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Abstract— This paper aims to improve the performance of
an electromyography (EMG) decoder based on a switching
mechanism in controlling a rehabilitation robot for assisting
human-robot cooperation arm movements. For a complex
arm movement, the major difficulty of the EMG decoder
modeling is to decode EMG signals with high accuracy in
real-time. Our recent study presented a switching mecha-
nism for carving up a complex task into simple subtasks
and trained different submodels with low nonlinearity. How-
ever, it was observed that a “bump” behavior of decoder
output (i.e., the discontinuity)occurred during the switching
between two submodels. The bumps might cause unex-
pected impacts on the affected limb and thus potentially
injure patients.To improve this undesired transient behavior
on decoder outputs, we attempt to maintain the continu-
ity of the outputs during the switching between multiple
submodels. A bumpless switching mechanism is proposed
by parameterizing submodels with all shared states and
applied in the construction of the EMG decoder. Numerical
simulation and real-time experiments demonstrated that the
bumpless decoder shows high estimation accuracy in both
offline and online EMG decoding. Furthermore, the outputs
achieved by the proposed bumpless decoder in both testing
and verification phases are significantly smoother than the
ones obtained by a multimodel decoder without a bumpless
switching mechanism. Therefore, the bumpless switching
approach can be used to provide a smooth and accurate
motion intent prediction from multi-channel EMG signals.
Indeed, the method can actually prevent participants from
being exposed to the risk of unpredictable loads.

Index Terms— Bumpless switching mechanism, MIMO
EMG decoder, myoelectrical control, rehabilitation robotics,
multi-movement task.
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I. INTRODUCTION

IN THE advanced rehabilitation theory, it is generally
accepted that users’ involvement is essential in both the

therapy procedures and the development of rehabilitation
technics [1], especially in rehabilitation robotics [2]. Com-
paring with physical sensor-based robot control strategies,
strategies using bio-sensors, such as Electroencephalography,
Electromyography (EMG) and Electroneurography, for reha-
bilitation, allow robotic movements to be triggered more
naturally and simultaneously based on human motion. Among
different bio-signals, the surface EMG signal has attracted
much attention, because it is closely related to patients’ muscle
activities, and can be collected easily with noninvasive sensors.

On the other hand, for rehabilitation, upper limb motor re-
learning and recovery levels are required to be improved with
proper intensive physiotherapy. For patients with partial motor
capacity, it is essential to estimate patients’ motion intention
for further assistance. Therefore, some studies have proposed
methods to detect the motion intention by estimating limb
motion in both static [3] and dynamic manners [4].

Although a few studies were able to consecutively map the
human’s intention from EMG to limb motion in a natural neu-
romuscular control strategy, it is broadly speaking difficult to
identify a consistent pattern regarding motor control strategies
among different subjects. This is due to the susceptible nature
of EMG signal during dynamic motion. Zhang et al. have
proposed an adaptive estimation method to train a model for
accurately mapping two-paired muscle activations and elbow
motion for covering subject-specific problems [5]. However,
the performance of this method is mostly limited to one or
two joints’ motion and thus modeling accuracy and keeping
signal integrity remained as big challenges.

A state-space model together with principal component
analysis for reducing dimensionality has been proposed by
Panagiotis et al. for mapping the relationship between EMG
signals and multi-joint movements [6]. The method together
with a switching law is further used as a switching regime
to control a robot arm in random patterns [7]. Both meth-
ods work well in a robot arm’s trajectory control. However,
the dimensionreduction comes at the expense of discarding
some useful information included in EMG signals. Hence a
thorough dynamics describing the relationship between EMG
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signals and multi-joint movements may not be well captured
when applying these methods in robot-human cooperation
movements.

To further develop a method for consecutively estimating
multi-joint motion intention for the control of cable rehabili-
tation robot, a modeling method without dimension reduction
has been proposed for mapping the relationship of six muscle
activities and whole arm motion [8]. The method showed
good estimation accuracy and was able to support subjects
naturally and actively for simple linear tracking tasks. To
further improve the performance when applying the method
in complex tasks, a switching mechanism [9] has recently
been proposed based on the method in [8]. This switching
mechanism could improve accuracy, but a problem was iden-
tified when it was applied in real-time experiments. That is,
when switching between submodels for subtasks, the estimated
outputs abruptly change due to large variations in model
parameters. Although the overall estimation accuracy of the
proposed switching mechanism in [9] is high, and the output
bumps only show a marginal influence over the majority of
healthy subjects’ experiments, the impact of the bump is non-
negligible for some healthy subjects and is unacceptable for
dyskinesia patients.

