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Abstract

User purchase behaviours are complex and dy-
namic, which are usually observed as multiple
choice actions across a sequence of shopping bas-
kets. Most of the existing next-basket prediction
approaches model user actions as homogeneous se-
quence data without considering complex and het-
erogeneous user intentions, impeding deep under-
standing of user behaviours from the perspective
of human inside drivers and thus reducing the pre-
diction performance. Psychological theories have
indicated that user actions are essentially driven
by certain underlying intentions (e.g., diet and en-
tertainment). Moreover, different intentions may
influence each other while different choices usu-
ally have different utilities to accomplish an in-
tention. Inspired by such psychological insights,
we formalize the next-basket prediction as an In-
tention Recognition, Modelling and Accomplishing
problem and further design the Intention2Basket
(Int2Ba in short) model. In Int2Ba, an Intention
Recognizer, a Coupled Intention Chain Net, and a
Dynamic Basket Planner are specifically designed
to respectively recognize, model and accomplish
the heterogeneous intentions behind a sequence of
baskets to better plan the next-basket. Extensive ex-
periments on real-world datasets show the superior-
ity of Int2Ba over the state-of-the-art approaches.

1 Introduction

Human behaviors are usually complex, uncertain and dy-
namic [Cone, 2012], which brings great challenges to model
and predict them. For instance, purchasing a basket of prod-
ucts is a common user behaviour in our daily life but is hard
to precisely predict. Psychologists have been trying to deeply
reveal the essential complexities in human behaviours and in-
dicate that human behaviours are essentially driven by certain
inner intentions and one intention is usually accomplished by
a series of actions with certain utilities [Ajzen er al., 2009].
Inspired by this, in this paper, we take the next-basket pre-
diction problem as a typical example to study the complex
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user behaviours from the Psychological perspective, where
the choices on a variety of items across shopping baskets form
the user action sequence.

The commonly recognized Psychological theories [Albar-
racin and Wyer Jr, 2000; Albarracin et al., 2001] have re-
vealed the complex relations between user behaviour and in-
tentions. On the one hand, a user’s behaviours are driven by a
variety of heterogeneous intentions to achieve a certain goal
and different intentions may influence each other. Specifi-
cally, a user’s future actions are decided by the current in-
tention states (i.e., intention accomplishment status) and are
taken to accomplish the corresponding intentions. On the
other hand, the user’s intentions are disclosed by the hap-
pened actions and the state of each intention depends on the
actions that have been taken for it. Furthermore, the goal
(e.g., a shopping basket) is achieved on the basis of the per-
fect accomplishment of each intention [Wang et al., 2020].

However, most of the existing next-basket prediction ap-
proaches make predictions by simply modelling a user’s ac-
tions in a sequence of shopping baskets as homogeneous time
series data points, e.g., the stock price. Markov chain based
approaches and Recurrent Neural Networks (RNN) based ap-
proaches are the two most representative approaches for next-
basket prediction. Markov chain based ones [Rendle and et
al., 2010] mechanically factorize the overall transition matrix
over items from adjacent baskets without differentiating the
possible heterogeneous intentions behind different transitions
and thus fail to capture the complex and heterogeneous de-
pendencies over items across baskets. RNN-based ones [Yu
et al., 2016; Le et al., 2019] model the inter-basket sequential
dependencies by treating all the baskets in a sequence as ho-
mogeneous data points with rigid order. Therefore, they are
not able to capture the complex and heterogeneous transitions
over items for various intentions across baskets. As a result,
all these approaches fail to consider the humans’ heteroge-
neous intentions behind their choice actions in baskets, let
alone well accomplish a user’s different intentions to achieve
his/her goal with a good basket planning procedure.

