rate of RANSAC within k
iterations, and w be the inlier rate. Assuming that the minimal
number of elements to compute the model is n, we have

1− P = (1− wn)k (2)

from which we could find that, with the fixed number of
iterations, the higher inlier rate and the less minimal number
of elements needed to solve the model, the higher success rate
RANSAC can achieve. In this paper, we reduce the number n
from 3 to 2 with the aid of inertial measurements and exploit a
feature scoring method to improve the inlier rate w in a sample
of RANSAC. Furthermore, using the multi-camera minimal
solutions to combine observations from multiple views and
the strategy selection mechanism to be adaptive to different
environmental variations can indeed increase the inlier number.
Therefore, the proposed visual-inertial localization method can
get greater robustness against high percentage of outliers.

The framework of the proposed visual localization is illus-
trated in Fig. 1. Given the extracted 3D-2D point and line
matches, we first score the feature points with the trained
network and apply the score as the weight of the feature
matches in sampling. Then we judge the characteristic of the

https://github.com/slinkle/2-Entity-RANSAC
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query image through a pre-trained convolution neural network
to select the proper sampling strategy in RANSAC. With the
scored feature matches and the selected sampling strategy, a
weighted 2-entity RANSAC is performed. After the nonlinear
pose optimization with the final point and line inliers, we get
the localization result.

III. MINIMAL SOLUTIONS

In this section, the minimal solutions for both monocu-
lar and multi-camera system are derived. We refer to the
collinearity of point matches and coplanarity of line matches
to solve the 4DoF localization problem. According to the
projection geometry shown in Cq of Fig. 2, the map point
P 0
1 , its projection point D0

1 and the optical center C0 of
the camera are collinear, denoted as {C0, D0

1, RCqWm
P 0
1 +

tCqWm}L. By substituting the third point into the line equa-
tion computed by the first two points, two independent con-
straints can be derived. In addition, the map line L0

2L
0
3, its

projection line segment D0
2D

0
3 and the camera center C0

are coplanar, denoted as {C0, D0
2, D

0
3, RCqWm

L0
2 + tCqWm

}P ,
and {C0, D0

2, D
0
3, RCqWm

L0
3 + tCqWm

}P . Similarly, by sub-
stituting the two end points of the map line into the plane
computed with the first three points, another two indepen-
dent constraints can be derived. Therefore, the 4DoF visual
localization problem can be solved using two non-degenerate
feature matches with three combinations: 1 point 1 line, 2
points and 2 lines.

A. Monocular Camera System

1) 1 point 1 line: This subsection presents the minimal
solution using one point and one line match, which denoted
as 1P1L. For simplification, two intermediate reference frames
are introduced for camera and map, denoted as C1 and W1

respectively.
The choice of C1: The detailed illustration and computation

of TC1Cq is provided in the Supplementary Material [24]. As
shown in Fig. 2, in Cq , the camera center is C0, and the image
feature point is D0

1 . The end points of the image line segments
are D0

2 , D0
3 . After transformation, in C1, the corresponding

points are expressed as follows.

C =

 0
0
−1

 , D1 ,

a1a2
0

, D2 =

00
0

 , D3 ,

a30
0


Note that the parameters are all known which can be computed
using the transformation TC1Cq .

The choice of W1: In Wm, as shown in Fig. 2, the map
point is P 0

1 and the end points of the map line are L0
2, L0

3.
The transformation TW1Wm

is designed to transform the P 0
1

to the origin of W1. Thus in W1, P1 = 03×1, Li={2,3} ,[
Xi Yi Zi

]T
.

Pose estimation between Cq and Wm: Let’s denote the
unsolved rotation and translation matrix as R and t, i.e.
R , RC1W1

, t , tC1W1
. According to the collinearity of

{C,D1, RP1 + t}L, two equations can be derived:

a1T2 − b1T1 = 0 (3)

Fig. 2: The illustration of intermediate reference frame for (a)
1 point 1 line and (b) 2 lines case.

b1T3 − T2 = −b1 (4)

As for the coplanarity of {C,D2, D3, RL2 + t}P :

R21X2 +R22Y2 +R23Z2 + T2 = 0 (5)

And the coplanarity of {C,D2, D3, RL3 + t}P :

R21X3 +R22Y3 +R23Z3 + T2 = 0 (6)

where Rmn is the m-row and n-column entry of R, Tm is the
m-th entry of t.
R is only determined by the unknown yaw angle α, which

can be solved by combining (5) and (6). After substituting α
into (3) - (6), the translation t can also be solved. Then the
localization problem can be solved as

TCqWm = TC1Cq
−1 · TC1W1 · TW1Wm (7)

Degenerate cases: If the point lies on the line, the corre-
sponding 1P1L case is degenerated.