More specifically, the bump in model outputs in real-
time might cause unexpected forces in the affected limb
and might be a cause of injury for patients. Furthermore,
with an unexpected disturbance, the short term response of
participants functionally destabilizes posture, and the further
compensation of body displacement is generally achieved as
a long term response [10]. The affected stability after distur-
bance cannot recover easily for dyskinesia patients. Although
there are some studies about switching methods for different
tasks, most of them focus on judging the switching logic
for different tasks [11], [12]. The continuity of estimated
outputs when switching between different tasks is rarely dis-
cussed. Concerning a switching mechanism for the research of
rehabilitation robot control in an active-assistive rehabilitation
program, most works use different types of control signals.
Bernhardt et al. [13] applied an algorithm [14] by adaptively
adjusting the reference trajectory to ensure the stability of the
switching between a position and force control scheme for a
lower limb rehabilitation robot. A hierarchical control struc-
ture [15] is developed to translate a sequential rehabilitation
exercise into a sequence of consecutive movement patterns,
but the switching transient is not explicitly considered. Hardly
any works investigate the parameterized bumpless switching
algorithm and use the same type of control signals in the
rehabilitation robot control. As it is essential to continuously
estimate multi-joint motion intention from EMG signals during
task switching, we explore a state-shared bumpless transfer
for model switching to improve transient performance during
switching.

The devised state-shared bumpless transfer is motivated
by Multiple Models Adaptive Control (MMAC) [16]. For
the MMAC application, only one controller is applied to
generate a control signal at any time instant. The idea of
this transfer method is to implement a group of different
controllers by a single controller with adjustable parameters

rather than implementing each controller as an individual
system. With the state of the single controller shared by
a group of controllers, this implementation is termed as a
“state-shared” multirealization. This multirealization technique
is first introduced by Morse [17], who employed an adaptive
control algorithm that consists of a group of linear Single-
Input Single-Output (SISO) controller models and a high-
level switching logic for supervising. The approach contributes
to improving transient performance and realizing bumpless
transfer between different controllers.

Besides, the bumpless transfer is also proposed for an
anti-windup design of a SISO PID controller within an inte-
grated closed-loop system between manual and automatic
controllers [18]. With this technique, the switching in a
saturated multi-controller scheme is able to avoid a large
transient caused by incompatible initial conditions of the con-
troller. Zaccarian and Teel [19] developed a bumpless transfer
approach for anti-windup for Multiple-Input Multiple-Output
(MIMO) systems. This approach requires the knowledge of
the models of the whole closed-loop system, i.e., including
both the controller and the under controlled process. Only a
few approaches do not need a fully dynamic model of the
closed-loop system. For example, Yame et al. [20] proposed a
parameterization method to realize bumpless transfer between
controllers in a MIMO system without implicitly knowing
the dynamical model of the closed-loop system. However this
method requires restrictive conditions including a unique equi-
librium state trajectory associated with the reference trajectory
for each controller, and the switching must occur when the
system is in a steady state with zero tracking error.

For active rehabilitation, the human nervous system will
be involved in the closed-loop system. Modeling the human
nervous system, which can be highly nonlinear and time-
variant, is either too complicated or even impossible. A unique
equilibrium state trajectory for all controllers is also unavail-
able needless to say ensuring the switching happens in the
steady state with zero tracking error. Furthermore, the minimal
realization of the system is not explicitly considered within
these approaches [20]. A bumpless transfer with a minimal
realization that can be applied in a human-involved closed-
loop system is anticipated to ensure the smoothness of decoder
outputs.

For the multirealization of a family of linear MIMO sys-
tems, the authors of [21], [22] developed a stably based mul-
tirealization approach to implement the bumpless switching
with the dimension of the switching model minimized. As this
method does not require the model of the under controlled
process, it is suitable for application in a human-involved
close-loop system.

Based on the state shared multirealization approach, we
proposed a new decoder model (a MIMO system) with a
bumpless switching mechanism to depict human motion intent
from EMG signals. The decoder is implemented in a human-
robot cooperation strategy for a visual tracking task. The
decoder outputs are used to control the robot to support
subjects in compliance with their motion intention. As both the
states and the outputs of the switching model are continuous
even during switching, which is consistent with the continuity
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Fig. 1. The three kinds of EMG decoder models (a) Single model,
(b) Bump switching mechanism with the realizations {Ai,Bi,Ci} for four
subsystem models and (c) Bumpless switching mechanism with the mul-
tirealization {A0 + FiC0,Bi,C0} for su bsystem models. The realizations
{Ai,Bi,Ci}, i ∈(2,3, 4) in (b) are all realized the same as {A1,B1,C1}.

of human physiological and psychological variables, the safety
of the robot rehabilitation patients could be improved. Both
numerical analysis and real-time experimental verification
have demonstrated the effectiveness of the proposed bumpless
switching mechanism.

II. MODELS FOR THE CONSTRUCTION OF EMG
DECODER

The goal of this paper is to develop an EMG decoder, which
uses muscle activations to continuously represent the motion
required forces in real-time while retaining all muscle activity
information.