In this paper, inspired by the aforementioned Psycholog-
ical theories on human behaviour reasoning and formation,
we propose Int2Ba to deeply model the complex and hetero-
geneous user behaviours in a sequence of shopping baskets
for better planning the next-basket. First, we design Inten-
tion Recognizer as a component of Int2Ba to automatically
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recognize the user’s possible intentions behind the observed
choices on items in baskets and then build an intention-
specific action representation by integrating the embeddings
of all the items associated with the same intention in each bas-
ket. All the actions for the same intention across baskets con-
stitute a chain for accomplishing the corresponding intention.
Second, we devise Coupled Intention Chain Nets (CICN) to
model the state transitions of different intentions along with
the actions taken in the corresponding chains. Each Inten-
tion Chain Net (ICN) in CICN models one intention. Since
different intentions may influence each other, accordingly,
we particularly design Coupled Intention Unit (CIU) as the
basic cell of ICN to model the intra-intention state transi-
tions while incorporating the inter-intention influence. Con-
sequently, the current state of each intention is obtained as
the intention representation to guide the subsequent basket
generation. Finally, we specifically design a Dynamic Basket
Planner (DBP) to generate the next basket with a maximum-
utility optimizer in an iterative way, which can more effec-
tively model the real-world basket formation process where
items are put into a basket step by step. Hence, the basket
with the highest utility generated in the last iteration is se-
lected as the next-basket to best accomplish all the intentions.

The main contributions of our work are summarized below:

e We propose intention modelling for in-depth under-
standing of complex and heterogeneous user behaviours
from the Psychological perspective.

e We design Int2Ba to model the heterogeneous intentions
behind the user’s complex behaviours. Specially, Inten-
tion Recognizer, CICN and DBP are devised to recog-
nize, model and accomplish intentions respectively.

e Int2Ba is demonstrated by being applied to next-basket
prediction to model the heterogeneous intentions which
drive the complex purchasing actions.

2 Related Work

The existing work on next-basket prediction can be generally
categorized into pattern-mining based, Markov chain based
and neural network based approaches [Wang er al., 2019b].

Pattern mining is an intuitive solution to next-basket pre-
diction by utilizing the mined sequence patterns as guidance.
For example, Temporal Annotated Recurring Sequence was
proposed to capture different factors (e.g., co-occurrence and
sequentuality) influencing user choices for next-basket pre-
dictions [Guidotti and et al., 2018]. Pattern-mining based ap-
proaches usually focus on the frequent items while ignoring
less-frequent ones, and reducing prediction performance.

Markov chain models are an alternative solution to avoid
this drawback. Particularly, the Factorized Personalized
Markov Chains (FPMC) was proposed for next-basket pre-
diction by factorizing the transition matrix built on underly-
ing Markov chains over items from adjacent baskets [Rendle
and et al., 2010]. However, FPMC only captures the first-
order dependencies while ignoring higher-order ones, leading
to poor performance on next-basket prediction [Wang et al.,
2017; Wang et al., 2018; Lian et al., 2020b].

In recent years, various neural networks were employed for
next-basket prediction. [Wang et al., 2015] constructed a hy-
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brid representation of the last basket using shallow neural net-
works to predict the next basket, but it still only captures first-
order dependencies. Different from shallow neural networks,
deep neural networks like RNN are more powerful in model-
ing complex dependencies due to their complex architectures.
For example, a Dynamic REcurrent bAsket Model (DREAM)
was proposed in [Yu ez al., 2016] to learn the dynamic repre-
sentation of a user and global sequential features across bas-
kets for next-basket recommendations. An RNN-based se-
quence encoder was developed to incorporate the intra-basket
correlations for predicting more coherent next basket [Le et
al., 2019]. Attention mechanism was incorporated into RNN
by [Bai er al., 2018] to highlight those more relevant items for
next-basket prediction. RNN-based approaches can capture
higher-order dependencies across multiple baskets, but they
may also generate false dependencies due to the employed
rigid order assumption over the baskets and bias to the recent
baskets due to the memory decay [Wang et al., 2019al.

In summary, all these aforementioned works mechanically
model users’ behaviours in shopping baskets as homogeneous
sequence data without considering the human’s intentions be-
hind, impeding the deep understanding of user behaviours.
Consequently, the next-basket prediction performance is re-
duced. Very limited works have been reported to consider
intention in users’ behaviour modelling from our observa-
tion. [Chen er al., 2019] employed attention mechanism to
predict users’ category-wise intention, which was defined as
an arbitrary pair of action type and item category, totally dif-
ferent from the Psychology intention in our work. In practice,
the Psychology theories [Albarracin et al., 2001] have indi-
cated that users’ actions are driven by certain intentions and
one intention is accomplished by the corresponding choice
actions with good utility. Inspired by these, we develop
Int2Ba to model the users’ complex and heterogeneous ac-
tions in next-basket prediction by recognizing, modelling and
accomplishing the intentions behind actions successively.