2) 2 points: In this section, the minimal solution denoted
as 2P using two 3D-2D point matches is derived. We will not
introduce the intermediate reference frame for camera. The
points in Cq following the notations in 1P1L are

C = 03×1, Di={1,2} ,
[
ai bi 1

]T
where the parameters are all known which can be computed
using intrinsic parameters and normalized depth.

For world reference frame, the transformation TW1Wm
is a

translation which transforms P 0
1 to the origin of W1. Thus in

W1, P1 = 03×1, P2 ,
[
X2 Y2 Z2

]T
.

Pose estimation between Cq and Wm: Following the
notations in 1P1L, two equations can be derived from
{C,D1, RP1 + t}L:

a1T2 − b1T1 = 0 (8)
a1T3 − T1 = 0 (9)

As for the collinearity of {C,D2, RP2 + t}L:
a2(R21X2 +R22Y2 +R23Z2 + T2)

− b2(R11X2 +R12Y2 +R13Z2 + T1) = 0
(10)

a2(R31X2 +R32Y2 +R33Z2 + T3)

− (R11X2 +R12Y2 +R13Z2 + T1) = 0
(11)

TCqW1
can be solved by combining (8) - (11) and the

localization result can be computed by
TCqWm

= TCqW1
· TW1Wm

(12)
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3) 2 lines: In this section, we are going to compute the
camera pose with two 3D-2D line matches.

The choice of C1: The detailed illustration and computation
of TC1Cq can be found in the Supplementary Material [24]. As
shown in Fig. 2, in Cq , the camera center is C0, the end points
of the two image line segments are D0

1 , D0
2 and D0

3 , D0
4 .

The choice of W1: For world reference frame, the trans-
formation is designed to transform one end point of one map
line to the origin of W1.

Pose estimation between Cq and Wm: Following the nota-
tions in 1P1L, the following equations can be derived accord-
ing to {C,D1, D2, RL1 + t}P and {C,D1, D2, RL2 + t}P ,

T2 = 0 (13)
R21X2 +R22Y2 +R23Z2 + T2 = 0 (14)

As for the coplanarity of {C,D2, D3, RL3 + t}P and
{C,D2, D3, RL4 + t}P :

a2(R21X3 +R22Y3 +R23Z3 + T2)

− a3(R11X3 +R12Y3 +R13Z3 + T1) = 0
(15)

a2(R21X4 +R22Y4 +R23Z4 + T2)

− a3(R11X4 +R12Y4 +R13Z4 + T1) = 0
(16)

From (13) - (16), we can easily find that T3 cannot be
solved. In fact, one constraint provided by inertial measure-
ment unit (IMU) is coincident with one constraint provided by
line coplanarity, thus the 4DoF localization problem cannot be
solved in 2 lines case.

B. Multi-Camera System

The proposed minimal solutions can be generalized to
multi-camera system, which means the observation from other
cameras can also be combined to estimate query camera
pose. Specifically, the multi-camera can be multiple rigidly
connected cameras with known extrinsic parameters by cal-
ibration or multiple temporal images of one camera with
known relative transformation by VINS/odometry. In the rest
of this paper, we unify the two possible conditions as “mPose”
condition. According to the last section, there are also two
possible minimal solutions: mPose-1P1L and mPose-2P.

1) mPose 1 point 1 line: In this section, 1 point and 1 line
match observed in different cameras are utilized to solve the
problem. The solution is denoted as mPose-1P1L. The camera
frame which observed the point match is denoted as Cp, and
the camera frame observed the line match is denoted as Cl.
The transformation between the two camera frames TClCp is
known. As in 1P1L, we will introduce intermediate reference
frames to simplify the equations, denoted as Cp1, Cl1, andW1.

The choice of Cp1: In Cp, the camera center C0
p is the origin

and the image point is D0
1 . In Cp1, the camera center Cp is[

0 0 −1
]T

, and the transformation TCp1Cp is a translation
which transforms C0

p to Cp. With the transformation, the
image point D1 in Cp1 can be computed.

The choice of Cl1: In Cl, the camera center C0
l is the origin,

and the end points of the detected line segment are D0
2 and

D0
3 . The choice of Cl1 is the same as C1 in 1P1L. Then the

coordinates of D2 and D3 in Cl1 can be calculated.

The choice of W1: The choice is the same as in 1P1L
which transforms P 0

1 to the origin. Thus in W1, P1 =

03×1, Li={2,3} ,
[
Xi Yi Zi

]T
.