In our previous work [9], a switching mechanism with a
group of models for a complex arm motion was developed
and evaluated, as shown in Fig. 1(b). A total of four linear
state-space models as subsystem models with six-input and
three-output were built up for a square shape tracking task.
By directly switching among the four subsystem models, the
EMG decoder with the switching mechanism can accurately
estimate the motion required forces. When comparing to a
single model decoder (shown in Fig. 1(a)), no matter how
complex the single Linear Time-Invariant (LTI) model is, i.e.
the order of the model is high enough, the EMG decoder with
the switching mechanism shows better performance in both
simulation and experiment phases [9]. However, a “bump”
behavior of the outputs which might affect the consecutiveness
of the outputs and system state was observed.

As mentioned earlier, the “bump” in output appears because
the subsystem models switch. An effective way for improv-
ing the transient response of SISO systems proposed by
Morse [17] comes from constructing a stably based state-
shared multirealization. In this study, as the system is a
multivariable system, motivated by the elimination of “bump”
outputs, we attempt to solve a general realization (presented as

the “multirealization” [21], [22]) for any MIMO subsystems
(see Fig. 1(c)).

Consider the state-space model for one subsystem (denoted
as a submodel):

Hi :
{

ẋi = Ai xi + Biu

y = Ci xi
(1)

where i ∈ {1, 2, 3, 4}, xi ∈ R
ki is the state vector and ki is

the order of the i -th submodel, u ∈ R
6 is the input vector

composed by six muscle activations, y ∈ R
3 is the output

vector composed by the needed forces along cables. The
matrices Ai ∈ R

ki ×ki , Bi ∈ R
ki ×6, and Ci ∈ R

3×ki are the
system matrix, input matrix, and output matrix, respectively.

The state-space submodels for a given task are built up
by identifying the original realization {Ai , Bi , Ci } and the
initial values of state vector x0i . Both {Ai , Bi , Ci } and x0i are
identified by the canonical variate analysis in the continuous-
time domain [23]. As the whole underlying system should be
stable, the stability of each submodel is a necessary condition
during the model identification.

For a multirealization, in general, the order of submodel ki

can be different based on each model’s performance. However,
in this paper, we assume that all the submodels are of the third
order, i.e. ki = 3 for all i = 1, . . . , 4. The reason for this
assumption is as follows.

In our earlier study [9], the performance of a single third-
order linear system model is better than those of single high
order models. As the switching mechanism with multiple
models is more complex and has more capacity to capture
system dynamics than a single model, to select each subsystem
model order as third should be higher enough to accommodate
the complexity of this rehabilitation task.

III. MULTIREALIZATION

In this study, we establish four submodels to describe four
simple linear tracking subtasks, and each subtask model is
trained using the input and output data from each subject.
The transfer function matrix Hi(s) of each subsystem can be
calculated by its realization {Ai , Bi , Ci } as follows:

Hi(s) = Ci (s I − Ai )
−1 Bi . (2)

The transfer function matrix Hi(s) (i ∈ {1, 2, 3, 4}) can
be expressed by matrix fraction description (MFD) [24]. The
specific steps of using MFD to find a multirealization of the
four submodels Hi(s) will be described later.

As explained earlier, for the multirealization, instead of
implementing the subsystems by the individual realization
{Ai , Bi , Ci }, we find a generic realization form {A0 +
Fi C0, Bi , C0}. As shown in Fig. 1(c), by merely adjusting
Fi and Bi , the “bumpless” switching among subsystems can
be realized. The serially switching between these multiple
controllers can keep both the outputs and states being con-
tinuous. Furthermore, a stable LTI system is shared by the
four subsystems.

In the following steps, we will show how to find the generic
multirealization form {A0 + Fi C0, Bi , C0} to implement the
bumpless switching mechanism.
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A. Irreducible Right Matrix Fraction Description

In the first step for finding the multirealization, we recall
the properties of the right matrix fraction description (RMFD).
The multirealization procedure listed in [21] did not provide
an algorithm to calculate RMFD numerically. In this study, we
introduce a practical algorithm step by step.

According to Kailath’s [24], the RMFD of transfer function
which is not unique can be written as

Hi(s) = Ni (s)D−1
i (s), (3)

and it is possible to construct a controllable state-space real-
ization for each subsystem {Ai , Bi , Ci } whose dimension ki

is the degree of RMFD (i.e., the order of the determinant of
Di (s)). To minimize the dimension of the controllable state-
space realization for each system, it is essential to pursue the
irreducible RMFD (i.e., the minimal RMFD, minRMFD), for
which Ni (s) and Di (s) are right coprime.

The minimum realization of a single linear transfer func-
tion matrix Hi(s) based on MFD description has been well
investigated in [24], [25]. The key procedure is to find the
minRMFD for Hi(s).

