Peak Oil: Testing Hubbert's curve via theoretical modeling

University of Newcastle, Faculty of Engineering and Built Environment, Chemical Engineering, University Drive, Callaghan, NSW 2308, Australia
Tel.: +612-49528065
E-mail: steve.mohr@studentmail.newcastle.edu.au
G. M. Evans

University of Newcastle, Faculty of Engineering and Built Environment, Chemical Engineering, University Drive, Callaghan, NSW 2308, Australia
Tel.: +612-49215897
E-mail: Geoffrey.Evans@newcastle.edu.au

1 Introduction

There is considerable debate on when and how steeply oil production will peak, with a range of estimate from 2004 to 2047 e.g. ASPO (2004); Deffeyes (2002); Bakhtiari (2004); Mohr and Evans (2007); Wells (2005a,b); EIA (2004). The considerable range in peak oil estimates is due to two main reasons. The first problem is uncertainty in conventional oil URR, with Bauquis (2003) indicating that estimates range from 2 to 3 trillion barrels. The second reason is the different methods for modeling conventional oil production. It should be noted that oil production is model in three distinct ways. Wells (2005a,b); Mohr and Evans (2007); Deffeyes (2002) used a bell (or Hubbert) curve to model oil production. The second method, which was used by ASPO (2004); Bakhtiari (2004), was a graphical model with limited data as to how the model is created. The last method, which was used by EIA (2004) assumed oil production declines with a R/P ratio of 10 . The different models create very different production profiles, and hence a wide range of predictions, which ultimately confuse the wider community. Rather than assume a production curve, and attempt to justify its use, this article will endevour to generate a model based on theory. With the theory explained, we will then determine what the oil production profile looks like.

2 Review of Literature

Before explaining how the current model works, it is important to look carefully at the theoretical models already developed by Reynolds (1999); Bardi (2005). Reynolds (1999) explains qualitatively how oil discoveries are comparable to the Mayflower problem. Bardi (2005) using this technique explains the model mathematically as:

$$
\begin{equation*}
p(t)=k(t) \frac{U R R-C_{d}(t)}{U R R}, \tag{1}
\end{equation*}
$$

22 where $p(t)$ is the expected discovery percentage, $U R R$ is the Ultimate Recoverable Re${ }_{23}$ sources (TL), $C_{d}(t)$ is the cumulative discoveries (TL), and $k(t)$ is the technology function, 24 which is quoted from Bardi (2005) as "a simple linear function of the amount of previously 25 found [oil reserves] that starts at 1 and increases proportionally to the total amount of found

1 [oil reserves]". The models of Reynolds (1999); Bardi (2005) are based on a simplified
2 scenario with Robinson Crusoe digging for buried hardtacks (food).
The work done by Brandt (2007) is statistical. Brandt (2007) obtained production data for many places of various sizes. The result from Brandt (2007) research is that the rate 5 difference, Δr, is slightly positive with a median of 0.05 year $^{-1}$, which implies that on average the rate of increase is slightly larger than the rate of decrease Brandt (2007), see Appendix A.

3 Model

The model of oil production is determined in several subsections. In the discovery subsection the amount of oil found in a given year will be determined. It will then be assumed that the amount of oil found each year is located in a single reservoir. The reservoir production subsection will model oil production in a reservoir by estimating the number of wells in operation and estimating the oil production production per well. The world production model is then determined by summing the oil production of all the reservoirs.

3.1 Discoveries:

$$
k(t)=\left[\tanh \left(b_{t}\left(t-t_{t}\right)\right)+1\right] / 2,
$$

where b_{t} and t_{t} are constants with units (year ${ }^{-1}$) and (year) respectively. Hence the expected discovery percentage function is:

$$
\begin{equation*}
p(t)=\left[\tanh \left(b_{t}\left(t-t_{t}\right)\right)+1\right] \frac{U R R-C_{d}(t)}{2 U R R} . \tag{2}
\end{equation*}
$$

Initially the expected discovery percentage is low as our knowledge is limited, as time 4 continues the expected discovery percentage increases as our knowledge grows, whilst the amount of oil discovered is still small (relative to the $U R R$). Eventually we have good 6 knowledge of where the oil is to be found, but the amount of oil left to be discovered is small (relative to the $U R R$) hence the expected discovery percentage is low. Let $C_{d}(t)$ denote the cumulative discoveries of oil made to the beginning of year t (TL). Now, the amount of oil found in year t equals the expected discovery percentage times the amount of oil left to be found in year t, which mathematically is

$$
\begin{equation*}
C_{d}(t+1)-C_{d}(t)=p(t)\left(U R R-C_{d}(t)\right) . \tag{3}
\end{equation*}
$$

