
On the Cognitive Development of the Novice Programmer
and the Development of a Computing Education Researcher

Raymond Lister
School of Computer Science

University of Technology, Sydney
Sydney NSW Australia

Raymond.Lister@gmail.com

ABSTRACT
This paper is a companion to my keynote address at the 9th
Computer Science Education Research Conference (CSERC '20). I
review the research that led to my three stage neo-Piagetian model
of how novices understand code. Code tracing is the key. In the first
stage, the novice cannot trace code. In the second stage, the novice
has mastered tracing, but, crucially, that is the only skill they have
mastered. It is only when novices reach the third stage that they
begin to reason about code in a more general, abstract way. The
principal failure of traditional approaches to teaching programming
has been the assumption that the novices begin at the third stage.

CCS CONCEPTS
Social and professional topics → Computing education

KEYWORDS
Neo-Piagetian theory, novice programmers.

ACM Reference format:

Raymond Lister. 2020. On the Cognitive Development of the Novice
Programmer: and the Development of a Computing Education Researcher.
In Proceedings of the 9th Computer Science Education Research
Conference (CSERC '20). ACM, New York, NY, USA, 15 pages.

1 Introduction
The poet Thomas Gray wrote “Where ignorance is bliss, ‘tis folly
to be wise”. For my first four years of university teaching I was
indeed blissfully ignorant. My class survey results were good. I was
nominated for a university teaching award. I believed I taught well.

Three factors conspired to ruin my bliss. The first factor was my
persistent high failure rates. If my lectures were the very model of
clarity, then why were a third of my students failing? The second
factor was the criticism of my colleagues. As surely as farmers
complain about the weather, computing academics will complain
about the brokenness of the introductory programming subject. I
recall many academic staff meetings to discuss the parlous

programming ability of our students. Each year everyone voiced
their intuition on how students could better learn programming.
Year after year, each academic repeated the same intuitions. Every
year we made changes, but we were not making progress. Rather
than moving forward, we were conducting a random walk in
pedagogical space.

The third factor, which absolutely smashed my bliss, occurred
in the year 1999. That year, the class was large, and the school’s
budget was small, so we could not hire the army it took to grade the
final exam. With reluctance, we decided that the final exam for the
introductory programming class would consist entirely of multiple-
choice questions. Since the students would not have to write any
code, I worried that the exam would be too easy. To my
astonishment, the students did poorly on the multiple-choice exam.
There were things going on in my class that I did not understand.

By this time, I had been teaching for five years, so I clearly was
not learning what was happening in my class simply from teaching
the class. I had to take a step back. If I was to learn what was going
on in my class then, like the lead character from the movie, “The
Martian”, I was going to have to “science the shit out of it”. To
quote another space figure, but this time a real person, Werner von
Braun, “Research is what I’m doing when I don’t know what I’m
doing”. Twenty-one years after that multiple-choice exam, I now
say, “Education research is what I’m doing when I don’t know what
I’m teaching”.

2 Bootstrap & the McCracken Working Group
My nascent computing education research career was turbocharged
in the year 2002, when I was one of twenty academics accepted into
the “Bootstrap” project [3, 8]. Bootstrap was led by Sally Fincher,
Marian Petre and Josh Tenenberg. Their aim was to introduce a
critical mass of computing academics to education research and
thus bootstrap a new computing education research community, to
recover from the computing education research “winter” of the
1990s. Our two workshops were held in a boy scout hut, in the
beautiful village of Port Townsend, Washington, USA.

Among the readings for Bootstrap was a paper written by an
ITiCSE 2001 working group, led by Mike McCracken [23]. The
McCracken group assessed the programming ability of a large
population of students from several universities, in the United
States and other countries. The authors had students write code on
a common set of programming problems. They found that most
students performed much more poorly than expected. Most
students did not even get close to a complete, correct solution.

CSERC '20, October 2020 R. Lister

The McCracken paper was a game changing paper for me. Prior
to the McCracken paper, if you were brave enough to say that your
students could not program, the resulting conversation usually
revolved around what it was that you were doing wrong; how you,
an individual, might fix what was your problem. But when students
are pooled from across institutions and countries, you begin to
discern fundamental patterns.

Although I was inspired by the McCracken working group, I did
not agree with its conclusion. The McCracken group attributed the
poor performance of most students to an inability to problem-solve.
That is, an inability to carry out a five-step process: (1) Abstract the
problem from its description, (2) Generate sub-problems, (3)
Transform sub-problems into sub-solutions, (4) Re-compose, and
(5) Evaluate and iterate. My own experience with a multiple-choice
exam led me to wonder whether some of my students lacked
abilities that were a precursor to problem-solving. But I could not
be sure. The results I saw in my students might be due to poor
teaching by me. After talking to several of my fellow bootstrappers,
who had similar teaching experiences to me, we decided to convene
our own ITiCSE Working group, to investigate the issue further.

3 THE LEEDS WORKING GROUP
Our Leeds Working Group collected data from over 600
introductory programming students, spread across 12 institutions in
7 countries [14]. The students were asked to answer several
questions that were placed into their end-of-first-semester exam.
The questions were from my multiple-choice exam.

Not all the multiple-choice questions required students to trace
code (i.e., manually execute code “on paper”), but the results from
the tracing questions turned out to be the most interesting. The
working group found that most students at all the participating
institutions could not trace reliably. Prior to this multi-national
study, it was taken for granted around the world that most students
could do the “simple” things, like trace code. Applying Occam’s
Razor, and with the confidence founded in data from 12 institutions
in 7 countries, the working group argued that McCracken’s
attribution to students of a weakness in problem solving was an
unnecessarily sophisticated explanation. The simpler explanation
was that such students lacked abilities that were a precursor to
problem-solving, at least the skill of tracing code.

3.1 Doodles and Think Alouds
Earlier, in the boy scout hut in Port Townsend, when we
Bootstrappers had first talked about convening a working group, I
thought my disagreement with the McCracken paper was
methodological – I thought they should have screened their
students with a pre-test and then eliminated students who could not
trace code. I thought of the screening process as eliminating the
students who had not studied hard enough. But when we analyzed
all three forms of our data in Leeds, I began to wonder whether the
issue was deeper than a disagreement over method. Apart from the
“performance” data on whether students answered the questions
correctly, we analyzed two other forms of data. One of those other
forms was the annotations (“doodles”) the students made on their
exam papers as they attempted the questions. Many students did not

doodle at all. When I trace code, I doodle to track changing variable
values – why were students not also doodling?

Another form of data the Leeds Group analyzed were transcripts
from think aloud sessions with some of the students. When we
included the think alouds in the study design, my interest was in
studying the metaphors used by students to describe code. I
expected statements like “the loop index fell off the end of the
array”. To my surprise, students did not use metaphors – none! By
whatever method students understood code, they were not thinking
about code the way I thought they did.

3.2 Reflections on the Leeds Working Group
The Leeds Working Group is well known for its results from the
performance data, but I do not think the doodle and think aloud data
ever received the attention from readers that was warranted.

My interest in studying metaphor, only to find no metaphor in
the transcripts, highlights that I was out of touch with my students
at the time of the Leeds Working Group. Back then, I had the same
blind spot that many computing academics have – I thought I knew
my students. Clearly, I did not. No teacher of programming learns
everything they need to know about their students exclusively from
teaching those students, no matter how many years of experience
the teacher has accumulated. At the time of the Leeds Group, I had
accumulated 10 years of teaching, but it may have been more
accurate to say that I had taught for 2 years, 5 times.

A common criticism of the Leeds Working Group has been that
several of the questions involved code that students would not see
“in the real world”. While I do not agree with that criticism, I accept
that it is a reasonable opinion. It was disappointing, however, that
none of the people who made that criticism did not repeat the Leeds
Group study, using questions they felt were more appropriate.
While no individual who made such a criticism is obliged to do
such a study, that nobody in the whole computing education
research community (to my knowledge) who made that criticism
felt a need to do such a study was an indication that the community,
as a whole, was not (at least back then) grounded in a tradition of
evidence-based discourse. Back then, if not now, I think that
researchers in the computing education community tend to accept
or reject the research of others based on whether the results were
consistent with their teaching intuitions. Someone reading this
paper might think to themselves that my initial disagreement with
the McCracken paper was intuitive. That is correct, but the Leeds
Working Group went on to do research that turned intuition into
something solid. Of course, no individual can do research to rebut
everything that is contrary to their intuition. My disappointment, at
least back then, if not now, was that nobody went beyond intuition
to do that sort of follow-up research.

