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Abstract 18 

One of the most abundant organic sulphur molecules in the ocean, dimethylsulphoniopropionate (DMSP) has been 19 

implicated in numerous biochemical functions and ecological interactions, from osmotic and oxidative stress 20 

regulation within the cell, to the chemical attraction of bacteria, mammals and birds in the environment. 21 

Notwithstanding these varied and important discoveries, the primary role of DMSP in the cell remains elusive. In 22 

this study, we take a new approach to investigating the role of DMSP in cell physiology. Rather than utilising a 23 

known DMSP-producer, we instead exploit the propensity for the non-DMSP producing diatom Thalassiosira 24 

weissflogii to take up DMSP from its environment. We characterise the uptake and retention of the molecule under 25 

growth conditions and salinity stress with the aim to elucidate its utility as a model system for investigating the 26 

cellular function of DMSP. T. weissflogii showed concentration-dependent uptake of DMSP and complete 27 

retention within the cell for at least 6 h. Saturation of intracellular DMSP occurred at >87 mM, equivalent to some 28 

of the most prolific DMSP-producing species. Salinity shifts resulted in a reduction in DMSP uptake rate, but 29 

only at extremely low (17) or very high (45) salinities. These data demonstrate the potential for using T. weissflogii 30 

in physiological studies, providing a true (DMSP-free) control, as well as a DMSP-enriched version of the same 31 

strain. In this way, orthogonal experiments may be conducted with the aim to uncover the physiological purpose 32 

of DMSP in phytoplankton and potentially add key pieces to the enigmatic DMSP puzzle.   33 
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Introduction 34 

Dimethylsulphoniopropionate (DMSP), is an abundant and ubiquitous organic sulphur compound in marine 35 

ecosystems, with more than a billion tonnes produced by marine phytoplankton annually (Johnston et al. 2016). 36 

Many marine phytoplankton produce and retain high amounts of DMSP, with cellular concentrations sometimes 37 

exceeding 400 mM (Stefels 2000). Once released into the surrounding environment, predominantly through cell 38 

lysis or grazing, DMSP is rapidly scavenged by other marine organisms, the most studied being heterotrophic 39 

bacteria (Kiene and Linn 2000; Moran et al. 2012). This lower level trophic interaction forms the engine of the 40 

marine sulphur cycle, whereby the bacteria selectively transform the DMSP into amino acids and proteins for 41 

growth or cleave it into dimethylsulphide (DMS), a volatile molecule that is readily fluxed into the atmosphere 42 

where it can nucleate to form cloud condensation nuclei, with the potential to influence climate (Charlson et al. 43 

1987). Ecologically, both DMSP and DMS have been implicated in many marine trophic interactions, via their 44 

roles as a chemoattractant (Miller et al. 2004; Seymour et al. 2010), foraging cue (Nevitt and Bonadonna 2005; 45 

Savoca and Nevitt 2014; Lee et al. 2016) or through conversion of DMSP into a chemical deterrent (acrylate) 46 

against grazers (Wolfe et al. 1997). 47 

Controls on DMSP production by marine phytoplankton have been linked to environmental drivers such 48 

as high light, temperature and UVB radiation (Stefels 2000), suggesting the molecule may play a role in cellular 49 

stress response (Sunda et al. 2002). Yet, its most commonly attributed role is osmoregulation (Malin and Kirst 50 

1997; Stefels 2000; Welsh 2000), through its function as a compatible osmolyte. There is, however, considerable 51 

variability in DMSP regulation with respect to stressor (UV, temperature, salinity) and across species (see Stefels 52 

2000). This variability underscores the intricate role of DMSP in phytoplankton physiology, but makes identifying 53 

the intended role(s) of this molecule in the cell inherently challenging. As such, despite its prevalence and 54 

purported importance in the chemical landscape of the ocean, the key functional role of DMSP remains unclear. 55 

To date, research into understanding the functional role of DMSP in the cell has been focused 56 

overwhelmingly on DMSP-producing microalgae, where altered conditions cause a change in concentration or 57 

rate of production within the culture of interest. However, it has long been known that there are also phytoplankton 58 

species that take up and accumulate dissolved DMSP (Kiene et al. 1998), matching the removal rate of 59 

heterotrophic bacteria (Vila-Costa et al. 2006). Since then, to our knowledge, only three studies have corroborated 60 

the uptake of DMSP by non-DMSP producing microalgal species (Spielmeyer et al. 2011; Ruiz-Gonzalez et al. 61 

