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ABSTRACT  1 

Alkali-silica reaction (ASR) is one of the most harmful distress mechanisms affecting concrete 2 

infrastructure worldwide. ASR is a chemical reaction that generates a secondary product, which 3 

induces expansive pressure within the reacting aggregate material and adjacent cement paste 4 

upon moisture uptake, leading to cracking, loss of material’s integrity and functionality of the 5 

affected structure. In this work, a computational homogenization approach is proposed to 6 

model the impact of ASR-induced cracking on concrete stiffness as a function of its 7 

development. A Representative Volume Element (RVE) of the material at the mesoscale is 8 

developed which enables the input of the cracking pattern and extent observed from a series of 9 

experimental testing. The model is appraised on concrete mixtures presenting different 10 

mechanical properties and incorporating reactive coarse aggregates. The results have been 11 

compared with experimental results reported in literature. The case studies considered for the 12 

analysis show that stiffness reduction of ASR-affected concrete presenting distinct damage 13 

degrees can be captured by using the proposed meso-scale model as the predictions of the 14 

proposed methodology fall in between upper and lower bounds of the experimental results. 15 

Keywords: Alkali-Silica Reaction; Crack configuration; Computational Homogenization; 16 

Representative Volume Element.       17 

INTRODUCTION   18 

Alkali-silica reaction (ASR) is one of the most harmful distress mechanisms affecting the 19 

serviceability and durability of concrete infrastructure worldwide. ASR is a chemical reaction 20 

between the alkalis (i.e. Na+, K+ and OH-) from the concrete pore solution and some reactive 21 

mineral phases present in the aggregates used to make concrete. This reaction generates a 22 

secondary product, the so-called ASR gel, that swells under moisture uptake, leading to 23 

important crack formation followed by reductions in mechanical properties1-3. Several 24 

approaches, recommendations, and test procedures, have been developed to assess the potential 25 
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alkali-reactivity of concrete aggregates and the efficiency of preventive measures (e.g. control 1 

of the cement & concrete alkali content, use of supplementary cementing materials (SCMs), 2 

use of lithium based admixtures, etc.) before their use in the field4, 5, 6, 7, 8. Despite a few issues 3 

with some of these test procedures and the constant need of improvement in the different 4 

standards/protocols, the majority of experts agree that in general, it is now possible to build 5 

new concrete infrastructure with limited risk of ASR. However, there is currently no consensus 6 

about the most efficient method(s) that should be implemented, and when, for the rehabilitation 7 

of ASR-affected concrete infrastructure4, 6, 9, 10, 11. In this context, numerical models might be 8 

necessary, enabling further analysis of ASR structural implications and ensuring a better 9 

decision making. Pietruszcak12, Saouma13, Erkmen et al.14 and Gorga et al.15 employed 10 

phenomenological elasto-plastic and damage models to consider ASR effect on structural 11 

behaviour by degrading concrete properties. However, to fully understand ASR-induced 12 

expansion and damage development, its distress mechanism needs to be identified. Reinhardt 13 

and Mielich16 proposed two different mechanisms for ASR damage in concrete: (1) ASR gel 14 

formation at the aggregate particles/interfacial transition zone (ITZ), thus inducing swelling 15 

and cracking in the cement paste; and (2) cracks generation within the aggregate particles due 16 

to gel pockets formation, which propagates to the cement paste as the expansion level increases. 17 

The former mechanism has been adopted in several ASR numerical models such as in Multon17, 18 

Poyet18, Suwito19 and Nielsen20; yet, other researchers, such as Dunant and Scrivener21 claimed 19 

the former approach to be incomplete and adopted the latter mechanism for numerical 20 

simulations. 21 

The development of cracks within the aggregate particles at the early stages of the chemical 22 

reaction has been confirmed by a series of microscopic analyses from Sanchez22, 23. Sanchez22, 23 

23 evaluated a wide number of concrete mixtures incorporating over ten distinct reactive 24 

aggregate particles through the Damage Rating Index (DRI) method. The DRI is a petrographic 25 
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protocol performed with the use of a stereomicroscope (approximately 15-16x magnification) 1 

where damage features generally associated with ASR are counted through a 1 cm2 (0.155 in2) 2 

grid drawn on the surface of polished concrete sections22.  3 

In order to capture the distress and damage development mechanisms due to ASR, Comby-4 

Peyrot24, Dunant and Scrivener21, Cusatis et al25, Ishakov et al26, and Rezaghani et al27 used 5 

meso-scale modeling. Meso-scale models generally introduce the aggregates and the cement 6 

paste explicitly; thus, concrete is modelled as a heterogeneous material with the aim of better 7 

understanding the effects of composite interactions and local damage mechanisms. Based on 8 

experimental observations, Sanchez23 proposed a qualitative description of ASR induced crack 9 

generation and propagation as a function of its induced expansion development. A meso-scale 10 

computational model is required for the concrete material to adopt the model developed by 11 

Sanchez23.  12 

RESEARCH SIGNIFICANCE 13 

ASR is known to significantly reduce concrete stiffness. Models able to quantify the stiffness 14 

loss of ASR-affected concrete are required. This work aims at developing a meso-scale model 15 

to provide a thorough understanding of stiffness reduction as a function of ASR induced crack 16 

development. The crack pattern and extent from experimental observations are explicitly and 17 

efficiently introduced into the meso-scale model using the Extended Finite Element Method. 18 