Pose estimation between Cp and Wm: The transformation
between the camera intermediate frame and the world inter-
mediate frame can be computed as follows

TCp1W1 = TCp1Cp · TCpWm · TWmW1 (17)

TCl1W1 = TCl1Cl · TClCp · TCpWm · TWmW1 (18)

where the elements in right hand are all known except TCpWm .
Let us denote Ri , RCi1W1

, ti , tCi1W1
, (i = p, l). Ac-

cording to the collinearity of {Cp, D1, RpP1+tp}L, the copla-
narity of {Cl, D2, D3, RlL2 + tl}P and {Cl, D2, D3, RlL3 +
tl}P , four equations about the four unsolved parameters in
TCpWm

can be derived. And the localization problem can be
solved by combining the four equations as in 1P1L.

Degenerate cases: If the 3D point lies on the 3D line, the
corresponding mPose-1P1L case is degenerated.

2) mPose 2 points: The minimal solution using 2 point
matches observed in different cameras is denoted as mPose-
2P. Let us denote the query camera reference frame as Cq , and
the additional camera frame Ca. In this case, no intermediate
camera reference frames are introduced, thus the point D1 in
Cq and the point D2 in Ca are

Ci={q,a} = 03×1, Di={1,2} ,
[
ai bi 1

]T
The transformation of the world reference is the same as in

2P. Thus in W1, P1 = 03×1, P2 ,
[
X2 Y2 Z2

]T
.

Pose estimation between Cq and Wm:

TCqW1
= TCqWm

· TWmW1
(19)

TCaW1
= TCaCq · TCqWm

· TWmW1
(20)

Let us denote Ri , RCiW1 , ti , tCiW1 , (i = q, a).
According to the collinearity of {Cq, D1, RqP1 + tq}L and
{Ca, D2, RaP2+ta}L, four equations about the four unsolved
parameters in TCqWm

can be derived. And the localization
problem can be solved as in 2P.

IV. STRATEGY SELECTION AND SCORING

In the former section, the minimal solutions for visual
localization problem are derived including 1P1L, 2P, mPose-
1P1L and mPose-2P. Embedding the derived solutions, we
propose the 2-entity RANSAC and present three sampling
strategies: 1P1L, 2P and mixed as shown in Fig. 1. The 1P1L
sampling strategy refers to sampling one point match and one
line match and utilizing the 1P1L or mPose-1P1L minimal
solution. The 2P sampling strategy refers to sampling two
point matches and utilizing 2P or mPose-2P. While the mixed
refers to using the minimal solution according to the selected
feature types. To be specific, one point match is selected
firstly and then another feature match is selected among the
remaining features. 2P or mPose-2P is performed when it is a
point match, while 1P1L or mPose-1P1L for a line match. Next
we will analyze the success probability of the three sampling
strategies respectively.

The number of point and line matches are denoted as Np

and Nl, and the corresponding inlier numbers are denoted as
INp and INl, respectively.
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Fig. 3: Some examples of unstructured and structured scene.

INp/Np = λp, INl/Nl = λl (0 ≤ λp, λl ≤ 1) (21)
where λp, λl denote the inlier rate of point and line matches.

After comparison of the three sampling strategies’ success
probability, denoted as P1P1L, P2P and Pmixed respectively,
of which the details are presented in Supplementary Material
[24], we have the following conclusions:

λl ≥ λp ⇒ P1P1L > Pmixed > P2P (22)

λl < λp ⇒ P1P1L ≤ Pmixed ≤ P2P (23)

A. Strategy Selection
From (22) and (23), we find that the sampling strategy

selection is relevant to the relative inlier rate of point and
line features, but not the absolute inlier rate. We consider
that the key of strategy selection is the inlier distribution of
point and line features in the query image, which is a global
feature of the appearance. It thus inspires us to skip the inlier
estimation and directly imitate such a feature extraction and
classification process. Since we can easily get the labeled data
based on (22) and (23) as well as mapping result, we model the
sampling strategy selection as a convolutional neural network
with full image convolution and global pooling to classify the
best strategy for the input image, in a supervised learning
manner.

Specifically, we select map session containing around 5000
images as training data. When labeling the image, we compute
the ground truth pose of the image got by laser to count the
inlier ratio of point and line matches respectively. The label is
2P if the point inlier ratio is obviously higher than lines, while
1P1L when the line inlier ratio is obviously higher. As for the
circumstance the two ratios are similar, mixed label is used
instead. As it is a standard image classification problem, we
pick popular VGG16 [25] as the backbone followed by 3-class
softmax to make the selection. In testing phase, given a query
image, we run the trained network to predict the best sampling
strategy, which is then utilized for feature sampling. This
network brings the environment awareness to the proposed
2-entity RANSAC, of which the effectiveness is shown in the
later ablative experiments.

