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Abstract: In this paper, we consider two species competing for a limiting substrate such that each
species impedes the growth of the other one (Mutual inhibition) in presence of a virus inhibiting one
bacterial species. A system of ordinary differential equations is proposed as a mathematical model
for this competition. A detailed local qualitative analysis of the system is carried out. We proved
that for a general nonlinear growth rates, the Competitive Exclusion Principle still valid, that at least
one species goes extinct. For some cases where we have two locally stable equilibrium points, initial
species concentrations are important in determining which is the winning species. Obtained results
were confirmed by some numerical simulations using Matlab software.
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1. Introduction

A chemostat is a special type of biological continuous stirred tank reactor in which microorganisms
(Phytoplankton, Yeasts ...) are placed in the presence of a limiting nutrient and other elements in non-
limiting quantity. We can thus, from the variations of the limiting nutrient, know the influence of the
latter on the cultivated population. The chemostat is therefore a model of a controlled ecosystem in
which we can quantify precisely the relationships between a nutrient and an organism [1]. In ecology,
it refers to an artificial lake for bacterial continuous culture where we can analyse inter-specific inter-
actions between bacteria. A huge number of mathematical studies were published (see, for example,
the recent monograph by Smith and Waltman [1] and the references therein). The most used mathe-
matical system modelling the bacterial competition for a single obligate limiting substrate predicts the
competitive exclusion principle [2–4], that at least one competitor bacteria loses the competition [1].
Hsu et al. [5] are among the first, in 1977, to study the problem of competition in the chemostat. They
consider n populations in competition for the same nutrient, and show that the competitive exclusion is
verified: that of the competitors who uses the better the substrate in small quantity survives, the others
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are extinguished. In the case of nonmonotonic growth functions, Butler and Wolkowicz [6] show in
1985 that the competitive exclusion principle is also verified. In 1992, Wolkowicz and Lu [7] use Lya-
punov functions to show that, again in the case of general shape-growth functions, but with different
mortality rates. For each species, the competitive exclusion principle is further checked (the resulting
equilibrium being globally stable). Li [8] has recently extended this result to an even wider class of
growth functions. Finally, Smith and Waltman [9] verify in 1994 this principle for the model of Droop.
This theoretical result was confirmed by Hansen and Hubbell, experimentally [10].

In many cases, the competing bacteria can produce a plethora of secondary metabolites to increase
their competitiveness against other bacteria. For example, the production of Nisin by a number of
strains of Lactococcus lactis to exert a high antibacterial activity against Gram-positive bacteria has
been widely studied [11, 12]. This inter-specific interaction is classified as an inhibition relationship.
In the same time, viruses are the most abundant and diverse form of life on Earth. They can infect all
types of organisms (Vertebrates, Invertebrates, Plants, Fungi, Bacteria, Archaea). Viruses that infect
bacteria are called bacteriophages or phages.

In this work, we extend the chemostat model [1] to general growth rates taking into account the
reversible inhibition between species (mutual inhibition, i.e., each species impedes the growth of the
other.) as in [2, 13–17] but in presence of a virus associated to the first species. As our study is
qualitative, we suppose that the two species are feeding on a nonreproducing limiting substrate that
is essential for both species. We suppose also that the chemostat is well-mixed so that environmental
conditions are homogenous. We proved that with general nonlinear response functions, the mutual
inhibitory relationship in presence of two species confirms the competitive exclusion principle. It is
proved that at least one species goes extinct and that for some cases where we have more than one
locally stable equilibrium point, the initial species concentrations are important in determining which
is the winning species (see Figure 6).

The rest of the paper is structured as follows. In Section 2, we proposed a mathematical model
describing two species competing for a limiting substrate with reversible inhibition in presence of
a virus associated to the first species and we recall some useful results of the chemostat theory. In
Section 3, the main results of the local stability analysis are presented. Finally, in Section 4, some
numerical examples were presented for illustrating the obtained results confirming the competitive
exclusion principle.

2. Mathematical model

Consider a mathematical system of ordinary differential equations describing two species (x1 and
x2) competing for a limiting substrate (s) with reversible inhibition in presence of a virus (v) associated
to the species x1. We ignore all species-specific death rates and only consider the dilution rate.

ṡ = D(sin − s) − f1(s, x2)x1 − f2(s, x1)x2,

ẋ1 = f1(s, x2)x1 − Dx1 − αvx1,

ẋ2 = f2(s, x1)x2 − Dx2,

v̇ = καvx1 − Dv.

