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Every quantum system is coupled to an environment. Such system-environment interaction leads to temporal
correlation between quantum operations at different times, resulting in non-Markovian noise. In principle, a full
characterisation of non-Markovian noise requires tomography of a multi-time processes matrix, which is both
computationally and experimentally demanding. In this paper, we propose a more efficient solution. We employ
machine learning models to estimate the amount of non-Markovianity, as quantified by an information-theoretic
measure, with tomographically incomplete measurement. We test our model on a quantum optical experiment,
and we are able to predict the non-Markovianity measure with 90% accuracy. Our experiment paves the way
for efficient detection of non-Markovian noise appearing in large scale quantum computers.

I. INTRODUCTION

One of the biggest challenges in emerging quantum tech-
nologies is the efficient characterisation of noise, which orig-
inates from the unavoidable interaction of a system of interest
with the surrounding environment [1]. A particularly prob-
lematic case is that of non-Markovian noise, wherein the en-
vironment retains a memory of its past interactions with the
system, leading to correlations in the system’s evolution at
different times.

Most noise characterisation methods, such as randomised
benchmarking [2, 3], rely on the assumption of Markovian-
ity [4, 5]. However, non-Markovian noise is already promi-
nent in present-day quantum devices [6, 7]. Therefore, it is
important to find efficient methods to estimate the amount of
non-Markovianity in a quantum process [8].

Recently, an operational approach has been proposed,
based on the “combs” [9] or “process matrix” [10] formal-
ism, which overcomes previous theoretical difficulties and al-
lows, in principle, for a complete characterisation of non-
Markovian dynamics from operations and measurements on
the system alone [11, 12]. However, this method relies on
complete tomography of a multi-time process [13, 14], which
requires measuring an exponential number of multi-time cor-
relations. In Ref. [15], it was shown that one can successfully
train a machine learning model to estimate a measure of non-
Markovianity, without full process tomography. This work,
however, used only numerically simulated data, and was not
tested in an experimental setting.

Here, we use a quantum-optics experimental setup to imple-
ment a non-Markovian process—specifically, a process with
initial classical correlations between system and environment.
We encode quantum states in the polarisation of photons and
apply unitary transformations using wave-plates. We intro-
duce non-Markovian noise through correlated random uni-
taries, performed before and after a probe unitary. Our data
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comprises the Stokes parameters, obtained through a final
measurement, conditional on choosing the probe unitary from
a set of three. We train a suite of different supervised machine
learning models to predict non-Markovianity—as quantified
by an entropic measure introduced in Ref. [11].

Our method achieves a high accuracy in the estimation
of non-Markovianity, even though the training data is far
from being tomographically complete. The best results were
achieved by a quadratic regression model (R2 of 0.89 and
Mean Absolute Error (MAE) of 0.045). Our work expands
on the growing literature of machine-learning methods [16–
20] and on the experimental characterisation of quantum non-
Markovianity [21–27].

We present the work following way. In Section II, we in-
troduce the framework of the process matrix, the measure of
non-Markovian noise, and procedure of our data acquisition.
In Section III, we describe our experiment. In Section IV,
we analyse our experimental data using polynomial regression
and present our results. In the Appendix, aside from polyno-
mial regression on the experimental data, we present our re-
sults on the simulated data and our results obtained by other
machine learning algorithms.

II. THEORY

A. Formulation of quantum processes

Non-Markovian quantum processes are often described in
terms of dynamical maps representing the evolution of the
system’s reduced state [28]. However, such a description does
not capture multi-time correlations mediated by the environ-
ment and can fail entirely in the presence of initial system-
environment correlations [29, 30]. Here we use instead the
process matrix formalism [10, 31], following a recent ap-
proach [11, 14] that has reformulated in operational terms the
theory of quantum stochastic processes [32, 33]. We consider
a scenario where a system of interest undergoes a sequence
of arbitrary operations (such as unitaries or measurements) at
well-defined instants of time. Let us label A,B, . . . the times
at which the operations are performed (we can think of these
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labels as referring to “measurement stations”). The most gen-
eral operation, say atA, is described by a Completely Positive
(CP) mapMAI→AO that maps the input system of the opera-
tion AI to its output system AO. The set of all measurement
outcomes corresponds to a quantum instrument [34], namely
a collection of CP maps J A = {MA} that sum up to a CP
and Trace Preserving (CPTP) map. Note that, as a particular
case, the instrument can contain a single map, representing a
deterministic operation with no associated measurement (for
example, a unitary transformation). Also, we typically take
the last output system to be trivial (as the system is discarded
afterwards), in which case the instrument reduces to a Positive
Operator Valued Measure (POVM).