A first-order computational homogenization procedure is developed to determine the effective 19 

stiffness. The outcomes of the proposed model are compared with experimental results; 20 

evaluation on its accuracy to describe ASR-distress development is performed. 21 

COMPUTATIONAL HOMOGENIZATION APPROACH 22 

Equilibrium of a deformable body 23 

Let ijσ  denote the stress tensor and iu  be the displacement vector field, T
1 2u u=u . The 24 

stress tensor σ  is related to the displacement gradient through the constitutive relation, i.e.  25 
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:= ∇ ⊗xσ D u          (1) 1 

in which components of the stiffness matrix D , in general, are functions of the location vector 2 

T
1 2x x=x  in a heterogeneous continuum, ∇x  is the gradient operator, i.e., 3 

T
1 2x x∇ = ∂ ∂ ∂ ∂x , ‘:’ is the double dot product and ‘⊗ ’ is the tensorial product . The stress 4 

field is continuous (can be weakly continuous between elements after discretization). The 5 

displacement field is continuous within the bulk of the material and can become discontinuous 6 

between the interfaces. We limit our analysis to 2D problems, and the stiffness matrix for the 7 

bulk of the continuum has generally six independent components considering the symmetry of 8 

the shear stresses 12 21σ σ= , i.e.,  9 

1111 1122 1112

1122 2222 2212

1112 2212 1212

D D D
D D D
D D D

 
 =  
  

D        (2) 10 

The equilibrium equations can be written as  11 

0∇ ⋅ + =x σ p    in   Ω      (3) 12 

=u r     in   DΓ      (4) 13 

⋅ = −n σ s    in   NΓ      (5) 14 

where Ω , DΓ  and NΓ  are the analysis domain, Dirichlet and Neumann boundaries 15 

respectively, ‘.’ is the dot product, p is the body force vector and n is the normal vector 16 

component to the boundary surface. Dirichlet and Neumann boundaries are non-overlapping 17 

and decompose the whole external boundary, i.e., ∂Ω = Γ  where D NΓ=Γ ∪Γ  and 18 

D NΓ ∩Γ =∅ . The body force per unit volume in the analysis domain is denoted with pi, the 19 

specified displacement at the Dirichlet boundary is r and the specified traction at the Neumann 20 

boundary is s. The Galerkin weak form of the above governing equations from Eqs. (3) to (5) 21 

can be expressed after integration by parts as  22 
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δ : d δ d δ d 0
NΩ Ω Γ

∇ ⊗ Ω+ ⋅ Ω+ ⋅ Γ =∫ ∫ ∫x u σ u p u s      (6) 1 

where the admissible displacement field u  is prescribed at the boundary DΓ  as in Eq. (4) and 2 

therefore, its variation vanishes, i.e., δ =u 0  in DΓ .  3 

Homogenization 4 

Separation of scales and first-order homogenization: In the description of our problem, the 5 

assumption is that heterogeneous medium has rapidly oscillating properties and the sizes of the 6 

heterogeneities are small compared to the overall size of the medium. Our aim is to compute 7 

the macro-scale effective stiffness properties from the known meso-scale properties which 8 

represent an average and thus, the small-scale variations will not be present in the homogenized 9 

problem, i.e., 10 

ˆ :∇⊗∇⊗ = −D u p    in   Ω    (7) 11 

where D̂  is the effective stiffness matrix after homogenization. In order to capture the meso-12 

scale influence on the effective stiffness, a scaling parameter 1η   is introduced which 13 

represents the ratio between the size of the meso-scale structure and the macro-structure and 14 

thus, the stiffness is assumed to be varying based on this small parameter28. Analytically, the 15 

homogenized stiffness D̂  is defined as the case when 0η → . Therefore, the size of the 16 

heterogeneity is introduced as a variable to be able to describe the homogenous case as a special 17 

case (see Fig. 1). 18 

The displacement field u  in Eq. (7) is called the first approximate solution. The idea is to 19 

approximate the solution of the heterogeneous problem by using the solution of a simpler 20 

problem, which is the homogenous problem. Thus, u  refers to the solution of a simpler 21 

homogenized problem and the complete displacement field u  is represented in the form of 22 

asymptotic expansion as 23 

 2( , ) ( , ) ( , ) ( , ) ...η η= + + +u x y u x y u x y u x y      (8) 24 
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The oscillatory behaviour is due to heterogeneity and therefore, meso-scale oscillations are due 1 

to the higher-order contributions, i.e. , ,...u u . Due to different orders of η , that form of 2 

approximation in Eq. (8) introduces a hierarchy between the contributions of each term in the 3 

series. In order to make the position vector x  independent of the scaling parameter η  and thus, 4 

to construct globally valid solutions for a variable η , two spatial scales are incorporated into 5 

the problem. This allows x  always refer to the same material point as η  changes and the 6 

position vector x  now has the meaning of the slow scale or the macro-scale coordinate, 7 

measuring variations within the global region of interest only. Therefore, in Eq. (8) there is 8 

another vector η=y x  which is the fast coordinate, measuring variations within one period 9 

cell. As a result, the derivative operations transform into28 10 

1
η

∂ ∂ ∂
→ +

∂ ∂ ∂x x y
        (9) 11 

Thus, the analysis domain of the problem is extended as Yη ηΩ = Ω× , where Y denotes the 12 

domain of one cell that periodically repeats. In this case, Eq. (3) takes the form 13 

 1( , ) ( , ) ( )
η

∇ ⋅ + ∇ ⋅ = −x yσ x y σ x y p x       (10) 14 

Where the asymptotic expansion of the stress tensor can be written as  15 

 2( , ) ( , ) ( , ) ( , ) ...η η= + + +σ x y σ x y σ x y σ x y

 

                      (11) 16 

By substituting Eq. (8) into Eq. (1) and using derivative transform in Eq. (9), one obtains  17 