B. Feature Scoring
Compared with sampling strategy selection, feature scoring

focuses more on local appearance. Specifically, feature scoring
builds a metric for feature descriptors to estimate the inlier.
Several existing methods are proposed to develop position in-
duced metric [26], or descriptor induced metric [27] to achieve

this task. In the long term localization, the environmental
variations significantly affect the feature detection repeatability
and descriptor distance ratios, causing very low inlier rate. If
we still use these methods, the metric may not reflect the inlier.
To address this problem, we build the metric using multilayer
perceptron (MLP), which nonlinearly embeds the descriptor
into a learned metric space formed by ground truth data.

Specifically, the input of the MLP is the 32-bit descriptor of
each feature point obtained during the feature extraction with
LibVISO2 [28]. And the hiden layer consists of 128 nodes
which is fully connected with the output layer of two nodes.
The output tells the probability of the input correspondence
being an inlier. To annotate the data, we refer to the mapping
pose to evaluate the re-projection error for judgement. After
training, we run the model for each candidate correspondence
to predict the inlier probability, upon which we can non-
uniformly sample the feature correspondences that prone to be
inliers in 2-entity RANSAC localization, improving the chance
of convergence.

V. EXPERIMENTAL RESULTS

We conduct simulation and real world experiments over
other state-of-the-art methods for both monocular and multiple
camera system. The computing platform for all experiments
is an Intel i7-7700 @3.60GHz and 8G RAM. The proposed
methods are implemented in C++ using the framework of
open-source library OpenGV [29]. And the code of the pro-
posed methods is available on github2 such that the evaluation
results can be easily reproduced. We also use the implementa-
tion of the compared algorithms P3P [17], EPnP [16], UPnP
[30], GP3P [31] and GPnP [31] in OpenGV. While for 2P1L
[20], we implement the code on MATLAB according to the
paper, so that the computational efficiency is not compared
with 2P1L in Section V-A. The strategy selection and feature
scoring network are implemented on Pytorch [32].

A. Simulation Experiments
The simulation experiments are conducted to illustrate the

accuracy on noisy image features, the efficiency with com-
putational time comparison, the sensitivity when the pitch
and roll angles are inaccurate, and the robustness in presence
of outliers. We get the 3D-2D feature matches by projecting
the 3D points and lines to 2D features with varying camera
poses. Then 100 iterations of RANSAC are performed for each
method and the final identified inliers are sent to nonlinear
optimization. The compared mono-camera algorithms include
P3P [17], EPnP [16], UPnP [30] and 2P1L [20]. And multi-
camera algorithms include GP3P [31] and GPnP [31]. As the
UPnP and GPnP implemented in OpneGV can only deal with
the situations with no outliers, we embed the solutions into
RANSAC to improve robustness and denote them as UPnP(*)
and GPnP(*) in the remaining of the paper. For evaluation, we
compute the translation and rotation error of the estimated pose
[R|t] compared to the ground truth [Rgt|tgt]. The translation
error is expressed as ‖t − tgt‖ in meter and the rotation
error is expressed as 4R = RRT

gt in degree by axis-angle
representation as in [15].
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TABLE I: Accuracy simulation results of mono-camera algorithms.
Entities 10 points + 10 lines 6 points + 6 lines 3 points + 3 lines
Noise(pixel) 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0
Mean Error(mm/deg) Trans/Rota Trans/Rota Trans/Rota Trans/Rota Trans/Rota Trans/Rota Trans/Rota Trans/Rota Trans/Rota

6DoF

P3P 2.677 / 0.020 8.161 / 0.062 22.324 / 0.165 4.563 / 0.034 13.922 / 0.098 50.448 / 0.357 - / - - / - - / -
EPnP 2.417 / 0.018 7.298 / 0.055 19.052 / 0.138 3.885 / 0.028 10.671 / 0.075 25.448 / 0.184 - / - - / - - / -
UPnP(*) 2.856 / 0.029 8.400 / 0.060 21.649 / 0.156 4.356 / 0.031 13.819 / 0.087 48.535 / 0.312 - / - - / - - / -
2P1L 2.384 / 0.011 6.320 / 0.020 14.122 / 0.044 3.738 / 0.013 7.137 / 0.024 18.033 / 0.066 6.170 / 0.023 12.443 / 0.053 26.120 / 0.087
1P1L 2.245 / 0.010 5.824 / 0.022 13.768 / 0.048 3.532 / 0.013 6.453 / 0.027 15.481 / 0.061 4.663 / 0.016 10.375 / 0.032 25.107 / 0.078
2P 2.233 / 0.010 5.873 / 0.020 13.201 / 0.043 3.427 / 0.012 6.956 / 0.018 14.456 / 0.046 5.108 / 0.015 10.271 / 0.035 20.886 / 0.071