3 Problem Statement

Given a transaction dataset, D = {s1, ..., s|p| } denotes a col-
lection of sequences of shopping baskets (called baskets for
short), where each sequence s = {b1, ..., b5 }(s € D) con-
sists of a list of time-ordered baskets purchased by an anony-
mous user. |D| is the number of sequences in D. Each bas-
ket b = {v1,...,vp }(b € s) contains a collection of items
purchased in one transaction without rigid order. All the
items in the whole dataset constitute the universal item set
V = {v1,...,v)v|}. For a target basket b;(b; € s) to be pre-
dicted, all the baskets occurring prior to b, in s together form
its sequential context (called context for short), denoted as
Cy, = {b1,...,bs_1} where each basket b € C, is a contex-
tual basket and each item v € b is a contextual item. Given a
context C with preceding (¢ — 1) baskets, a next-basket plan-
ner is to plan the items for the t** basket b; to best accomplish
the intentions embeded in the context.

4 Intention2Basket Model

The architecture of our proposed Intention2Basket (Int2Ba
for short) is shown in Figure 1 (a). Int2Ba is mainly com-
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Figure 1: (a) The Int2B model mainly consists of three components: Intention Recognizer (IR), CICN and DBP (the circle with arrow means
the basket generation is iterative); (b) each CIU in CICN introduces an attention model (denoted as A.) and an influence gate (o5 in green
color) to attentively integrate the other intention states and then selectively absorb them into the current intention transition respectively.

prised of three components: (1) Intention Recognizer, (2)
Coupled Intention Chain Nets (CICN), and (3) Dynamic Bas-
ket Planner (DBP). An intention recognizer first recognizes
the intentions behind the items in each contextual basket and
accordingly builds the intention-specific action representation
as the input of CICN. CICN models the state transitions of
different intentions and accordingly generates an intention
representation for basket generation. DBP iteratively gener-
ates baskets to best accomplish all the recognized intentions.

4.1 Intention Recognizer

Given the items in each contextual basket, intention recog-
nizer discovers the potential intentions behind them. Given
item v;, its embedding v; € W, is input into the intention
recognizer to compute the probability v ; of the k" inten-
tion to drive the choice on v;. W, € REXIVI is the em-
bedding matrix and softmax is employed to fit the case that
sometimes there may be several intentions behind one item.

T .
Qi = ,ff{p(vl WTf[" Him) e 1,..m} (1)
> he1 exp(v; Wi, hl7)

where Wy € REX™ is the intention filtering matrix, and m

is the number of possible intentions which is tuned by cross

validation. 7 € (0, +00) is the temperature parameter [Jang

et al., 2017] to tune, when 7 — 0™, v; tends to be driven by

a single intention. In this paper, 7 is empirically set to 0.01.
Then, the intention-specific action representation a; ; for

the k*" intention in the j** basket b; is calculated by inte-

grating the embedings of items according to their intentions:

a;p = Z Qi Vi ()

’U»;Ebj

4.2 Coupled Intention Chain Nets (CICN)

CICN consists of m ICNs that are coupled together, where
each for one intention as shown in Figure 1 (a). Each ICN is
composed of (t—1) sequentially connected CIUs to model the
corresponding intention state transitions while incorporating
the inter-intention influence.
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Coupled Intention Unit (CIU)
As mentioned in Section 1, different intentions usually influ-
ence each other in the sequential purchase behaviours [Mor-
witz, 2014]. Traditional RNN cells including Long Short-
Term Memory (LSTM) [Shi and et al., 2015] and Gated Re-
current Unit (GRU) [Chung et al., 2014] are not capable of
modelling such inter-intention influence since they are orig-
inally deigned for one homogeneous sequence and thus can
model the state transitions within sequences only. To this end,
we design CIUs to serve as the basic cells of each ICN. To be
specific, a CIU first introduces an attention model to weigh
the different importance scales of other intentions w.r.t. the
current one and then introduces an influence gate to selec-
tively absorb their states into that of the current intention, as
shown by the green part in Figure 1 (b). Next, we formalize
the work mechanism of the CIU step by step.