(2.1)

Here sin is the input concentration of substrate into the chemostat. D is the dilution rate and α is the
rate of infection and κ is the production yield of the virus.
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s, x1 x2, v

sin s, x1, x2, v

Figure 1. A chemostat is a bioreactor to which a limiting substrate (sin) is continuously
added, while culture liquid (s, x1, x2, v) are continuously removed at the same flow rate (D)
[2, 18].

We can see from fourth equation of (2.1) that the condition sin >
D
κα

must be fulfilled in order to
permits the existence of equilibrium points where the species 1 can survive with the virus.

s(t) is the concentration of substrate in the chemostat at time t. xi(t) is the ith species concentration
in the chemostat at time t. v(t) is the virus concentration in the chemostat at time t. fi(s, x j): is the
species growth rate depending on substrate and the concentration of the other species.

For each species, the response function fi : R2
+ → R+, i = 1, 2 is of class C1, and satisfies

A1 f1(0, x2) = 0 and f2(0, x1) = 0, ∀ x1, x2 ∈ R+ ,

A2
∂ f1

∂s
(s, x2) > 0, ∀ (s, x2) ∈ R2

+

∂ f2

∂s
(s, x1) > 0, ∀ (s, x1) ∈ R2

+ .

A3
∂ f1

∂x2
(s, x2) < −κα < 0, ∀ (s, x2) ∈ R2

+,
∂ f2

∂x1
(s, x1) < 0, ∀ (s, x1) ∈ R2

+ .

Hypothesis A1 expresses that the substrate is essential for the bacteria growth; hypothesis A2 reflects
that the growth rate increases with substrate. Hypothesis A3 means that species inhibit each other and
that the species 1 is more sensitive to the other species than to the produced virus.

The system (2.1) plus A1-A3 is not a realistic model for a considered biological system. To be
more realistic, we should introduce two other variables describing intermediair proteins. Each protein
produced by species xi inhibits the growth of species j where i, j = 1, 2 and i , j. In this case the
model will be huge (R6) and then difficult to study.

In El Hajji [2], the author considers two species feeding on limiting substrate in a chemostat con-
sidering a mutual inhibitory relationship between both species. The proposed model is the same as
the one we proposed here but with α = 0 (no virus associated to the first species). It is proved in [2]
that at most one species can survive which confirms the competitive exclusion principle. The author
proved also in the case where there is two equilibrium points locally stable, the initial concentrations
of species have great importance in determination of which species is the winner.

Proposition 1. 1. For every initial condition
(
s(0), x1(0), x2(0), v(0)

)
∈ R4

+, the corresponding solu-
tion admits positive and bounded components and then is definite for all t ≥ 0.
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2. Ω =
{
(s, x1, x2, v) ∈ R4

+ /s + x1 + x2 +
v
κ

= sin
}

is an invariant set and it is an attractor of all
solution of system (2.1).

Proof. 1. The solution components are positive.
If s = 0 then ṡ = Dsin > 0 and if xi = 0 then ẋi = 0 for i = 1, 2. If v = 0 then v̇ = 0.
Next we have to prove the boundedness of solutions of (2.1). By adding all equations of system

(2.1), one obtains, for T (t) = s(t) + x1(t) + x2(t) +
v(t)
κ
− sin, a single equation :

Ṫ (t) = ṡ(t) + ẋ1(t) + ẋ2(t) +
v̇(t)
κ

= D
(
sin − s(t) − x1(t) − x2(t) −

v(t)
κ

)
= −DT (t).

Then T (t) = T (0)e−Dt which means that

s(t) + x1(t) + x2(t) +
v(t)
κ

= sin + (s(0) + x1(0) + x2(0) +
v(0)
κ

) − sin)e−Dt. (2.2)

Since all terms of the sum are positive, then the solution of system (2.1) is bounded.

2. The second point is simply a direct consequence of equality (2.2)
�

3. Local stability analysis

In this section, the equilibria are determined and their local stability properties are established.
Define the parameters x̄1, x̄2, v̄, ¯̄x1, ¯̄x2, x∗2 and v∗ as the following:

• x̄1 the solution of the equation f1(sin − x̄1, 0) = D.

• x̄2 the solution of the equation f2(sin − x̄2, 0) = D.

• v̄ the solution of the equation f1(sin −
D
κα
− v̄, 0) = D + αv̄.