( , ) ( , ) : ( )ij = ∇⊗σ x y D x y u x

        (12) 18 

( )( , ) ( , ) : ( ) ( ) ( , ) ( , )k= ∇⊗ +∇⊗ = +σ x y D x y u x u x σ x y σ x y     (13) 19 

 ( )( , ) ( , ) : ( , ) ( , )= ∇⊗ +∇⊗σ x y D x y u x y u x y

                  (14) 20 

Because of the fact that the series in Eq. (11) does not contain the term 1 ( , )η− σ x y , Eq. (12) 21 

should vanish. This is because 1η−  is not bounded as 0η →  which is contrary to the 22 
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periodicity assumption for ( , )σ x y . Thus, from Eq. (12) it can be concluded that u  cannot 1 

depend on the fast coordinate y, i.e., ( )=u u x . In the following analysis, only the first non-2 

vanishing stress term is used, i.e., ( , ) ( , )=σ x y σ x y  and consequently, the terms higher than 3 

first order in the displacement ansatz are neglected, i.e., ( , ) 0=σ x y

  and ( , ) ( ) ( , )η= +u x y u x u x y . 4 

Note that ( , )u x y  is a periodic function in Y, i.e. ( , ) ( , )= +u x y u x y Y , where Y is the period in 5 

fast coordinate (Fig. 1). Substituting Eq. (13) into Eq. (10) and grouping the terms according 6 

to their order, i.e., (1)O  and (1 )O η  produces 7 

 ( , ) ( ) 0∇ ⋅ + =x σ x y p x    in   Ω         (15) 8 

 ( , ) 0∇ ⋅ =y σ x y    in    Y   (16) 9 

Variational setting for homogenization: By integrating the balance in Eq. (15) over a domain 10 

of one cell and using the variation of the first approximate displacement field δu , after 11 

integration by parts the weak form of the equilibrium equation can be obtained as 12 

ˆδ : d δ d δ d 0
NΩ Ω Γ

∇ ⊗ Ω+ ⋅ Ω+ ⋅ Γ =∫ ∫ ∫x u σ u p u s                            (17) 13 

where σ̂ is the effective stress tensor and determined by averaging the stress tensor over one 14 

cell, i.e. 15 

1 1

Y Y

ˆ Y ( , )dY Y ( , ) ( , ) dY− −= = +  ∫ ∫σ σ x y σ x y σ x y                           (18) 16 

where 
Y

Y dY= ∫  is the area of the cell (i.e. volume for unit thickness). In obtaining Eq. (17), 17 

it has been assumed that the source terms p  and s  are independent of the fast coordinate y . 18 

For the solution of the global equilibrium problem in Eq. (17), the whole stress tensor σ  needs 19 

to be expressed in terms of the average displacement gradient ∇⊗u . For that purpose, Eq. 20 

(16) is used in the weak form by multiplying with the virtual displacement fluctuations δu  and 21 
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integrating over a domain of one cell Y. After integration by parts with respect to fast 1 

coordinate y , one obtains 2 

Y

δ : dY δ d 0
Ψ

∇ ⊗ − ⋅ ⋅ Ψ=∫ ∫y u σ u σ n       (19) 3 

where YΨ=∂ is the boundary of the cell and Ψ  represents the fast coordinate on the cell 4 

boundary. Eq. (19) is the Hill-Mandel condition for scale separation, which allows decoupling 5 

of the analysis of a heterogeneous material into analyses at the local and global levels. Thus, 6 

the solution of Eq. (19) builds the relationship between the gradients of the average 7 

displacement and the stress in one cell Y. Under the assumption of  0η → , by using Eq. (19), 8 

the weak form over the whole domain in Eq. (6) can be replaced with Eq. (17) for the global 9 

analysis. Thus, the heterogeneous domain can be replaced by the equivalent homogenous 10 

material having calculated the effective properties at the local level. Despite the fact that 11 

( , )u x y  is a periodic function, i.e., 
Y

( , )dY∇ ⊗ =∫ y u x y 0 , the integral of the stress component 12 

σ  generally does not vanish in Y, i.e., 
Y Y

( , )dY ( , ) : ( , )dY= ∇ ⊗ ≠∫ ∫ yσ x y D x y u x y 0  thus, the two-13 

scale analysis introduces the effect of fluctuations due to heterogeneity in the global analysis. 14 

RVE Boundary Value Problem: Practically speaking, in order to solve the cell problem in 15 

Eq. (19) a Representative Volume Element (RVE) needs to be introduced. The RVE is defined 16 

as the smallest structural volume that sufficiently accurately represents the overall macroscopic 17 

stiffness properties of interest. Thus, the size of the RVE should be selected large enough to be 18 

statistically representative of the distributions of the inclusions. Because of the finite size of 19 

the RVE, i.e., 0η ≠ ,  homogenization is approximate unless exact RVE boundary conditions 20 

are imposed. Since exact boundary conditions are not known a-priori a chosen RVE is 21 

generally analysed using either uniform gradient, uniform traction or periodic boundary 22 

conditions. Therefore, the information on the cell boundary is lost due to Hill-Mandel condition 23 
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for scale separation as there might be many candidates for u  that satisfy Eq. (19). In other 1 

words, there is a meso-scale effect due to meso-scale fluctuations at the boundary of a finite 2 

size RVE that is not resolved in the two-scale analysis. The assumed meso-scale field existing 3 

at the RVE boundary influences the effective modulus by influencing the effective stress field, 4 

e.g. in Kanit et al.29. We assume that the aggregate and ASR induced crack distributions are 5 

such that the whole structure consists of spatially repeated cells as indicated in Fig. 1. Therefore, 6 

