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Abstract—How to handle concept drift problem is a big
challenge for algorithms designed for the data streams. Currently,
techniques related to the concept drift problem focus on single
data stream. However, it normally needs to handle multiple
relevant data streams in the real-world application. Current
concept drift methods can not be directly used in the multi-
stream setting. They can only be limitedly applied on each stream
separately, which omits the drift correlation between streams.
In the multi-stream scenario, when drift occurs in a stream,
other streams may face or have faced a similar drift problem as
well. This pattern of simultaneous or delayed occurrence of drift
is critical to analyze and predict multiple streams as a whole
dynamic system. To fill the gap in the multi-stream scenario,
this paper proposes a fuzzy drift variance (FDV) to measure the
correlated drift patterns among streams. FDA is able to present
how the pattern of drift occurrence for any two streams correlates
and how delayed this correlation is. Seven synthetic streams are
designed to validate FDA. The experimental results show a good
presentation ability of FDA for drift-correlated multiple streams.

Index Terms—fuzzy membership, concept drift, data stream,
multiple streams

I. INTRODUCTION

Concept drift refers to the phenomenon that the data dis-
tribution of a data stream may change over time [1]. Unlike
static batch data, data streams are the sequences of continuous
arriving data instances consisting of multiple infinite and
fast evolving data series [2]. In recent years, data stream
mining has been extensively studied in growing fields of
multidisciplinary research including data bases [3], artificial
intelligence, machine learning, automated scientific discovery,
statistics, decision making and so on [4].

Once drift occurs in a data stream, the off-line learning
performance will be largely impaired [5]. The predictor trained
with the previous data can on longer be applied to predict la-

bels for newly arrived data that follows a different distribution
[6].

A number of methods have been proposed to specially solve
the concept drift problem [7]. Current research on the concept
drift problem focuses on two aspects. One is how to detect the
occurrence of drift, namely drift detection techniques [8]–[10].
The other is how the trained predictor swiftly adapts to newly
arrived data, namely drift adaptation techniques [11], [12].

The limitation in current research on concept drift is that
they are all designed for single data stream or independent
data streams. However, the real-world applications are mostly
of multiple relevant data streams [13]. For example, in the
finance industry, the bid/offer rate in the inter-bank lending
market always involves the behaviors of more than two banks.

Methods for handling concept drift problem in single data
stream can not be directly used in the multi-stream scenario
[14]. They can be only limitedly applied on each stream
separately [15]. In the multi-stream scenario, when drift occurs
in a stream, other streams may face or have faced to a
similar drift problem as well. Drift can occur in two streams
simultaneously or with delay. This pattern of simultaneous or
delayed occurrence of drift is critical to analyze and predict
multiple streams.

To fill the gap of research on concept drift in the multi-
stream scenario, this paper proposes a fuzzy drift variance
matrix (FDA) to measure the correlated drift patterns among
streams. FDA is a three dimensional matrix M(i, j, l), the
first two dimensions are for streams and the third dimension
is to indicate whether the drift correlation is simultaneous or
delayed. Each element in FDA matrix can be 0 or 1. The value
of 1 indicates that ith stream and jth stream has l-step delayed
drift correlation. To compute FDA, we propose a measurement
called fuzzy error deviation (fed) of single stream as well as
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between two streams. fed is computed based on the variation
of the predictive error of data streams. A normalization process
and difference transformation are conducted to eliminate the
magnitude difference between streams. A sigmoid fuzzy mem-
bership function is applied to limit the intermediate results
strictly in [0, 1] and distinctly differ instances before and after
drift occurs. Given a specific delayed step l, if two streams
had small fed between streams but large fed for each stream,
these two stream is considered to have high drift correlation
with l-step delay, and the corresponding value in FDA is 1.

The remainder of this paper will cover the following:
Section II reviews related works. Section III presents the
proposed FDA matrix. Section IV reports the empirical studies
of our method on the synthetic data streams. The conclusions
and future works are drawn in Section V.