Over the years, people have raised the question with me whether
it is possible to compare students across institutions. I invite such
people to look at Figure 3.6 in the working group’s paper [14]. That
figure is reproduced in this paper as Figure 1. It shows the
percentage of students who answered each multiple-choice
question correctly for six of the participating institutions. The data
from one of those six institutions differs markedly from the other
five institutions (i.e., the institution with an exceptionally low

On the Cognitive Development of the Novice Programmer CSERC '20, October 2020

percentage of students answered question 4 correctly). For the other
five institutions, beginning at question 4, the lines connecting the
data points of each institution show a common pattern – the lines
go up slightly from question 4 to question 5, then down to question
6, then up to question 7, down to question 8, and up to question 9.
Thus, while the absolute percentage of students who answer a
question correctly varies considerably between institutions, the
relative performance between questions show the same general
trends. This observation from Figure 1 leads me to the following
conjecture:

Consider two institutions, where the students are given
the same two exam questions. Suppose there is a
statistically significant difference in the performance of
students on those two questions within each institution.
Then whichever was the harder question at one of the
institutions will also be the harder question at the other
institution.

Some commonsense qualifiers must be applied to the conjecture.
For example, the conjecture should not be expected to hold if
students at one of the institutions had been shown code included in
one of the questions prior to the exam, while the students at the
other institution had not seen that code. Another example would be
if the teaching at one institution emphasized object-oriented
concepts while the teaching at the other institution emphasized
procedural concepts. If the reader is not comfortable with the
arbitrariness of applying common sense, then I am content with
turning the conjecture around: if the conjecture holds between two
institutions, then the content and method of instruction at both
institutions are broadly the same, at least for the content tested by
the two questions.

In recent years, some in the community have argued that all
empirical research papers should characterize the type of
institution(s) at which data was collected from students (e.g., “a
small teaching focused liberal arts college”, or “a large state-
funded, research focused university”). I disagree. Even when the
type of institution may be a factor, I believe screening tests should
be used to eliminate institutional bias.

As a researcher, the year 2004 was a good year for me.
Ironically, however, it was a bad year for me as a teacher. Citing
failure rates in my class that he regarded as too high (between 30%
and 40%), the head of my school moved me off teaching
introductory programming. I would not teach another programming
class for ten years, until that head of school retired.

4 BRACElet (1): Explain in Plain English
Shortly after the Leeds Group, Tony Clear invited me to present the
group’s work at a two-day workshop he hosted at the Auckland
University of Technology. The workshop was held in December
2004. From that workshop, the BRACElet* project emerged, led by
Tony Clear, Jacqueline Whalley and me [5, 18, 38].

* The BRACElet project is often confused with the BRACE project. Given the
similarity in the names, that is understandable, but in fact there is no overlap between
the research conducted in the BRACE and BRACElet projects. BRACE was a rerun
in Australia and New Zealand of the “Bootstrap” and “Scaffolding” projects [3, 8].
BRACE stands for “Building Research in Australasian Computing Education”.

Figure 1. A graph from the Leeds Working Group. The
percentage of students with the correct answer for each

question, for the 6 institutions that provided data for at least
20 students. Each trend line corresponds to one institution.

 In plain English, explain what the following segment of Java
 codes does:

 bool bValid = true;

 for (int i = 0; i < iMAX-1; i++)
 {
 if (iNumbers[i] > iNumbers[i+1])

 bValid = false;
 }

Figure 2. An “explain in plain English” question

BRACElet set out to answer the question that the Leeds
Working Group (implicitly) begged to be asked – apart from
tracing, are there other precursor skills to code writing? To
address that question, BRACElet introduced a new type of
question, the “explain in plain English” question. At the first
BRACElet workshop, I remember we discussed for hours how we
might probe at a student’s ability to read and understand code. After
many complex suggestions had been floated, only to be shot down,
and with homeward plane flights looming, someone suggested that
we simply show the students some code and ask them to explain
what the code does “in plain English”. We then tossed around ideas
of what piece of code we should ask the students to explain.
Someone suggested the code shown in Figure 2, for which a
suitable explanation would be “it checks to see if the array is
sorted”. The suggestion of that code turned out to be a wonderful
choice. We were partly lucky, I suppose, in making that choice, but
I suspect that we were also expertly guided by our collective
experience as teachers.

4.1 The SOLO Taxonomy
BRACElet participants wanted a principled way of analyzing the
answers to the question in Figure 2. At the second BRACElet

BRACElet was initially intended as a smaller follow-up to BRACE, for academics in
New Zealand who had not been able to attend the two BRACE workshops in 2004 and
2005 — hence the “let” part of BRACElet. However, BRACElet took on a separate
life of its own. Between 2006 and 2010, BRACElet produced 16 papers with a total of
26 different authors, from 14 different institutions, across 7 countries.

CSERC '20, October 2020 R. Lister

workshop, six months later, we settled on using the SOLO
taxonomy [2] to analyze the student responses to the “explain in
plain English” question. The SOLO taxonomy categorizes student
answers into five levels which are, from least to most sophisticated:

1. Prestructural: The response by the student could have been
provide by someone who had not studied the subject.

2. Unistructural: The student manifests a correct grasp of some
small part of the problem.

3. Multistructural: The student manifests an understanding of
most parts of the problem but does not manifest an awareness
of the relationships between these parts. The student fails to
see the forest for the trees. A line-by-line description of the
code in Figure 2 is a multistructural response.

4. Relational: The student integrates the parts of the problem
into a coherent structure and uses that structure to solve the
task. The student sees the forest. For the code in Figure 2, the
answer “it checks to see if the array is sorted” is relational.

5. Extended Abstract: The student goes beyond the immediate
problem to be solved and links the problem to a broader
context. This category was not studied by BRACElet.

4.2 The Prerequisites for Code Writing
The first two papers published by BRACElet [37, 15] describe the
results and conclusions from this first round of work by BRACElet.
One of the results was that students who gave a relational response
to the explain-in-plain-English question in Figure 2 tended to
perform better on the exam as a whole. In the conclusion of the
second BRACElet paper [15], we speculated:

In our view, students who cannot read a short piece of
code and describe it in relational terms are not
intellectually well equipped to write similar code.

Thus, in this opening phase of BRACElet, we speculated that there
was a linear hierarchy, where the ability to trace code reliably
preceded the ability to explain code reliably, which in turn preceded
the ability to write code reliably. In the next experimental phase of
BRACElet, we would see results that supported a hierarchy, but we
would find out we were wrong about it being a linear hierarchy.

5 BRACElet (2): TRACING AND EXPLAINING
To empirically study the relationship between tracing, explaining
and writing code, BRACElet constructed a new set of exam
questions that included all three types of questions. The first
substantive discussion of exam data that included all three types of
questions was at the sixth BRACElet workshop, in December 2007.
I remember that a preliminary analysis of exam data was presented
on day 1 of the workshop, but the breakthrough was presented on
the second morning. Overnight, Mike Lopez had put the data
through a statistical analysis tool he had written, which performed
an analysis similar to structural equation modelling. Mike found
that code tracing questions alone did not correlate well with student
scores on code writing, nor did explain-in-plain-English questions
alone correlate well with student scores on code writing. However,

a linear combination of student scores on code tracing and code
explaining did correlate well with code writing [21].

Mike’s way of analyzing the data was too sophisticated for me
to repeat, but after he had shown us what to look for, a linear
combination of scores on tracing and explaining correlating with
code writing, simpler methods could be used to look for that in
other data. By mid-2009, we had published papers reporting the
same relationship in two more datasets [16, 35].

At ITiCSE 2009, we convened a BRACElet working group
[17]. About half of the twelve working group members had not
participated in BRACElet before, and those people brought fresh
ways of thinking to BRACElet. For me, the most stimulating aspect
of that fresh thinking was a review of education theories that might
be applicable in understanding the development of the novice
programmer, theories originating from other disciplines, especially
mathematics. That discussion of theory by the working group
planted a seed in my thinking that would grow to dominate my
research for the next five years.

6. A THREE STAGE MODEL (EXPURGATED)
Stimulated by the ITiCSE 2009 working group, I began to think
about theories that might explain the empirical results from
BRACElet. Intrinsic to SOLO is the principle that students can
acquire facts without (at least initially) integrating those facts with
the rest of their knowledge. Beyond that, however, SOLO does not
tell me any more about how novice programmers think and learn. I
felt I needed to move beyond the SOLO taxonomy.

In mid-2009, I had taken a year’s leave without pay from UTS
to try a different job. By the end of 2009, the new job had not
worked out, and I found myself “on sabbatical” (i.e., under
employed) for six months until I could return to UTS mid-2010.
While I did not know it at the time, this six-month sabbatical was
fortunate, as it gave me the chance to read from the large piles of
papers and books that I had collected but never had time to read.

Eventually my reading led me to construct a three-stage model
of the mental development of novice programmers, which I
published in 2011 [19]. I then went on to look for evidence for my
three-stage model, in conjunction with a Ph.D. candidate, Donna
Teague [32], now Donna Kingsbury. I describe the three stages in
the following subsections.

6.1 Stage 1: Pre-Tracing
In the initial stage, pre-tracing, the student has a sparse and
incoherent understanding of programs. At this stage, students
exhibit a haphazard approach to writing code, and cannot reliably
trace code, for several reasons:
 Misconceptions of how programs work. For example, a novice

might think that the assignment statement “x = y” links those
two variables so that any subsequent update to one variable also
updates the other variable. Many common misconceptions are
documented in the existing literature. See appendix A of Juha
Sorva's thesis for a catalogue of over one hundred
misconceptions [31].