A practical numerical method for finding the minRMFD is
the Sylvester matrix based approach as follows [26]:

1) Find a left MFD H (s)p×q = D−1
L (s)NL (s) for the given

transfer function matrix, where p and q are the numbers of
input and output variables. It should be noted that as we do
not require DL(s) and NL (s) are left coprime, thus finding
such a left MFD is an easy task.

2) Find two polynomial coprime matrices D(s)q×q and
N(s)p×q such that

[NL(s) − DL(s)]
[

D(s)
N(s)

]
= 0. (4)

An efficient solution for Step 2) is based on the Sylvester
matrices approach [26] for computing a minimal polynomial
basis for the right null space of [NL(s) − DL(s)] [27] as
follows:

(a) An appropriate Sylvester resultant matrix S is con-
structed by finding the coefficient matrices of NL (s)D(s) and
DL(s)N(s) of corresponding power;

(b) A search algorithm for exploring the properties of S
is used for finding the first q primary dependent columns
of S (Sq );

(c) The linear combinations of the preceding linearly inde-
pendent columns are found with the Sq ;

(d) The coefficients of linear dependence are used to
form D(s) and N(s).

By using an orthogonalization process on S [28] in (b), it is
possible to determine whether the innovation introduced by a
particular column is zero. Hence, it can be determined whether
this particular column is linearly dependent on the preceding
columns.

During the orthogonalization process, if S is a high dimen-
sion matrix with huge or tiny elements that may happen in a
real system, it is necessary to pre-adjust those elements to a
proper numerical level before the orthogonalization process.
Also, a robust procedure is introduced in [26] based on the

singular value decomposition. There are also other methods
for calculating the minRMFD. For the Sylvester matrix based
approach, a Matlab code for low dimension systems has been
provided by Ahmadreza Saadatkhah [29].

B. Multirealization of Linear Systems

A polynomial matrix D(s) [21], [22], [24] can be
written as D(s) = Dhc S(s) + Dlc(s), where S(s) �
diag{sk1, sk2 , . . . , skm } is the highest (column) degree matrix
with ki being the highest degree of the i -th column of D(s),
and Dhc is the highest degree-coefficient matrix of D(s),
which is constructed from the coefficients of the highest
degree polynomials in the columns of D(s), and Dlc(s) is
the remaining part of the D(s).

The operator (Dhc{· }) is defined as Dhc(D(s)) = Dhc S(s).
Assume the minRMFD of a transfer function Hi(s) =

Ni (s)D−1
i (s) = N̄i (s)D̄−1

i (s) can be found with D̄i (s) in
column reduced form. To simplify the discussion, we can
assume that the matrix D̄i (s) is a Popov form matrix [24].

With the minRMFDs (D̄i (s) and N̄i (s)) of all subsystems
found, a generic minimal multirealization of the set of subsys-
tems Hi(s) can be achieved by the following procedure [21].

1) Reform the minRMFD: To derive conditions for the multi-
realization of multivariable systems, we first reform the D̄i (s)
into D̃i (s) with requirements that the elements of S(s) exist on
the diagonal in degree reducing, and the Dhc

i of the D̃i (s) are
normalized to I , which can be implemented by elementary
transformation with consideration of every element of each
D̄i (s). The transfer function, therefore, is transformed into:

Hi(s) = N̄i (s)Xi [D̄i (s)Xi ]−1 = Ñi (s)D̃−1
i (s) (5)

where Xi is a real matrix for i -th subsystem to reform the
minRMFD.

2) Uniform the Common Highest-Degree-Coefficient Matrix:
As described by the previous research [21], a stably based
generic minimal multirealization can be found with a
generic minimal common denominator Dms (s), for which
Dhc{Dms(s)} = Dm(s) has the following form:

Dm(s) = [dpq(s)] (6)

and

di j (s) =
{

0, i f p �= q

skmax p , i f p = q
(7)

where kmax p = max{k1
p, k2

p, k3
p, k4

p} is the highest degree of
the p-th column among all D̃i (s) (i ∈ {1, 2, 3, 4}).

In this step, we try to find out the common Dhc
m for four

subsystems.
3) Construct a Common RMFD: After finding the generic

minimal common denominator Dhc{Dms(s)} = Dm(s), for
each submodel, it is always possible to transfer D̃i (s) by right
multiply a matrix X̃i (s) such that

Dhc{Dmi (s)} = Dhc{D̃i (s)X̃i (s)} = Dm(s).

Thus, the Dmi (s) and Nmi (s) of i -th system can be con-
structed by right multiplying the matrix as follow:

Hi(s) = Ñi (s)X̃i (s)[D̃i (s)X̃i (s)]−1 = Nmi (s)Dm−1
i (s). (8)
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Fig. 2. An experimental scenario.

After we constructed the new RMFDs for subsystems, it is
ready to multirealize all the submodels.

4) Construct a Generic Multirealization: Based on the pre-
vious research [21], to implement the multirealization form
as depicted in Fig. 1.(c), we need to construct Nmi (s) and
Dmi (s) for the transpose form of Hi(s), i.e.,

H T
i (s) = Nmi (s) · Dm−1

i (s).