First, the update gate vector r; and reset gate vector z; in
preparation for the subsequent state updating at the j** step
in the current k*" ICN are calculated below:

r; = Us(Wr[hjflyaj,k] +b,), 3)

zj = 0s(W_[hj_1,a;%] +b.), “4)
where o is the activation function and is specified as sigmoid
in this work. W,. and W, are the weight matrices while b,
and b, are the corresponding bias.

Then we calculate the importance weights of all other in-
tentions w.r.t. the current k*" intention by employing a soft-
max function [Peng er al., 2017] as most attention models do.
The importance weight for intention sate is:

Bii—1,) = softmax(Wh(_1 ;) +by). (5)

‘W, and b, are the attention filtering matrix and bias respec-
tively. h;_y ) is the state at the (j—1)*" step of {*" intention.

With the attention weights, the states of all other intentions
are integrated into a compound intention state hfj_l):

m

1= Zﬁ(jq,z)h(jq,z)a (I # k). (6)
=1

The influence weight to measure the degree to which the
compound intention state can influence the current k" inten-
tion is calculated via a particularly designed influence gate:



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Y= Us(Wch;—l + Wgaj,k)v (7

where W, and W, are the weighting matrices to be learned
while o is the sigmoid function.

The candidate intention state is calculated by taking the
last state h(; 1 ), the compound state h§_; from other inten-
tions, and the current action representation a; ;, as the inputs:

hjr = 0e(Wolrjh 1 x),vhi 1 a6] +bs).  (8)
W, and b, are the weighting matrix and bias respectively.

Finally, the intention state is obtained by combining the last

state and the candidate intention state with the reset gate:

hjr =zhg1k) + (1= 2z;)hy. ©

The unified intention representation h;_; is obtained by
putting all the m intention states at the last step together:

hyy = [he11, ey ). (10)

4.3 Dynamic Basket Planner (DBP)

Existing next-basket predictors [Yu er al., 2016; Bai et al.,
2018] often simply select those Top-K items with the highest
probabilities at once to form the next-basket. However, such
manner not only ignores the correlations between these K
candidate items but also overlooks the increasing preceding
items in the forming basket along with a user’s choice actions,
reducing the accomplishment of a user’s intentions. To form
the next basket in a way more approaching to the real-world
cases where the items are put into the basket in multi-steps,
we propose DBP to plan the next-basket with a maximum-
utility optimizer in an iterative way to better accomplish the
user’s intentions. Specifically, given the learned intentions,
we generate a size- K basket with the maximum utility w.r.t.
all the intentions by K steps. Next, we present DBP in detail.
A utility function U(+) is defined in the optimizer to mea-
sure the utility of each item or basket w.r.t. the accomplish-
ment of an intention. In this paper, U(-) is specified as the
inner product between the embedding v of the item or basket
and the intention representation h to measure the interactions
between them since a stronger interaction indicates better ac-
complishment of the intention [Louviere et al., 2000].

U(v|h) = vh. (11)

Given the representation h;_; 1 of the k" intention, we
select those Top-L (K < L < N) items with the highest util-
ities w.r.t. such intention from the whole item population to
build an intention-specific candidate item set. L is a param-
eter to be tuned over specific datasets and is empirically set
to 1,000 in this paper. K and NV are the size of next-basket
and the total number of items respectively. Then we employ
an iterative generation process to generate the next-basket of
size-K in K steps. In the first step, we select top-K items
with the highest utilities from the whole item population to
build K size-1 candidate baskets by taking each of them as
one basket. In each of the following steps, first, we select
Top-H items from each intention-specific candidate item set
to get mH items and then we add each of them into each of
the K baskets generated in the last step to form mH K new
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candidate baskets. Finally, we chose the Top-K ones with
highest utilities w.r.t. all the intentions as the optimal ones.
H is a parameter to be tuned in the specific dataset and is em-
pirically set to 100 in our experiments. Following Eq. (11),
the utility of a candidate basket b, w.r.t. all the intentions in
the context is calculated below:

U(b|C) = byhy_q, (12)

where b; = [as,1, ..., a;,m] is the intention-specific basket
representation. Finally, we generate K size-K candidate bas-
kets and select the one with the highest utility.