In a given quantum process, the joint probability for out-
comes to occur at measurement stationsA,B, ... (correspond-
ing to CP mapsMA,MB , · · · ) is given by

p(MA,MB , · · · |J A,J B , · · · ) =

Tr[WAIAOBIBO···(MAIAO ⊗MBIBO ⊗ · · · )], (1)

where MAIAO ,MBIBO , · · · are the Choi matrices [35, 36]
of the corresponding maps and WAIAOBIBO··· is the process
matrix that surrounds the measurement stations A,B, · · · and
lives on the Hilbert space of their combined inputs and out-
puts. A Choi matrix, say MAIAO ∈ L(HAI ⊗HAO ), that is
isomorphic to a CP mapMA : L(HAI ) → L(HAO ), is de-
fined asMAIAO := [I⊗M(|1〉〉〈〈1|)]T . I is the identity map,
|1〉〉 =

∑dAI
j=1 |jj〉 ∈ HAI ⊗HAI , {|j〉}dAI

j=1 is an orthonormal
basis onHAI and T denotes matrix transposition in that basis
and some basis ofHAO . The process matrix W is also known
as process tensor [11], or comb [37], and it is equivalent to a
quantum channel with memory [38].

In this formalism, it was found that the process matrix of
a Markovian process should have the following form [12, 13,
39, 40]

WAB···
M = ρAI ⊗ TAOBI · · · , (2)

where ρ is the density matrix of the initial state and by
TAOBI we denote the Choi matrix of the channel T A→B , de-
fined as above but without the transposition—the same applies
throughout the paper to all the Choi matrices of channels in a
process matrix.

The form of a Markovian process matrix in Eq. (2) has a
straightforward interpretation: just before the first operation
(measurement station A), the system is in the initial state ρ.
Between the first and second operation, the system evolves
according to a CPTP map T , which is uncorrelated with the
initial state, and so on, with all evolutions independent of each
other and of the initial state. Conversely, any process ma-
trix that cannot be expressed in such a product form repre-
sents non-Markovian evolution, where the environment medi-
ates correlations between the initial state and subsequent evo-
lutions. To determine whether a process is Markovian, one
needs first to reconstruct the process matrix from experimental
data through process tomography—which generally involves
non-destructive measurements at each station [13]—and then
check if it W can be written in the product form [40]. In the

following, we provide a method to detect non-Markovianity
without having the full process matrix—instead, with incom-
plete data about the process, we can estimate with high accu-
racy a measure of non-Markovianity.

B. Our non-Markovian process

We experimentally implement a non-Markovian quantum
process with memory. We implement a process with only two
“stations”, A and B, and where the initial state is classically
correlated with the evolution from A to B. This is a particular
case of a non-Markovian process with classical memory [12].
We do this in two steps. We start with some initial state ρ
followed by two operations Ui, Uj . The operations are uni-
taries from the Pauli group, Ui ∈ {σi, i = {0, 1, 2, 3}} and
Uj ∈ {σj , j = {0, 1, 2, 3}}, where σ0 = 1, σ1 = X,σ2 =
Y, σ3 = Z. We insert A between Ui and Uj and B after Uj
(Fig. 1). In this first step, for a given pair of unitaries (Ui, Uj),
we obtain the following Markovian process

WAIAOBI
ij = (σiρσ

†
i )
AI ⊗ [[σj ]]

AOBI . (3)

FIG. 1. A process based on a specific instance of unitary opera-
tions Ui and Uj . The pair of unitaries occurs with probability p(i, j).
This makes our overall process W a convex combination of the con-
stituent processes, Wij , i.e., W=

∑
i,j p(i, j)Wij . This process W ,

operationally, represents the environment. The experimenalist ac-
cesses the open slot AIAO with a probe unitary UK , as in Eq. (7)
and BI with a Pauli measurement.