Periodic Boundary Conditions are assumed herein and its implementation is discussed in the 7 

next section. Finite size RVE volume and boundary surface are denoted as RVEV  and RVES , 8 

respectively and thus, 
0

lim Y
RVE

RVEV
V

→
=  and 

0
lim
RVE

RVEV
S

→
=Ψ . In first-order homogenization, the 9 

displacement at the RVE boundary i.e., at RVES∈ψ  can be imposed as 10 

( )( ) ( ) ( )′= + − ⋅ +u ψ u y ψ y g u ψ       (20) 11 

where 1 dY
RVE

RVE
V

V −= ∫y y  refers to the centre of the RVE, g  is the specified average 12 

displacement gradient field obtained from the global problem in Eq. (17) i.e., =∇ ⊗xg u , and 13 

( ) ( )
0

lim
RVEV

η
→

′ =u ψ u ψ  is the contribution of the meso-scale fluctuations at the boundary which 14 

is generally unknown. It should be noted that for convenience and without losing generality, 15 

for the purpose of determining the local stress field, the origin of the RVE coordinates can be 16 

taken at y , i.e., 0=y  and the average displacement can be assumed zero, i.e., ( ) 0=u y . 17 

By considering that the forcing term for the deformation of the RVE is the constant average 18 

displacement gradient one obtains 19 

d dY
RVE RVES V

⊗ Ψ =∫ ∫u n g         (21) 20 
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By introducing δσ  as the weighting function in the weak form of Eq. (21), one obtains the 1 

RVE problem similar to the general form introduced in Miehe and Koch30 based on the 2 

Lagrange multiplier technique31, i.e. 3 

( )δ : dY δ d δ d 0
RVE RVE RVEV S S

∇ ⊗ − ⋅ Ψ − ⋅ − ⋅ Ψ =∫ ∫ ∫y u σ u λ λ u ψ g    (22) 4 

where dY d
RVE RVEV S

= ⋅ Ψ∫ ∫ ψ n  has been used and = ⋅λ n σ  is the Lagrange multiplier vector which 5 

constraints the average displacement in the RVE based on the specified average displacement 6 

gradient field g . Thus, each of the two components of λ  can be identified as the total tractions 7 

at the boundary points RVES∈ψ . Eq. (22) can be solved to determine the whole stress field σ  8 

in terms of the average displacement gradient g . From the solution of Eq. (22) and by using 9 

Eq. (18), one obtains the relationship 10 

ˆˆ :=σ D g          (23) 11 

where D̂  is the effective stiffness matrix to be used for the global solution in Eq. (17). The 12 

schematic outline in Fig. 2 describes the multi-scale analysis procedure based on the idea of 13 

separation of scales. Once the boundary conditions are chosen, equations can be solved to 14 

calculate the local RVE stress tensor σ . Accordingly, the effective stress tensor σ̂  can be 15 

calculated by using the local stress tensor σ in Eq. (18). Three cases of displacement gradient 16 

need to be introduced to determine all components of the stiffness matrix through the 17 

displacement gradient and stress relationship in Eq. (23), i.e.  18 

Case1 Case2 Case3

1 2 3
1111 1122 111211 11 11

2 3
22 22 22 1122 2222 2212

2 3
12 12 12 1112 2212 1212

ˆ ˆ ˆˆ ˆ ˆ 1 0 0
ˆ ˆ ˆˆ ˆ ˆ 0 1 0
ˆ ˆ ˆˆ ˆ ˆ 0 0 1

D D D

D D D

D D D

σ σ σ
σ σ σ
σ σ σ

        =              

  (24) 19 

It should be noted that the resulting stiffness matrix is symmetrical.  20 

 21 
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Numerical implementation 1 

Implementation of the RVE boundary conditions: The numerical solution procedure can be 2 

developed by selecting the displacement field u  in the form of  3 

 =u Aa          (25) 4 

and the Lagrange multiplier field λ  in the form of 5 

=λ Gh          (26) 6 

where A and G are the matrices of selected approximation functions for u and λ , respectively. 7 

In Eqs. (25) and (26), a  and h  are the vectors of unknown parameters after discretization. It 8 

should be noted that for numerical implementation the rest of the equations refer to the 9 

algebraic forms after discretisation, thus matrices and vectors appear side by side are multiplied 10 

by dot product. By substituting Eqs. (25) and (26) into Eq. (22) one obtains the algebraic form 11 

of the RVE problem as  12 

T

0
     

=    
    

a 0K S
h ΘgS

        (27) 13 

where K, L and Θ  can be identified as 
T

dY
RVEV

∂ ∂
=

∂ ∂∫
A AK D
y y

, T d
RVES

= Ψ∫S G A  and 14 

T T d
RVES

= Ψ∫Θ G ψ . In Eq. (27), the stress for the heterogeneous RVE domain is obtained 15 

according to Eq. (1), i.e., ∂
= −

∂
Aσ D a
y

 and it was considered that in the RVE problem u  is 16 

specified, i.e., δ δη=u u . From the general algebraic form of the RVE problem in Eq. (27) one 17 

obtains the following cases by imposing constraints on the Lagrange multiplier λ  and/or the 18 

displacement u  at the boundary RVES . The interior points of the RVE are located at 19 

RVERVEV S∈ −y  , i.e., { }: and RVERVEV S∈ ∉y y y , where RVEV  is the closure of the RVE 20 

domain. On the other hand, for the purpose of imposing constraints, the boundary is 21 
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decomposed into two parts, i.e., RVE RVE RVES S S+ −= ∪  with outward normal + −= −n n  at 1 

associated points RVES+ +∈ψ  and RVES− −∈ψ , respectively (see Fig. 3a). Every point on the 2 

boundary is paired with its image on the other side of the boundary. This pairing is done in a 3 

standard manner, e.g. in Larsson et al.32. Thus, a point RVES+ +∈ψ  on the right boundary finds 4 

its image RVES− −∈ψ  at the left boundary with the same 2y  coordinate. Similarly, a point 5 