${ }_{11}$ Now since the expected discovery percentage function $p(t)$ is continuous, we can express
12 Equation 3 in the continuous form as

$$
\frac{d C_{d}(t)}{d t}=p(t)\left(U R R-C_{d}(t)\right)
$$

Substituting Equation 2 for the expected discovery percentage function $p(t)$ we obtain

$$
\begin{equation*}
\frac{d C_{d}(t)}{d t}=\left[\tanh \left(b_{t}\left(t-t_{t}\right)\right)+1\right] \frac{\left(U R R-C_{d}(t)\right)^{2}}{2 U R R} \tag{4}
\end{equation*}
$$

14
With the trivial assumption that initially $C_{d}(0)=0$, Equation 4 is solved to get Equation 5

$$
\begin{equation*}
C_{d}(t)=U R R-\frac{2 b_{t} U R R}{2 b_{t}+t b_{t}+\ln \left(\frac{\cosh \left(b_{t}\left(t-t_{t}\right)\right)}{\cosh \left(b_{t} t_{t}\right)}\right)} . \tag{5}
\end{equation*}
$$

1 Let $y_{d}(t)$ denote the yearly discoveries (TL/year), $d C_{d}(t) / d t$, then by differentiating Equa2 tion 5 we obtain,

$$
\begin{equation*}
y_{d}(t)=\frac{2 b_{t}^{2} U R R\left(1+\tanh \left(b_{t}\left(t-t_{t}\right)\right)\right)}{\left(2 b_{t}+t b_{t}+\ln \left(\frac{\cosh \left(b_{t}\left(t-t_{t}\right)\right)}{\cosh \left(b_{t} t_{t}\right)}\right)\right)^{2}} \tag{6}
\end{equation*}
$$

${ }^{3}$ Let $U R R_{l}$ denote the size of the l-th reservoir (TL), which is assumed to be found in the 4 year t_{l}. Now since we assume that the amount of oil found each year is found in a single 5 reservoir, we have

$$
U R R_{l}=y_{d}\left(t_{l}\right)
$$

6

3.2 Reservoir Production:

To determine the production curve from a reservoir, we will assume that oil production is related to the number of wells drilled, and the production per well. Let $C_{p_{l}}(t)$ denote the cumulative production from the l-th reservoir (TL). Let $w_{l}(t)$ denote the number of wells in operation at time t. The function $w_{l}(t)$, will be defined by Equation 7

$$
\begin{equation*}
w_{l}(t)=w_{l_{T}}+\left(1-w_{l_{T}}\right) e^{-k_{w_{l}}\left(\frac{C_{p_{l}}(t)}{U R R_{l}}\right)}, t \geq t_{l} \tag{7}
\end{equation*}
$$

$14 \quad w_{l}\left(t_{l}\right)=1$, hence initially there is only one well built. As cumulative production increases 15 the number of wells exponentially decays upwards from 1 well to $w_{l_{T}}$ wells. Note the total number of wells built is not $w_{l_{T}}$ but $w_{l_{T_{a c t}}}$ which is defined as

$$
w_{l_{T_{a c t}}}=\left\lceil w_{l_{T}}-\left(w_{l_{T}}-1\right) e^{-k_{w_{l}}}\right\rceil .
$$

${ }_{17}$ Lets assume that every well in the l-th reservoir extracts a total of $U R R_{l} / w_{l_{T_{a c t}}}$ (TL) of oil. Let the i-th well start production in the $t_{l_{i}}$-th year, where $t_{l_{i}}$ is the year such that $\left\lceil w_{l}\left(t_{l_{i}}-1\right)\right\rceil<i \leq\left\lceil w_{l}\left(t_{l_{i}}\right)\right\rceil$ (initially $\left.t_{l_{1}}=t_{l}\right)$. Let $C_{p_{i}}$ denote the cumulative production from well i. Production for an individual well is assumed to be the idealized well explained
in Arps (1945). In this case, there is no water injection, and oil production in the i-th well,
${ }_{2} P_{l_{i}}$, is proportional to the pressure in the i-th well, $P r_{l_{i}}$. Further the pressure in the well is 3 proportional to the remaining amount of oil in the i-th well, $\left(U R R_{l} / w_{l_{T_{a c t}}}-C_{p_{l_{i}}}\left(t-t_{l_{i}}\right)\right)$,