Then, construct a stable polynomial matrix Dms(s) such
that Dhc{Dms(s)} = Dm(s). By using the method in [24]
(pp. 403-407), a controller form realization {Ac0, Bc0, Cci }
of Nmi (s)D−1

ms (s) can be found with the pair {Ac0, Bc0}
controllable and Ac0 stable and Cci = Nmilc . Let Ki =
Dmlc − Dmilc . Then, a generic minimal multirealization for
the set of subsystems H T

i (s) (i ∈ {1, 2, 3, 4}) is {Ac0 +
Bco Ki , Bco, Cci }.

Then, the multirealization form depicted in Fig. 1.(c) for
the original submodels Hi(s) = (H T

i (s))T can be obtained
as {A0 + Fi C0, Bi , C0} by letting A0 = AT

c0, Bi = CT
ci ,

C0 = BT
c0, Fi = K T

i where only the Fi and Bi are needed
to be adjusted during switching. As A0 and C0 are constant
during switching, the stable LTI system with the switching
mechanism can ensure bumpless outputs in real-time (i.e., the
outputs keep continuous under the switching of Fi and Bi ).

IV. EXPERIMENTAL DESIGN

A. Experimental Platform and Data Collection

A cable-based upper limb rehabilitation robotic system
(described in [30]) was used to provide assistance to partici-
pants. A scenario of the experiment is shown in Fig. 2.

Specifically, the arm motion in 3D space and EMG signals
of six arm muscles were captured. The EMG signals were
processed into six muscle activations as inputs of the EMG
decoder. The arm motion were analyzed and the required
forces of arm motion were used as the decoder outputs.

The joints motion information was captured by a motion
capture system with a sampling frequency of 100 Hz. The
required forces of arm motion along the cables were computed
from the human-robot dynamics model [30] to reflect real-time
human motion intention. The required forces of arm motion
were further processed to calculate the driven torques of the
three motors.

The muscle activities information were captured (with a
sampling frequency of 1000 Hz) and amplified (to a magnitude
of 5000) by an EMG acquisition system. The EMG envelopes
were full-wave rectified from EMG signals and normalized
by the maximum voluntary isometric contraction values [31]
to the range of [0, 1]. The muscle activations were further
calculated from the EMG envelopes [6] by a neural-muscle
activation model [32]–[34].

For synchronization between the muscle activations and the
motion required forces, the muscle activations were decimated
into a new serial with the frequency of 100 Hz.

B. EMG-Based Human-Machine Cooperation Controller

To control the robotic system, a human-machine cooperation
controller based on the EMG decoder was applied. In this
controller, the human brain first reacted to the position gap
between the human-robot executor and the target position
and stimulated the related muscles. By capturing the muscle
EMG signals, the built-in EMG decoder estimated the required
forces of arm motion.

The forces were then processed according to the human-
machine dynamics model and the motor dynamics model
of the robot system, and were transmitted along the cable.
The force applied along the cable was used to support the
human-machine actuator to aid cooperative human-machine
movement.

To train the EMG decoder, the six muscle activations were
selected as its inputs, and the required forces of arm motion
were selected as its outputs. For a complex tracking task
designed for robot-aided rehabilitation, a switching mecha-
nism for carving up the task into a group of subtasks was
proposed earlier [9]. A group of submodels were trained for
these subtasks. Each submodel was treated as an individual
subsystem. The switch mechanism was realized by the intro-
duced multirealization technique (i.e., the bumpless switching
mechanism). The identified submodels with the bumpless
switching mechanism could be applied to estimate the motion
required forces from muscle activations in both simulation and
real-time.

C. Participants

This study included seven healthy women and men aged
25.3 ± 0.7 yrs who signed informed consent forms. This study
was approved by the Human Ethics Committee of the first
affiliated Hospital of Sun Yat-Sen University ([2013]C-096).

The muscle activities of the anterior, medial and posterior
part of deltoid (DA, DM, DP), triceps brachii (TRI), biceps
brachii (BIC) and brachioradialis (BR) were recorded. These
muscles were mainly responsible for analyzing the upper limb
motion based on biomechanics [35]. Pairs of two surface EMG
electrodes were placed at the skin surface corresponding to the
six muscles of each participant. The reference electrodes were
placed at the skin surface corresponding to the carpal, elbow
and acromion bones. Three infrared-reflection markers of the
motion system were placed at the skin surface corresponding
to the centre of wrist, elbow and shoulder.
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D. Experimental Protocol
The effectiveness of the EMG decoder with bumpless

switching mechanism was verified through the numerical
analysis of the participants and the real-time experiments of
the participants and the robot system.

The numerical analysis included training and testing
phases. The experiments as the veri f ication phase were for
validating the performance of the EMG-based controller in
real-time human-machine cooperation tasks.