RVES+ +∈ψ  on the top boundary finds its image RVES− −∈ψ  at the bottom boundary with the 6 

same 1y  coordinate as shown in Fig. 3a. Note that corner points have two images, i.e., in both 7 

horizontal and vertical directions. 8 

The K and S matrices and the vector of nodal displacements a can be partitioned considering 9 

the interior and boundary nodes, as a result of which from Eq. (27) one obtains 10 

T
II IB I

IB BB B

   
=   
   

K K a
Ka

K K a
       (28) 11 

and 12 

[ ] I
I B

B

 
=  

 

a
Sa S S

a
        (29) 13 

where subscript B refers to the boundary nodes and I refers to the internal nodes. Fig. 3b shows 14 

the boundary nodes and the interior nodes separately in order to explain the implementation of 15 

the boundary constraint conditions explicitly. Note that as S  is only defined through the 16 

boundary integral, IS  naturally vanishes at the internal nodes since =G 0  at RVERVEV S∈ −y . 17 

Periodic displacement RVE boundary conditions: The fine scale fluctuations of the 18 

displacement field at the boundary does not vanish, i.e., ( ) 0′ ≠u ψ , however, it is assumed that 19 

due to periodicity the boundary fluctuations on RVES+ +∈ψ  are same on the opposite side 20 

RVES− −∈ψ . Thus, considering that ( ) ( ) 0+ −′ ′− =u ψ u ψ , the constraint for the periodicity 21 

condition can be introduced in the form of 22 



 14 

( )T
( ) ( )k k k k

+ − + −− = −u ψ u ψ ψ ψ g ,       (30) 1 

where subscript k refers to the node number on the boundary. Note that the total boundary 2 

traction is anti-period i.e.  3 

+ −= −λ λ           (31) 4 

where +λ  and −λ  act on the nodes at RVES+ +∈ψ  and RVES− −∈ψ , respectively. Using anti-5 

periodicity of the traction, at the boundary nodes the stress can be expressed with reduced 6 

number of degrees of freedom using the w vector as 7 

T=h P w ,         (32) 8 
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where 

1 0 0 1 0 0 0
0 1 0 0 1 0 0

0 0 1 0 0 0 1

− 
 − =
 
 − 

P

  

  

       

  

. Note that in each row of P there are only 10 

two non-zero values which correspond to nodes that are images of each other. By substituting 11 

Eqs. (30) and (32) into Eq. (27) and using Eqs. (28) and (29) one obtains the solution of the 12 

RVE problem from the below algebraic equations as 13 

T T T
II IB I

IB BB B B

B

     
     =    
         

K K 0 a 0
K K S P a 0

0 PS 0 w PΘg
     (33) 14 

Note that the last row in Eq. (33) can be interpreted as the imposition of the constraint in Eq. 15 

(30), i.e., ( ) ( )T T( ) ( )k k half B B half B
+ − + − + −− = − = − = =u ψ u ψ A a a ψ ψ g A Pa Pψ g  as  16 
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where b
+a  and b

−a  refer to the nodes at RVES+ +∈ψ  and RVES− −∈ψ , respectively, and halfA  is 1 

obtained after partitioning A as T T T+ − =  A A A  where +A  and −A  are related to the nodes 2 

at the relevant half of the boundary at RVES +  and RVES − , respectively and half
+ −= =A A A .  3 

Interpolation of the displacement and Lagrange multiplier fields: Following Melenk and 4 

Babuška33 and Belytschko and Black34, we express the displacement field in terms of a 5 

continuous and a discontinuous component, i.e.  6 

DIΓ
= +u Nd H Nβ         (35) 7 

At the element level 1 2 3 4

1 2 3 4

0 0 0 0
0 0 0 0
N N N N

N N N N
 

= 
 

N  is the matrix of the standard 8 

finite-element shape functions, T
11 12 21 22 31 32 41 42d d d d d d d d=d is the column 9 

vector of nodal displacement values, 
DIΓ

H is the vector of Heaviside function at the 10 

discontinuity interface DIΓ  and T
11 12 21 22 31 32 41 42β β β β β β β β=β  is the vector 11 

of enriched degrees of freedom. Thus, A in Eq. (24) for one element can be written as 12 

DIΓ
 =  A N H N  and a consist of both standard and enriched degrees of freedom, i.e., 13 

T T T=a d β . It should be noted that in the previous section the constraints related to 14 

boundary conditions are applied on the standard nodal displacements, i.e., d  only and not on 15 

those of the enriched degrees of freedom due to displacement discontinuity at the interface. For 16 

the standard rectangular elements of the size 2a x 2b as shown in Fig. 4 below, the shape 17 

function components can be explicitly given below for convenience as 18 

( )( ) ( )1 1 2 4N a z b z ab= − − , ( )( ) ( )2 1 2 4N a z b z ab= + − , ( )( ) ( )3 1 2 4N a z b z ab= + +  and 19 

( )( ) ( )4 1 2 4N a z b z ab= − + . Note that for each element local coordinates 1z  and 2z  are used 20 

within the RVE coordinate system RVEV∈y  in Fig. 3. 21 
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The displacement jump at the discontinuity interface DIΓ  can be written as 1 