4 as shown in Equations 8 and 9 (Arps, 1945):

$$
\begin{equation*}
P_{l_{i}}(t)=k_{1_{l_{i}}} \operatorname{Pr}_{l_{i}}(t) \tag{8}
\end{equation*}
$$

5

$$
\begin{equation*}
\operatorname{Pr}_{l_{i}}(t)=k_{2_{l_{i}}}\left(U R R_{l} / w_{l_{T_{a c t}}}-C_{p_{l_{i}}}(t)\right) . \tag{9}
\end{equation*}
$$

6 Note $k_{1_{l_{i}}}$ and $k_{2_{l_{i}}}$ are proportionality constants. Equations 8 and 9 can be combined to
7 obtain

$$
P_{l_{i}}(t)=k_{1_{l_{i}}} k_{2_{l_{i}}}\left(U R R_{l} / w_{l_{T_{a c t}}}-C_{p_{l_{i}}}(t)\right)
$$

8 Now, $d C_{p_{l_{i}}}(t) / d t=P_{l_{i}}(t)$, hence

$$
\begin{equation*}
\frac{d C_{p_{l_{i}}}(t)}{d t}=k_{p_{l_{i}}}\left(U R R_{l} / w_{l_{T_{a c t}}}-C_{p_{l_{i}}}(t)\right) \tag{10}
\end{equation*}
$$

9
where $k_{p_{l_{i}}}=k_{1_{l_{i}}} k_{2_{l_{i}}}$, and $C_{p_{l_{i}}}\left(t_{l_{i}}\right)=0$. Now Equation 10 is trivially solved to obtain

$$
C_{p_{l_{i}}}(t)=\frac{U R R_{l}}{w_{l_{T_{a c t}}}}\left[1-e^{-k_{p_{l_{i}}}\left(t-t_{l_{i}}\right)}\right],
$$

10
and differentiating obtains the production curve

$$
P_{l_{i}}(t)=k_{p_{l_{i}}} \frac{U R R_{l}}{w_{l_{T_{a c t}}}} e^{-k_{p_{l_{i}}}\left(t-t_{l_{i}}\right)}
$$

Let the initial production of the i-th well, in the l-th reservoir be $P_{0_{l_{i}}},\left(P_{l_{i}}\left(t_{l_{i}}\right)=P_{0_{l_{i}}} \forall i\right)$ then the production curve for the i-th well is (Arps, 1945)

$$
P_{l_{i}}(t)=P_{0_{l_{i}}} e^{-P_{0_{l_{i}}} w_{l_{T_{a c t}}}\left(t-t_{l_{i}}\right) / U R R_{l}} .
$$

Hence the cumulative production for the l-th reservoir, $C_{p_{l}}(t)$, is determined iteratively by Equation 11

$$
\begin{equation*}
C_{p_{l}}(t+1)=C_{p_{l}}(t)+\sum_{i=1}^{\left\lceil w_{l}(t)\right\rceil}\left(\frac{P_{l_{i}}(t)+P_{l_{i}}(t+1)}{2}\right), \tag{11}
\end{equation*}
$$

with the initial condition $C_{p_{l}}\left(t_{l}\right)=0$. The world's cumulative production, $C_{p}(t)$, is trivially the sum of the cumulative production of the reservoirs,

$$
C_{p}(t)=\sum_{l} C_{p_{l}}(t)
$$

For ease of use we will assume that all wells in all reservoirs have the same initial production, P_{0}, that is $P_{0}=P_{0_{l_{i}}}$, it is also assumed that $k_{w}=k_{w_{l}}$.