II. RELATED WORK

Concept drift is identified if the underlying distribution
changes, i.e., pt+1 (X, y) 6= pt (X, y) [16]. Concept drift
may occur in four types: sudden drift, incremental drift,
gradual drift and reoccurring concept [17]. In this paper,
we only consider the sudden drift and incremental drift to
determined the drift correlation. This is because gradual drift
and reoccurring concept need a long period to identify but the
drift correlation discussed in this paper only focuses on the
first training set. In addition, sudden and incremental drift are
supposed to be the research foundation for other types of drift
which are considered as a combination of sudden drift [18].

To build the drift correlation between stream, it needs to
detect drift in each stream. Current drift detection methods
have been categorised into error-based drift detection [19] or
statistic-based detection [20]. This paper uses error-based mea-
surement to present the drift severity and build the correlation
based on this measurement.

Existing research on multiple streams mainly focuses on two
streams and assume these two streams are independent, such
as the adaptive framework for multiple stream [21], and the
framework for regression task [14]. In these studies, the task
of multiple streams is limited to two independent streams, and
one stream has to be a source stream and the other one a target
stream. Under this condition, domain adaptation techniques are
applied to transfer knowledge between two streams. It needs
a strong prior knowledge of two streams so that which one is
a source stream or a target stream can be known. Beside, the
correlation between streams is not limited to the source-and-
target relationship.

III. THE FUZZY DRIFT VARIANCE MATRIX (FDA)

The FDA is a three dimensional matrix, noted by
M(i, j, l) = vlij where vlij ∈ {0, 1}. For i 6= j, vlij measures
the l-step delayed drift correlation from the ith to the jth
stream. vlij = 1 denotes a strong drift correlation between
the ith and jth data streams. For example, drift always occurs
simultaneously in ith and jth streams; v1ij = 1 means if drift
occurs in the ith stream at time t, drift will occur in the jth
stream at time t + 1; v−2ij = 1 means if drift occurs in the

jth stream at time t, drift will occur in the ith stream at
time t + 2. Clearly, vlij = v−lji . Therefore, we can let l ∈ N
instead of l ∈ Z without any loss of drift correlation between
two streams. When i = j, vlij actually focuses on single
stream. Considering two streams which are exactly the same,
the pattern of their drift occurrence should be the same as
well. Therefore, the simultaneous drift correlation should be
1 and any delayed drift correlation should be 0. Accordingly,
in M(i, j, l), the value of vlii is manually set by 1 when l = 0
and set by 0 when l 6= 0.

We presented the process of how to compute M(i, j, l) in
Fig. 1. In the next subsections, we will explain each part step
by step.

A. Preliminaries and notations

Notations for defining the fuzzy drift variance are listed as
below.
• Si: the ith data streams;
• s(i, t) = (Xi,t, yi,t): the observation of ith data stream

at time t where Xi,t is the attributes and yi,t is the label;
• ĥi,t(·): the estimated predictor function for ith data

stream at time t;
• `(·): the loss function

B. Fuzzy error deviation for single stream

One difficulty to compute M(i, j, l) is that whether drift
occurs and how severe of this drift in a data stream can not
be directly observed. The drift severity is a critical factor
to compute M(i, j, l). Therefore, it needs to firstly design a
measurement to estimate how severe of drift in a data stream
Si. In this paper, we propose a measurement called fuzzy error
deviation (fed) to estimate the drift severity by the predictor
error.

To obtain fed, the first step is to compute predictive error.
Given ĥi,t the estimated predictor for ith data stream, the
predictive error êi,t is computed in (1).

êi,t = `(ĥi,t(Xi,t), yi,t). (1)

A popular method to determine whether drift occurs in the
single stream scenario is to obtain the value of êi,t, if êi,t
starts to increase and beyond a threshold, drift is detected. This
paper develops the idea of error-based drift detection methods
and applies this idea to compute fed.