4DoF

P3P 2.509 / 0.017 6.914 / 0.049 18.279 / 0.113 4.172 / 0.029 11.246 / 0.054 33.847 / 0.118 - / - - / - - / -
EPnP 2.375 / 0.015 6.631 / 0.037 16.775 / 0.096 3.581 / 0.023 7.346 / 0.046 17.373 / 0.093 - / - - / - - / -
UPnP(*) 2.586 / 0.019 6.817 / 0.041 18.961 / 0.118 3.871 / 0.027 10.935 / 0.059 30.366 / 0.102 - / - - / - - / -
2P1L 2.317 / 0.009 5.769 / 0.019 13.409 / 0.035 3.107 / 0.011 6.357 / 0.021 16.104 / 0.053 5.749 / 0.018 11.110 / 0.046 25.198 / 0.077
1P1L 2.167 / 0.009 4.443 / 0.016 11.571 / 0.029 2.998 / 0.012 5.774 / 0.024 14.027 / 0.047 4.231 / 0.012 9.175 / 0.021 19.772 / 0.049
2P 2.166 / 0.008 4.480 / 0.014 11.776 / 0.029 2.813 / 0.011 6.305 / 0.016 12.830 / 0.033 4.863 / 0.013 9.130 / 0.025 17.025 / 0.053

TABLE II: Accuracy simulation results of multi-camera algorithms.
Entities 50 points + 50 lines 30 points + 30 lines 10 points + 10 lines
Noise(pixel) 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0
Mean Error(mm/deg) Trans/Rota Trans/Rota Trans/Rota Trans/Rota Trans/Rota Trans/Rota Trans/Rota Trans/Rota Trans/Rota
GP3P 2.895 / 0.000 5.498 / 0.001 13.745 / 0.002 3.225 / 0.000 6.677 / 0.001 17.365 / 0.002 3.843 / 0.001 8.592 / 0.001 23.425 / 0.003
GPnP(*) 2.786 / 0.000 5.543 / 0.001 13.545 / 0.002 3.240 / 0.000 6.615 / 0.001 16.571 / 0.002 3.791 / 0.001 7.830 / 0.001 18.780 / 0.002
mPose-1P1L 1.463 / 0.000 4.466 / 0.000 12.612 / 0.001 1.609 / 0.000 6.020 / 0.001 14.642 / 0.001 1.917 / 0.000 6.874 / 0.000 18.269 / 0.001
mPose-2P 1.422 / 0.000 4.731 / 0.001 12.734 / 0.001 1.607 / 0.000 6.078 / 0.001 14.577 / 0.001 1.859 / 0.000 6.815 / 0.001 18.314 / 0.001

TABLE III: Computation Time Comparison (ms).
Entities 6 106 206 306 406 506

mono-camera

P3P 0.395 1.691 2.156 2.613 3.099 3.573
EPnP 1.649 7.169 7.687 8.073 8.516 9.025
UPnP(*) 68.124 189.197 187.856 188.241 188.497 189.699
2P 0.055 0.543 0.872 1.174 1.498 1.815
1P1L 0.079 0.447 0.626 0.827 1.011 1.202

multi-camera

GP3P 0.440 1.266 1.397 1.547 1.681 1.840
GPnP(*) 16.906 23.051 23.582 24.279 24.918 25.807
mPose-2P 0.080 0.595 0.945 1.303 1.661 1.999
mPose-1P1L 0.120 0.517 0.721 0.952 1.152 1.365

1) Accuracy: For accuracy quantification, we add Gaussian
noise with zero mean and various standard deviations to the
2D features as in [20] and vary the number of feature matches
in different levels. As the proposed method uses inertial
measurements, for fair comparison we also provide pitch and
roll for comparative methods. Specifically, we fix pitch and
roll in refinement to perform 4DoF optimization. The results
presented in Table I and Table II show that, as we can utilize
both point and line inlier feature matches to do the final pose
optimization, the accuracy of proposed methods is better than
others, in both monocular and multiple camera cases.

2) Efficiency: The real-time performance is important for
the robot localization algorithm. We vary the number of
entities (including points and lines features) in the scene and
count the computation time of different methods for both
monocular and multiple camera pose estimation algorithms as
in [30]. For the data in each test, we add the Gaussian noise
with zero mean and 1.0 pixel standard deviations to the 2D
features and generate 10% outliers to simulate the real data.
The compared methods are all RANSAC-based algorithms and
are all implemented in OpenGV which is a fair comparison.
The result is shown in Table III. Note that the computation
time of UPnP(*) and GPnP(*) is increased due to outliers.
Results show that the proposed methods are the fastest, which
can satisfy the real-time performance of the robot localization.