DIΓ
  =   u N β         (36) 2 

where 
DIΓ

N  is a partition of unity at the discontinuity interface DIΓ  and vanishes everywhere 3 

else. In general, the stress field at the bulk of the heterogeneous continuum can be expressed 4 

in term of the nodal displacements as 5 

( )
DIΓ

= +σ D Bd H Bβ         (37) 6 

where σ  is the column vector of stress components, i.e., T
11 22 12σ σ σ=σ , B  is a matrix 7 

of the derivatives of the shape functions. The traction vector at the discontinuity interface t can 8 

be written as  9 

DIΓ
=t c N β          (38) 10 

where c is a matrix of interface cohesive stiffness. Note that in Eq. (6), stress σ  is conjugate 11 

to displacement gradient while, t is conjugate to displacement jump at the discontinuity 12 

interface, therefore t is a vector of two components in two directions. On the other hand, for 13 

the interpolation of the Lagrange multiplier field λ  in Eq. (26) G is selected based on linear 14 

functions. Thus, for one element it can be written as 1 2

1 2

0 0
0 0
L L

L L
 

=  
 

G , in which 15 

( )1 0.5 bL l z l= −  and ( )2 0.5 bL l z l= + . As shown in Fig. 5, bz  refers to the one dimensional 16 

edge coordinate and l is the corresponding edge span (e.g. either l =2a or l =2b in Fig. 4). For 17 

one element, h in Eq. (26) can be written as T
1 2h h=h . 18 

MODELLING CONCRETE STIFFNESS REDUCTION DUE TO ASR  19 

ASR distress development and its effect on concrete stiffness properties 20 

ASR in concrete generates a secondary product (i.e. ASR gel) that induces pressure and leads 21 

to crack formation within the aggregate particles and surrounding cement paste (Fig. 6a). 22 
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Sanchez23 proposed a qualitative meso-scale model to describe ASR cracks generation and 1 

propagation as a function of its induced expansion development. According to the author, ASR 2 

cracks are initially developed within aggregate particles at low expansion levels (i.e. up to 3 

0.05%). At moderate levels of expansion (i.e. 0.12%), although some additional cracks are still 4 

generated within the aggregates, the existing cracks previously formed at low expansion levels 5 

keep propagating and may reach the boundaries of the aggregate particles. Once the expansion 6 

increases to higher levels (i.e. > 0.2%), the overall damage is mostly dominated by the 7 

propagation of pre-existing cracks to the surrounding cement paste (Fig. 6b). It is worth noting 8 

that two types of cracks may be induced by ASR in concrete: (1) cracks “cutting” the aggregate 9 

particles, namely “sharp cracks” (type A), and (2) cracks outlining the aggregate particle 10 

boundaries, namely “onion skin cracks” (type B). The proportion of onion cracks (type B) is 11 

about 20-30 % of the total cracks, yet it may vary according to the aggregate lithotype (i.e. 12 

mineralogy). In addition to the extension of cracks from reactive aggregate particles as shown 13 

in Fig. 6b, several cracks develop in the surrounding cement paste due to swelling pressures 14 

from the particles, yet, do not penetrate into the particle.  15 

 In the research conducted by Sanchez23, crack density (number and length of cracks per area) 16 

has been related to the reduction of stiffness of affected concrete. Fig. 7 illustrates Sanchez35 17 

results, include the changes in the measured elasticity moduli (Fig. 7a) and crack densities (Fig. 18 

7b) corresponding to different levels of expansion reached by 35 MPa concrete specimens 19 

incorporating distinct reactive coarse aggregates. The figure shows that as the expansion level 20 

increases, the elasticity modulus reduces while the crack density increases. According to 21 

Sanchez et al.22, 23, the proportion of open cracks in aggregate and cement paste are different 22 

for different concrete mixtures and levels of expansion. However, in all tested specimens, the 23 

majority of open cracks are found in the aggregate particles, being around 70% to 85% of the 24 

total number of cracks. More details on the experimental setup and measurements can be found 25 



 18 

in Sanchez et al.22, 23, 35. Note that the legends used in Fig.7 (as well as Fig. 10) refer to the type 1 

of reactive aggregate, the type of non-reactive aggregate and the concrete grade, respectively, 2 

(e.g. for "NM + Lav 35", NM is reactive coarse aggregate, Lav is non-reactive fine aggregate 3 

and 35 is the concrete grade i.e. 35 MPa). The notation is adopted from Sanchez35. 4 

Development of RVE with ASR induced cracks  5 

RVE of concrete as heterogeneous material: Elastic properties of ASR affected concrete is 6 

numerically modelled using the proposed computational homogenization approach. Concrete 7 

at the mesoscale level consists of aggregates and cement paste. Before ASR occurrence, the 8 

volume fraction and properties of aggregates and cement paste determine the stiffness of the 9 

RVE36. Literature shows that the shape of aggregates has little effect on the elastic behaviour37. 10 

In the RVE model, the aggregates are considered to be circular and their diameters vary 11 

between 9.5mm and 19.5mm. The aggregate distribution curve shown in Fig. 8 a is based on 12 

Sanchez5. In the RVE model shown in Fig. 8 b, we have used maximum possible aggregate 13 

sizes passing through the sieve opening, i.e. the number of aggregates corresponding to 14 

diameters of 9.5mm, 12.7mm, 16.0mm and 19.5mm are 4, 5, 5 and 2, respectively. The 15 

aggregate distribution curve in Fig. 8 a is somewhat standard and the use of similar dimensions 16 

and volume fractions can be found in the literature, e.g. Wriggers and Moftah36, Kim and Al-17 

Rub37. Properties of the aggregate and cement and the corresponding volume fraction used in 18 

the RVE model are shown in Table 1. As discussed by Mirkhalaf et al.38 and Rezakhani et al.39, 19 

the size of RVE is selected based on the maximum aggregate size, where 75 x 75 mm2 RVE 20 

size is deemed accurate. The number of 4-node square elements used is 3600, which is small 21 

enough to keep the computational cost reasonably low. Lines of discontinuity due to phase 22 

changes (from aggregate to cement paste) are introduced using the Extended Finite Element 23 