On the Cognitive Development of the Novice Programmer CSERC '20, October 2020

 Anthropomorphizing the computer. A novice programmer can
behave as if an intelligent entity lurks inside the computer; an
entity that somehow knows what the novice wanted their
program to do. Such thinking by a novice programmer is natural
in a world where word processing software corrects our spelling
and search engines make suggestions about what search term we
really meant to type. Pea [26] referred to this
anthropomorphizing of the computer as a type of “superbug”, a
bug that transcends any program or programming language.

 Programming as (Witch) Craft. Programming is often described
by experts as being a craft. For the pre-tracing student,
programming is witchcraft. Wikipedia describes “Voodoo
programming” as being the “practice of getting a program to
produce desired output by using guesses, trial-and-error,
cookbooks, copy-pasting from online resources, or similar
techniques without truly understanding the underlying problem”.
Wikipedia describes “Cargo cult programming” as being a “style
of computer programming characterized by the ritual inclusion
of code or program structures that serve no real purpose”. In the
case of cargo cult programming, I have often had the experience
of asking a student to explain to me the purpose of a strange line
of code in their program, only to be told “I don’t know what it
does, but if I leave it out the program doesn’t work”.

6.2 Stage 2: Tracing
By the second stage, tracing, the student can reliably trace code.
However, the stage 2 student tends not to abstract from the code
itself. For the stage 2 student, there is nothing but the code. The
only way that a stage 2 programmer can reason about a piece of
code is by tracing that code. Over-reliance on a single way of
thinking is known in psychology by several names, including
"Maslow's Hammer". Maslow probably appropriated an old
proverb when he wrote:

I suppose it is tempting, if the only tool you have is a
hammer, to treat everything as if it were a nail. [22, p. 15].

Because all that stage 2 programmers can do is trace code, they
reason by induction. That is, when attempting to explain what a
piece of code does, the stage 2 programmer (1) generates a set of
initial variable values, (2) traces the code, and then (3) attempts to
infer the function of the code by comparing the initial and final
values. For example, in the exercise shown in Figure 3, the
variables names “y1”, “y2” and “y3” will often lead the stage 2
novice to perform a trace using the initial values y1=1, y2=2 and
y3=3. Tracing with those initial values results in final values
y1=3, y2=2 and y3=1. Teague found that when stage 2
programmers used those initial values, they often answered
incorrectly that the code reverses the order of the values in the three
variables [32].

A novice programmer who traces the code in Figure 3 only once
and arrives at the wrong answer is an early stage 2 programmer.
Early in stage 2, the effort of tracing code is great and so the novice
tends to only perform a single trace. As dexterity at tracing
improves, the stage 2 novice becomes willing to perform more than
a single trace. Teague [32] reported on a think aloud session with

Figure 3: Code for sorting three integer values.

two students “Lucas” and “Sierra”, who worked together on the
problem in Figure 3. Lucas and Sierra began by performing a trace
with the initial values y1=1, y2=2 and y3=3. After that trace,
Sierra jumped to the wrong conclusion. Lucas, however, insisted
on performing a second trace and then arrived at the correct answer.

Stage 2 novices use that same inductive approach when
attempting to debug their own code. That is, stage 2 novices trace
their buggy code with specific values, and then make what is often
a myopic patch. That patch may “fix” the code for the specific
initial values just used in the trace, but the patch may not address
the general bug [9]. The strategy of “repeat-trace-patch-until-
success” is like “shotgun debugging”, which Wikipedia defines as,
“A process of making relatively un-directed changes to software in
the hope that a bug will be perturbed out of existence”.

6.3 Stage 3: Post-Tracing
In the third stage, post-tracing, novices begin to reason about code
the way we have always assumed they did – deductively, from
reading the code, and/or from simple diagrammatic representations
of operations on data structures. This stage is the first stage where
students show a purposeful approach to writing code. Therefore,
the stage 3 programmer may further develop their programming
skills using the approach used for decades in universities — having
them learn by writing lots and lots of code.

6.4 A Reflection on the Expurgated Model
At this point, the reader might be thinking that the three-stage
model is either trivial or arbitrary. If the reader thinks so, that is
because this “expurgated” version of the model has been presented
in the absence of background theory that both justifies the structure
and fleshes out further detail. The next section of the paper presents
the model again, but with the theoretical background. The reader
may ask: why do I present my model twice, first without the
underlying theory and then with theory? The answer is hinted at in
the title of this section, by my use of the word “expurgated”. Just
as a novel might be expurgated to remove words that may cause
offense, when I introduce someone to my three-stage model, I have
learned to do so initially by omitting the “P” word, which
sometimes causes offense – “Piaget”.

CSERC '20, October 2020 R. Lister

7. A THREE STAGE MODEL (PIAGETIAN)
During my “sabbatical” in 2010, I was led to the type of theory I
was looking for when I read deeper into the SOLO taxonomy. In an
appendix of their book [2], Biggs and Collis describe how they had
derived SOLO by eliminating the structuralism of Piagetian theory.
That appendix led me to read Piaget, and then read neo-Piagetian
theory, from which my stage model emerged [19, 20].

When presenting my model, I have found that invoking Piaget
often meets with audience resistance. Piaget is out of fashion. There
are a few reasons for this, but the principal reason is that Jean Piaget
worked in the early-to-mid 20th century intellectual period when
structuralism was dominant, and so his direct legacy is not well
received in our current period of post-structuralism. Another reason
is that much of Piaget’s writings about babies has been refuted by
empirical research in recent decades, which has (unfairly)
decreased the perceived credibility of Piaget’s work in general.
Piaget’s fall from fashion is ironic, as most computing education
researchers emphatically describe themselves as being
constructivists, yet Piaget is the father of constructivism. (At the
time of writing this paper, googling “who is the father of
constructivism” is answered with “Piaget” – QED.)

Since Piaget’s death, the neo-Piagetians have further developed
Piaget’s work, improving the compatibility with both post-
structuralism and with observational data [25]. Jean Piaget’s
“classical” theory and neo-Piagetian theory both describe cognitive
development in terms of sequential, cumulative stages, but neo-
Piagetian theory differs in several ways, summarized in Table 1.

7.1 Stage 1: Sensorimotor (Pre-Tracing)
Piaget was interested in the intellectual development of children.
Anyone who has watched a baby stare at an object, before
painstakingly reaching out to grasp that object will be comfortable
with Piaget’s use of the term “sensorimotor” in that context. I have
found, however, that many people are not comfortable with how
“sensorimotor” applies to people of any age who have just begun
to learn to program. A glib answer is that, while these novice
programmers may be adults in physical space, they are babies in
cyberspace. A more serious answer follows. This first Piagetian
stage of learning to program is a struggle to learn to correctly
perceive and trace code. The “sensori” component of the name is
appropriate because novice programmers do not initially perceive
code the way that an accomplished programmer does. For example,
novices at this stage often read code as static text, not as executable
code.

The “motor” component of the name is appropriate because
these sensorimotor novice programmers do not, for example, trace
code the way that an accomplished programmer does. Teague
discovered that when novices do perform a trace with pen and
paper, they can use ad hoc, error prone ways of recording the
changing variable values [32].

While there is extensive literature on the misconceptions of
novice programmers [31, see appendix A] that literature under-
represents some issues about novice programmers that come into
focus with a Piagetian perspective. One of these issues is the low

level of commitment that a sensorimotor programmer has to their
conceptions about programming, whether those conceptions be
right or wrong. Instead, the sensorimotor programmer can swap
between (mis–) conceptions, based on superficial aspects of the
code. Furthermore, the sensorimotor programmer does not merely
have misconceptions – the sensorimotor programmer can have a
different way of conceiving code. For example, as mentioned
before, many sensorimotor programmers read code as static text. In
Piagetian terms, this non-dynamic reading of code is known as
“figurative intelligence”.

Brooks proposed a theory of how accomplished programmers
comprehend unfamiliar code [4]. According to Brooks, one strategy
used by accomplished programmers is a search for “beacons”,
which are data structures or operations that verify a hypothesis
about the code. For example, a loop in which values in an array are
swapped around is a beacon for sorting. In contrast, the
sensorimotor novice does not make informed hypotheses about
code. Such a novice does note features in the code, but such a
feature is not really a beacon; more a talisman (i.e., an object
possessing mystical power). Traynor, Bergin, and Gibson [34]
provided a telling quote from such a student, who described how
he/she went about answering exam questions that required coding:

… you usually get the marks by making the answer look
correct. Like, if it’s a searching problem, you put down a
loop and you have an array and an if statement. That
usually gets you the marks … not all of them, but
definitely a pass”.

7.2 Stage 2: Pre-operational (Tracing)
To understand what “operational” means in the Piagetian stage
name “pre-operational”, consider a machine being installed in a
factory: the machine is not yet “operational”. Likewise, at the pre-
operational stage the novice programmer is not well placed to
independently write code of their own. Note, however, that this
does not imply that such a novice should not write code as part of
the learning process – on the contrary, a novice must write code to
learn how to code. However, we should expect that pre-operational
students will write code that is either trivial or code that is poorly
designed and buggy.