2012; Lavoie et al. 2018), including the diatom Thalassiosira weissflogii (Spielmeyer et al. 2011). In this earlier 62 
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study, Spielmeyer and colleagues used isotopically labelled DMSP to probe the uptake and metabolism of DMSP 63 

in phytoplankton of high, low and no DMSP content. They found that the diatom T. weissflogii rapidly takes up 64 

and accumulate DMSP from the environment, with intracellular concentrations reaching levels similar to that of 65 

the prolific DMSP producer Emiliania huxleyi, but found no evidence for short- or long-term metabolism of 66 

DMSP (Spielmeyer et al. 2011). Here we propose that the propensity of T. weissflogii to take up and retain DMSP 67 

provides an optimal opportunity to investigate the physiological role of DMSP in the cell; providing the ability to 68 

test both DMSP-free and DMSP-enriched cultures of the same strain of organism. In this way, direct physiological 69 

comparisons can be made between stress responses in the presence and absence of DMSP. Whether these cells 70 

take up DMSP and/or utilise it for the same reasons as those that produce it remains a caveat to this model, 71 

however, DMSP uptake is an energy expending process, and it is thus unlikely that organisms would invest energy 72 

for no measurable gain or physiological advantage. In this study, we characterise DMSP uptake and utilisation in 73 

the centric diatom Thalassiosira weissflogii, with the aim to determine its utility as a model organism for 74 

investigating the role of DMSP in algal physiology.  75 

 76 

Materials and Methods 77 

Batch cultures of the centric diatom Thalassiosira weissflogii (CSIRO strain CS-871; synonym CCMP-1336) 78 

were grown in sterilised seawater amended with F/2 nutrients (Guillard and Ryther 1962) and maintained at 20°C. 79 

Light (cool white) was supplied at ~55 µmol photons m-2 s-1 (Hydra 52HD, Aquatic Illumination), programmed 80 

on a 12:12 h light:dark cycle. Cultures (200 mL) were grown in quadruplicate for 4-5 generations prior to 81 

experiments and all measurements were made on cells during exponential growth (µ = 0.49 ± 0.06 d-1). Under 82 

culturing conditions no detectable levels of DMSP were found, verifying that this strain of T. weissflogii is not a 83 

DMSP producer. 84 

Prior to experimentation, cultures were washed twice in sterile media (15 mL) via centrifugation (1800 85 

rcf for 5 min), before being re-suspended into fresh sterile F/2 media, to minimise the influence of bacteria. Flow 86 

cytometry measurements showed that this procedure reduced non-attached bacterial counts by > 99% (data not 87 

shown), and fluorescence staining (SYBR green) of cultures, revealed minimal occurrence of attached bacteria. 88 

Both T. weissflogii and the bacterial consortia within the cultures were sampled for DMSP lyase activity, where a 89 

5 mL aliquot of culture was filtered onto a 5 µm polycarbonate filter (MicroAnalytix, Taren Point, Australia) to 90 

collect the microalgal cells, after which the filtrate was re-filtered onto a 0.22 µm filter (MicroAnalytix, Taren 91 
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Point, Australia) for the bacterial component. Filters were flash frozen in liquid N2 and stored at -80°C until 92 

analysis. Lyase activity was determined according to the methods of Harada et al. (2004). To ensure cells were 93 

not compromised after washing or during experimentation when stress was applied, photophysiological condition 94 

of the cells was assessed via variable chlorophyll a fluorescence using a pulse amplitude modulated fluorometer 95 

(Water PAM, Walz GmbH, Effeltrich, Germany). Briefly, following 10 min dark-adaptation, minimum 96 

fluorescence (FO) was recorded before application of a saturating pulse of light (Duration = 0.8 s; Intensity =10), 97 

where maximum fluorescence (FM) was determined and the maximum quantum yield of PSII calculated as FV/FM 98 

= (FM-FO)/FM. Cultures were only used in experiments if the post-washing FV/FM values were ⪆0.700. All uptake 99 

experiments were conducted under growth (temperature and light) conditions. 100 

To characterise DMSP uptake in T. weissflogii, DMSP [500 nM] (from freshly prepared 10 mM stock of 101 

DMSP-HCl, Tokyo chemical industry co. ltd., Toshima, Kita-ku, Tokyo, Japan) was added to washed cultures (n 102 

= 4) and the cultures subsampled over time (0-6h) for both dissolved (DMSPd) and particulate (intracellular, 103 

DMSPp) DMSP. In a separate study, we investigated the retention of DMSP using washed cells that were pre-104 

loaded with DMSP [500 nM] for 4 h under growth conditions. Following DMSP loading, cultures (n = 4) were 105 

washed to remove any remaining DMSPd from the medium and re-suspended in DMSP-free medium. Samples 106 

were taken immediately to measure the initial DMSPp and then again after 6 h to verify retention of DMSP. 107 