3) Sensitivity: It’s necessary to study the impact of the
quality of the pitch and roll angles on the final accuracy, as
we reduce the DoF of the pose by leveraging the two angles
measured by inertial sensor. We add Gaussian noise with zero
mean and various standard deviations on both two angles and
vary the number of feature matches in three levels: 10, 6, 3,

Fig. 4: Success rate on selected scene.

which can be seen in Fig. 5 (the level N indicates total N
point and N line matches). With enough feature matches as
in level 10, our method can tolerate noise of 20 degree on both
two angles, as we can perform the 6DoF optimization with the
identified inliers to get higher accuracy. Empirically, the noise
of pitch and roll angle is far less in real world application [33]
[34]. Thus influence on the final accuracy can be ignored.

4) Robustness: We vary the outlier rate from 0 to 80%
by adding a certain number of outliers which are generated
by incorrectly projecting the features and change the inlier
number in three levels: 10, 6, 3. For evaluation, all methods
are performed 500 times to count the average success rate. The
localization is assumed to be successful when the translation
error is lower than 0.1 m and the rotation error is smaller than
0.5 degree as in [35] [15]. When the outlier rate increases as
shown in Fig. 6 and Fig. 7, the performance of our method
outperforms the compared methods obviously.

B. Real World Experiments

The YQ-Dataset [10] collected across weathers and seasons
is utilized as real data. There are three sessions collected at
summer 2017 in three days, denoted as 2017-0823, 2017-
0827 and 2017-0828, and one session collected in winter
2018 after snow, denoted as 2018-0129. The 3D map is built
with 2017-0823 session by running visual inertial SLAM [36].
The other three sessions are used to evaluate the localization
performance. For evaluation, we compute the ground truth of
the relative pose between the query camera and the map by
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Fig. 5: Sensitivity simulation results. To present the translation
and rotation error in the same color bar, we express the
translation error in percentage as in [20].

aligning the synchronized LiDAR scans. For the pitch and roll
angles of the query camera, we exploit the estimation of visual
inertial odometry [36]. More details on dataset and platform
can be found in Supplementary Material [24].

1) Evaluation on selected scene: We first evaluate the
proposed methods including 1P1L, 2P and mixed against P3P
[17], EPnP [16], UPnP [30] and 2P1L [20]. Due to the uneven
distribution of the characteristics in the map environment, we
manually select around 50 structured and 100 unstructured
segments according to experience as shown in Fig. 3 to make
a fair comparison between the different methods with differ-
ent feature types. Then we count the successfully localized
query images under different error thresholds based on the
thresholds in [35] out of all selected places in each segment
to compute success rate. The results are shown in Fig. 4,
from which we can find that in the unstructured segments,
the 2P method performs the best and in structured segments,
the 1P1L is similar as 2P. In addition, the mixed method gives
relatively stable performance in all segments, which confirms
the analysis illustrated in Section IV. Moreover, one should
notice that the better robustness of line features advances the
performance of 1P1L in structured segments of 2018-0129, as
the outlier rate grows due to the changing season.

2) Evaluation on whole session: Then we evaluate on
whole session and count the success rate of localization over
four different thresholds, of which the results are shown in
Table VI and Table VIII for monocular and multi-camera
algorithms. The multi-camera in this experiment refers to using
multiple temporal images of which the extrinsic parameters are
determined by VINS. As expected, the performance of mixed
sampling strategy is relatively stable in all sessions. While
1P1L is not as good as point based methods, as there are lots
of trees on each side of the road in the whole map so that
point features are far more abundant than lines. Furthermore,
adding another frame’s observation obviously promotes the
performance, as the number of potential inliers increases
and the failed localization caused by few feature matches is
reduced. Besides, the proposed method is obviously better than
compared methods that require more features, which validates
the robustness of our method in changing environment.

Fig. 6: Robustness results of monocular camera algorithms.

Fig. 7: Robustness results of multiple camera algorithms.

3) Ablation Study Experiment: To validate the performance
of the proposed feature scoring method, we first conduct com-
parison experiment with the inlier score estimation methods of
BLOGS [26] and BEEM [27]. All methods adopt LibVISO2
[28] for feature points extraction and descriptor computation.
The ground truth criteria to judge a correspondence to be an in-
lier is the reprojection error less than 8 pixel, which is the same
as in the implementation of solvePnP in OpenCV [37]. The
same division for training and testing dataset are utilized for
BEEM and ours (2017-0827 for training, 2017-0828 and 2018-
0129 for testing). More implementation details are shown
in Supplementary Material [24]. After normalization of the
estimated inlier score, we unify that the correspondence with
score higher than 0.8 is inlier as in [27]. Then we calculate
the precision, recall and F-score of the inlier estimation on the
three sessions, which is shown in Table V.