The fresh insight that comes from neo-Piagetian theory is the
identification of the pre-operational programmer as a natural stage
of progression for a novice programmer, not an anomalous
behaviour. Furthermore, students can spend a long time in the pre-
operational stage. Novices may only progress beyond the pre-
operational stage after tracing through many examples of code.

In the absence of neo-Piagetian theory, it is very difficult for
teachers to understand why pre-operational students cannot use
diagrams to understand code. For example, Thomas, Ratcliffe, and
Thomasson wrote despairingly of their frustrations at trying to get
their novices to make effective use of diagrams:

Providing ... what we considered to be helpful diagrams
did not significantly appear to improve their
understanding ... This was completely unexpected.
We thought that we were 'practically doing the question
for them'. [33, p. 253]

Classical Piagetian Theory by Jean Piaget Neo-Piagetian Theory

Is concerned with the general cognitive development of
children.

Is concerned with the cognitive development of people of any age
as they learn any new cognitive task.

A child at a particular Piagetian stage applies the same
type of reasoning to all cognitive tasks (e.g., math and
chess), apart from exceptions known as décalage.

Since a person’s cognitive ability in any domain is a function of
their degree of learning in that domain, a person will exhibit
different Piagetian stages in different knowledge domains.

There are typical age ranges for each Piagetian stage,
but empirical evidence shows great variation in age
ranges.

Age ranges are not prescribed. But there may be minimum ages
before which manifesting a particular stage in any domain may be
considered exceptional.

Children spend an extended period in one stage, before
undergoing a rapid change to the next stage – the
“staircase” metaphor.

Over a short period of time, people may exhibit a mix of stages. As
learning progresses, the frequency of manifestation of higher stages
will increase − the “overlapping wave” metaphor.

Table 1. A Comparison of Classical and Neo-Piagetian Theory.

For the reader who would like to learn more about the pre-
operational programmer, see the collection of papers in Donna
Teague’s thesis-by-publication [32].

7.3 Stage 3: Concrete Operational (Post-Tracing)
As “operational” in “concrete operational” implies, when a novice
reaches the third stage, they can independently write reasonably
well-designed code. It is only at this stage that the novice
programmer begins to reason about abstractions of code, such as
diagrams.

Recall that, as pre-operational programmers develop, they are
more likely to perform multiple traces on a piece of code, with
different initial values intended to exercise different pathways
through the code. The transition from pre-operational to concrete
operational may begin with the novice consciously choosing initial
values to represent a class of possible initial values. For example,
in some hypothetical piece of code, the novice might choose to
initialize two variables “a” and “b” as a=1 and b=2 to represent
all possible initial values where a < b.

A novice has made the transition to the concrete operational
stage if, while reading through a piece of code, the novice no longer
uses specific initial values, but instead mentally maintains informal
but algebraic-like constraints on the possible values in each
variable. For example, consider a student studying the three “if”
statements in Figure 3. After the first of those if statements, the
concrete operational student would think of y2 as holding any
possible value that satisfies the condition that it is less than the
value in y1. Teague [32] refers to this as “abstract tracing”.

Earlier, when I introduced the explain-in-plain-English question
shown in Figure 2, I wrote that we were lucky to have made that
choice, but we were also guided well by our collective experience
as teachers. Piaget offers an explanation for why the code in Figure
2 proved to be a good choice. If the variable bValid is to maintain
its initial value, then iNumbers[0] ≤ iNumbers[1] ≤
iNumbers[2]… and so on. By the rule of logic known as
transitive inference, those inequalities imply that the elements of
the array are sorted. Piaget maintained that the ability to perform

transitive inference is one of the defining qualities of a person at
the concrete operational stage.

7.4 Overlapping Waves
According to neo-Piagetian thinking, novice programmers should
not be classified as being at a unique stage of development at any
given moment (i.e., sensorimotor, pre-operational, concrete
operational). Instead, neo-Piagetians advocate an “overlapping
waves” model [29], where a person exhibits an evolving mix of the
Piagetian stages. The concept of overlapping waves is illustrated in
Figure 4. When a person begins their study of a new knowledge
domain, they first reason predominantly at the sensorimotor stage,
but they evolve to reason less at that stage and more at the pre-
operational stage, and so on to later stages. Thus, multiple ways of
reasoning coexist.

When the concept of overlapping waves is expressed as a
generalization, as it was in the preceding paragraph, it may seem
that it renders meaningless the three-stage model. In practice,
however, this is not the case. When I have a brief encounter with a
student, where I can see quickly what their problem is, and I ask
them to trace a portion of their code with specific values, it is
usually clear to me which stage is most pronounced in their
reasoning at that moment. Some students cannot trace their code
(sensorimotor). Others can trace their code but cannot identify the
general problem revealed by the trace, or cannot nominate a fix to
the code, or they make an inappropriate change to their code (pre-
operational). Others either complete the trace or have a “eureka”
moment during the trace and do not need to complete it [6], but
either way after ceasing to trace they move deliberately to making
a plausible change (concrete operational). It is over longer periods
of time that a mix of multiple ways of reasoning are usually
manifested. It is over even longer periods of time that the mix is
seen to change.

In this paper, references are made to novices being in a specific
stage. In such cases, the reader should understand that a stereotype
is being invoked, for clarity and conciseness. Consistent with the
overlapping waves concept, a real student often exhibits a mix of
the stages and does not fit the stereotype for a single stage.

CSERC '20, October 2020 R. Lister

Figure 4. The Concept of Overlapping Waves.

7.5 New Knowledge and Stage Regression
As the novice programmer learns, there are periods of time where
the novice may maintain a pre-operational or concrete operational
way of reasoning about code even when the novice is taught
something new. For example, having learned about integer
variables, novices may subsequently learn about floating point
variables, without that affecting how they reason about code. In
Piagetian terms, this is known as assimilation.

But new knowledge sometimes shatters old ways of thinking.
For example, a novice may have a way of recording on paper the
tracing of sequential code (i.e., pre-operational stage) but that way
of tracing fails when the student is introduced to loops. The novice
must now change their way of reasoning about code. As part of the
change process, the novice may regress to an earlier stage. The
novice programmer must first understand how loops work (i.e., go
back to sensorimotor), then devise a new way of recording a trace
on paper (i.e., move back up to pre-operational). In Piagetian terms,
this regression and recovery is known as accommodation.

7.6 Reflections on the Piagetian Model
A simple but useful summary for an early understanding of how
novice programmers think in each of the above three Piagetian
stages is as follows:

1. Sensorimotor: The code is perceived as static.
2. Pre-operational: The code is conceived as changing variable

values.
3. Concrete operational: The code is perceived as embodying

abstract properties that can remain invariant under execution.

The following example is perhaps the simplest possible
illustration of the above summary: consider the case where the
following three lines of code are given to students, and they are told
that the code swaps the values in variables “b” and “c”:

a = b;
b = c;
c = a;

The sensorimotor novice may focus on the fact that the variable on
the right of the first and second lines of code are repeated on the
left in the next line of code, without understanding why. The pre-
operational novice can trace how specific values in the variables
change. The concrete operational novice sees that the variable “a”
acts as a temporary storage location.

There is a fourth stage, the Formal Operational Stage. This is
the ultimate “expert” stage of Piagetian reasoning. This stage is
probably more applicable to programmers who are more advanced
than students in their first semester of learning to program. As the
fourth stage is not to be expected in introductory programming
students, it is not discussed in this paper.

There has been some interesting, independent, empirical work
that appears to confirm the existence of the sensorimotor, pre-
operational and concrete operational stages [27].

There is an old joke about how to cook a chicken, which I shall
summarize thus: regularly poor whiskey over the cooking chicken
and when the chicken is done, throw the chicken away and drink
the gravy. Likewise, some readers might accept the “expurgated”
version of the three-stage model but throw away my Piagetian
interpretation. Some readers might suspect that neo-Piagetian
theory was merely the mental scaffolding that led me to a
worthwhile model, but that neo-Piagetian scaffolding may be
dispensed with now that the construction of the model is complete.
If such thinking leads to the reader to an initial acceptance of my
three-stage model, then I am happy. I hope, however, that with time
the reader may come to understand that neo-Piagetian theory
fleshes out the full complexity of the expurgated skeleton. Prior to
reading neo-Piagetian theory, I was baffled by some of my
encounters with students; baffled by students who could not explain
their own code to me; baffled by students who could not understand
a simple diagram I drew for them. I still have the same type of
encounters, but now I understand that those students are simply not
at the concrete operational stage. Not only am I no longer baffled,
but I can now help those students, often by leading them through a
trace of their code. For me, the single biggest contribution of neo-
Piagetian theory to my teaching practice has been the recognition
of the existence of the pre-operational programmer and the lengthy
time that some students remain pre-operational.