Additional uptake experiments were conducted as described above on culture filtrate containing just the bacterial 108 

fraction (< 5µm) to ensure that any responses observed could be solely attributed to T. weissflogii.   109 

Tests for DMSP- [50, 100, 250, 500,1000 nM] and salinity- (17, 25, 35,45 psu at 500 nM DMSP) 110 

dependent responses were conducted via a series of rapid kinetic assays. Cultures (n = 3) of T. weissflogii were 111 

washed and then resuspended in 20 mL of fresh medium to a known cell density and placed under growth light. 112 

Each culture was subsequently adjusted to final DMSP concentration or salinity and cultures subsampled for 113 

DMSPp at set time points (0, 5, 10, 15, 20 min). The DMSP saturation point in T. weissflogii was determined by 114 

amending washed cultures (n = 3, ~104 cells mL-1) with a range of DMSP concentrations [250-5000 nM] and 115 

incubating them for 4.5 h under growth conditions before subsampling for DMSPp. To test whether DMSP-rich 116 

T. weissflogii rid themselves of DMSP under lowered salinity, cells pre-loaded with DMSP (500 nM, 2h) were 117 

washed and re-suspended in DMSP-free media. After sampling for DMSPd and DMSPp (0 and 20 min) salinity 118 

of the medium was decreased to 25 using milliQ F/2 media and cells subsampled over time (20, 40, 60 min).   119 



 

6 
 

Sampling for DMSPd and DMSPp was done by gently filtering culture (2 mL) through 25 mm GF/F 120 

filters using a low vacuum (< 5 mm Hg) hand pump to avoid cell rupture.  Filtrate (1 mL) was transferred to a vial 121 

containing 1 mL of milliQ water and the filter containing algal cells was washed three times with F/2 media before 122 

being placed in a vial with 2 mL of milliQ water. A pellet of NaOH was added to each vial, immediately prior to 123 

being stoppered and crimp capped. All samples were left in the dark for 24 h for equilibration to occur before 124 

analysis. DMSPd and DMSPp were quantified as total DMS after conversion with NaOH and measured using a 125 

gas chromatograph (GC-2010, Shimadzu, Kyoto, Japan) coupled with a flame photometric detector (FPD). 126 

Samples (liquid and headspace) were purged with He (70 mL min-1 for 4 min) while cryo-trapped in liquid N2 and 127 

subsequently eluted onto a capillary column (DB-1, Agilent; injector: 120°C, column: 110°C, FPD: 150°C, 128 

column flow: 2.1 mL min-1). Samples with high concentrations of DMSPp (saturation experiment) were analysed 129 

via direct injection of 500 µL of headspace (column flow: 3.66 mL min-1). All DMSPp data were normalised to 130 

cell density. 131 

For the enumeration of T. weissflogii and bacteria cells, subsamples were fixed with glutaraldahyde (1%) 132 

and counted on a Cytoflex S flow cytometer (Beckman Coulter Inc, Indianapolis, USA), using chlorophyll a 133 

fluorescence (laser/collection: 488/690 nm) and forward scatter for T. weissflogii and SYBR Green nucleic acid 134 

stain (1:10,000 dilution) for bacterial counts (laser/collection: 488/530 nm). Cell volume was estimated based on 135 

microscopy measurements of the length and width of 20 cells and calculated assuming a cylinder-shaped cell as 136 

per Hillebrand et al. (1999).  137 

To test for a significant change in photophysiology or retention of DMSP over time, data were analysed 138 

for statistical differences between treatments using ANOVA (IBM, SPSS, Statistics v24; IBM Corporation, New 139 

York), with differences considered significant at P < 0.05. Prior to analysis, test for normal distribution and 140 

Levene’s test for homogeneity of variance were applied to the data. All uptake experiments comparing 141 

concentrations or salinities were analysed using PERMANOVA, with a resemblance matrix based on Euclidean 142 

distance. All P values obtained were based on Monte Carlo method. Analyses were carried out using Primer v6 143 

statistical package (Primer-E, Plymouth, US; Clarke and Gorley, 2006) with the PERMANOVA+ add on 144 

(Anderson et al, 2008). Following the test for main effects, pair wise comparisons were conducted for each 145 

concentration or time point and significance denoted by superscript letters. For the concentration dependent uptake 146 

experiment, Michaelis-Menten parameters were estimated from the raw data using the nls (nonlinear least squares) 147 
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function in R and the model v ~ Vm * S/(K+S). Starting parameters were: K = Vmax/2 and Vm = Vmax, where 148 