• ( ¯̄x1, ¯̄x2) the solution of the equations f1(sin − ¯̄x1 − ¯̄x2, ¯̄x2) = f2(sin − ¯̄x1 − ¯̄x2, ¯̄x1) = D.

• (x∗2, v
∗) the solution of the equations f1(sin−

D
κα
−x∗2−v∗, x∗2) = D+αv∗ and f2(sin−

D
κα
−x∗2−v∗,

D
κα

) =

D.

Then the system (2.1) admits F0 = (sin, 0, 0, 0), F1 = (sin − x̄1, x̄1, 0, 0), F2 = (sin − x̄2, 0, x̄2, 0), F3 =

(sin −
D
κα
− v̄,

D
κα
, 0, v̄), F4 = (sin − ¯̄x1 − ¯̄x2, ¯̄x1, ¯̄x2, 0) and F∗ = (sin −

D
κα
− x∗2 − v∗,

D
κα
, x∗2, v

∗) as
equilibrium points.

Let D1 = f1(sin, 0), D2 = f2(sin, 0),D3 = f1(sin −
D
κα
, 0),D4 = f1(sin − x̄2, x̄2),D5 = f2(sin − x̄1, x̄1),

D6 = f2(sin−
D
κα
− v̄,

D
κα

),D7 = f1(sin− v̄−
D
κα
, v̄). Note that D7 < D3 < D1,D4 < D1 and D5,D6 < D2.

The conditions of existence of the equilibria are stated in the following lemmas.
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Lemma 1. F0 exists allways. F0 is a saddle point if D < max(D1,D2). It is a stable node if D >

max(D1,D2).

Proof. The proof is given in Appendix 5. �

Lemma 2. The equilibrium point F1 exists if and only if D < D1. If D > max(D3,D5) then F1 is a
stable node however if D < D3 or D3 < D < D5 then F1 is a saddle point.

Proof. The proof is given in Appendix 5. �

Lemma 3. The equilibrium point F2 exists if and only if D < D2. If D > D4 then F2 is a stable node
however if D < D4 then F2 is a saddle point .

Proof. The proof is given in Appendix 5. �

Lemma 4. F3 exists if and only if D < D3. If D5 < D < D3, then F3 is then locally asymptotically
stable. If D < min(D3,D5), then F3 is unstable.

Proof. The proof is given in Appendix 5. �

Lemma 5. The situation D < min(D4,D5) is impossible.

Proof. The proof is given in Appendix 5. �

Lemma 6. An equilibrium F4 exists if and only if max(D4,D5) < D < min(D1,D2). If it exists then F1

and F2 exist and satisfy ¯̄x1 < x̄1 and ¯̄x2 < x̄2. F4 is always a saddle point.

Proof. The proof is given in Appendix 5. �

Lemma 7. F∗ exists if and only if max(D6,D7) < D < min(D2,D3). If it exists then it is always
unstable.

Proof. The proof is given in Appendix 5. �

We summarize the lemmas given above in the following theorem.

Theorem 1. A) If min(D4,D5) < D < max(D4,D5) then

(i) if D5 < D4 then

1. if D5 < D < min(D2,D4,D7) then system (2.1) admits four equilibria F0, F1, F2 and F3.
F3 is a stable node however F0, F1 and F2 are saddle points.

2. if max(D5,D7) < D < min(D3,D4,D6) then system (2.1) admits four equilibria F0, F1, F2

and F3. F3 is a stable node however F0, F1 and F2 are saddle points.
3. if max(D5,D6,D7) < D < min(D2,D3,D4) then system (2.1) admits five equilibria

F0, F1, F2, F3 and F∗. F3 is a stable node however F0, F1, F2 and F∗ are saddle points.
4. if max(D3,D5) < D < min(D2,D4) then system (2.1) admits three equilibria F0, F1 and

F2. F1 is a stable node however F0 and F2 are saddle points.
5. if D2 < D < min(D3,D4) then system (2.1) admits three equilibria F0, F1 and F3. F3 is a

stable node however F0 and F1 are saddle points.
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6. if max(D2,D3) < D < D4 then system (2.1) admits two equilibria F0 and F1. F1 is a
stable node however F0 is a saddle point.