4.4 Optimization Objective and Training

Ranking Loss

Each basket sequence used for the next-basket prediction is
usually regarded as a context-target basket pair < C,b; >.
Such data is referred to as one-class data [Hu et al., 2016] and
learning from it is often treated as a ranking problem [Rendle
and et al., 2009; Wu et al., 2019; Lian et al., 2020al. Specif-
ically, given a context C', a contrastive pair is constructed
to specify the utility order bc 5y = b(c,) over a basket
bic,z) € Bc that is observed to match the context C' and an
unobserved basket b(c, ) ¢ Bc, where B is the set of target
baskets w.r.t. the context C'. Then the following max-margin
loss [Lecun et al., 2006] is employed to optimize the ranking
order over pairs:

Lb(c,z)tb(c,y) = maz(0, margin + U(b,|C) — U(b;|C)),
(13)
where the margin needs to be tuned according to the range
of utility values and is empirically set to 3 in this work.

Training Procedure

Our model is implemented using Tensorflow 1.11 and its pa-
rameters are learned based on a mini-batch learning proce-
dure. Adam [Kingma and Ba, 2015] is used for gradient
learning. The initial learning rate is empirically set to 0.001
and the batch size is set to 50.

S Experiments and Evaluation
5.1 Data Preparation

Two real-world transaction datasets commonly used to test
the performance of next-basket prediction [Guidotti and et
al.,, 2018; Le et al., 2019] are used for the experiments:
(1) Tmall' released by IJCAI-15 competition. It records
the shopping baskets purchased by each anonymous user on
Tmall.com (The Chinese version of Amazon) in six months.
The purchase date of each basket is given while no timestamp
for those items inside it; and (2) Tafeng? released on Kaggle.
It contains the transaction data of a Chinese grocery store pro-
duced in four months, whose format is similar to Tmall.
First, all the purchased baskets by each user are ordered
according to the purchase time to form a basket sequence s.

"https://tianchi.aliyun.com/dataset/dataDetail ?datald=42

Zhttps://www.kaggle.com/chiranjivdas09/ta-feng-grocery-
dataset
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Statistics Tmall Tafeng
#Sequences 135,014 10,453
#Baskets 399,008 60,392
#Items 98,727 11,207
Avg. sequence length 2.96 5.78
Avg. basket size 3.08 8.42

Table 1: The characteristics of experimental datasets

Then, following the common practice for sequence data pro-
cessing, given an s, we build training and test sequence in-
stances of length ¢ in the form of context-target basket pair
< C,by > (C = {by,ba,...,b_1}) by using the sliding win-
dow technique [Tanbeer et al., 2009] when |s| > ¢ or padding
and masking [Collins and et al., 2012] otherwise. To feed the
data into the model well, t is fixed (i.e., 5 and 8 for Tmall and
Tafeng respectively) according to the data characteristics. Fi-
nally, we randomly select 20%, 30% and 40% of the instances
whose target basket happens in the last 30 days to form three
test sets, while the reminder for the corresponding training
set respectively. Our method consistently outperforms all the
baselines on all the three splits, and only the results w.r.t. the
30% split are reported for saving space. The characteristics
of experimental datasets are shown in Table 1.

5.2 Experimental Settings

Comparison Methods

Seven representative and state-of-the-art approaches built on
various models are used as baselines. In addition, three sim-
plified versions of our model are used for ablation analysis.

e TBP: a next-basket predictor using temporal annotated
recurring sequences to capture different factors affecting
users’ choices [Guidotti and et al., 2018].

e FPMC: a Markov chain based next-basket predictor factor-
izing the transition matrix over items from adjacent baskets
[Rendle and et al., 2010].

o HRM: a next-basket predictor building a hierarchical last-
basket representation for prediction [Wang et al., 2015].

o DERAM: a next-basket predictor using RNN to learn a dy-
namic representation of a user based on historical baskets
for the prediction [Yu et al., 2016].

e NAM: a next-basket predictor incorporating attention
mechanism into RNN for tracking users’ evolving appetite
for items for the prediction [Bai et al., 2018].

e Beacon: a state-of-the-art next-basket predictor using
RNN to encode the basket sequences while considering
intra-basket correlations [Le et al., 2019].

o MCPRN: a next-item predictor using mixed-channels to
model different types of items [Wang et al., 2019a] and is
modified to be applicable for next-basket prediction.

e Int2Ba-S: a simplified version of Int2Ba, which is com-
posed of a single ICN based on the homogeneous intention
assumption. It is built to verify the effectiveness of CICN
of Int2Ba in handling heterogeneous intentions.
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e Int2Ba-GRU: a simplified version of Int2Ba replacing the
CIUs in Int2Ba with GRUs. It is to justify the efficacy of
CIUs in modeling inter-intention influence.

e Int2Ba-Top-K: a simplified version of Int2Ba replacing
the DBP in Int2Ba with commonly used Top-K next-basket
predictor to demonstrate the effectiveness of DBP.