I sometimes encounter educators who resist the cognitive
constructivist ideas of Piaget because they are enthusiastic about
the social constructivist ideas of Vygotsky [36]. Both Piaget and
Vygotsky are constructivists, and nobody needs to choose between
them. Vygotsky placed greater emphasis than Piaget on the role of
language and culture in cognitive development, but that emphasis
is not a rejection of Piaget. The late Piagetian scholar, Les Smith,
sometimes provided entertainment at conference dinners. He would
read out several excerpts from the writings of either Piaget or
Vygotsky, and the audience members had to nominate which of
Piaget or Vygotsky wrote it. Many guessed wrong. Something
similar can be said about more recent constructivist theories of
education: contemporary constructivist theories are not
fundamentally at odds with Piaget or Vygotsky.

On the Cognitive Development of the Novice Programmer CSERC '20, October 2020

8. GENERAL RESEARCH REFLECTIONS

8.1 Writing from Tracing and Explaining
With the help of neo-Piagetian theory, especially the concept of
overlapping waves, I believe I now understand how the novice
programmer progresses from being primarily pre-operational to
primarily concrete operational. The ability to answer explain-in-
plain-English questions is a proxy; an estimate of a novice’s ability
to reason about code in an abstract way. Some people describe the
process of acquiring this abstract reasoning skill as a process of
acquiring programming plans, often called “schemas”. See chapter
4 of Sorva’s thesis for a review of schemas in a programming
context [31]. As Sorva expresses it, “An introductory course starts
the novice on a long road of schema-building” (page 35). While I
do not subscribe to all aspects of schemas as an explanation of
human reasoning (more on that below), the schema concept is a
useful shorthand in the next paragraph.

A novice programmer who is primarily pre-operational has not
yet acquired many programming schemas, so such a novice relies
heavily on their tracing skill to reason about code. As the novice
learns, the novice can use newly acquired schemas to reason about
code. However, the novice still needs to rely on tracing when the
novice’s existing schemas are not applicable. Furthermore, a newly
acquired schema may be incomplete, vague, or even buggy, so
tracing helps to overcome the inadequacies of newly acquired
schema. In the case of a buggy schema, tracing helps the
debugging. Also, tracing can be used to fill in the gaps when two
or more schemas are combined. As the novice develops a larger set
of precise and bug-free schemas, the novice’s reliance on tracing
decreases – in terms of overlapping waves, the pre-operational
wave falls while the concrete operational wave rises. Eventually,
the novice becomes primarily concrete operational, and reasons
mostly via schemas.

8.2 Non-Computational Models of Learning
Earlier in this paper, I invoked Maslow's hammer [22] when
describing how the pre-operational programmer relies on tracing
code. The teachers of novice programmers are not immune from
Maslow's hammer – when reasoning about human thinking and
learning, computing educators are overly reliant on the computer
program as a metaphor, which is often referred to as the
“Information Processing Model”.

Schemas are a computational metaphor. The concept is useful
but limited. Just as a Buddhists asks, “What is the sound of one
hand clapping?” I ask, “What is the sound of half a schema
programming?”. Schemas are a “just so” story, like “How the
Elephant Got It’s Trunk” [13] (Answer: its nose was stretched by a
crocodile). To say that a student accessed a programming schema
is no better an explanation than saying that the programmer was
inspired by god.

Back in the early to mid-1980s, long before I worked in
computing education, I worked in good old fashioned Artificial
Intelligence (GOFAI) [10]. That is, in the early to mid-1980s, I
worked in symbolic AI (not neural networks). I am especially

struck by the similarity between GOFAI approaches to writing
automatic planning programs and the 1980s work by Soloway, on
explaining how novices write programs, in terms of plans and plan
merging [30]. I eventually grew disenchanted with GOFAI and
with it the computer metaphor for human thinking, especially after
I read a book by the philosopher Hubert Dreyfus [7]. It was Dreyfus
who prepared my mind to accept non-computational descriptions
of thinking and learning, such as Piaget’s description.

I suspect that the non-computational nature of Piaget’s theories
is part of the reason why I sometimes encounter resistance to my
neo-Piagetian three stage model. It is the instinct of computer
scientists to expect models of thinking and learning to be
computational models.

8.3 The Conscious Decision to do Research
I am fond of the play “Life of Galileo”, by Bertolt Brecht. I am
especially amused by the scene where Galileo tries to persuade a
priest, who subscribes to Aristotle’s theories, to look through a
telescope and see with his own eyes heavenly wonders that are
contrary to Aristotle. The priest declines, as he does not see the
point of looking through the telescope. Besides, the priest argues,
could not what Galileo claims to see be an illusion caused by the
telescope itself? I have seen two productions of the play, and in
both productions the audience laughs loudly at the priest. The truth
is, however, that we should be laughing at ourselves, for we all have
more in common with the priest than with Galileo. It is not natural
for humans to think as scientists. We are prone to confirmation bias.
That is, we place too much emphasis on events that confirm our
existing beliefs and too little emphasis on events that are contrary
to our existing beliefs.

For me, a particularly telling indication that it is not natural for
humans to think scientifically is that, while academics bring a
scientific mentality to bear in their research, few academics bring a
scientific mentality to their teaching. As I alluded to in the
introduction of this paper, at any meeting of academics where the
topic is teaching, you will hear academics articulate
unsubstantiated intuitions, and relate unconfirmed, biased
anecdotes.

There is a popular belief that the first step to overcoming
alcoholism is for the victim to admit that they have a problem.
Likewise, the first step to becoming a computing education
researcher is to admit that you have not learnt how your students
learn just from teaching your students, nor have you learnt how they
learn from having once been a student yourself.

Parts of this paper are intended as community announcements,
in the same community spirit which sees a canoeist hike back
upriver, to hammer a sign into a tree, “Warning: Rapids Ahead”.
Being a computing education researcher is hard. While you abstain
from intuition and anecdote, others will not. At meetings of peers
to discuss teaching, you will sometimes be the only sober person in
the room. Like the priest in Brecht’s play, your colleagues will
decline to look through your telescope. Like the priest in Brecht’s
play, your colleagues will argue that what you claim to see is an
illusion caused by the lens through which you look. Being a
computing education researcher is hard.

CSERC '20, October 2020 R. Lister

8.4 The Importance of a Research Program
When I look at the published research in computing education, I
see many authors who, year-by-year, flit from topic to topic. Now,
every computing education researcher is free to do that, and some
have done excellent work while doing that, but I think our research
community as a whole has too few people who are doggedly
working on the same research topic, year-after-year. There is an old
saying, that an academic is someone who learns more and more
about less and less until they know almost everything about almost
nothing. As I reflect on my years of studying novice programmers,
I am proud that I now know almost nothing.

In ecology, there is the concept of plant succession. For
example, the first plants to occupy bare earth are weeds which,
having provided suitable pre-conditions, are succeeded by shrubs,
which in turn are succeeded by saplings. Eventually, after
generations of successions, there is a mature forest. The research I
have described in this paper also exhibits a succession. I think it is
fair to say, with admiration and not unkindness, that the McCracken
group pioneered the bare earth. Starting with the Leeds Group, and
thus far culminating in Donna Teague’s thesis, there has been a
steady succession that has moved us toward a paradigm, with
empirical methods and a neo-Piagetian theoretical framework. I
certainly would not say that we have reached the point of being a
mature forest, but I do hope that we are at least out of the weeds.

8.5 Developmental Epistemology
Piaget used the term “Genetic Epistemology” to describe his work
(or at least his translators used that term), but the contemporary
understanding of “genetics” often leads to confusion. The
expression “the genesis of knowledge” better expresses to the
contemporary reader what Piaget intended. To avoid the confusion
from using “genetic”, I prefer to use the term “Developmental
Epistemology”. Developmental Epistemology differs from
developmental psychology in that the former emphasizes the
knowledge of a specific domain, while the latter emphasizes
aspects of learning that transcend knowledge domains.

If we are all constructivists now, then Developmental
Epistemology should be a central research area of every discipline.
Piaget said, "there exists no structure without a construction". If
computing academics aspire to teach a large percentage of the total
student population, then we need to understand how those students
can efficiently construct our body of knowledge in their own minds.

9. A TEACHING EXAMPLE
In 2014, a new head of school returned me to teaching the
introductory programming subject. If the proof of the pudding is in
the eating, then the proof of education research is in the teaching,
so my return to teaching introductory programming gave me the
opportunity to find out if my three-stage model was of any use.

In this section of the paper, I will provide one example of how I
now teach iterative processes on arrays in a way more consistent
with my three-stage model. Aspects of my teaching were also
influenced by a paper by Walter Milner [24].

9.1 Pre-Requisite Knowledge and Skills
Page limits do not allow me to provide every detail, so in the
example to follow, I shall assume that students already understand
Sequence, Selection and Assignment. I have described aspects of
how I teach those topics in an earlier paper [20]. Also, page limits
prevent me from providing a description of how I teach
methods/functions/procedures, which is a difficult concept for
many novice programmers, especially the use of parameters.