(ii) if D4 < D5 then

1. if D4 < D < min(D3,D5) then system (2.1) admits four equilibria F0, F1, F2 and F3. F2

is a stable node however F0, F1 and F3 are saddle points.
2. if max(D3,D4) < D < min(D1,D5) then system (2.1) admits three equilibria F0, F1 and

F2. F2 is a stable node however F0 and F1 are saddle points.
3. if D1 < D < D5 then system (2.1) admits two equilibria F0 and F2. F2 is a stable node

however F0 is a saddle point.
4. if max(D4,D6,D7) < D < min(D3,D5) then system (2.1) admits five equilibria

F0, F1, F2, F3 and F∗. F2 is a stable node however F0, F1, F3 and F∗ are saddle points.

B) If max(D4,D5) < D < min(D1,D2) then

(i) if max(D4,D5) < D < min(D3,D6) then system (2.1) admits five equilibria F0, F1, F2, F3 and
F4. F2 and F3 are stable nodes however F0, F1 and F4 are saddle points.

(ii) if max(D3,D4,D5) < D < min(D1,D6) then system (2.1) admits four equilibria F0, F1, F2

and F4. F1 and F2 are stable nodes however F0 and F4 are saddle points.

(iii) if max(D4,D5,D6) < D < min(D2,D7) then system (2.1) admits five equilibria F0, F1, F2, F3

and F4. F2 and F3 are stable nodes however F0, F1 and F4 are saddle points.

(iv) if max(D4,D5,D6,D7) < D < min(D2,D3) then system (2.1) admits six equilibria
F0, F1, F2, F3, F4 and F∗. F2 and F3 are stable nodes however F0, F1, F4 and F∗ are saddle
points.

(v) if max(D3,D4,D5,D6) < D < min(D1,D2) then system (2.1) admits four equilibria F0, F1, F2

and F4. F1 is a stable node however F0, F2 and F4 are saddle points.

C) If min(D1,D2) < D < max(D1,D2) then

(i) If D1 < D < D2 then system (2.1) admits two equilibria F0 and F2. F2 is a stable node
however F0 is a saddle point.

(ii) If D2 < D < D1 then

1. if D2 < D < D3 then system (2.1) admits three equilibria F0, F1 and F3. F3 is a stable
node however F0 and F1 are saddle points.

2. if max(D2,D3) < D < D1 then system (2.1) admits two equilibria F0 and F1. F1 is a
stable node however F0 is a saddle point.

D) If max(D1,D2) < D then model (2.1) admits only F0 as equilibrium point. F0 is a stable node.

4. Numerical Simulations

In this section, we validated the obtained results by some numerical simulations on a system that
uses classical Monod growth rates and takes into account the reversible inhibition between species:
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f1(s, x2) =
s

(1 + s)(1 + x2)
, and f2(s, x1) =

s
(2 + s)(1 + x1)

with α = 0.1 and κ = 1.5. One can readily

check that the functional responses satisfy Assumptions A1 to A3.
In Figure 2, if the dilution rate D = 1 satisfying D2 = 0.9 < D1 ≈ 0.95 < D = 1, each solution with

initial condition inside the whole domain converges to the equilibrium F0 from where the extinction of
the two species (point D of Theorem 1).
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Figure 2. Behaviour for D = 1, sin = 18.

In Figure 3, if D = 0.92 which satisfies max(D4 ≈ 0.1,D5 ≈ 0.14,D6 ≈ 0.84,D7 ≈ 0.89) < D2 ≈

0.892 < D = 0.92 < D3 ≈ 0.942 < D1 ≈ 0.943, the solution with initial condition (1.5, 3, 1, 2.5)
converges to the equilibrium F1. This confirms the point C(ii)-1 of Theorem 1. Only species 1 persists
and the competitive exclusion principle is fulfilled.
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Figure 3. Behaviour for D = 0.92, sin = 16.56.

In Figure 4, if D = 0.67 which satisfies max(D4 ≈ 0.09,D5 ≈ 0.05) < D = 0.67 < min(D3 ≈

Mathematical Biosciences and Engineering Volume 18, Issue 4, 3258–3273.



3265

0.92,D6 ≈ 0.79), the solution with initial condition (1.5, 3, 1, 2.5) converges to the equilibrium F3.
This confirms the point B(i) of Theorem 1. The competitive exclusion principle is fulfilled here since
that at least one species goes extinct.
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Figure 4. Behaviour for D = 0.67, sin = 12.06 and an initial condition (1.5, 3, 1, 2.5).

In Figure 5, we use the same values as in Figure 4 but with different initial condition (1.5, 3, 5, 5)
then the solution converges to the equilibrium F2. Again, this confirms the point B(i) of Theorem 1.
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Figure 5. Behaviour for D = 0.67, sin = 12.06 and an initial condition (1.5, 3, 5, 5).