4 Results and Discussion

Bauquis (2003) indicates that URR estimates for conventional oil have remained constant at between 2-3 trillion barrels (318-477 TL) for the time period of 1973-2000. A Pessimistic case will assume that the $U R R$ is 318 TL (2 trillion barrels); the Optimistic case will assume the $U R R$ to be 477 TL (3 trillion barrels). An ideal case is also made where the $U R R$ is determined from the actual backdated discoveries data from Wells (2005b). We have several constants, which need to be defined. For the discovery model we have $U R R, t_{t}$ and b_{t}, for the number of wells model its k_{w}, and $w_{l_{T}}$ and for the production of a well we need P_{0}. The variables for the discovery model were calculated by fitting the model to the actual data from Wells (2005b) using the coefficient of determination, R^{2}, for more details see Appendix B. The cumulative discoveries as a function of time is shown in Figure 1.

Figure 1 Hereabouts

In order to determine valid estimates for $k_{w}, w_{l_{T}}$, and P_{0}, it was necessary to find some literature data. The best literature found to date is from EIA (2007), which has incomplete well and production data for all U.S. states. By analyzing the EIA (2007) data, we assumed $P_{0}=18.3 \mathrm{ML} /$ year, $k_{w}=10.7$ and $w_{l_{T}}=0.072 U R R_{l} / P_{0}$ respectively, for more details see Appendix C. With the constants determined the world model is shown in Figure 2;
and compared to actual production data from BP (2006); DeGolyer and MacNaughton Inc. (2006); CAPP (2006); Williams (2003); Moritis (2005).

Figure 2 Hereabouts

The resulting model of production matches the production data with a reasonable precision up to the 1979 oil crisis (year 119 in Figure 2) with an R^{2} value in all three cases of greater than 0.98 . The theoretical models when fitted to the asymmetric exponential model, have a slightly positive rate difference of $\Delta r \approx 0.02$ year $^{-1}$, which agrees with the statistical analysis of Brandt (2007), who indicated a median rate difference of $\Delta r=0.05$ year $^{-1}$ see Appendix A. for more details. The theoretical models are approximately symmetrical and have R^{2} values of great that 0.95 when compared to Hubbert curves with the same $U R R$ fitted to production data prior to 1979 , with the Ideal case compared to the Hubbert curve having an R^{2} value of 0.995 .

The theoretical model was ammended by use of a technique in Mohr and Evans (2007), to account for the 1979 oil crisis. The method in Mohr and Evans (2007) has four key components: first the original theoretical curve is used to model oil production prior to the anomaly (1979 oil crisis). Second, simple linear or low order polynomials are fitted to the production data from the anomaly to the present day. Three, a polynomial is used to extend the recent production trend, and smoothly rejoin the original theoretical model, in the future. Four, the model returns to the original theoretical model, shifted a certain distance into the future to ensure the area under the graph (URR) is the same. Modifying the theoretical production curve using the literature method in (Mohr and Evans, 2007), allowed for the 1979 oil crisis to be factored, for more details see Appendix D. The amended model is shown in Figure 3 and indicates that the ideal case will peak in 2013, at 13.3 GL/d (83.5 $\mathrm{mb} / \mathrm{d})$. The optimistic case peaks in 2025 at $14.1 \mathrm{GL} / \mathrm{d}(88.8 \mathrm{mb} / \mathrm{d})$, and the pessimistic case peaks in 2010, at $13 \mathrm{GL} / \mathrm{d}(81.8 \mathrm{mb} / \mathrm{d})$.

Figure 3 Hereabouts

Whilst the theoretical model matches the data with reasonable accuracy $R^{2}>0.98$, it is important to note several gross simplifications. The assumption that P_{0} and k_{w} are constants
for all wells and reservoirs is too simplistic. Also instead of modeling four US states and using these values to estimate P_{0} and k_{w} it would be better to use a large data set of reservoir data, to determine the average P_{0} and k_{w} for each reservoir, unfortunately such data was not found.

5 Conclusion

A model has been developed to model oil production using simple theoretical logic. The model accurately replicates the actual discovery and production trends, whilst remaining theoretical. The model produces a bell curve, which is slightly asymmetric with a slightly larger rate of increase compared to the rate of decrease ($\Delta r=0.002$ year $^{-1}$). The model validates Hubberts empirical model which indicates that oil production follows a symmetric bell curve. The theoretical model indicates that conventional oil production will peak somewhere between 2010 and 2025, with the ideal case peaking in 2013, at $13.3 \mathrm{GL} / \mathrm{d}$ (83.5 mb / d).