From the result, we find that the performance of BLOGS
which mainly depends on position based metric is worse than
descriptor based metric, BEEM and ours. And the performance
of the proposed method outperforms BEEM, especially on
the two test sessions (2017-0828 and 2018-0129), reflecting
that the generalization of our method is better. The results
validate that the large variations in changing environment
seriously affect the descriptor space, and show the advantage
of embedding the descriptor into data driven metric space.
Therefore, the proposed feature scoring method is a better
choice to guide the candidate correspondences sampling.

Then to validate the effectiveness of each component of the
proposed method, we conduct an ablation study experiment
shown in Table IV. The mixed method is selected to represent
the 2-entity method. The 2-entity RANSAC with learning-
based strategy selection is denoted as 2ESel, and if applied
with the proposed feature scoring method, then denoted as
2ESelScore. The strategy selection and feature scoring net-
work are all trained with the map data. Moreover, mPose-
* refers to applying above methods to multi-camera system.
From the result, we could find that with proper sampling
strategy selection and feature scoring method, the performance
of 2-entity RANSAC can be further promoted.

To explain the better performance of the proposed method,
we analyze the distribution of the successful localization on
the whole session and the number of identified inliers. We take
the EPnP and our mPose-2ESelScore method for example to
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TABLE IV: Ablation study experiment on whole session.

2-Entity Strategy Feature Multiple 2017-0827 2017-0828 2018-0129
Trans Error (m)
Rota Error (◦)

Selection Scoring Cameras 0.25/0.5/1.0/5.0
2.0/5.0/8.0/10.0

0.25/.5/1.0/5.0
2.0/5.0/8.0/10.0

0.25/0.5/1.0/5.0
2.0/5.0/8.0/10.0

mixed X 22.1 / 33.7 / 40.1 / 53.6 23.0 / 34.7 / 40.4 / 49.3 13.2 / 24.7 / 34.6 / 54.1
2ESel X X 22.3 / 34.0 / 41.9 / 54.2 24.6 / 35.7 / 41.6 / 49.1 14.1 / 24.9 / 34.9 / 54.6
2ESelScore X X X 22.6 / 34.3 / 41.9 / 54.6 24.8 / 36.2 / 42.3 / 50.2 14.9 / 25.4 / 35.9 / 55.0
mPose-mixed X X 23.7 / 36.8 / 45.7 / 55.1 23.1 / 36.9 / 42.8 / 52.5 16.6 / 27.6 / 37.8 / 58.6
mPose-2ESel X X X 24.5 / 38.2 / 46.3 / 56.7 24.2 / 37.5 / 43.8 / 53.3 17.1 / 28.3 / 38.4 / 59.5
mPose-2ESelScore X X X X 25.5 / 39.0 / 47.4 / 58.9 27.8 / 38.8 / 45.9 / 54.8 17.6 / 29.5 / 39.2 / 61.8

Fig. 8: The distribution of successful localization and inliers.

compare the distribution in Fig. 8. The color bar indicates the
number of inliers. Results show that, as we can utilize both
point and line features and the minimal number of feature
matches needed to compute the camera pose is reduced, our
method can achieve more inliers and thus more successful
localizations, such that the ATE (absolute trajectory error) is
smaller as shown in Table VII.

4) Repeatable positioning: For the localization algorithm,
the repeatable positioning in a same scenario is very important.
To quantify the repeatability, we repeat the same method in
the same place to present the statistic result of translation and
rotation error between each two estimated results. To be spe-
cific, we test the proposed method 100 times in the same place
with 100 RANSAC iterations in each test. To demonstrate
the repeatability in different environmental characteristics, we
utilize the selected scenes of three sessions mentioned in
Section V-B for test. The result expressed in translation and
rotation error is shown in Fig. 9. The repeatability is similar
on three sessions. As reflected by the result of the proposed
method, the mean repetition error of translation is around 0.1
m and rotation is around 0.2 degree. And the repeatability of
the proposed method is better than EPnP.

C. Real-time Robot System Experiments
Finally, we conduct real-time visual localization experi-

ments on both monocular and multiple camera robot sys-
tem. The details about the robot platform and multi-camera
dataset can be found in Supplementary Material [24]. For
monocular camera system validation, we still use the YQ-
dataset. The proposed algorithms are integrated in the existing
pose estimation module of ORB-SLAM [38]. We compare the
number of successful localization and inliers for robustness
evaluation of EPnP and our 2P method. The criterion for
successful localization is the same as in ORB-SLAM. For
accuracy, we calculate the ATE as shown in Table VII. Since
the relocalization module in ORB-SLAM is not robust and the
localization using multiple temporal images is not supported,
the performance is not as good as in Section V-B. But note
that the proposed 2P method is still better than EPnP.