In the case where we have two equilibrium points which are locally stable (Figure 6), the initial
concentrations of species have great importance in determination of which species is the winner. If
the initial concentration is inside the attraction domain of the equilibrium point corresponding to the
persistence of species 1, then species 2 goes extinct and if the initial concentration is inside the attrac-
tion domain of the equilibrium point corresponding to the persistence of species 2, then species 1 goes
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extinct.

Figure 6. Behaviour in the (x1, x2)-plane for D = 0.67, sin = 12.06. The trajectories filling
the whole blue domain are converging to the equilibrium F2 and the trajectories filling the
whole red domain are converging to the equilibrium F3

5. Conclusion

The competitive exclusion principle (CEP) has been widely studied in the scientific literature not
only from a biological point of view but also from a mathematical modeling point of view. Some
experiments were realized by Gause in 1932 on the growth of yeasts and paramecia [19]. It is deduced
that the most competitive species consistently wins the competition. In 1960, this principle became
quite popular in ecology: in fact, the CEP still valid for many kinds of ecosystems [4]. Hsu et al. [5]
are among the first, in 1977, to study the problem of competition in the chemostat. They consider n
populations in competition for the same nutrient, and show that the competitive exclusion is verified:
that of the competitors who uses the better the substrate in small quantity survives, the others are
extinguished. In this paper, we proposed a mathematical model (2.1) describing a reversible inhibition
relationship between two competing bacteria for one resource in presence of a virus associated to the
first species. We locally analysed the system (2.1). We proved that in a continuous reactor and under
nonlinear general functional responses f1 and f2, the competitive exclusion principle is still fulfilled,
that at least one species goes extinct. In the situation where we have two equilibrium points which are
locally stable, initial species concentrations are important in determining which is the winning species.
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Proofs of lemmas

The Jacobian matrix J of system (2.1) on a point (s, x1, x2, v) is given by :

J =



−D − x1
∂ f1

∂s
− x2

∂ f2

∂s
− f1 − x2

∂ f2

∂x1
− f2 − x1

∂ f1

∂x2
0

x1
∂ f1

∂s
f1 − D − α v x1

∂ f1

∂x2
−αx1

x2
∂ f2

∂s
x2
∂ f2

∂x1
f2 − D 0

0 καv 0 καx1 − D


(.1)

Proof of lemma 1

The Jacobian matrix J0 of system (2.1) on F0 is then given by :

J0 =



−D 0 0 0

0 D1 − D 0 0

0 0 D2 − D 0

0 0 0 −D


.

Their eigenvalues are given by λ1 = D1 − D, λ2 = D2 − D and λ3 = λ4 = −D < 0. Therfore, if
D < max(D1,D2) then F0 is a saddle point and if D > max(D1,D2) then F0 is a stable node.

Proof of lemma 2

An equilibrium F1 exists if and only if x̄1 ∈]0, sin[ is a solution of

f1(sin − x̄1, 0) = D. (.2)

Let ψ1(x1) = f1(sin−x1, 0)−D. Since ψ′1(x1) = −
∂ f1

∂s
(sin−x1, 0) < 0, ψ1(0) = D1−D, ψ1(sin) = −D < 0,

equation (.2) admits a positive solution if and only if D < D1. If this condition is satisfied then (.2)
admits a unique solution since the function ψ1(.) is decreasing.

Assume that F1 exists. One has

• If D < D3 then f1(sin − x̄1, 0) = D < D3 = f1(sin −
D
κα
, 0) then x̄1 >

D
κα

.
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• If D > D3 then f1(sin − x̄1, 0) = D > D3 = f1(sin −
D
κα
, 0) then x̄1 <

D
κα

.

The Jacobian matrix J1 of system (2.1) at F1 is given by :

J1 =


−D − x̄1

∂ f1

∂s
−D − f2 − x̄1

∂ f1

∂x2
0

x̄1
∂ f1

∂s
0 x̄1

∂ f1

∂x2
−αx̄1

0 0 f2 − D 0
0 0 0 καx̄1 − D


=


−D − x̄1

∂ f1

∂s
−D − f2 − x̄1

∂ f1

∂x2
0

x̄1
∂ f1

∂s
0 x̄1

∂ f1

∂x2
−αx̄1

0 0 D5 − D 0
0 0 0 καx̄1 − D


.