Nomenclature

Functions

$C_{d}(t) \quad$ The Cumulative discoveries for the world as a function of time (TL)
$C_{p}(t) \quad$ The Cumulative production for the world as a function of time (TL)
$C_{p_{l}}(t)$ The Cumulative production for the reservoir l as a function of time (TL)
$C_{p_{l_{i}}}(t)$ The Cumulative production for the i-th well in reservoir l (TL)
$k(t) \quad$ The technology function (-)
$p(t) \quad$ The expected discovery percentage function (-)
$P^{\prime}(t) \quad$ The Production function as used in Brandt (2007) (b/year)
$P_{l_{i}}(t) \quad$ The production in the i-th well of reservoir l (TL/year)
$P r_{l_{i}}(t)$ The pressure in the i-th well of reservoir l as a function of time (Pa)
$R^{2} \quad$ The Coefficent of determination (-)
$w_{l}(t) \quad$ The number of wells in operation for the reservoir l as a function of time (-)
$1 y_{d}(t)$ The yearly discoveries function (TL/year)

2 Variables

$b_{t} \quad$ The slope constant for the technology function (year ${ }^{-1}$)
${ }^{4} \quad k_{1_{i}} \quad$ The proportionality constant relating production to pressure, in the i-th well (TL/Pa.year)
$5 k_{2_{l_{i}}} \quad$ The proportionality constant relating pressure to remaining reserves (Pa/TL)
$6 \quad k_{p_{l_{i}}}$ The proportionality constant relating the production to the remaining reserves (year ${ }^{-1}$)
$k_{w} \quad$ The proportionality constant in the wells model (-)
${ }_{8} \quad k_{w_{l}} \quad$ The proportionality constant for reservoir l in the wells model (-)
${ }_{9} \quad P_{0}$ The initial production of the wells in all reservoirs (TL/year)
${ }^{10} \quad P_{0_{l}} \quad$ The initial production of the wells in reservoir l (TL/year)
${ }_{11} \quad P_{0_{l_{i}}}$ The initial production from the i-th well in reservoir l (TL/year)
${ }_{12} \quad r_{\text {dec }}$ The rate of decrease, as used by Brandt (2007) $\left(\right.$ year $\left.^{-1}\right)$
$r_{\text {inc }}$ The rate of increase, as used by Brandt (2007) (year ${ }^{-1}$)
$\Delta r \quad$ The difference between the rate of increase and rate of decrease, as used by Brandt
(2007) $\left(\right.$ year $\left.^{-1}\right)$
$t \quad$ Time (year)
$t_{l} \quad$ The year the l-th reservoir is found (year)
$t_{l_{i}} \quad$ The year the i-th well comes on-line in reservoir l (year)
$T_{\text {peak }} \quad$ The Peak year for the production curve as used in Brandt (2007) (year)
$T_{\text {start }} \quad$ The start year for the production curve as used in Brandt (2007) (year)
$t_{t} \quad$ The year the technology function reaches 0.5 (year)
$U R R \quad$ The Ultimate Recoverable Resources (TL)
${ }_{23} U R R_{l}$ The Ultimately Recoverable Resources for the reservoir l, (TL)
${ }^{24} \quad w_{l_{T}} \quad$ The total number of wells for reservoir l, if cumulative production was infinite (-)
${ }_{25} \quad w_{l_{T_{\text {act }}}}$ The total number of wells for reservoir l given the cumulative production is finite
26 (-)

References

Arps, J. j., 1945, Analysis of decline curves: Transactions of AIME, v. 160, p. 228-247.

Aleklett K., 2004, International Energy Agency accepts Peak Oil: ASPO website, http://www.peakoil.net/uhdsg/weo2004/TheUppsalaCode.html (11/27/07).

Bakhtiari, A. m. S., 2004, World oil production capacity model suggests output peak by 2006-07: Oil and Gas Journal, v. 102, no. 16 p.18-20.

Bardi, U., 2005, The mineral economy: A model for the shape of oil production curves: Energy Policy, v. 33 no. 1 p. 53-61.

Bauquis P., 2003, Reappraisal of energy supply-demand in 2050 shows big role for fossil fuels, nuclear but not for nonnuclear renewables: Oil and Gas Journal, v. 101 no. 7 p. 20-29.

BP., 2006, Statistical Review of World Energy 2006.
Brandt, A. R., 2007, Testing Hubbert: Energy Policy, v. 35 no. 5 p. 3074-3088.
Campbell, C. J. and J. H. Laherrere., 1998, The end of cheap oil: Scientific American, v. 278 no. 3 p. 78-83.