In the second step, we simulate a non-Markovian environ-
ment by introducing correlations between the initial state and
the unitary. This is done by sampling the processes Wij ac-
cording to some probability distribution p(i, j). The resulting
process matrix has the form

WAIAOBI =
∑
i,j

p(i, j)WAIAOBI
ij . (4)

To obtain processes with a varying degree of non-
Markovianity, the distribution of the weights p(i, j) is
chosen according to the discrete random variables I and
J governed by the joint probability mass function (pmf)
p(i, j):=p(I=i, J=j). From Eq. (4), it is clear that when the
random variables I and J are independent, the overall process
reduces to the product form of Eq. (3) and hence it becomes a
Markovian process. To capture the non-Markovian effect, we
model the joint probability p(i, j) as

p(i, j)=p(i) [qδij + (1− q)p(j)] , (5)
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Here q∈[0, 1] denotes the strength of correlation between the
random variables I and J with q=0 being mutually inde-
pendent events and q=1 being the maximum correlation, i.e.
σj=σi. We assume that the marginal probabilities p(i) and
p(j) to be the same probability mass functions. To define
the probability mass function, for p(i=0), we chose a random
number uniformly distributed between 0 and R≥1. For the
remaining p(i 6=0), we chose random numbers uniformly dis-
tributed between 0 and 1. We normalise the random numbers
at the end to form a valid probability mass function. A high
value of R signifies the evolution is less prone to error, i.e.
the corresponding random operation is biased towards iden-
tity. Note that the process becomes Markovian with either
q=0 or R→∞.

As a measure of non-Markovianity we use the quantum rel-
ative entropy [6, 11, 12, 41] between the process and the as-
sociated Markovian one:

S(W̃ ||W̃Markov) := Tr[W̃ · (log W̃− log W̃Markov)], (6)

where W̃Markov := TrAOBI
W̃ ⊗ TrAI

W̃ and W̃ := W/2
is the process matrix normalised to have unit trace (obtained
dividing the original process matrix by the dimension of the
output system, AO in this case).

In each realisation of WAIAOBI
ij with a pair of unitaries Ui

and Uj , we insert at A a unitary operation Uk and at B we
perform state tomography. Each such process WAIAOBI

ij has
a circuit representation as shown in Figure 1 and an experi-
mental realisation as shown in Fig 2. The unitary operations
of A are a set of rotated Pauli operations

Uk=Rn̂(α)σkRn̂(α)†, (7)

where k={0, 1, 2} andRn̂(α) denotes a rotation by α, around
an arbitrary axis n̂ in the Bloch sphere, given by

Rn̂(α) = cos
α

2
1− i sin

α

2
(n̂.~σ), (8)

n̂.~σ = sinβ sin γσ1 + cosβ sin γσ2 + cos γσ3. (9)

Briefly, the experimental procedure of realising a process
with classical memory and taking data consists of the fol-
lowing steps: (1) Choosing a pair of variables (q,R) to ob-
tain the weights p(i, j), (2) Realising the processes Wij , and
for each one, taking data Dij by running through the oper-
ations at A and B, and (3) Calculating the data D(q,R) =∑
ij p(i, j)Dij . This final data is our input to a model

that predicts the non-Markovianity of the process W =∑
i,j p(i, j)Wij .
To complete the set of training, validation, and test data

for our model, we calculated the non-Markovianity for the re-
alised processes— the label for each data D(q,R). For that,
we need the explicit description of the realised process matrix,
which we can obtain from the above theoretical description.

We stress here that the input to the model that predicts the
amount of non-Markovianity is data taken by inserting the op-
erations A and B into the process. These provide incomplete
information about the process. The full information would be
provided by informationally complete operations, for exam-
ple, a prepare-and-measure operation at A, and state tomog-
raphy at B (with a minimum of 64 operations for a 3-qubit

q R
0.8 1
0.8 1.5
0.8 1.25
0.9 1
0.9 1.5
0.9 1.25
0.95 1
0.95 1.5
0.95 1.25
1 1

TABLE I. Pairs of q and R to model our joint pmf as defined in
Eq. (5). For each pair of q and R we generate 100 pmfs, thus for 10
pairs we have a total of 1000 datasets.