During the tracking task of participants, the EMG signals
and joints positions in 3D space were collected. The details of
the tracking task for the model training and the testing phases
are as follows:

1) A target cursor moves on the screen according to a preset
square shape trajectory in the horizontal plane for 20 seconds
once triggered;

2) A wrist cursor representing the actual position of the
participant’s wrist locates on the screen and is controlled by
participants;

3) As one trial, participants control the wrist cursor to track
the target cursor for 20s until the target stops;

4) Each participant needs to finish nine trials where six of
them are randomly chosen for the training phase, and the other
three are for the testing phase.

It should be noted that both the target cursor and the wrist
cursor were shown on the screen with three dimensions.

The data of model training phase was used to train
a decoder by a single state-space model denoted as SGL
(see Fig.1 (a)), four submodels without the “bumpless”
switching mechanism (denoted as the nonbumpless decoder,
N B L) (see Fig.1 (b)) and four submodels with the “bumpless”
switching mechanism (denoted as the bumpless decoder, B L)
(see Fig.1 (c)). The orders of all models were selected as third
(as discussed in Section II.B).

In the model testing phase, the three trained decoders
(i.e. SGL, NBL, and BL) and the processed inputs of this
phase were applied to estimate outputs. The related target
outputs were also processed based on joints motion. The dif-
ference between the estimated outputs from different decoders
and the target outputs were explored to evaluate the perfor-
mance. As noted earlier, the testing in this phase was under the
open loop condition, because the muscle activities as inputs
did not respond to the tracking error through human visual
feedback.

In the experimental verification phase, each participant
would cooperate with the robotic system to finish three trials
of the same tracking task. The muscle activities and joints
positions in 3D space were also recorded. The real-time EMG
signals were processed and applied together with the three
decoders respectively. During the cooperation movements, the
participant’s brain would respond to the visual feedback and
control muscles to produce arm movements together with the
assistance from the robotic system. Participants were able
to mobilize their arms and proactively track the target with
fewer errors in real-time. Therefore, the performance of the
three decoders was evaluated under closed loop configuration
with real-time feedback. In this loop, the estimated forces
of the required arm motion not only supported participant’s

movements, but also their impact on movements could be
perceived by the brain and the visual system through the visual
interactions.

To ensure the safety of participants, the motors’ rotation
speeds are pre-regulated by limiting the range of the actual
output forces to [−100N, 100N]. Specifically, if the estimated
forces from the models were over 100N or below −100N , the
motor was constrained at −30N or 30N .

E. Evaluation of Parameters

The performances of three decoders (SGL, NBL, and BL)
were evaluated by the following indicators: six muscle acti-
vations during the task, model fitness difference between
target outputs and estimated outputs, and smoothness of three
outputs.

1) Muscle Activation: The mean value of muscle activations
(MMA) during a trial, which reflects the average muscular
efforts, were calculated in all six muscles (i.e., BIC, TRI, DA,
DM, DP, and BR). Since the muscle activations of the training
and testing phases are all collected in open-loop, the MMA
values of these two phases were analyzed together as a group
(modeling in Figure 3).

2) Model Fitness and Output Smoothness: The difference
between the target outputs and the estimated outputs from
different decoders were used to evaluate the performance in
decoding EMG signals.

The model fitting error (MFE), which is the absolute differ-
ence between the target force output (Ft) and estimated force
output (Fe), was calculated to evaluate the accuracy. To assess
the overall accuracy, the root mean square (RMS) value of the
whole trial MFE was calculated as:

M F ERM S j =
√√√√ 1

N

N∑
i=1

(�Fj (i))2 (9)

where i ∈ {1, .., N}, j ∈ {1, 2, 3}, �Fj (i) =∣∣Ft j (i) − Fe j (i)
∣∣ is the model fitting error of j -th output at

i -th sampling point and N = 2000 is the number of the total
sampling.

The Pearson Correlation Coefficient (PCC), which shows
the relationship between the targeted and estimated outputs,
was calculated to evaluate whether the trend of the estimated
motion intention was consistent with the actual intention [36].

Model fitness is used to describe the overall accuracy of the
model estimation, which considers a balance between absolute
and relative differences. A good model fitness performance
relates to a low MFE and a high PCC.

To quantify the smoothness of the outputs, Normalized Jerk
Score (NJS) of the outputs during the testing and real-time
experimental verification, was calculated [37] as follows:

N J S =
√

1

2

T 5

D2

∫
jerk2dt (10)

where t refers to the actual time, jerk is the third-order
derivative of outputs with respect to time t , T and D refer
to the duration time and amplitude respectively, which were
applied to normalize the jerk and to eliminate the influence of
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Fig. 3. (1) The mean muscle activations of six muscles (BIC, TRI,
DA, DM, DP, and BR) during the training and testing phases (modeling)
and verification phases. (2) The mean muscle activation performance
of different decoders (SGL, NBL, and BL) in the verification phase. The
significant difference (p < 0.05) between the modeling and verification
phases is denoted by ‘*’.

time and amplitude. The relative NJS (RNJS) of the outputs
estimated by different EMG decoders were calculated for
comparing with target outputs as follows:

RN J S = N J Sest

N J Star
(11)

where the N J Sest is from the decoder estimated output and
N J Star is from the target outputs.