Campbell, C. J., 2003, Industry urged to watch for regular oil production peak, depletion signals: Oil and Gas Journal, v. 101 no. 27 p. 38-45.

CAPP, 2006, Statistical Handbook.
Deffeyes, K. S., 2002, World's oil production peak reckoned in near future: Oil and Gas Journal, v. 100 no. 46 p. 46-48.

DeGolyer and MacNaughton inc., 2006, $20^{\text {th }}$ Century Petroleum Statistics 2005 edition.
Wood, J. H., Long G. R. and Morehouse D. F., 2004, Long-Term World Oil Supply Scenarios: EIA website, www.eia.doe.gov/pub/oil_gas/petrosystems/petrosysog.html (08/24/07).

EIA., 2007, Distribution and Production of Oil and Gas Wells by State: EIA website, www.eia.doe.gov/pub/oil_gas/petrosystems/petrosysog.html (08/24/07).

Linden H. R., 1998, Flaws seen in resource models behind crisis forecasts for oil supply, price: Oil and Gas Journal, v. 96 no. 52 p. 33-37.

Lynch, M. C., 2003, Petroleum resources pessimism debunked in Hubbert model and Hubbert modelers' assessment: Oil and Gas Journal, v. 101 no. 27 p. 38-47.

Mohr, S. H. and G. M. Evans., 2007, Mathematical model forecasts year conventional oil will peak: Oil and Gas Journal, v. 105 no. 17 p. 45-50.

Moritis, G., 2005, Venezuela plans Orinoco expansions: Oil and Gas Journal, v. 103 no. 43 p. 54-56.

Reynolds, D. B., 1999, The mineral economy: How prices and costs can falsely signal decreasing scarcity: Ecological Economics, v. 31 no. 1 p. 155-166.

Wells, P. R. A., 2005, Oil supply challenges - 1: The non-OPEC decline: Oil and Gas Journal, v. 103 no. 7 p. 20-28.

Wells, P. R. A., 2005, Oil supply challenges - 2: What can OPEC deliver?: Oil and Gas Journal, v. 103 no. 9 p. 20-30.
${ }_{11}$ Williams, B., 2003, Heavy hydrocarbons playing key role in peak-oil debate, future energy supply: Oil and Gas Journal, v. 101 no. 29 p. 20-27.

Appendix A. The rate difference

The rate difference, Δr, as defined by (Brandt, 2007) is

$$
\Delta r=r_{i n c}-r_{d e c}
$$

where the rate of increase $r_{i n c}$ and rate of decrease $r_{\text {dec }}$ are determined by fitting Equation A. 1 to the production data (Brandt, 2007).

$$
P^{\prime}(t)= \begin{cases}e^{r_{\text {inc }}\left(t-T_{\text {start }}\right)} & \text { if } t \leq T_{\text {peak }} \tag{A.1}\\ P^{\prime}\left(T_{\text {peak }}\right) e^{-r_{\text {dec }}\left(t-T_{\text {peak }}\right)} & \text { if } t>T_{\text {peak }}\end{cases}
$$

where $P^{\prime}(t)$ is production in (barrels/year) and $T_{\text {peak }}$ is the year the production peaks (year) and $r_{i n c}$ and $r_{d e c}$ are the rate constants (year ${ }^{-1}$) and $T_{\text {start }}$ is the year production was 1 barrel a year Brandt (2007). In calculating the rate difference of the theoretical model equation A. 1 was altered to

$$
P^{\prime}(t)= \begin{cases}P(40) e^{r_{i n c}(t-40)} & \text { if } t \leq T_{\text {peak }} \tag{A.2}\\ P^{\prime}\left(T_{\text {peak }}\right) e^{-r_{\text {dec }}\left(t-T_{\text {peak }}\right)} & \text { if } t>T_{\text {peak }}\end{cases}
$$

s where $P(40)$ is the production of oil estimated by the theoretical model in the year 1900 . Using equation A. 2 the rate difference for the Pessimistic case was 0.0184 (years $^{-1}$), Optimistic case was 0.0179 (years ${ }^{-1}$) and the Ideal case was 0.0217 (years ${ }^{-1}$).