Vmax is the highest rate of uptake measured in any of the samples. 149 

 150 

Results and discussion 151 

Thalassiosira weissflogii has been shown previously to take up DMSP (Spielmeyer et al. 2011), however, this is 152 

the first study to characterise the uptake kinetics at varying concentrations and under different salinities. Uptake 153 

of DMSP by T. weissflogii (at 500 nM initial DMSPd concentration) resulted in intracellular accumulation of up 154 

to 17.7 ± 1.9 fmol cell-1 within 4 h with a reciprocal decline in dissolved DMSP, where cells removed more than 155 

97% of initial DMSPd (Figure 1a). Once taken up, T. weissflogii retained the DMSP, with no loss from the cells 156 

for at least 6 h (Figure 1b; ANOVA F1,6 = 0.081, P = 0.786). These data demonstrate that this species preferentially 157 

uses cellular energy to ensure intake of this molecule to maintain high concentrations of DMSP within the cell. 158 

Combined, the stoichiometric match between dissolved and particulate DMSP confirm uptake by the diatom cells 159 

as the dominant removal factor, as no uptake of DMSP by the culture-associated bacterial community and no lyase 160 

activity were detected in T. weissflogii or its associated bacteria (data not shown).  161 

Rapid uptake kinetics revealed a concentration-dependent response (Figure 2a), resembling Michaelis-162 

Menten kinetics (VMax = 27.1 fmol cell-1 h-1, KM = 632 nM) for concentrations between 50 and 1000 nM over 20 163 

min (Figure 2b). The high KM value relative to common oceanic DMSP concentrations (<10 nM) suggest that 164 

uptake of DMSP by T. weissflogii would mainly occur during bloom scenarios, where DMSP concentrations can 165 

increase >10-fold (Stefels et al. 2007).  Longer incubations (4.5h) showed a linear relationship between initial 166 

DMSP concentration and final intracellular DMSP, until stabilising and saturating at ~87 mM (Figure 2c). The 167 

maximum accumulation of intracellular DMSP by T. weissflogii falls within the range of many major DMSP 168 

producing taxa, such as dinoflagellates, which range from 32 – 218 mM (Keller et al. 1989), or the prymnesiophyte 169 

Phaeocystis sp. of 71-161 mM (Stefels and Van Boekel 1993). In the present study, saturated cells reached an 170 

intracellular DMSP concentration of approximately 200 fmol cell-1, which is two orders of magnitude higher than 171 

previously observed (Spielmeyer et al. 2011). The higher intracellular DMSP in our study can be explained by the 172 

lower cell densities and higher initial DMSP concentrations used, resulting in up to 100 times more DMSP 173 

available per cell. 174 

 175 
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Intracellular concentrations in DMSP-producers are known to vary depending on environmental 176 

condition and growth phase (Stefels 2000). However, in this study, the cells, which were maintained at non-177 

stressful growth conditions, took up as much DMSP as was available, only saturating once intracellular 178 

concentrations reached >80 mM. This accumulation of DMSP in the absence of cellular stress would suggest a 179 

benefit to the cell in maintaining a large amount of DMSP that would at least equate to or offset the cost expended 180 

on taking it up. The fact that cells showed no change (ANOVA F1,6 = 0.097, P = 0.766)  to their photophysiological 181 

state with addition of DMSP (0.737 ± 0.003 at initial time point and 0.736 ± 0.006 after 6 h) would indicate that 182 

this benefit is not perhaps to the photosystem or at least not under homeostatic growth conditions. The high DMSP 183 

uptake rate, intracellular saturation and retention support the idea that non-DMSP producing species like T. 184 

weissflogii may form a considerable sink for DMSP in the marine environment, particularly during bloom 185 

scenarios, invariably reducing DMSP available to other organisms and influencing the turnover of DMSP in ocean 186 

systems. These results clearly demonstrate that the potential influence of non-DMSP producing algae may be 187 

significantly more than recently suggested (Lavoie et al. 2018) and also offers up a new line of study for 188 

understanding the role of DMSP in cell physiology. 189 

Salinity assays showed no change in the DMSP uptake rate at 25 compared with 35 psu, but did show a 190 

~50% drop in uptake rate at very low (17) and high (45) salinities (Figure 3a; PERMANOVA Pseudo F3,8 = 8.932, 191 

P (mc) = 0.005). While no change in FV/FM was observed from 35 to 25 psu, corroborating no shift in uptake 192 

kinetics at these salinities, a minor, yet significant decline in FV/FM (ANOVA F1,4 = 19.75, P = 0.011) at the lowest 193 