3) Statistical Analysis: All significance tests of the above
indicators among decoders and phases were analyzed by
the Kruskal-Wallis nonparametric test with pairwise multiple
comparisons at a conventional significance level of 0.05. All
tests were performed by SPSS 19.0 (SPSS Inc., USA).

V. RESULTS AND DISCUSSION

A. Difference and Consistency in Muscle Activation
Levels

The results of the MMA in different phases and with
different decoders were shown in Figure 3. When comparing
the MMA values of the modeling group with that of the
verification phase, there exist significant differences in most
muscles (BIC, TRI, DA, DM, and DP). The decreased overall
muscle activation performance is acceptable and predictable.
As reported in a previous study [38], the support of the
robotic platform would reduce the muscle burden from the
arm gravity. The activation reduction is also in line with other
robot-aided limb movements [39] and suggests that the control
algorithm is effective in assisting arm limb motion [39]. When
comparing MMA in the verification phase, the performances
of each muscle in different decoders were quite similar to each
other. No significant difference was found among different
decoders. This agrees with the fact that the healthy subjects

Fig. 4. The model outputs of three different decoders (SGL, NBL, BL)
during the training and testing phases.

could naturally control their arm and finish the task no matter
which model was applied.

Over the whole task, the arm movements of all participants
were slow stretching and retracting movements. The activities
of all six muscles illustrated low amplitudes but producing
multiple neural bursts [40] with the response after each
switching operation. This may be related to the task design,
in which the trajectory varies sharply at the vertex of the
quadrilateral, and the task direction in one of the dimensions
changes reversely. As described in [41], when the subject
controls the arm to follow the target’s rapid changes, the
muscle contraction amplitude and the degree of co-contraction
may change.

B. Comparision of the Estimation From Different
Decoders

The MFE, PCC, and RNJS results are shown in Table I. The
target outputs and the estimated outputs of the three models
in the training and testing phases are shown in Figure 4.
Furthermore, the target outputs and the estimated outputs of
the three decoders in the verification phase are shown in
Figure 5. The results of the RNJS during both testing and
verifying phases were shown in Figure 6.

In the testing phase, both NBL and BL had significantly
lower MFE and higher PCC than SGL. In the verification
phase, NBL showed the best model fitness performance, while
BL showed great but slightly worse model fitness performance.
Moreover, no significant difference between NBL and BL was
found. The model fitness performances of SGL in both phases
was the worst. In terms of RNJS of both phases, it is evident
that the differences between SGL and NBL and those between
BL and NBL are both significant, with RNJS of NBL being
the highest among three decoders.

In terms of MFE and PCC, NBL could estimate the outputs
more accurately than BL. However, there are significant differ-
ences between NBL and BL, in terms of output smoothness,
for both testing and verification phases. It was also observed
that in the testing phase the ‘bump’ behavior in outputs of
NBL is not always sharp (i.e., the amplitude changes within a
small range), but in the experimental verification phase, more
sharp changes occurred.
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Fig. 5. The model outputs of three different decoders (SGL, NBL, BL)
during the verification phase.

Fig. 6. The RNJS of the estimated outputs of the three EMG decoders
(SGL, NBL, BL) during testing and verifying phases.

The ‘bump’ in NBL model was mainly caused by the
‘direct’ changes in submodel parameters (i.e., Ci and x0i ,
see Fig.1(b)) during the switching between different motion
phases. Although the ‘bump’ was not so sharp in some cases,
its overall impacts on output smoothness were significant.
Since movement smoothness is regarded as an important
indicator of post-stroke motor impairment [42] and the decoder
performance for patients may decrease with decreasing move-
ment smoothness [43], the application of NBL would have
high limitation in stroke recovery assessment. In contrast,
although SGL can estimate outputs smoothly, its model fitness
in both phases is not as good as other published decoders
[43]–[45]. In clinical rehabilitation, patients with dyskinesia
naturally expect assistance that is more in line with their
motion intention. The more accurate a decoder model is, the
more potential it may show good performance in practical
applications.

Although there is no significant difference between NBL
and BL, the S.D. values of BL in both phases are higher
than those of NBL. This might be caused by the submodels
parameters’ difference. The submodels of the BL decoder are
reorganized and approximated from the submodels of the NBL
decoder. This can be seen as a trade-off between a small range
of decoder accuracy instability and bump behavior.