The threshold in current error-based drift detection methods
for single stream is manually set before using it. It is not
preferred to manually set the threshold for each stream in a
multi-stream scenario, although this is the simplest way to
apply the error-based detection idea. A main reason is that the
value of êi,t largely depends on the magnitude of yi,t. The
thresholds for multiple streams may differ a lot because of
the magnitude discrepancy. Thus, it needs complicated tuning
process to balance the relationship among these thresholds to
obtain a reasonable drift severity.

To solve the above-mentioned problem, we propose to
introduce the normalization process, difference transformation
and fuzzy membership mapping to measure the severity of
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Fig. 1. Flowchart of computing FDA

the drift. Given the records of êi,t for a specific period
T = {1, . . . , T}, the normalization process is implemented
by the Z-score, which is computed as (2), where std(êi,t) is
the corresponding standard deviation.

Zi,t =
|êi,t|

std(êi,t)
. (2)

The difference caused by the magnitude of streams will
not affect the value of Zi,t. Next, we propose a difference
transformation on Zit by (3).

∑
t′<t Zit′ is a summation of Z-

score before t, and |t′ < t| is the number of instances before
t. Similarly,

∑
t′≥t Zi,t′

|t′≥t| is the average level of accumulated
Z-value after t. The value of Z̃i,t is small if the distribution
of Z-score does not change during T while is large if the
distribution changes, which exactly corresponds to the drift
problem.

Z̃i,t =

{∣∣∣∑t′<t Zi,t′

|t′<t| −
∑

t′≥t Zi,t′

|t′≥t|

∣∣∣ t 6= 0

Zi,t t = 0
(3)

In the next step, Z̃i,t is mapped to fzi,t by a sigmoid
fuzzy membership with a,b its parameters. The sigmoid fuzzy
membership function strictly limits the fzi,t in [0, 1], and
distinctly differ instances with small Z̃i,t from instances with
large Z̃i,t.

fzi,t =
1

1 + e−a(Z̃i,t−b)
. (4)

In (5), fedi,i for the ith stream during a specific period T
is defined as the summation of fzi,t divided by the length of
T . fedi,i denotes the general drift severity for single stream.
A larger value of fedi,i means that the drift occurs more
frequently in ith stream.

fedi,i =

∑
t∈T fzi,t

|T |
. (5)

C. Fuzzy error deviation between two streams

To compute fedi,j(i 6= j), the first step is to compute Z̃i,t

and Z̃j,t. After that, fzij,t(l) is computed in (6) and fedij,t(l)
is calculated by (7) respectively. Compared to the single stream

case, fzij,t(l) and fedij,t(l) are dependent with the delay
parameter l in M(i, j, l).

fzij,t(l) = |fzi,t − fzj,t+l| (6)

fedi,j(l) =

∑
t∈T fzij,t(l)

|T |
(7)

If the pattern of the occurrence of drift in ith and jth stream
has correlation, for example, drift always occurs simultane-
ously in these two stream. fedi,i and fedj,j will have large
values because drift occurs in both of these two streams.
However, fedi,j(l = 0) will be small because fzi,t and fzj,t
share the same increasing and decreasing pattern, and the item
of |fzi,t − fzj,t| will be small.

D. Simultaneous or delayed drift-correlation

According to the previous two subsection, we know that if
a data streams Si has a small value of fedi,i, it is not likely
to have drift problem, and therefore, for j 6= i, vlij = 0. If Si

and Sj have large values of fedi,i and fedj,j respectively but
fedi,j(l) is small, it is possible that ith and jth stream have
an l-step delayed drift correlation.

The last difficulty is to determine how small the fedi,j(l)
is denoting a drift correlation. As fzi,t is a positive scalar,
|fzi,t− fzj,t+l| is definitely smaller than max(fzi,t, fzj,t+l),
and also very likely to be smaller than min(fzi,t, fzj,t+l) if
both fzi,t and fzj,t+l are large.