Appendix C. determining the constants

The method to determine valid estimates for the constants $k_{w}, w_{l_{T}}$, and P_{0} in the reservoir production model is given in this section. The best data found is unfortunately state based rather than reservoir based data from EIA (2007). The production model was used with several cycles to model the production as a function of time, and the number of wells as a function of cumulative production for various states as shown in Figures C. 1 - C. 4 .

Figures C. 1 - C. 4 hereabouts

Note our model assumes that no wells are shut down, and instead exponentially decay and although are still on-line, are in reality producing no significant quantity of oil. This is the reason for the poor fit of the well model for Nevada and South Dakota. Now observe that there is only one sensible option for the $w_{l_{T}}$ constants, since these values need to match the actual total wells. The k_{w} values and P_{0} values determine the rate of increase in the wells model and are determined by trial and error so that the wells model and production model fit the data as accurately as possible. Whilst the values used produce reasonably accurate results, we need to check that the initial production values P_{0} correspond to the actual initial production. Unfortunately the initial production for all the wells is not known, however the number of wells as a function of size and time is known EIA (2007) and the model's predictions were compared the actual data for the four states, as shown in Figures C. 5 - C. 8 (Note that the size of the wells from EIA (2007) is explained in Table C.1).

Table C. 1 hereabouts

Figures C. $5-\mathrm{C} .8$ hereabouts

The Figures C. $5-\mathrm{C} .8$ indicate a reasonable fit and hence the initial well productions P_{0} can be assumed to be reasonable estimates. The constants k_{w}, P_{0} and $w_{l_{T}}$ used in the state models are shown in Table C. 2

Table C. 2 hereabouts

Now if we ignore the outlier of 32 for South Dakota, the average for k_{w} is 10.7 and this value is assumed to be constant in the world model; including the outlier the average becomes 12 . By plotting w_{T} versus $U R R_{l} / P_{0}$ we obtained the linear relation $w_{l_{T}}=0.072 U R R_{l} / P_{0}$ which is shown in Figure C.9. The linear relationship is expected, as increasing the size of the reservoir would increase the total number of wells needed. Equally if we have two reservoirs of the same size we could either have a small number of wells with a large initial production P_{0} or a large number of wells with a small initial production P_{0}. Hence the linear relationship between $w_{l_{T}}$ and $U R R_{l} / P_{0}$ was expected.

The value for P_{0} appears to have a great deal of variability. However by analyzing the other US state wells sizes from EIA (2007), we observe that Alaska along with Federal Pacific and Federal Gulf, have abnormally large wells compared to the rest of the US, we hence considered the Alaskan well production data
as an outlier and ignored the data. Taking the initial production from Nevada, South Dakota and Alabama, we obtain an average of 18.3 ML/year, which places it in category 16 in the EIA sizes. Hence we assumed that the values of the constants were $P_{0}=18.3 \mathrm{ML} / \mathrm{year}, k_{w}=10.7$ and $w_{l_{T}}=0.072 U R R_{l} / P_{0}$.

Figure C. 9 hereabouts

Appendix D. Amended model

6 The amended model $C_{p_{\text {mod }}}(t)$ is determined from the method explained in Mohr and Evans (2007), and formally is:

$$
C_{p_{\text {mod }}}(t)=\left\{\begin{array}{ll}
C_{p}(t) & \text { if } t \leq 118 \\
f_{1}(t) & \text { if } 118<t \leq 123 \\
f_{2}(t) & \text { if } 123<t \leq 129 \\
f_{3}(t) & \text { if } 129<t \leq 145 \\
f_{4}(t) & \text { if } 145<t \leq t_{2} \\
C_{p}\left(t+\left(t_{1}-t_{2}\right)\right) & \text { if } t_{2}<t
\end{array} .\right.
$$

Now $f_{1}(t), f_{2}(t)$ and $f_{3}(t)$ are small polynomials fitted to the production data using least squares method, and formally are:

$$
\begin{gathered}
f_{1}(t)=-0.82 t+121.7 \\
f_{2}(t)=0.43 t-32.3 \\
f_{3}(t)=0.007 t^{2}-1.6 t+109.5
\end{gathered}
$$

the $f_{4}(t)$ is a 3rd degree polynomial. The polynomial was determined by the literature method explained generally in Mohr and Evans (2007). Specifically $f_{4}(t)$ is the 3rd degree polynomial such that the following equations are solved:

$$
f_{4}(145)=p(145)
$$

$$
\begin{aligned}
f_{4}^{\prime}(145) & =p^{\prime}(145) \\
f_{4}^{\prime \prime}(145) & =p^{\prime \prime}(145) \\
f_{4}\left(t_{2}\right) & =C_{p}\left(t_{1}\right) \\
f_{4}^{\prime}\left(t_{2}\right) & =C_{p}^{\prime}\left(t_{1}\right) \\
\int_{t_{0}}^{t_{1}} C_{p}(t) d t & =\int_{145}^{t_{2}} p(t) d t
\end{aligned}
$$