To further evaluate the multi-camera algorithms, we collect
a new dataset with a physical five-camera robot system and

Fig. 9: Repeatability result.

there are four sessions denoted as 0325, 0329, 0331, 0333.
We select the 0325 session to build the map, and the others to
test the performance with real multiple images from multiple
cameras. For accuracy, we compare the sequential localization
estimates with the visual odometry estimates, in a similar
manner to [39]. The results on this dataset are shown in
Table IX. As the results show, the proposed localization
method gives the best performance over all evaluations and is
more robust and accurate as the mean and median error are all
smaller. In addition, since there are large perspective changes
in this dataset, the advantage of multi-camera algorithms is
bigger than that of mono-camera algorithms, which validates
the necessity of multi-camera algorithms in practice.

There are some limitations in real world application. The
IMU and multiple cameras are needed which increases the
costs and the calibration is also required. And the network of
strategy selection needs re-training when localizing in the new
map. However, if the front end of the robot system utilizes
VINS, the IMU-camera configuration and calibration would
also be useful for these algorithms, such that the improvement
of the robustness given by our algorithm is still worth.

VI. CONCLUSION

In this work, the minimal closed form solutions to 3D-2D
visual localization using both point and line features are de-
rived by making use of inertial measurements. Embedding the
solutions, the 2-entity RANSAC framework is proposed and
verified on thorough simulation and real world experiments
to show the robustness in long-term localization. In addition,
the proposed mPose minimal solutions can be applied to multi-
camera system, which are validated in real data with significant
environmental and perspective changes. In the future, we
are going to focus on the insensitive feature extraction and
matching to get more reliable feature matches.

TABLE V: Inlier score estimation comparison.
2017-0827 2017-0828 2018-0129

BEEM BLOGS Ours BEEM BLOGS Ours BEEM BLOGS Ours
Precision 0.723 0.701 0.743 0.589 0.517 0.738 0.460 0.417 0.673
Recall 0.304 0.149 0.651 0.433 0.182 0.659 0.196 0.150 0.683
F-score 0.375 0.229 0.668 0.494 0.264 0.676 0.238 0.197 0.647
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TABLE VI: Success rate of mono-camera algorithms.
2017-0827 2017-0828 2018-0129

Trans Error (m)
Rota Error (◦)

0.25/0.5/1.0/5.0
2.0/5.0/8.0/10.0

0.25/.5/1.0/5.0
2.0/5.0/8.0/10.0

0.25/0.5/1.0/5.0
2.0/5.0/8.0/10.0

P3P 15.6 / 28.6 / 38.2 / 49.4 16.2 / 32.1 / 39.1 / 47.1 09.2 / 18.3 / 27.8 / 45.2
EPnP 15.9 / 29.2 / 38.6 / 50.7 17.8 / 33.0 / 39.6 / 47.6 09.8 / 20.7 / 28.8 / 45.6
UPnP(*) 19.2 / 33.1 / 39.2 / 51.8 19.6 / 34.3 / 38.2 / 47.4 10.4 / 21.3 / 28.2 / 46.8
2P1L 09.8 / 14.2 / 18.6 / 31.8 09.5 / 17.4 / 23.0 / 34.1 07.0 / 11.5 / 16.5 / 33.3
1P1L 09.8 / 14.2 / 18.6 / 31.8 09.5 / 17.4 / 23.0 / 34.1 07.0 / 11.5 / 16.5 / 33.3
2P 21.9 / 33.8 / 41.0 / 54.6 20.9 / 31.9 / 37.1 / 44.3 13.9 / 24.4 / 33.5 / 53.5
mixed 22.1 / 33.7 / 40.1 / 53.6 23.0 / 34.7 / 40.4 / 49.3 13.2 / 24.7 / 34.6 / 54.1

TABLE VII: Mono-camera robot localization.
Success Inlier ATE (m)
Number Number rmse mean median

0827 EPnP 275 43920 1.307 1.042 0.821
Ours 479 50857 1.219 0.936 0.607

0827ORB EPnP 108 38827 2.374 1.979 1.557
Ours 214 42390 2.245 1.795 1.398

0828 EPnP 363 48076 1.312 0.995 0.690
Ours 596 69652 1.041 0.744 0.481

0828ORB EPnP 187 46757 1.261 1.026 0.816
Ours 277 58020 1.225 0.957 0.723

0129 EPnP 144 14479 1.515 1.228 0.948
Ours 268 31980 1.370 1.109 0.851

0129ORB EPnP 41 13884 3.712 2.598 1.963
Ours 62 24316 3.684 2.538 1.952
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