J1 admits four eigenvalues given by λ1 = −(D−D5) and λ2 = κα
(
x̄1 −

D
κα

)
. The other two eigenvalues

are nonpositive and solution of the polynomial

λ2 + aλ + b = 0

where a = D + x̄1
∂ f1

∂s
> 0 and b = Dx̄1

∂ f1

∂s
> 0. It follows that

• F1 is a saddle point if D < D3.

• F1 is a stable node if D > D3 and D > D5.

• F1 is a saddle point if D > D3 and D < D5.

Proof of lemma 3

An equilibrium F2 exists if and only if x̄2 ∈]0, sin[ is a solution of

f2(sin − x̄2, 0) = D. (.3)

Let ψ2(x2) = f2(sin−x2, 0)−D. Since ψ′2(x2) = −
∂ f2

∂s
(sin− x̄2, 0) < 0, ψ2(0) = D2−D, ψ2(sin) = −D < 0,

equation (.3) admits a positive solution if and only if D < D2. If this condition is satisfied then (.3)
admits a unique solution since the function ψ2(.) is decreasing.

Assume that F2 exists (D < D2). The Jacobian matrix J2 of system (2.1) at F2 is given by :

J2 =


−D − x̄2

∂ f2

∂s
− f1 − x̄2

∂ f2

∂x1
−D 0

0 f1 − D 0 0

x̄2
∂ f2

∂s
x̄2
∂ f2

∂x1
0 0

0 0 0 −D


=


−D − x̄2

∂ f2

∂s
− f1 − x̄2

∂ f2

∂x1
−D 0

0 D4 − D 0 0

x̄2
∂ f2

∂s
x̄2
∂ f2

∂x1
0 0

0 0 0 −D


.

J2 admits four eigenvalues given by λ1 = −(D − D4) and λ2 = −D < 0. The other two eigenvalues are
nonpositive and solution of the polynomial

λ2 + aλ + b = 0

where a = D + x̄2
∂ f2

∂s
> 0 and b = Dx̄2

∂ f2

∂s
> 0. It follows that

• If D > D4 then F2 is a stable node.

• If D < D4 then F2 is a saddle point.
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Proof of lemma 4

An equilibrium F3 exists if and only if v̄ ∈]0, sin −
D
κα

[ is a solution of

f1(sin −
D
κα
− v̄, 0) = D + αv̄. (.4)

Let ψ3(v) = f1(sin −
D
κα
− v, 0) − D − αv. Since ψ′3(v) = −

∂ f1

∂s
(sin −

D
κα
− v, 0) − α < 0, ψ3(0) = D3 − D

and ψ3(sin−
D
κα

) = −D−α(sin−
D
κα

) < 0, equation (.4) admits a positive solution if and only if D < D3.
If this condition is satisfied then (.4) admits a unique solution since the function ψ3(.) is decreasing.

If F3 exists, the Jacobian matrix J3 of system (2.1) at F3 is given by :

J3 =


−D −

D
κα

∂ f1

∂s
−D − αv̄ − f2 −

D
κα

∂ f1

∂x2
0

D
κα

∂ f1

∂s
0

D
κα

∂ f1

∂x2
−

D
κ

0 0 f2 − D 0
0 καv̄ 0 0


=


−D −

D
κα

∂ f1

∂s
−D − αv̄ − f2 −

D
κα

∂ f1

∂x2
0

D
κα

∂ f1

∂s
0

D
κα

∂ f1

∂x2
−

D
κ

0 0 D5 − D 0
0 καv̄ 0 0


.

J3 admits three eigenvalues given by λ1 = −(D − D5) and three others eigenvalues associated to the
following matrix

J s
3 =


−D −

D
κα

∂ f1

∂s
−D − αv̄ 0

D
κα

∂ f1

∂s
0 −

D
κ

0 καv̄ 0

 .
These eigenvalues are solutions of

−(D + λ)(λ2 + aλ + b) = 0

where a =
D
κα

∂ f1

∂s
> 0 and b = Dαv̄(1 +

1
κα

∂ f1

∂s
) > 0. It follows that

• If D5 < D < D3, then F3 is then locally asymptotically stable.

• If D < min(D3,D5), then F3 is a saddle point.

Proof of lemma 5

Assume that 0 < D < min(D4,D5). From Lemmas 2 and 3, F1 and F2 exist.