Method, while keeping the underlying mesh regular40. As the bond between aggregate particles 24 
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and cement paste is assumed to be perfect, very large interface cohesive stiffness values are 1 

used to represent the bond in Eq. (38).  2 

Procedure of introducing cracks into RVE: The RVE of ASR affected concrete is modelled 3 

for three levels of expansion (i.e. 0.05%, 0.12% and 0.2%). The locations and sizes of ASR 4 

induced open cracks follow the qualitative damage model proposed by Sanchez et al23. Crack 5 

densities corresponding to expansion levels given in Fig. 7b for different concrete mixtures 6 

have been averaged and used to calculate the crack lengths and numbers in the RVE.  7 

By taking the average length of an open crack in a 1 cm2 cell as 0.707 cm, the crack density 8 

data from Fig. 7b is converted to total crack length in the RVE. Based on the quantitative 9 

information for a given level of expansion, the shapes and locations of the cracks in the RVE 10 

are determined. These calculations are displayed in Table2, which were used as the input data 11 

for the RVE model as shown in Fig. 9. Typical cracked aggregate particles at different 12 

expansion levels are also presented in Fig. 9. It is worth noting herein that cracks networks 13 

observed in experimental testing are far more connected as both close and open cracks are 14 

measured, while in the numerical model, only open cracks were considered. Since the majority 15 

of the ASR induced cracks occur within the aggregate 22, 23, 75% of the open cracks are placed 16 

in the aggregate particles present in the RVE model. Open cracks are again introduced into the 17 

RVE model by using the Extended Finite Element Method34. ASR induced cracks are assumed 18 

completely open and therefore, the interface cohesive stiffness in Eq. (38) is assumed as zero. 19 

The crack pattern used in the model meets both the qualitative and quantitative criteria of the 20 

ASR induced crack development as per Sanchez et al.22, 23. It should be noted that the stiffness 21 

of the aggregates and cement paste are assumed to remain the same at different levels of 22 

expansion and thus, the change in the effective properties of the macro-scale concrete is only 23 

due to development of open cracks at the meso-scale.  24 

 25 
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Results and discussion 1 

The results of the RVE modelling are shown in Table 3 and plotted against the experimental 2 

data in Fig. 10, from which one can verify that the stiffness properties are close in both 3 

directions, i.e., 1111 2222
ˆ ˆD D≈ . Numerical predictions of 1111D̂  and 2222D̂ based on the RVE 4 

always fall in between upper and lower bounds based on the experimental data of Sanchez et 5 

al.35 . This outcome encourages the use of crack development patterns and density information 6 

proposed by Sanchez23. It is worth noting that the experimental data averaged in Table 3 is 7 

collected from five 35MPa concrete mixtures whose modulus of elasticity vary between 30GPa 8 

and 38GPa. Fig.10 shows that the stiffness reduction based on RVE remains in between the 9 

experimental results based on those 5 mixtures and thus, the RVE results are fully within the 10 

range of the experimental data. The aggregate distribution and material properties were 11 

assumed within a reasonable range because of the lack of detailed information. However, it is 12 

shown in Figs. 11-16 that variations from the assumed values cause insignificant differences 13 

in terms of the predicted stiffness reductions in elastic modulus due ASR. Figs. 11 and 12 show 14 

the reductions in  1111D̂  and 2222D̂ , respectively of the RVE model for different expansion levels 15 

when the elasticity modulus of the concrete is varied between 18GPa and 22GPa. Fig. 13 shows 16 

that the reduction percentage is not affected by the concrete grade. Similarly, Figs. 14 and 15 17 

show the reductions in 1111D̂  and 2222D̂  when the elasticity modulus of the aggregate is varied 18 

between 54GPa and 67GPa. Again, the reduction percentages in the stiffnesses corresponding 19 

to different expansion values are not affected as shown in Fig. 16. On the other hand, in 20 

predicting the stiffness values, current study assumes stationary cracks and does not consider 21 

the friction between rough surfaces of slightly open cracks. Consideration of friction and 22 

contact could be particularly important in predicting the strength and progressing crack 23 

propagations. In such a progressive failure analysis assumption of Periodic RVE boundary 24 

conditions may become less accurate especially when the cracks hit the boundaries. Several 25 



 21 

strategies have been proposed to predict the RVE boundary conditions when periodicity 1 

assumption due to crack propagation needs to be abandoned e.g., Larsson et al.32  2 

FURTHER RESEARCH  3 

Based on the insight gained in this study, the meso-scale RVE based computational 4 

homogenization procedure can be extended to a wider range of concrete mixtures presenting 5 

distinct aggregate natures and reactivities (i.e. potential to reach different and higher expansion 6 

levels). Uncertainties in the stiffness properties, aggregate volume fractions and the crack 7 

pattern can be accounted for by utilizing stochastic approaches. The proposed crack 8 

development scheme can be used as a basis in model updating strategies for damage detection 9 

purposes. For residual load capacity predictions of ASR affected structures, meso-scale RVE 10 

modelling approach can be adopted within a two-scale structural analysis frame-work. 11 

CONCLUSIONS  12 

 A computational homogenization procedure was developed to determine the effective stiffness 13 

of ASR-affected concrete mixtures. The meso-scale RVE model was continuum-based in 14 

which circular aggregates and cement matrix were assumed fully bonded in the concrete mix. 15 

ASR induced cracks were considered fully open, i.e., cohesionless and frictionless. 16 