We solve this difficulty from a different aspect. If ith stream
and jth stream have strong l-step delayed drift correlation,
fzi,t−fzj,t+l is close to 0 for all t. We assume the distribution
of fzij,t(l) given ith stream and jth stream have strong l-step
delayed drift correlation is Pfz . The expectation of Pfz is
0 and the variance σ2

fz is unknown. fedi,j(l) is the sum of
fzij,t(l). According to the central limit theorem, fedi,j(l) ∼
N (0, σ2

fz/|T |). We use
∑

t∈T fz2
ij,t(l)

|T |−1 to estimate σ2
fz , denoted

by σ̂2
fz . If the value of fedi,j(l) is less than 1.96 × σ̂fz ,

the fedi,j(l) is considered small enough to demonstrate a
strong drift correlation between ith and jth stream and its
corresponding vlij = 1.
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Fig. 2. Simulated error series multiple data streams.

In summary, the FDA is computed in (8), where i 6= j, ρ is
the threshold for the small fedi,i and λ = 1.96×

∑
t∈T fz2

ij,t(l)

|T |−1 .

vlij =

{
1 min(fedi,i, fedj,j) > ρ, fedi,j(l) < λ
0 else

(8)

IV. EXPERIMENTAL EVALUATION

To test whether the proposed FDA can present drift correla-
tion well, we simulate seven error series for multiple streams.

A. Data Simulation

We assume to mimic a scenario of the multi-stream con-
taining seven streams, each of them is denoted by S1, . . . ,S7

TABLE I
EXPECTED FDA

l = 0 S1 S2 S3 S4 S5 S6 S7

S1 0 0 0 0 0 0 0

S2 0 0 0 0 0 0 0

S3 0 0 1 1 0 0 0

S4 0 0 1 1 0 0 0

S5 0 0 0 0 1 1 0

S6 0 0 0 0 1 1 0

S7 0 0
0 0

0 0 11 (l = 200) 1 (l = 200)
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TABLE II
COMPUTED FUZZY-DRIANCE MATRIX

l = 0 S1 S2 S3 S4 S5 S6 S7

S1 0 0 0 0 0 0 0

S2 0 0 0 0 0 0 0

S3 0 0 1 1 0 0 0

S4 0 0 1 1 0 0 0

S5 0 0 0 0 1

1

0
1 (l = 150)
1 (l = 200)
1 (l = 250)

S6 0 0 0 0

1

1 0
1 (l = 150)
1 (l = 200)
1 (l = 250)

S7 0 0
0 0

0 0 11 (l = 200) 1 (l = 200)
1 (l = 250) 1 (l = 250)

separately. Instead of generating the full data of each stream,
we directly simulate the error series during a time period of
1000. It is assumed that each stream has at most one type of
drift, but the type of the drift can be sudden or incremental.

The error series e1, . . . , e7 are generated as follows:

• e1 and e2 are two samples of size 1000 independently
drawn from the normal distribution N (0, 1).

• e3 contains samples from two distributions. The first 500
instances of e3 are samples from the normal distribution
N (0, 1), and the last 500 instances of e3 are samples
from another normal distribution N (10, 1).

• e4 contains instances from two distributions. The first 500
instances of e4 are samples fromN (0, 1), and the last 500
instances are from N (100, 1).

• e5 contains instances from ten distributions to mimic
an incremental drift. The first 100 instances are from
N (0, 1), the following 100 instances are from N (1, 1)
and so on, and the last 100 instances are from N (9, 1).

• e6 also mimic an incremental drift but with different
magnitude compared to e5. The first 100 instances are
from N (0, 1), the following 100 are from N (10, 1) and
so on, and the last 100 instances are from N (90, 1).

• e7 contains instances from two distributions. The first 300
instances are from N (0, 1), and the rest 700 instances are
from N (100, 1).

The simulated error series are presented in Fig. 2. e1 and e2 are
assumed to simulate the predictive error of two streams with
the same magnitude that do not have drift problems. As for
e3, e4 and e7, all of them contains the sudden drift problem.
The occurrence of sudden drift of e3 and e4 are at the 500th
instance while that of e7 is earlier at the 300th instance. e4
and e7 have same magnitude while the magnitude of e3 is
smaller after drift occurs. e5 and e6 have simultaneous drift
pattern but with different magnitude.