1. If x̄1 ≥ x̄2 then D = f2(sin− x̄2, 0) ≥ f2(sin− x̄1, 0) > f2(sin− x̄1, x̄1) = D5 > D which is impossible.

2. If x̄1 ≤ x̄2 then D = f1(sin− x̄1, 0) ≥ f1(sin− x̄2, 0) > f1(sin− x̄2, x̄2) = D4 > D which is impossible.
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Proof of lemma 6

Assume that F4 exists. One has

ψ1( ¯̄x1) = 0 = f1(sin − ¯̄x1, 0) − D > f1(sin − ¯̄x1 − ¯̄x2, ¯̄x2) − D = 0 = ψ1(x̄1)

then ψ1( ¯̄x1) > ψ1(x̄1) since the function ψ1(.) is decreasing, x̄1 > ¯̄x1.

ψ2( ¯̄x2) = f2(sin − ¯̄x2, 0) − D > f2(sin − ¯̄x1 − ¯̄x2, ¯̄x1) − D = 0 = ψ2(x̄2)

then ψ2(x̄2) < ψ2( ¯̄x2) since the function ψ2(.) is decreasing, x̄2 > ¯̄x2.

Since the functions x2 → f1(sin−x1−x2, x2) and x2 → f2(sin−x1−x2, x1) are decreasing, one deduces
immediatly that the isoclines are the graphs of two functions x2 = ϕ1(x1) and x2 = ϕ2(x1) and then
0 = ϕ1(x̄1) and x̄2 = ϕ2(0). ¯̄x1 is solution of ψ4( ¯̄x1) = 0 where ψ4(x1) = ϕ2(x1) − ϕ1(x1) . The deriva-

tives of ϕ1 and ϕ2 are given by ϕ′2(x1) = −1 +
∂ f2

∂x1
/
∂ f2

∂s
< −1 < ϕ′1(x1) = −1 +

∂ f1

∂x2
/(
∂ f1

∂x2
−
∂ f1

∂s
) < 0.

one deduces that ψ′4(x1) = ϕ′2(x1)− ϕ′1(x1) < 0 . ψ4(0) = ϕ2(0)− ϕ1(0) = x̄2 − ϕ1(0) and ψ4(x̄1) = ϕ2(x̄1)
then ¯̄x1 exists and is unique if and only if x̄2 > ϕ1(0) and ϕ2(x̄1) < 0 and this is satisfied only if
D = f1(sin−ϕ1(0), ϕ1(0)) > f1(sin− x̄2, x̄2) = D4 and D = f2(sin− x̄1−ϕ2(x̄1), x̄1) > f2(sin− x̄1, x̄1) = D5.
The existence and the uniqueness of ¯̄x2 = ϕ1( ¯̄x1) = ϕ2( ¯̄x1) is easily deduced since the two function
ϕ1(.) and ϕ2(.) are increasing.

Assume that F4 exists. The Jacobian matrix J4 of system (2.1) at F4 = (sin − ¯̄x1 − ¯̄x2, ¯̄x1, ¯̄x2, 0) is
given by :

J4 =



−D − ¯̄x1
∂ f1

∂s
− ¯̄x2

∂ f2

∂s
−D − ¯̄x2

∂ f2

∂x1
−D − ¯̄x1

∂ f1

∂x2
0

¯̄x1
∂ f1

∂s
0 ¯̄x1

∂ f1

∂x2
−α ¯̄x1

¯̄x2
∂ f2

∂s
¯̄x2
∂ f2

∂x1
0 0

0 0 0 κα ¯̄x1 − D


.

J5 admits four eigenvalues given by λ1 = κα( ¯̄x1 −
D
κα

) and three other eigenvalues associated to the
following matrix

J s
4 =


−D − ¯̄x1

∂ f1

∂s
− ¯̄x2

∂ f2

∂s
−D − ¯̄x2

∂ f2

∂x1
−D − ¯̄x1

∂ f1

∂x2

¯̄x1
∂ f1

∂s
0 ¯̄x1

∂ f1

∂x2

¯̄x2
∂ f2

∂s
¯̄x2
∂ f2

∂x1
0


.

These eigenvalues are solutions of

−(λ + D)(λ2 + aλ + b) = 0

where a = ¯̄x1
∂ f1

∂s
+ ¯̄x2

∂ f2

∂s
> 0 and b = ¯̄x1 ¯̄x2

[
−
∂ f1

∂x2

∂ f2

∂x1
+
∂ f1

∂x2

∂ f2

∂s
+
∂ f1

∂s
∂ f2

∂x1

]
< 0. It follows that F4 is

a saddle point.
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Proof of lemma 7

Since the functions x2 → f1(sin − x2 −
D
κα
− v, x2) − αv and x2 → f2(sin − x2 −

D
κα
− v,

D
κα

) are
decreasing, one deduces immediatly that the isoclines are the graphs of two functions x2 = ϕ3(v)
and x2 = ϕ4(v) and then 0 = ϕ3(v̄). v∗ is solution of ψ5(v∗) = 0 where ψ5(v) = ϕ4(v) − ϕ3(v) .