TABLE I
THE RMS VALUES OF MFE, PCC AND RNJS VALUES OF THE

OUTPUTS ESTIMATED BY DIFFERENT DECODERS (SGL, NBL AND

BL), AND THEIR DIFFERENCES AMONG DECODERS IN BOTH

THE TESTING AND VERIFICATION PHASES

For complex upper limb movements, muscle activities are
mostly nonlinearly involved in human motion intent; they
are so complex that it often cannot be correlated to force
magnitude or direction even for pre-processed EMG signals. A
conclusion in line with this is that EMG decoder models for
specific objects/tasks on a specific hand of specific subjects
may offer better accuracy than a generic model [46]. The
EMG decoder modeling approaches proposed in this paper are
targeted to investigate the probable relationship between the
arm movement and muscle activations during different parts
of a complex tracking task.

Based on the obtained results, the inaccurate estimation
of SGL and discontinuity outputs of NBL are significant
in comparison with BL. Both SGL and NBL would not be
appropriate to be applied to control robots for rehabilitation.
BL shows the potential in accurately decoding EMG signals
into smooth assistance even in an experimental scenario with
limited participants, duration, and data. This switching mech-
anism based on a multirealization of submodels can be an
appropriate and practical approach to control robots in clinical
rehabilitation.

Furthermore, this paper attempted to learn the patterns
of how the muscles produce motion. The patterns are what
our bodies naturally have and are apparently continuous.
The motion that participants performed in a tracking task is
generally regarded to be continuous and it should match the
continuous force outputs estimated from the decoder model.

During system validation experiments, the brain stands at
the highest level in the closed control loop. When a partic-
ipant receives a visual stimulus, the brain reacts and sends
information to the muscles, and controls the arm to follow the
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reference target. The decision-making model of the brain has
been recognized as an example of a choice model, which is
realized by a continuous perception-action loop [47].

The proposed bumpless switching system has similarities
with the operation of perception-action loops. In particular,
the submodel’s state is similar to the forward information
flow, while the output is associated with the body motion.
The compatibility between the proposed bumpless switching
model and the human perception-action process also indicates
the proposed approach is a viable method for revealing human
motion intention.

C. Analysis of the Impact of Outputs Continuity

Considering that the application of our method is clinical
rehabilitation, we believe it is necessary to investigate bump-
less approaches when applying an EMG decoder to promote
active participation of control over the rehabilitation robots.

The above-mentioned results demonstrated the practicality
and effectiveness of the proposed bumpless transfer method
in decoding EMG signals. Due to the complexity of bio-
signal based control systems, it is reasonable and practical to
describe such a system by a switching model, i.e., describe the
system by several low complexity submodels under a properly
designed high-level switching law.

For a switching system, like the EMG decoder we proposed,
many researchers in system control place great emphasis on
properties of the continuous state and outputs [48], and most of
the existing stability criteria for switching systems are under
the assumption that both the system states and outputs are
continuous. Under the continuity condition, the stability of
the switching system is also affected by other factors, such as
the subsystem’s stability and switching law. It is possible to
stabilize the whole system by a well-designed switching law,
even if all subsystems are unstable [49]. It is also well known
that, if its switching law is not well designed, a switching
system may still be unstable when switching between two
stable subsystems. In practice, for a switching system, if its
subsystems are all stable, under the continuity requirements,
the stability can always be met if the switching frequency is
low enough, i.e., the switching period is long enough.

In this study, the identified subsystems are all stable. In
addition, for a human involved biosignal-based system, the
switching frequency is often low. To ensure the continuity
of states and outputs, we applied the multirealization theory
and proposed a practical bumpless transfer approach for the
cable rehabilitation robot. The method we proposed here is
to construct a multirealization form for all subsystems based
on their minimal common denominator in order to reduce the
complexity of the overall switching system (i.e., reduce the
dimension of the switching system). In the multirealization
form, two parameters A0 and C0 are fixed for ensuring the
continuity of states and outputs during switching. The other
two parameters Bi and Fi are changing when switching to
different submodels.

VI. CONCLUSION

Compared with the physical sensor-based robot con-
trol strategy, the biosensor-based robot control strategy for

rehabilitation can more naturally trigger movements by human
intention motion.

In this study, we presented a bumpless switching based
modeling approach to consecutively estimate required forces
of arm motion from EMG signals by switching among simple
submodels during complex rehabilitation tasks. The main
procedure of the bumpless switching mechanism is first to
carve up a complex task into several simple subtasks which
are treated by individual subsystem. Then, a simple state-space
model for each subtask was individually built. Based on the
similar characteristics of the submodels, a generic realization
(multirealization) for bumpless switching between every two
submodels was purposed based on the RMFD.

The proposed bumpless switching mechanism was validated
by both offline testing and online experimental verification on
seven subjects. The testing results suggest that the method
can be applied in a natural manner without any kinematic or
dynamic constraints. Moreover, the estimated outputs of the
proposed method during verifications are equally accurate and
smoother than our previous study, making it suitable for patient
rehabilitation applications.
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