9.2 Arrays Early
I introduce arrays in week 2. Here is the first piece of Java code
using arrays that I discuss with the students:

int [] a = {5, 7};
a[0] = 3;

In week 2, I only use array subscripts that are constants. I have
found that students have no more difficulty understanding arrays
with constant subscripts than they do with understanding scalar
variables. In weeks 2 and 3, I illustrate arrays with code such as the
following, which shifts the elements of an array one place to the
left, with the leftmost element rotating to the rightmost position:

temp = a[0];
a[0] = a[1];
a[1] = a[2];
a[2] = temp;

9.3 CountElement 1 (constant subscripts)
I now illustrate my method of teaching iterative processes on arrays
via a method countElement, which counts the number of times
a given value occurs in an array called “list”. The code I show
below is Java, but the programming language is not important.

Figure 5 shows the first version of countElement presented
to students. The code uses constant subscripts. The array “list”
must have exactly four elements. Figure 5 includes a trace table for
students to complete. Students are required to trace this code,
sometimes with several sets of given initial values.

Introducing arrays with constant subscripts familiarizes students
with basic array concepts before they are introduced to variables as
subscripts. When the students eventually move to using variable as
subscripts, their prior experience with constant subscripts reduces
the danger that students will confuse the position in an array with
the value stored at that position.

9.4 CountElement 2 (variables as subscripts)
I then introduce a version of countElement that still only sorts
arrays of size 4 but uses variables as subscripts. Figure 6 shows the
code and trace table given to students. With this new version (and
also with subsequent versions) students may regress to the pre-
tracing/sensorimotor stage when they first encounter variables as
subscripts. After coming to understand variables as subscripts,
students rise again to the same stage they attained when working
with constant subscripts.

On the Cognitive Development of the Novice Programmer CSERC '20, October 2020

Figure 5: Version 1 of a method “countElement” on a list
containing four elements using constant array subscripts.

Figure 6: Version 2 of a method “countElement” on a list
containing four elements using variable “i” as the array
subscript.

This second version is longer and more complex than the first
version. I justify this version to students in two ways: (1) if we
wanted to increase the size of the array on which countElement
could operate, this second version merely requires us to copy-and-
paste some lines, without any edits to the lines added, (2) I simply
confess that the real purpose of this version of countElement is
to make the next version easier to understand.

9.5 CountElement Versions 3 and 4 (loops)
The third version of countElement uses a loop. Initially, the
loop still only sorts arrays of size 4:

 for (int i=0 ; i < 4 ; ++i)
 if (list[i] == val) ++count;

The above code leads to the final version, which works on an array
of any length, by replacing the 4 with list.length.

9.6 Thirteen Examples for Listof4 / ListOfN
A common failing in the teaching of programming is that students
are required to write original code before they have been shown
enough examples from which to generalize. A rule-of-thumb is that
students require seven examples before they begin to generalize.
(The number 7 here is not to be confused with the 7 plus or minus
2 commonly associated with the capacity of short-term memory.)
While the rule-of-thumb is not derived from Piagetian theory, it
appears consistent with Piagetian theory. A student reasoning
primarily at the concrete operational stage may only need one or
two examples. However, a student reasoning primarily at the pre-
operational stage will probably need several more examples.

The countElement method described above is one of 13
methods I teach as part of introducing students to iterative
processes on arrays, with all 13 methods taught the same way as
countElement:

1. copyList: copies one list to another
2. countElement: as described above in this paper
3. findUnSorted: returns the first position occupied by a

given value, or -1 if it is not found
4. insertFirst: inserts a new value in the first position. The

other values are pushed up one place, and the value that was
previously last is lost.

5. insertLast: inserts a new value in the final position. The
other values are pushed down one place, and the value that
was previously first is lost.

6. minVal: returns the minimum value
7. minPos: returns the position of the minimum value
8. printList: outputs the entire list
9. replaceAll: replaces all occurrences of a given value with

a new value
10. replaceOnce: replaces the first occurrence of a given value

with a new value
11. reverseList: reverses the order of the values
12. sumList: returns the sum of the elements of the list
13. toString: returns all the values as a single String.

9.7 The Keller Plan
For 70 of the 100 points that determine a student’s grade, I have
created a self-paced “Keller Plan” [12]. For the purposes of this
paper, the essential element of a Keller Plan that the reader needs
to understand is that the knowledge to be learnt is broken into a
sequence of units, and a student must pass a test on each unit before
that student is allowed to move on to the next unit. The student may
attempt a test for a unit as many times as required.

To earn the 70 points taught via a Keller plan, a student must
pass 30 short lab tests under exam conditions. The 13 methods of
ListOf4 comprise 2 of the 30 lab tests. The remaining 30 points
are earnt via a conventional code writing assignment, which
students may only attempt after completing the 30 lab tests. To pass
the subject, a student need only score 50 of the available 70 from
the Keller Plan. However, students who intend to go on to further
study of programing are advised to complete the full 70 points.

CSERC '20, October 2020 R. Lister

The 30 lab tests are graded, automatically by computer, as either
“pass” or “fail” – there is no intermediate result. To achieve a pass,
the student’s code must pass all test cases put to the student’s code
by the automatic system.

Since the students may repeat a lab test as many times as they
need, the lab tests are not presented as a previously unseen code
writing problem. On the contrary, the students are given a model
solution to each lab test before they make their first attempt. Many
readers will be troubled that the 30 lab tests do not require students
to write code of their own devising, with the fear that students who
pass the 30 lab tests have merely engaged in rote learning and may
not understand the material they have passed. I have three
responses to that criticism:
 Empirical data supports my use of a Keller plan. The

programming class that follows my programming class uses a
conventional approach to teaching programming and has not
been altered to accommodate my approach to teaching. In that
following class, there is no statistically significant difference in
the failure rates between those students who completed all 30 lab
tests but who did not attempt the code writing assignment (i.e.,
achieved exactly 70 points) and those students who did attempt
the code writing assignment and scored a total of 85 or higher.

 To believe that having students reproduce code inevitably leads
to memorization without understanding is to confuse rote
learning with “meaningful learning” [1]. Consider the 13
methods listed above, which comprise 2 of the 30 lab tests. It
certainly may be possible to memorize the 6-7 methods that
comprise each of those lab tests, but I try to persuade my students
that it is actually easier to understand the methods rather than
learn them by rote, since one small error results in a rote-learner
failing the lab test and having to redo the whole test. The subtle
differences between some methods, such as “minVal” and
“minPos” or “replaceAll” and “replaceOnce” make
rote learning difficult.

 Having students write their own code does not necessarily result
in a student understanding their own code, especially when
passing grades are given to students whose code did not even
approximate the functionality described in the specification.
Recall the student quoted earlier, who described how to achieve
a pass by “making the answer look correct”.

9.8 Reflections on Teaching
The above example of countElement illustrates how I teach all
13 methods that perform iterative processes on arrays. Each method
is introduced by having students trace code. I then generalize from
the (possibly multiple) traces the students have done, to build a
stage 3 understanding (i.e., a concrete operational understanding)
of how the code works for all possible inputs.

Piaget’s crucial observation about children was that they do not
simply know less than adults, but that children think differently
from adults. To incorporate Piaget’s crucial observation into neo-
Piagetian theory and applying it to programming leads to the
following: the novice programmer does not only know less than the
accomplished programmer, but the novice programmer thinks
differently from the experienced programmer. However, teachers

and textbooks typically describe code in terms that are only
understood by novices at the third stage, the post-tracing/concrete
operational stage.

A second source of failure of traditional approaches is the lack
of recognition of the importance of code tracing. Many students
spend a long time in the pre-operational stage, and transition only
slowly to the concrete operational stage.

Tracing is a tedious, error-prone process. It is therefore not
surprising that many novice programmers prefer to not trace. If
necessary, novices at the sensorimotor stage should be forced to
trace; that is how the sensorimotor novice learns. However, novices
who have reached the concrete operational stage can reason about
code without needing to trace and may even express disdain for
tracing [6]. Those students should not be forced to trace, at least not
until their nascent concrete operational skills have failed them.

In some of my earlier papers, I have proposed that the aim of
introductory programming courses was to get students to the
concrete operational stage. Since then, I have revised my thinking.
At university, the higher achieving students may be concrete
operational at the end of the first semester of programing. However,
I suspect most students who just manage to pass an introductory
programming course are pre-operational.

If there is any validity to the widely held intuition that the
distribution of student grades is bimodal, then perhaps it is an
artifact of the grading – if an exam requires a great deal of concrete
operational reasoning (and the students’ answers are graded
accordingly), then students will divide into those who can reason
that way, and those who are yet to reach that stage.

There has been some interesting work by others on related, but
different, teaching approaches [11, 28, 39]. As I have not yet given
those papers the thought deserved, I will refrain from commenting
here, but instead merely recommend those papers to the reader.