Evaluation Metrics

Four accuracy metrics, i.e., Recall, F-1 Score, Hit-Ratio (HR)
and normalized Discounted Cumulative Gain (nDCG) that
are commonly used to test the next-basket prediction perfor-
mance [Bai et al., 2018; Liu et al., 2020] are employed to
evaluate the performance of all comparison methods.

Parameter Settings

For a fair comparison, we first initialize each baseline model
with the parameter settings in the original papers and then
carefully tune them on our datasets for best performance. In
our model, the dimensions of embeddings and intention states
are empirically set to 100, while the number of channels m
and the candidate number H in DBP is set to 3 and 100 re-
spectively by tuning on the validation set.

5.3 Performance Evaluation and Analysis

Extensive experiments are conducted to evaluate our model
in terms of accuracy by answering the following questions:

Q1: How does our Int2Ba perform compared with the
baseline approaches in terms of prediction accuracy?

Q2: How does CICN modeling various heterogeneous in-
tentions perform compared with a single ICN modeling only
a homogeneous intention?

Q3: How does the CIU perform in modeling the inter-
intention influence?

Q4: How does our DBP perform in accomplishing the var-
ious heterogeneous intentions?

Reply to Q1: Int2Ba vs. baselines. The prediction accu-
racy of our Int2Ba and those of the seven baselines are re-
ported in Table 2. In TBP, the minimum item occurrence
times in the whole dataset and the minimum number of bas-
kets per user are empirically set to 5 and 10 respectively for
the best performance. TBP is a frequent-pattern mining based
approach with a user-centralized design, leading to its igno-
rance of infrequent items and poor performance on sparse
data. The number of factors is set to 50 in FPMC for the
best performance. Although it can cover more items and thus
performs better than TBP, the strict assumption of first-order
dependencies between any adjacent baskets prevents FPMC
from being always in line with the real-world cases. The di-
mensions of both item embeddings and state vectors (if there
is any) are empirically set to 100 in the other five baselines for
best performance. Although HRM performs better by learn-
ing latent representations of baskets to relax the strict assump-
tion in FPMC, it still only captures first-order dependencies.
DERAM employs an RNN to model the higher-order depen-
dencies over a sequence of baskets for more accurate predic-
tion. NAM and Beacon incorporate the attention mechanism
and intra-basket correlations into RNN respectively for bet-
ter prediction. To avoid the noisy information from irrele-
vant items, MCPRN employs mixture-channel models built
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| Tmall | Tafeng

‘ F1@5 F1@20 HR@5 HR@20 nDCG@5 nDCG@ZO‘ F1@5 F1@20 HR@5 HR@20 nDCG@5 nDCG@20
TBP 0.0284 0.0312 0.0212 0.0490 0.0642  0.1006 |0.0252 0.0312 0.0187 0.0382 0.0844  0.1000
FPMC 0.0614 0.0540 0.0878 0.2068 0.0648  0.1094 |0.0620 0.0566 0.0670 0.1471 0.0565  0.1012
HRM 0.0848 0.0788 0.1012 0.2326 0.0854  0.1364 |0.0847 0.0785 0.0802 0.1789 0.0786  0.1325
DERAM 0.1081 0.0816 0.1228 0.2552 0.1029  0.1602 |0.1038 0.0825 0.0908 0.1956 0.1314  0.1629
NAM 0.1090 0.0818 0.1224 0.2499 0.1149  0.1717 |0.1110 0.0740 0.0979 0.1740 0.1302  0.1508
Beacon 0.1200 0.0882 0.1269 0.2749 0.1265  0.1877 [0.1100 0.0898 0.0989 0.2012 0.1306  0.1627
MCPRN 0.1205 0.0884 0.1228 0.2756 0.1269  0.1892 |0.1092 0.0898 0.1014 0.2137 0.1330  0.1670
Int2Ba-S 0.1100 0.0856 0.1279 0.2559 0.1127  0.1615 [0.1089 0.0816 0.0940 0.1942 0.1321  0.1635
Int2Ba-GRU 0.1282 0.0910 0.1281 0.2802 0.1293  0.1936 |0.1142 0.0862 0.0982 0.1990 0.1360  0.1686
Int2Ba-Top-K 0.1302 0.0914 0.1320 0.2806 0.1363  0.2021 [0.1174 0.0894 0.1002 0.2066 0.1366  0.1715
Int2Ba 0.1527 0.0988 0.1635 0.2898 0.1659  0.2086 |0.1261 0.1021 0.1148 0.2346 0.1454  0.2025
Improvement (%)‘ 17.28 8.10 23.86 3.28 21.72 3.22 ‘ 741 1370 1321 9.78 6.40 17.39