Where $t_{0} \approx 138$ and $p(t)$ is a polynomial to replicate the long term historic trend and is $p(t)=-0.004 t^{2}+$
$21.5 t-104.6$. With the list of equations solved, we obtain $t_{1}=153.5, t_{2}=162$ and $f_{4}(t)=-0.0012 t^{3}+$
$30.51 t^{2}-73.4 t+3515.6$ for the ideal case. For the Pessimistic case it was $t_{1}=147.2, t_{2}=153.6$, and
$4 f_{4}(t)=-0.0041 t^{3}+1.77 t^{2}-256.2 t+12353.8 . t_{1}=177.8, t_{2}=196.4$, and $f_{4}(t)=-0.00009 t^{3}+$
$50.036 t^{2}-4.3 t+178.8$ for the optimistic case.

Fig. 1 The modeled cumulative discoveries as a function of time (the year 1860 is assumed as the start year $t=0$.)

Fig. 2 The production model compared to the actual data

Fig. 3 Results of the modified model compared to the actual production data

(b)

Fig. C. 1 a) The number of wells as a function of cumulative production for Alaska and b) Production as a function of time for Alaska
(a)

(b)

Fig. C. 2 a) The number of wells as a function of cumulative production for Alabama and b) Production as a function of time for Alabama

Fig. C. 3 a) The number of wells as a function of cumulative production for Nevada and b) Production as a function of time for Nevada
(a)

(b)

Fig. C. 4 a) The number of wells as a function of cumulative production for South Dakota and b) Production as a function of time for South Dakota
(a)

(b)

Fig. C. 5 The number of wells as a function of size and time for Alaska. a) Actual and b) Model

Fig. C. 6 The number of wells as a function of size and time for Alabama. a) Actual and b) Model

Fig. C. 7 The number of wells as a function of size and time for Nevada. a) Actual and b) Model

Fig. C. 8 The number of wells as a function of size and time for South Dakota. a) Actual and b) Model

Fig. C. $9 w_{l_{T}}$ versus $U R R_{l} / P_{0}$

Table B. 1 The $U R R, b_{t}$ and t_{t} for the 3 cases

Case	$U R R$ TL (trillion barrels)	b_{t} year $^{-1}$	t_{t} year
Pessimistic	$318(2)$	0.0413	135.3
Optimistic	$477(3)$	0.0372	148.9
Ideal	$343(2.16)$	0.0421	135.4

Table C. 1 The size of wells from EIA (2007)

Category	Size barrels/day		
1	0	-	1
2	1	-	2
3	2	-	4
4	4	-	6
5	6	-	8
6	8	-	10
7	10	-	12
8	12	-	15
9	15	-	20
10	20	-	25
11	25	-	30
12	30	-	40
13	40	-	50
14	50	-	100
15	100	-	200
16	200	-	400
17	400	-	800
18	800	-	1600
19	1600	-	3200
20	3200	-	6400
21	6400	-	12800
22		$>$	12800

Table C. 2 The constants for various states

State	$U R R_{l}(\mathrm{GL})$	k_{w}	$P_{0} \times 10^{-3}(\mathrm{GL} / \mathrm{year})$	$w_{l_{T}}$
Alaska	174.9	9	95	200
	1271.9	11	445	300
	953.9	15	95	790
	79.5	11	159	150
	41.3	10	5	420
	27.0	15	59	45
	30.2	13	13	170
	0.1	$-{ }^{a}$	8	2
	0.5	5	10	11
	0.8	7	30	13
	6.4	14	35	18
	0.8	2	51	39
	0.6	6	2	28
South	0.6	12	13	6
Dakota	0.8	15	2	56
	1.4	16	3	52
	2.7	32	8	20

${ }^{a} w_{l}(t)=2$