9.9 The Simple View of Programming?
The “Simple View of Reading” [40-43] is a theory of how children
learn to read natural language, in which it is argued that learning to
read requires mastery of two skills: phonetic decoding and the
ability to understand a story when it is read to them. I see a
similarity (or at least an analogy) between the Simple View of
Reading and how the combination of tracing skill and explaining
skill leads to skill in writing programs, as illustrated in Figure 7.

Figure 7: The upper portion of the model from Lopez et al.
(2008).

On the Cognitive Development of the Novice Programmer CSERC '20, October 2020

The reader might object to the connection I am making between

the Simple View of Reading and code writing – reading and writing
are different activities. While I concede that point when it comes to
the writing of complex code, I believe that there is a close
connection between reading programs and writing programs for the
novice programmer, at least in the first six months. Most novices at
that early stage cannot write programs using the five-step problem
solving process described by McCracken et al. Instead, writing
code is an iterative two-step process, involving conjecture and
justification. In the first step, the novice writes code that is a
conjecture about what the code should be, while in the second step
the novice uses tracing and explaining to establish whether or not
the code actually does what the novice wants. Thus, for the early
novice, reading code is an important component, perhaps the
dominant component, of writing code. That is why I believe I am
justified in making a connection with the Simple View of Reading.
If, however, the reader is unconvinced by this paragraph’s
argument, they might at least consider the Simple View of Reading
to be a useful analogy.

The connection with the Simple View of Reading suggests that
predicting code writing ability via the linear combination of tracing
and explaining is not strictly correct and is an artifact of the analysis
method. Instead, the Simple View of Reading suggests that, for
programming, the combination of tracing and explaining is a
product, not a sum.

Unfortunately, making this connection to the Simple View of
Reading leads to some pessimism. Among the people who study
how children learn to read, there has for decades been a “reading
war” (at least in the English-speaking world). On one side of the
battle are the people who argue for the Simple View of Reading, or
at least hold positions similar to it. On the other side are the people
who argue for the “whole language” approach, which I will not
describe here. If the people who study how children learn to read
have been at war for decades, then there is little optimism that the
people who teach computer programming will resolve their
differences any time soon, given our community’s penchant for
arguing from intuition rather than research.

9.10 Are Tracing and Explaining All There Is?
The above speculation concerning a Simple View of Programming
may give the false impression that I believe there is nothing more
to competence in code writing than possessing the skills of tracing
and explaining. As I enumerated earlier in this paper, McCracken
et al. describe problem-solving as a five-step process: (1) Abstract
the problem from its description, (2) Generate sub-problems, (3)
Transform sub-problems into sub-solutions, (4) Re-compose, and
(5) Evaluate and iterate. Clearly, those five steps involve skill in
addition to tracing and explaining. I merely believe that students
are not ready to begin learning those five-steps until at least their
second semester of programming, after first acquiring the
rudimentary coding skill that follows from learning tracing and
explaining. In the literature on reading natural language, some
authors advocate that children first need to pass through a phase of
“learning to read” before they can proceed to “reading to learn”.

Similarly, I advocate that novice programmers need to pass through
a phase of “learning to code” before they can proceed to “coding to
learn” (i.e., learning problem-solving). I merely speculate that
tracing and explaining are the most important skills, perhaps the
only skills, required in that first “learning to code” phase.

The above speculation concerning a Simple View of
Programming may give another false impression; that I believe the
first “learning to code” phase should be a dry approach that
focusses entirely upon code tracing and explaining and eschews
code-writing. On the contrary, I believe the sentiment expressed in
the first two pages of Lockhart’s lament, about the traditional dry
teaching of mathematics [44], applies equally to the teaching of
programming – students should enjoy the first phase and they
should write code. However, teachers should lower their
expectations of how successful students will be at writing code in
this first phase. Instead, teachers should use the student’s clumsy
attempts at code writing as an opportunity to motivate the teaching
of tracing and explaining. Getting the balance right between code-
writing and the other skills is part of the art of teaching. While it is
true that students can be motivated by writing code, it is equally
true that students can be de-motivated when they fail to succeed at
code-writing. Explicitly teaching tracing and explaining will lead
to a happier code-writing experience. Successfully teaching in the
“learning to code” phase is not about teaching some skills to the
exclusion of all others. Rather, it is about getting the balance right.
Currently, there is an imbalance, with an over emphasis on code-
writing.

10. CONCLUSION
I recently retired from my university appointment. What research I
may do in the future remains to be seen, so I took the opportunity
of this keynote to tell the story of my education research career. My
apologies to the reader if telling my story seems self-indulgent, but
humans learn best from stories. For tens of thousands of years,
human have gathered around campfires and passed on knowledge
through stories. For example, the aborigines of arid Australia tell
creation myths that are entertaining and sometimes whimsical but
embedded in the stories is knowledge for the children on where they
can find water when, as adults, they eventually visit unfamiliar
land. Through telling my own creation myth, I hope I have helped
the reader to someday find water.

ACKNOWLEDGMENTS
This paper is an account of research carried out over twenty years. I thank
all my education research collaborators over that time. I especially thank
the people who changed the direction of my education research career: (0)
Judy Kay, who had a very early effect on my teaching mindset, (1) my UTS
colleague Jenny Edwards, who told me about Bootstrap (where would I be
today had Jenny not knocked on my office door that day?), (2) my Bootstrap
mentors Sally Fincher, Marian Petre and Josh Tenenberg, (3) my Leeds
Working Group coauthors, especially Sue Fitzgerald, who among other
things recruited half the group’s members, (4) my BRACElet co-leaders
Tony Clear and Jacqueline Whalley, especially Tony, who both instigated
and sustained the project (5) Mike Lopez for his pivotal analysis of some
BRACElet data, (6) my former Ph.D. student, “Doctor Donna” “Jean”
Kingsbury (formerly Donna Teague), who accepted the risk of trusting my

CSERC '20, October 2020 R. Lister

early speculations on neo-Piagetian theory and who, through her think-
aloud studies, developed those ideas substantially, and (6) Donna’s think
aloud subjects, most of all the initially baffling but eventually enlightening
and inspiring “Donald”, whoever he may be. To Beth Simon: working with
you was fun and I wish we had done more work together, but we’ll always
have Pasadena. I also thank my partner, Ilona Box, for her support, her
patience, her ideas, and her companionship over this long and sometimes
bumpy journey. Finally, I thank Connie, Sam and Lulu.

REFERENCES
[1] D. P. Ausubel. 2000. The Acquisition and Retention of Knowledge: A Cognitive

View. Kluwer Academic Publishers, ISBN 9780792365051.
[2] John B Biggs and Kevin F. Collis. 1982. Evaluating the quality of learning: the

SOLO taxonomy (structure of the observed learning outcome). Educational
psychology series. New York: Academic Press. ISBN 0120975505.

[3] Bootstrapping. 2002. Bootstrapping Research in Computer Science Education.
2002. http://depts.washington.edu/bootstrp/ (accessed 2020).

[4] R. Brooks .1983. Towards a Theory of the Comprehension of Computer
Programs. International Journal of Man-Machine Studies. Volume 18, Issue 6,
June 1983, 543-554.

[5] T. Clear, J. Whalley, P. Robbins, A. Philpott, A. Eckerdal, M. Laakso, & R.
Lister. 2011. Report on the final BRACElet workshop. Journal of Applied
Computing and Information Technology, 15(1). Retrieved September 28, 2020
from http://citrenz.ac.nz/jacit/JACIT1501/2011Clear_BRACElet.html

[6] Kathryn Cunningham, Rahul Agrawal Bejarano, Mark Guzdial, Barbara Ericson.
2020. "I’m not a computer”: How identity informs value and expectancy during
a programming activity. International Conference of the Learning Sciences
(ICLS), Nashville, pp. 705-708.

[7] Hubert Dreyfus (1992) What Computers Still Can't Do: A Critique of Artificial
Reason. MIT Press. ISBN 978-0262540674.

[8] Sally Fincher, Raymond Lister, Tony Clear, Anthony Robins, Josh Tenenberg,
Marian Petre (2005) Multi-institutional, multi-national studies in CSEd Research:
some design considerations and trade-offs. Proceedings of the International
Computing Education Research Workshop, Seattle, USA. pp. 111-121.
http://doi.acm.org/10.1145/1089786.1089797

[9] David Ginat. 2007. Hasty Design, Futile Patching and the Elaboration of Rigor.
12th Annual Conference on Innovation and Technology in Computer Science
Education (ITiCSE’07), Scotland. pp. 161-165.
http://dx.doi.org/10.1145/1268784.1268832

[10] John Haugeland. 1985. Artificial Intelligence: The Very Idea. MIT Press. ISBN
978-0262580953.

[11] Cruz Izu, Carsten Schulte, Ashish Aggarwal, Quintin Cutts, Rodrigo Duran,
Mirela Gutica, Birte Heinemann, Eileen Kraemer, Violetta Lonati, Claudio
Mirolo, and Renske Weeda. 2019. Fostering Program Comprehension in Novice
Programmers - Learning Activities and Learning Trajectories. In 2019 ITiCSE
Working Group Reports (ITiCSE-WGR ’19), July 15–17, 2019, Aberdeen,
Scotland UK. ACM, New York, NY, USA, 26 pages.
https://doi.org/10.1145/3344429.3372501

[12] F. S. Keller (1968) Goodbye teacher. Journal of Applied Behavior Analysis, 1
(Spring), pp. 79-89.