B. Evaluation and results

In this section, the final computational results of FDA is
presented as well as the results of fuzzy error deviation. To
evaluate the results, we manually analyze the seven error
series and consider the analyzed FDA as the ground truth.
The effectiveness of the FDA is determined by comparison it
to the analyzed FDA.

C. Expected results of FDA

According to e1, . . . , e7, it can be inferred that S1 and S2 do
not contain drift problem, and therefore we expect fed1,1 and
fed2,2 are small. The other streams all contain drift problem,
and therefore we expect fed3,3, . . . , fed7,7 are large. S3 and
S4 have different magnitude but drift occurs at the same time
in these two streams, so we expect v034 = 1. Similarly, we
expect v056 = 1. S7 contains sudden drift but drift occurs 200-
step earlier than S3 and S4. Accordingly, we expect v20073 = 1.
Based on the above analysis, the expected FDA is presented
in Table I.

TABLE III
FUZZY ERROR DEVIATION FOR SINGLE STREAM

S1 S2 S3 S4 S5 S6 S7

fedi,i 1.4E-03 2.6E-03 6.1E-01 6.2E-01 8.9E-01 8.9E-01 5.4E-01

D. The computational results of FDA

Fuzzy error deviation for each single stream fedi,i is the
basis of computing fuzzy-driance. It measures the severity of
drift in a data stream. The fuzzy error deviation of S1, . . . ,S7
is given in Table III. In this paper, we set ρ = 0.3. fed1,1 and
fed2,2 is small which indicates that S1 and S2 do not contain
drift. The other five streams all have large fed, indicating drift
occurs in these streams.

Evaluation of FDA for the stream which does not contain
drift: as S1 and S2 do not contain drift, M(i = 1, j, l) and
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M(i = 2, j, l) are 0 for all j and l in Table II, which is
consistent with the expected results in Table I.

Evaluation of FDA for simultaneous drift correlation: in
Table II, the value of M(3, 3, 0), M(3, 4, 0), M(4, 4, 0),
M(4, 3, 0), M(5, 5, 0), M(5, 6, 0), M(6, 6, 0), M(6, 5, 0), and
M(7, 7, 0) are 1. According to these results, S3 and S4 have
simultaneous drift correlation, and S5 and S6 have simulta-
neous drift. This result is also consistent with the expected
result.

Evaluation of FDA for delayed drift correlation: the value
of M(7, 3, 200) and M(7, 4, 200) are 1, indicating a delayed
drift correlation between S7 and S3, and S7 and S4. This is
consistent with the expected results.

However, there are also some inconsistent results. One
inconsistence is that the simultaneous occurred incremental
drift may lead to a delayed drift correlation. As is in Table
II, when l 6= 0, M(5, 6, l) and M(6, 5, l) are 1, but they are
supposed to be 0. Unlike sudden drift, the incremental drift
occurs in a period, inducing the delayed drift correlation.

The other inconsistence is about the value of M(7, 3, l) and
M(7, 4, l). When l = 200, they equal to 1, which is in our
expectation. However, when l = 250 they are still 1. Therefore,
FDA is able to identify the delayed drift correlation but it can
not precisely identify the delayed step.

E. Discussion

The comparison between expected FDA and computed FDA
shows the advantages and drawbacks of the proposed FDA.

Advantages of FDA: it can effectively identify the non-
drift stream; it can effectively identify the simutaneous drift
correlation with regard to different drift types.

Drawbacks of FDA: it has limited ability to identify delayed
drift correlation. FDA is also likely to identify delayed drift
correlation even streams only contain simultaneous correlation.

V. CONCLUSION

In this paper, we proposed a error-based measurement
termed FDA to measure the correlated drift patterns in multi-
stream scenario. Seven error series are generated to test FDA.
The experimental results show that our FDA performs good for
non-drift correlations as well as simultaneous drift correlations
with regards to different types of drift. It has drawbacks when
identifying delayed drift correlations. Our future work is to
improve its performance for the delayed drift correlation.
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