Table 2: Prediction accuracy on two real-world datasets

Recall on Tmall

Recall on Tafeng
0.4 0.4

0.3 0.3

0.2 0.2

0.1

Recall@5 Recall@20 Recall@5 Recall@20

Figure 2: Recalls of Intention2Basket and other compared methods.

on RNN to model dependencies for different types of items
independently. In summary, all these approaches not only
ignore the heterogeneous intentions behind users’ choice be-
haviours, but also form the next-basket by simply selecting
the Top-K items with the highest probabilities, without con-
sidering the correlations between them, failing to better ac-
complish all the intentions by taking the basket as a whole.
In contrast, by modeling the state transitions of different in-
tentions over a sequence of baskets with different ICNs while
considering the inter-intention influence, Int2Ba is able to
comprehensively model the complex user behaviours driven
by heterogeneous intentions. More importantly, the carefully
designed DBP generates the next-basket in an iterative way
driven by the intentions, and thus better accomplishes the
user’s intentions. As a result, Int2Ba achieves clear improve-
ment ranging from 3.22% to 23.86% over the best performing
baselines w.r.t. all the metrics on both datasets (cf. the bot-
tom row of Table 2). The recall also shows Int2Ba leads the
baselines with a clear margin (cf. Figure 2).

Reply to Q2: heterogeneous intention modeling by CICN
vs. homogeneous intention modeling by ICN. We com-
pare the performance of Int2Ba with that of Int2Ba-S to
demonstrate the effectiveness of CICN to model multiple
heterogeneous intentions. As shown in Table 2 and Fig-
ure 2, Int2Ba achieves clearly higher accuracy compared
with Int2Ba-S with an improvement ranging from 10.07%
(nDCG @5 on Tafeng) to 47.20% (nDCG @5 on Tmall). This
verifies the rationality to model uers’ actions across baskets
by considering their heterogeneous intentions behind.

Reply to Q3: CIU vs. GRU in modeling the inter-intention
influence. Similarly, the accuracy improvement ranging

from 3.43% (HR@20 on Tmall) to 28.31% (nDCG@5 on
Tmall) of Int2Ba over Int2Ba-GRU in Table 2 proves the exis-
tence of inter-intention influence and it can be better captured
by our designed CIU.

Reply to Q4: DBP vs. Top-K predictor in accomplish-
ing various heterogeneous intentions. For the verification
of the efficacy of our devised DBP, we compare the perfor-
mance of Int2Ba with that of Int2Ba-Top-K. As reported in
Table 2, Int2Ba obviously outperforms Int2Ba-Top-K w.r.t.
all the metrics on both datasets, specifically, Int2Ba brings
an improvement ranging from 3.22% (nDCG @20 on Tmall)
to 23.86% (HR@5 on Tmall) over Int2Ba-Top-K. Such im-
provement demonstrates the superiority of our devised DBP
in basket formation over the Top-K predictor commonly used
in existing works [Yu et al., 2016; Liu et al., 2018].

6 Conclusions

In this paper, we have proposed Intention2Basket (Int2Ba)
to effectively model the complex and heterogeneous user be-
haviours for better planning next-basket, which cannot be
well addressed by existing works. Int2Ba harnesses an in-
tention recognizer to recognize the possible intentions behind
each basket, coupled intention chain nets to model the state
transitions of different intentions and a dynamic basket plan-
ner to iteratively generate optimal basket with the highest util-
ity to best accomplish the recognized intentions. Empirical
evaluations on real-world data show the superiority of Int2Ba
over the state-of-the art methods.
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