[13] Rudyard Kipling (1902) Just So Stories: The Original 1902 Edition with
Illustrations by Rudyard Kipling. Suzeteo Enterprises (2019). ISBN 978-
1645940166

[14] Raymond Lister, Elizabeth S. Adams, Sue C. Fitzgerald, William Fone, John
Hamer, Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate E
Sanders, Otto Seppälä, Beth Simon, Lynda A Thomas (2004). A Multi-National
Study of Reading and Tracing Skills in Novice Programmers. SIGSCE Bulletin,
36(4), 119-150. https://dl.acm.org/doi/10.1145/1041624.1041673

[15] Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L. Whalley, Christine
Prasad (2006) Not seeing the forest for the trees: novice programmers and the
SOLO taxonomy. ACM SIGCSE Bulletin 38 (3), 118-122.
https://dl.acm.org/doi/10.1145/1140124.1140157

[16] Raymond Lister, Colin Fidge, Donna Teague (2009) Further evidence of a
relationship between explaining, tracing and writing skills in introductory
programming. ACM SIGCSE Bulletin 41 (3), 161-165.
https://dl.acm.org/doi/10.1145/1562877.1562930

[17] Raymond Lister, Tony Clear, Simon, Dennis J. Bouvier, Paul Carter, Anna
Eckerdal, Jana Jackova, Mike Lopez, Robert McCartney, Phil Robbins, Otto
Seppälä, Errol Thompson (2009) Naturally occurring data as research instrument:
analyzing examination responses to study the novice programmer. SIGCSE
Bulletin, Vol. 41, No. 4 (December), pp. 156-173.
https://dl.acm.org/doi/10.1145/1709424.1709460

[18] Raymond Lister and Jenny Edwards (2010) Teaching Novice Computer
Programmers: bringing the scholarly approach to Australia. Australian Learning
and Teaching Council. 62 pages. ISBN: 1-921856-02-5 https://altf.org/wp-

content/uploads/2016/08/Edwards_J-Lister_R_Associate-Fellowship_Final-
Report-2010.pdf

[19] Raymond Lister (2011). Concrete and Other Neo-Piagetian Forms of Reasoning
in the Novice Programmer. Thirteenth Australasian Computer Education
Conference, Perth. https://dl.acm.org/doi/10.5555/2459936.2459938

[20] Raymond Lister (2016) Toward a Developmental Epistemology of Computer
Programming. Keynote paper/address at Workshop in Primary and Secondary
Computing Education (WiPSCE), Münster, Germany, 13 - 15 Oct 2016. pp. 5-16.
https://doi.org/10.1145/2978249.2978251

[21] Mike Lopez, Jacqueline L. Whalley, Phil Robbins, Raymond Lister (2008)
Relationships between reading, tracing and writing skills in introductory
programming. Fourth International Workshop on Computing Education
Research (Sydney, Australia, September 6 - 7). ICER '08. ACM, New York, NY,
101-112. https://dl.acm.org/doi/10.1145/1404520.1404531

[22] Abraham H. Maslow (1966). The Psychology of Science: A Reconnaissance.
Harper Collins. ISBN 978-0060341459.

[23] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne
Hagan, Yifat Ben-David Kolikant, Cary Laxer, Lynda A Thomas, Ian Utting,
Tadeusz Wilusz (2001) A Multi-National, Multi-Institutional Study of
Assessment of Programming Skills of First-year CS Students. SIGCSE Bulletin,
33(4):125-140. https://dl.acm.org/doi/10.1145/572133.572137

[24] Walter Milner (2008) A Loop is a Compression. 20th Annual Workshop of the
Psychology of Programming Interest Group, Lancaster.
https://www.ppig.org/files/2008-PPIG-20th-milner.pdf

[25] S. Morra, C. Gobbo, Z. Marini, R. Sheese. (2008) Cognitive development: neo-
Piagetian perspectives. New York: Lawrence Erlbaum Associates. ISBN 978-
0805863505.

[26] Roy Pea. (1986) Language-Independent Conceptual "Bugs" in Novice
Programming. J. Educational Computing Research. Vol. 2(1). pp. 25-36.

[27] M.A. Rubio (2020) Automatic Categorization of Introductory Programming
Students. In: Martínez Álvarez F., Troncoso Lora A., Sáez Muñoz J., Quintián
H., Corchado E. (eds) International Joint Conference: 12th International
Conference on Computational Intelligence in Security for Information Systems
(CISIS 2019) and 10th International Conference on European Transnational
Education (ICEUTE 2019). CISIS 2019, ICEUTE 2019. Advances in Intelligent
Systems and Computing, vol 951. Springer, Cham. https://doi.org/10.1007/978-3-
030-20005-3_31

[28] Sue Sentance, Jane Waite, and Maria Kallia. 2019. Teachers’ Experiences of
using PRIMM to Teach Programming in School. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education (SIGCSE ’19), February
27-March 2, 2019, Minneapolis, MN, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3287324.3287477

[29] Siegler, R. S. (1996). Emerging Minds. Oxford, Oxford University Press. ISBN
978-0195126631.

[30] Elliot Soloway (1986) Learning to Program = Learning to Construct Mechanisms
and Explanations. Comm. ACM 29, 9 (September 1986), 850-858.
https://doi.org/10.1145/6592.6594

[31] Juha Sorva. 2012. Visual program simulation in introductory programming
education. (Doctoral dissertation). Aalto University, Espoo, Finland. ISBN
(printed) 978-952-60-4625-9. https://aaltodoc.aalto.fi/handle/123456789/3534

[32] Donna Teague. 2015. Neo-Piagetian Theory and the Novice Programmer. Ph.D
Thesis. Queensland University of Technology.
http://eprints.qut.edu.au/86690/1/Donna_Teague_Thesis.pdf

[33] Lynda Thomas, Mark Ratcliffe, Benjy Thomasson. 2004 Scaffolding with object
diagrams in first year programming classes: some unexpected results. SIGCSE
Bull. 36, 1, pp 250-254. http://doi.acm.org/10.1145/1028174.971390

[34] Des Traynor, Susan Bergin, J. Paul Gibson. 2006. Automated assessment in CS1.
8th Australian Conference on Computing Education (ACE), Hobart, Australia,
ACM International Conference Proceeding Series, 165: 223-228.
http://crpit.com/confpapers/CRPITV52Traynor.pdf

[35] Anne Venables, Grace Tan, Raymond Lister. 2009. A Closer Look at Tracing,
Explaining and Code Writing Skills in the Novice Programmer. International
Computing Education Research Workshop (ICER), Berkeley, California, August
10-11, 117-128. http://doi.acm.org/10.1145/1584322.1584336

[36] Vygotsky, Lev (1978). Mind in Society. London: Harvard University Press.
[37] Jacqueline L. Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil

Robbins Phil, P K Ajith Kumar, Christine Prasad. 2006. An Australasian study of
reading and comprehension skills in novice programmers, using the bloom and
SOLO taxonomies. Proceedings of the 8th Australasian Conference on
Computing Education, 243–252.
 https://dl.acm.org/doi/pdf/10.5555/1151869.1151901

[38] Jacqueline L. Whalley, Tony Clear & Raymond Lister. 2007. The Many Ways of
the BRACElet Project. Bulletin of Applied Computing and Information
Technology 5, 1 (June).
https://opus.lib.uts.edu.au/bitstream/10453/5747/1/2006009570.pdf

[39] Benjamin Xie, Dastyni Loksa, Greg L. Nelson, Matthew J. Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, Andrew J. Ko. 2019.
A theory of instruction for introductory programming skills, Computer Science

On the Cognitive Development of the Novice Programmer CSERC '20, October 2020

Education,
https://www.tandfonline.com/doi/full/10.1080/08993408.2019.1565235

[40] Philip Gough and William Tunmer (1986) Decoding, Reading, and Reading
Disability Remedial and Special Education 7(1), 6-10.

[41] Wesley Hoover and Philip Gough (1990) The Simple View of Reading. Reading
and Writing 2, 127-160. https://doi.org/10.1007/BF00401799.

[42] Baker, S.K., Fien, F., Nelson, N. J., Petscher, Y., Sayko, S., & Turtura, J. (2017).
Learning to read: “The simple view of reading”. Washington, DC: U.S.
Department of Education, Office of Elementary and Secondary Education, Office
of Special Education Programs, National Center on Improving Literacy.
http://improvingliteracy.org (retrieved December 2020)

[43] Linda Farrell, Michael Hunter, Marcia Davidson, and Tina Osenga. The Simple
View of Reading. https://www.readingrockets.org/article/simple-view-reading
(retrieved December 2020)

[44] https://www.maa.org/external_archive/devlin/LockhartsLament.pdf (retrieved
December 2020)