Discontinuities (due to phase changes and/or crack openings) were efficiently introduced into 17 

the regularly meshed RVE model by using the Extended Finite Element Method. For 35 MPa 18 

concrete mixtures incorporating reactive coarse aggregates, the results suggest that up to 0.2% 19 

ASR induced expansion levels, about 75% of the cracks develop within the aggregate particles. 20 

While the experimental results used for benchmarking purposes showed variations, in all cases 21 

considered in the current study they provided upper and lower bounds to the proposed meso-22 

scale RVE model results. In this intricate problem of solid mechanics with inherent 23 

uncertainties, and considering the lack of accurate predictive tools, the outcomes encourage the 24 



 22 

use of proposed crack development patterns and density information for modelling purposes 1 

up to 0.2% ASR induced expansion levels. 2 
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Fig. 6 – Crack development due to ASR: (a) Open cracked in aggregate and cement paste; (b) 1 

Qualitative damage model at different levels of expansion [adapted from Sanchez et al (2015)] 2 

Fig. 7 – Modulus of elasticity reduction (a) and crack density (b) as function of expansion 3 

degree [Adapted from Sanchez (2017)] 4 

Fig. 8 – (a) Aggregate size distribution curve (b) Geometry of the RVE used in this study 5 

Fig. 9 – RVE of concrete at different levels of expansion and typical development of cracks in 6 

a single aggregate in the RVE 7 

Fig. 10 – The reduction of concrete stiffness vs. expansion based on the homogenized RVE  8 

 9 

Table 1 – Material properties used in the RVE 10 

Parameter  Value  

Young's modulus of cement 20 GPa 

Poisson's ratio of cement 0.2 

Young's modulus of aggregates 60 GPa 

Poisson's ratio of aggregates 0.2 

Aggregate sizes 9.5-19.5 mm 

Volume fraction of aggregates 45 % 

 11 

Table 2 – Information on open cracks in the RVE of ASR affected concrete 12 

Expansion 

level 

Crack density 

(counts/cm2) 

Total number 

of cracks per 

RVE (75x75 

mm2) 

Total 

length 

(mm) 

Total length of 

crack in 

aggregate (mm) 

Total length of 

crack in 

cement (mm) 

0.05% 0.9 50.6 358.0 268.5 89.5 

0.12% 1.4 78.8 556.8 417.6 139.2 

0.20% 2.2 123.8 875.0 656.3 218.8 

 13 
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Table 3 – Effective stiffness properties of ASR affected concrete in GPa 1 

Expansion 

Level 

RVE 

 1111D̂  

(reduction) 

RVE 

1122D̂   

 

RVE 

1112D̂   

 

RVE  

2222D̂  

(reduction) 

RVE 

2212D̂   

 

RVE 

1212D̂   

 

Experiment 

[Sanchez35] 

(reduction) 

0.00% 

33.6 

(0.00%) 

8.3 

 

0.05 

 

33.8 

(0.00%) 

-0.12 

 

12.3 

 

 30 38−  

0.05% 

29.2 

(13.1%) 

6.52 

 

-0.04 

 

29.7 

(12.1%) 

-0.2 

 

11.3 

 

 

     (16.1%) 

0.12% 

24.1 

(28.3%) 

4.69 

 

0.03 

 

24.8 

(26.6%) 

-0.01 

 

9.93 

 

 

(33.6%) 

0.20% 

18.8 

(44.0%) 

2.65 

 

0.13 

 

18.6 

(45.0%) 

0.28 

 

8.13 

 

 

(41.1%) 

 2 

 3 

Fig. 1 – Schematic description of scale separation  4 
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 6 

 Fig. 2 – Schematic outline for the two-scale analysis procedure 7 
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 1 

a) Schematic picture                b) Mesh for the numerical solution 2 

Fig. 3 – RVE of cracked concrete 3 

 4 

 5 

         Fig. 4 – Standard bilinear rectangular element enriched to introduce discontinuity 6 
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 8 

             Fig. 5 – Edge of the Element  9 

     10 

                          (a)               (b) 11 

Fig. 6 – Crack development due to ASR: (a) Open cracked in aggregate and cement paste; 12 

(b) Qualitative crack development model at different levels of expansion [based on Sanchez23] 13 
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      2 

(a)            (b)  3 

Fig. 7 – Modulus of elasticity reduction (a) and crack density (b) as function of expansion 4 

degree [based on Sanchez35]  5 

 6 

     7 

(a)            (b)  8 

Fig. 8 –(a) Aggregate size distribution curve considered in this study (b) geometry of the RVE  9 
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      (a) 0.05 %     (b) 0.12 %         (c) 0.2 % 3 

Fig. 9 – RVE of concrete at different levels of expansion and typical development of cracks in 4 

a single aggregate in the RVE 5 

 6 

 7 

Fig. 10 – Reduction of concrete stiffness vs. expansion based on the homogenized RVE 8 
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 10 
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 2 

Fig. 11 – Reduction in 1111D̂  vs. expansion for different Cement Elastic Moduli  3 

 4 

 5 

Fig. 12 – Reduction in 2222D̂  vs. expansion for different Cement Elastic Moduli  6 
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 1 
Fig. 13 – Effect of Cement Elastic Modulus on ASR related reduction of concrete stiffness  2 

 3 

 4 

Fig. 14 – Reduction in 1111D̂  vs. expansion for different Aggregate Elastic Moduli  5 
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 1 
Fig. 15 – Reduction in 2222D̂  vs. expansion for different Aggregate Elastic Moduli  2 

 3 

 4 

Fig. 16 – Effect of Aggregate Elastic Modulus on ASR related reduction of concrete stiffness 5 
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