The derivatives of ϕ3 and ϕ4 are given by ϕ′4(v) = −1 < ϕ′3(v) = −1 +

(
∂ f1

∂x2
+ α

)
/(
∂ f1

∂x2
−
∂ f1

∂s
) < 0.

One deduces that ψ′5(v) = ϕ′4(v) − ϕ′3(v) < 0 . ψ5(0) = ϕ4(0) − ϕ3(0) and ψ5(v̄) = ϕ4(v̄) then
v∗ exists and is unique if and only if ϕ3(0) < ϕ4(0) and ϕ4(v̄) < 0 and this is satisfied only if

D = f2(sin − ϕ4(v̄) − v̄ −
D
κα
,

D
κα

) > f2(sin − v̄ −
D
κα
,

D
κα

) = D6.

Now, since D = f2(sin − ϕ4(0) −
D
κα
,

D
κα

) > f2(sin − v̄ −
D
κα
,

D
κα

) = D6 then ϕ4(0) < v̄ and hence

ϕ3(0) < ϕ4(0) < v̄. Then D = f1(sin − ϕ3(0) −
D
κα
, ϕ3(0)) > f1(sin − v̄ −

D
κα
, v̄) = D7.

Assume that F∗ exists. One has

ψ2(x∗2) = f2(sin − x∗2, 0) − D ≥ f2(sin − x∗2 −
D
κα
− v∗,

D
κα

) − D − αv∗ = 0 = ψ4(x̄2)

then ψ2(x̄2) < ψ2(x∗2) since the function ψ2(.) is decreasing, x̄2 > x∗2.

The characteristic polynomial of the Jacobian matrix of system (2.1) at F∗ = (sin −
D
κα
− x∗2 −

v∗,
D
κα
, x∗2, v

∗) is given by :

P∗ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−X − D −
D
κα

∂ f1

∂s
− x∗2

∂ f2

∂s
−D − αv∗ − x∗2

∂ f2

∂x1
−D −

D
κα

∂ f1

∂x2
0

D
κα

∂ f1

∂s
−X

D
κα

∂ f1

∂x2
−

D
κ

x∗2
∂ f2

∂s
x∗2
∂ f2

∂x1
−X 0

0 καv∗ 0 −X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(X + D) −(X + D) −(X + D) −
(X + D)

κ
D
κα

∂ f1

∂s
−X

D
κα

∂ f1

∂x2
−

D
κ

x∗2
∂ f2

∂s
x∗2
∂ f2

∂x1
−X 0

0 καv∗ 0 −X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

By developing, we obtain

P∗(X) = (X + D)
(
X3 −

D
κα

x∗2
∂ f1

∂x2

∂ f2

∂x1
X + Dαv∗X +

D
κα

∂ f1

∂s
X2 +

D
κα

x∗2
∂ f1

∂x2

∂ f2

∂s
X
)

+(X + D)
[
X

(
D
κα

x∗2
∂ f1

∂s
∂ f2

∂x1
+ x∗2

∂ f2

∂s
X
)

+ Dαv∗x∗2
∂ f2

∂s
+ v∗

(
D
κ

∂ f1

∂s
X +

D
κ

x∗2
∂ f1

∂x2

∂ f2

∂s

)]
.

Then

P∗(X) = (X + D)(X3 + b2X2 + b1X + b0)

with

b2 =
D
κα

∂ f1

∂s
+ x∗2

∂ f2

∂s
> 0,

b1 = −
D
κα

x∗2
∂ f1

∂x2

∂ f2

∂x1
+ Dαv∗ +

D
κα

x∗2
∂ f1

∂x2

∂ f2

∂s
+

D
κα

x∗2
∂ f1

∂s
∂ f2

∂x1
+

D
κ

v∗
∂ f1

∂s
,

b0 = Dαv∗x∗2
∂ f2

∂s
+

D
κ

v∗x∗2
∂ f1

∂x2

∂ f2

∂s
=

D
κ

v∗x∗2

(
κα +

∂ f1

∂x2

)
∂ f2

∂s
< 0.
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It follows that F∗ is always a saddle point.
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