(17) salinity from 0.706 ± 0.007 to 0.680 ± 0.008, was detected. Given the proposed osmoregulatory role of DMSP 194 

in cell physiology (Malin and Kirst 1997; Stefels 2000; Welsh 2000), the ~50% reduction in uptake rate with 195 

~50% reduction in salinity was anticipated and is consistent with osmoregulatory theory, while the decline in 196 

FV/FM implies a change in cell physiology that may suggest cellular compromise. Contrary to our expectation, 197 

lower uptake rates were also measured at higher salinity (45), where a ~29% increase in salinity resulted in a 198 

halving of the uptake rate (Figure 3b), which does not corroborate the theory of osmoregulatory driven uptake. 199 

While the fluorescence data did not indicate any changes to cell photophysiology, this reduction may be explained 200 

by cellular changes that reduce ATP available for uptake. Indeed, previous work measured a significant negative 201 

effect on growth and cell volume in T. weissflogii at salinities above 40 (Garcia et al. 2012). When salinity was 202 

only reduced ~25%, no change was detected, suggesting a tolerance to shifts in salinity in this species. This result 203 

was corroborated by our test for salinity-based regulation of DMSP, where preloaded DMSP-enriched T. 204 

weissflogii did not rid themselves of intracellular DMSP when salinity was lowered by ~25% over time (Figure 205 
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3c), with no measureable change in DMSPp or DMSPd during the 60 min of observation (PERMANOVA Pseudo 206 

F4,12 = 0.766, P (mc) = 0.545). Taken together, these data suggest that cellular processes were not obstructed or 207 

affected by moderate changes in salinity, a finding congruent with a previous study that found T. weissflogii to 208 

possess a relatively broad salinity tolerance range (25-50) with maximal growth rates at 25 psu (Garcia et al. 209 

2012).  210 

As one of the most abundant and important organic molecules in the ocean, the regulation and production 211 

of DMSP has been studied extensively both at sea and in culture, resulting in many proposed physiological and 212 

ecological functions for this one signature molecule. Yet, to date, no one functional role for this molecule is in 213 

agreement across all studies and species. Using a non-DMSP producing diatom, T. weissflogii, we saw rapid 214 

uptake and accumulation of DMSP that was retained by the cell. We found T. weissflogii exhibited concentration-215 

dependent uptake kinetics up to 1000 nM – much higher than is likely to occur in a natural environment—and that 216 

intracellular concentrations saturated at around 87 mM. These data indicate that species not able to produce 217 

DMSP, but instead take up available DMSP from the surrounding water, may constitute a major sink for DMSPd 218 

in oceanic systems when DMSP concentrations are elevated, thus contributing to DMSP removal from the marine 219 

environment. Further study into the utilisation of this molecule by non-producers, such as T. weissfloggii, may 220 

help to uncover a primary role for DMSP in cell physiology and in doing so, reveal how the production and export 221 

of DMSP into the water column, may make available the physiological or ecological advantage DMSP proffers 222 

to non-producing members of the marine microbial community.  223 
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Figure captions 290 

 291 

Fig. 1 Uptake and retention of DMSP by T. weissflogii a) drawdown and uptake of DMSP over 6 h, b) intracellular 292 

concentrations of DMSP in pre-loaded and washed cells at 0 and 6 hours. Data represent means ± SE (n = 4) 293 

 294 

Fig. 2 Uptake kinetics and saturation of DMSP in T. weissflogii a) DMSP incorporation at five concentrations 295 

over 20 min b) uptake rate vs extracellular concentration fitted with Michaelis-Menten kinetics model c) 296 

intracellular concentrations of DMSP after 4.5 h at six different extracellular concentrations. Data represent means 297 

± SE (n = 3-4). Letters denote statistical difference determined by PERMANOVA at α < 0.05, b) Pseudo F4,10 = 298 

37.09, P (mc) = 0.001; c) Pseudo F4,10 = 228.31, P (mc) = 0.001. 299 

 300 

Fig. 3 Uptake kinetics and retention of DMSP in T. weissflogii exposed to different salinities a) DMSP 301 

incorporation at four salinities over 20 min b) DMSP uptake rate vs salinity c) intracellular DMSP concentrations 302 

of pre-loaded cells before (0, 20 min) and after  lowering of salinity from 35 to 25 psu (dashed line). Data represent 303 

mean ± SE (n = 3-4). Letters denote statistical difference determined by PERMANOVA at α < 0.05, b) Pseudo 304 

F3,8 = 8.932, P (mc) = 0.005; c) Pseudo F4,12 = 0.766, P (mc) = 0.545. 305 
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