W , such as ours). In our case, while B performs state tomog-
raphy, A performs 3 Pauli unitary operations. However, even
with this incomplete information, the model is able to predict
the chosen measure of non-Markovianity with ≈ 90% accu-
racy.

Fixed QWP Motorised QWP Motorised HWP

PBS
Laser source

D1

Fixed HWP

Preparation Ui MeasurementUjUk

FIG. 2. Experimental setup. We use polarisation of light to encode
the quantum state. The experiment is divided into five stages — the
first stage is state preparation, the second one implements the unitary
Ui, the third stage represents unitary Uk, the fourth one denotes Uj
and finally the last stage denotes polarisation measurements.

C. Generating data and labels

One key point to consider in any predictive modelling
is to avoid inherent bias in the training dataset. This
bias can be manifested in terms of trivial transformation of
the initial state. We account for this by choosing a suit-
able initial state, ρ, that leads to processes resulting non-
trivial output data. Our choice of state is ρ= |ψ〉〈ψ|, with
|ψ〉=0.16 |0〉+0.99e−i.0.16π |1〉. To model the probability
mass function as in Eq. (5), we take the 10 pairs of q and
R listed in Table I.

For each pair, we generate 100 joint probability mass func-
tions thus creating 1000 different processes as in Eq. (4) which
are then divided into 100 groups classified by a given pair of
q and R. Note that a specific instance of the experiment cor-
responds to a pair of unitaries sampled randomly from the un-
derlying pmf. To experimentally realise the process in Eq. (4)
described by a particular pmf, we need to perform repeated
trials. In our experiment, we take 50 samples of each pmf.
This finite sampling yields an experimentally realised process
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Wexp defined as

Wexp=
∑
i,j

p̃(i, j)Wij. (10)

Here, p̃(i, j) is the frequency of occurrence of the partic-
ular unitary pair (Ui, Uj), and Wij is the constituent pro-
cess defined in Eq. (3). For each (Ui, Uj), we apply uni-
tary operation Uk at the second time-step as defined in Eq. (7)
with α=β=γ=π/8. As discussed earlier, we interpret Uk as
an experimentally-controlled intervention, while Wexp sim-
ulates a noisy environment. Thus, in each instance, we
have the state evolving through an overall unitary opera-
tion UjUkUi. We measure the output state in the Pauli ba-
sis. Taking average over Ui and Uj , we get the mixed state
ρk=

∑
i,j p̃(i, j)(UjUkUi)ρin(U†i U

†
kU
†
i ). This state, when

measured in σl basis, yields a Stokes parameter Slk where

Slk = Tr(σlρk)

= Tr

{(
([[U∗k ]])AIBI⊗σBO

l

)
·WAIAOBI

exp

}
. (11)

Note that both k, l ∈ {0, 1, 2}. For each process Wexp, we
have total of 9 Stokes parameters—from now on we refer
to them as datapoints. We evaluate the measure of the non-
Markovianity associated with the process Wexp using Eq. (6)
with W = Wexp—from now on, we refer to these measures
as labels. Thus, we have a total number of 1000 labeled data,
each containing 9 datapoints and the corresponding label.

III. EXPERIMENT

We show the experimental schematic in Fig 2. We start with
a heavily attenuated laser centred at 820 nm wavelength to
create weak coherent states with 10000 counts per second. We
encode the state in the photon’s polarisation. Our experiment
is divided into the following stages: state preparation, imple-
menting the unitaries Ui, Uk and Uj , and state measurement.
The polarisation state is prepared using a series of waveplates
(Fig. 2). The arbitrary unitaries in polarisation were imple-
mented using three waveplates, a half-waveplate (HWP) in
between two quarter-waveplates (QWP) as in Fig. 2 [42]. To
automate the transition between unitaries, we used motorised
stages. Each Ui and Uj change within the Pauli group. For
each of them we need only two motorised stages and a fixed
QWP at 0◦(the angles for the waveplates are given in Table II).
For the unitary Uk, we use three motorised stages. We mon-
itor the motorised stages using a LabVIEW-controlled New-
port XPS series motion controller through a TCP/IP protocol
and a Newport SMC 100 series motion controller with a serial
communication to a computer. For preparing the state |ψ〉, we
use another series of waveplates. Since the first QWP of Ui
is set to a fixed angle at 0◦, we can absorb that in the state
preparation. After successful implementation of state prepa-
ration and the unitaries, we measure the Stokes parameter of
the output light using a standard setup of QWP-HWP and po-
larising beamsplitter, as shown in Fig. 2.

Unitary QWP QWP HWP
1≡σ0 0 0 0
X≡σ1 0 π

2
π
4

Y≡σ2 0 0 π
4

Z≡σ3 0 π
2

0

TABLE II. Angles for motorised wave plates to implement Ui and
Uj .

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
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di
ct
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 la
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l

Test label

FIG. 3. Scatter plots for the second degree polynomial regression on
the experimental dataset. The y-axis represents the labels predicted
by the regression model, and the x-axis represents the actual labels.
The dashed black line is the best straight line that explains the data.
The R2 value associated with the plot is 0.89 and the MAE is 0.045.

IV. POLYNOMIAL REGRESSION

A regression model attempts to predict a relationship be-
tween a set of independent variables (datapoints) and an out-
put variable (label) by utilising a polynomial function. Given
a set of datapoints {xi}, a polynomial regression model of de-
gree n, finds the best prediction, ŷ, which is an n-degree poly-
nomial with input arguments {xi}. At first, to obtain a model,
one uses a part of the labeled dataset, also known as training
dataset. Once the model is obtained, to check its efficiency,
one needs to employ a different group of data, known as test
dataset. Hence, a common practice is to split the training and
the test set in 7:3 ratio. To quantify the accuracy of the model
of the dataset, we evaluate the R2 value and the Mean Abso-
lute Error (MAE) [43, 44]. To define these metrics, we first
consider {yi} as our set of labels, with mean value of ȳ. We
consider {ŷi} as the predicted labels. With this, the metrics
can be written as

R2 = 1−
∑
i(yi − ŷi)2∑
i(yi − ȳ)2

,

MAE =

∑
i |yi − ŷi|
N

. (12)

Here, |.| denotes the absolute value and N is the size of the
dataset. An important aspect of a predictive algorithm is to
minimise overfitting. The overfitting occurs when the model
learns about the training set with so high accuracy that it fails
to predict additional data. To check for the overfitting, we ob-
serve R2 and MAE score for both training data and test data.
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We show our results in Table III. We conclude that a polyno-
mial regression of degree 2 achieves the least overfitting with
test R2 value of 0.89 and MAE of 0.049. We show in Fig. 3
the scatter plot for the second degree polynomial regression.
The figure demonstrates the scatter plot between the test label
and the predicted label.

Deg Train R2 Train MAE Test R2 Test MAE
1 0.71 0.076 0.69 0.075
2 0.91 0.042 0.89 0.045
3 0.94 0.035 0.85 0.052

TABLE III. polynomial regression on the experimental data of size
1000. We keep 30% of the experimental data as a test set and 70%
of the same as a training set. We vary the degree of polynomial
regression (Deg). To demonstrate overfitting, we show the R2 and
MAE for both training dataset and the test dataset. We observe that a
polynomial regression of degree 2 achieves the least overfitting with
test R2 value of 0.89 and MAE of 0.049.

k-Fold Cross Validation: A potential issue is that a one
round test-train split might result a selection bias because of
the choice of test set. One way to account for it is to employ
a k-fold cross validation technique [45]. In a k-fold cross-
validation, the data-set is randomly divided into k equal sized
groups. Out of the k groups, a single group is retained as the
test set, and the remaining k−1 groups are the training set.
Once done, in the next turn another group is selected with-
out repetition and the entire process is iterated k-times. The
results are then averaged to produce a single estimation. In
our model, we use a commonly accepted value of k=10 [44].
We show our results in Table IV. This ensures an unbiased
performance of our model.

Degree R2 MAE
1 0.69±0.07 0.076 ± 0.007
2 0.89±0.03 0.045 ± 0.004
3 0.87±0.02 0.051 ± 0.004

TABLE IV. k-fold cross validation on our experimental dataset for
polynomial regression with degree 1,2, and 3 with value of k being
10.

Varying the size of dataset: It is interesting to investigate
whether the algorithm performs well while training on smaller
datasets. To answer this, we fix the size of the test set to 300
and vary the length of the training set. We show our results
for a second degree polynomial regression, in the Table V.
We observe that training set of size 210 achieves R2 = 0.87
and MAE= 0.049. This suggests that even a small amount of
experimental data is sufficient to achieve a reasonably good
prediction.

V. CONCLUSION

Estimating non-Markovianity can be beneficial in practi-
cal scenarios, where the environment correlates the different

LTD Train R2 Train MAE Test R2 Test MAE
70 0.86 0.057 0.15 0.123
140 0.96 0.031 0.84 0.053
210 0.94 0.036 0.87 0.051
280 0.92 0.040 0.87 0.049
350 0.91 0.042 0.88 0.047
420 0.91 0.043 0.88 0.047
490 0.91 0.043 0.89 0.046
560 0.91 0.043 0.89 0.046
630 0.91 0.043 0.89 0.046
700 0.91 0.042 0.89 0.045

TABLE V. Second degree polynomial trained only on the experimen-
tal data of size 1000. We keep a fixed 30% of the experimental data
as a test set and vary the length of training dataset (LTD). We show
the R2 and MAE for both training dataset and the test dataset. We
observe even with 210 training dataset, we can achieve an R2 value
of 0.87 and MAE of 0.051.

time-steps of a quantum experiment. We show that with only
partial information about an experimental setup, we obtain a
measure of non-Markovianity with fairly high accuracy. We
do that by employing different machine learning models that
take as input experimental data obtained through a unitary op-
eration and state tomography. We observe that a polynomial
regression model of degree 2 achieves the best performance
both in terms of overfitting and performance on the test set,
which is sufficiently high (R2=0.87) even with a small num-
ber of training data (500). A high score obtained by a re-
gression model obviates the need to employ a more intensive
learning algorithm, which reduces the time-complexity of the
problem. This is especially beneficial to experiments where
the opportunity to collect a large dataset is limited.

Our experiment is particularly interesting once we enter the
large-scale quantum computation regime [46]. In this regime,
correlated noise among the different gates is inevitable [47]
and there is an growing interest in developing error-correcting
codes for this kind of noise [48–51]. Hence, our approach
provides a benchmark for further noise investigation on such
multi-time-step processes.
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[28] Á. Rivas, S. F. Huelga, and M. B. Plenio, Rep. Prog. Phys. 77,
094001 (2014).

[29] P. Pechukas, Phys. Rev. Lett. 73, 1060 (1994).
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APPENDIX

Mixing with Simulated data: In practice, we may not have
precise control over the environment. Hence, we ask whether
assistance of simulated data augments the performance of
the model. we investigate this by simulating a data set of
length 14336. We proceed to vary the size of the simulated
dataset and mix it with 70% of the experimental dataset to
train and test on the remaining 30% of the experimental
data. We observe that addition of simulated data deteriorates
the performance of the model. To be precise, we see that
the higher the number of simulated data, the worse the
performance of the model. This is due to the mismatch of the
experimental and simulated training data. To circumvent this,
we obtain simulated data with added white noise, potentially
present in the setup. We also simulate the finite sampling
that occurs in the experimental procedure (we draw 50 times
from a probability distribution in Eq 5). However, we do not
observe an increase in performance.

Other machine learning algorithms: It is natural to expect
other conventional machine learning algorithms might outper-

form the regression. We report this negatively. In this section,
we demonstrate performance of several other standard ma-
chine learning algorithms, like K-Nearest Neighbour (KNN),
Decision Tree, Random Forest, Support Vector Regression
(SVR), and Gradient Boosting [44]. We split our experimen-
tal data into 70% training set and 30% test set. We show our
results in Table A1. When we consider overfitting, Support
Vector Regression (SVR) performs the best (test R2=0.79,
train R2=0.78). Note that although Gradient boosting gives
a better test R2, it overfits. This suggests that polynomial re-
gression of degree 2 is still our best choice.

Algorithm Train R2 Test R2 Test MAE
KNN 0.89 0.86 0.051

Decision Tree 1.0 0.64 0.081
Random Forest 0.98 0.88 0.049

SVR 0.78 0.79 0.069
Gradient Boosting 0.96 0.89 0.045

TABLE A1. Different machine learning algorithms trained on the
experimental data of size 1000. We split the experimental data into
30% test set and 70% training set and report the test and train R2

and test MAE.
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