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Maritime Target Detection Based on Electronic Image Stabilization

Technology of Shipborne Camera

Xiongfei SHAN', Mingyang PAN'®, Depeng ZHAO', Deqiang WANG ', Feng-Jang HWANG ', Nonmembers,

SUMMARY  During the detection of maritime targets, the jitter of the
shipborne camera usually causes the video instability and the false or missed
detection of targets. Aimed at tackling this problem, a novel algorithm
for maritime target detection based on the electronic image stabilization
technology is proposed in this study. The algorithm mainly includes three
models, namely the points line model (PLM), the points classification model
(PCM), and the image classification model (ICM). The feature points (FPs)
are firstly classified by the PLM, and stable videos as well as target contours
are obtained by the PCM. Then the smallest bounding rectangles of the
target contours generated as the candidate bounding boxes (bboxes) are
sent to the ICM for classification. In the experiments, the ICM, which is
constructed based on the convolutional neural network (CNN), is trained and
its effectiveness is verified. Our experimental results demonstrate that the
proposed algorithm outperformed the benchmark models in all the common
metrics including the mean square error (MSE), peak signal to noise ratio
(PSNR), structural similarity index (SSIM), and mean average precision
(mAP) by at least —47.87%, 8.66%, 6.94%, and 5.75%, respectively. The
proposed algorithm is superior to the state-of-the-art techniques in both
the image stabilization and target ship detection, which provides reliable
technical support for the visual development of unmanned ships.

key words: shipborne camera; electronic image stabilization; points line
model; feature points; convolutional neural network

1. Introduction

In recent years, artificial intelligence [1]-[3] develops
rapidly, and it is widely used in fields such as unmanned
driving and computer vision, shipborne cameras are grad-
ually applied to unmanned ships with the characteristics of
intuitiveness, reliability, rich information and cost-effective
performance. Among smart ship projects around the world,
almost all projects adopt cameras as important sensors of
situational awareness to provide reliable data source for
intelligent decision-making, such as Maritime Unmanned
Navigation through Intelligence in Networks (MUNIN) [4],
Rolls-Royce’s Advanced Autonomous Waterborne Applica-
tions (AAWA) [5], and DNV GL’s concept ship "The Revolt"
[6].

As an important task of ship situational awareness tech-
nology, maritime target detection has the following charac-
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teristics. First, the shipborne camera generally bumps and
sways along with the ship’s navigation due to the influence of
the wind and waves, which causes a six-degree-of-freedom
low-frequency sway, at the same time, mechanical vibrations
of the ship’s main engine causes high-frequency shaking [7].
Both affect the stability of videos, which in turn leads to rel-
atively large irregular movements of the background pixels
and foreground pixels. Second, due to the characteristics of
the complex maritime environment, the ships’ posture, light-
ing and other conditions change, even the same target ships
may have different Intersection over Union (IoU) scores in
consecutive frames. With a lower threshold, ships in con-
secutive frames can be detected, but a large number of false
positive samples generate, resulting in a higher false detec-
tion rate. With a higher threshold, it generates many false
negative samples, resulting in a higher missed detection rate
[8].

Target detection algorithms can be divided into two cat-
egories, namely target detection based on background mod-
eling and target detection based on foreground modeling [9].
The former models the image background and segments the
moving targets through background subtraction technology,
but due to the influence of the shipborne camera’s own mo-
tion, this type of algorithm is difficult to accurately model
the moving background, which leads to the failure of target
ship detection. The latter mainly extracts appearance fea-
tures of the targets through convolutional neural networks
(CNN) and generates the bounding boxes (bboxes) and con-
fidence scores. However, this type of algorithm ignores the
spatio-temporal relations between consecutive frames, and
the detection speed is slow due to the repeated feature cal-
culation of a large number of overlapping candidate bboxes.

In the maritime video sequences, the inter-frame mo-
tion of pixels includes the background pixel motion and fore-
ground pixel motion. The background pixel motion is mainly
formed by the motion of the camera, while the foreground
pixel motion includes the motion of the target ship itself in
addition to the motion of the camera. It can be seen that
accurate classification of background pixels and foreground
pixels in the sea-sky image is crucial for video image stabi-
lization and target detection tasks. However, existing studies
generally consider these two technologies separately. The
image stabilization algorithms do not consider the effective
detection of the targets after acquiring stable videos, and the
target detection technologies handle stable video by default.
This is inconsistent with the actual detection of maritime
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targets.

This study proposes a novel maritime target detection al-
gorithm, which effectively integrates electronic image stabi-
lization technology and maritime target detection technology
to achieve the target ship detection closer to actual maritime
conditions. The algorithm flowchart is show in Figure 1.
The blue region, the green region, and the yellow region rep-
resent the points line model (PLM), the points classification
model (PCM), and the image classification model (ICM),
respectively. The PLM mainly processes the feature points
(FPs) and sea-sky lines (SSLs) in two consecutive frames.
The corner region and edge region are judged by the feature
value of the corner detection. In the edge region, the SSLs
are extracted, the region of interest (ROI) is determined, and
the SSL motions in two consecutive frames are estimated. In
the corner region, the optical flows are clustered through the
points-line fusion to obtain background FPs (BFPs) and fore-
ground FPs (FFPs). The PCM mainly processes background
BFPs and FFPs. For the BFPs, the stable frames are obtained
through the motion estimation, filter smoothing and motion
compensation of the image stabilization algorithm, and then
the difference images of the stable frames are calculated. For
the FFPs, the transformation matrices before and after the
image stabilization are used to transform the FFPs of two
consecutive frames into the stable frames. Therefore, the
candidate bboxes are obtained through the PCM. Finally, the
ICM classifies the candidate bboxes and displays the classi-
fication results and position information in the stable video
sequences.

The remainder of the study is organized as follows.
Section 2 discusses the literature review of electronic image
stabilization and target detection technologies. The con-
struction of the PLM, the PCM and the ICM are presented
in Section 3, Section 4 and Section 5, respectively. Section
6 shows the experimental results in practice. The contribu-
tions of this study are summarized and the future work is
suggested in Section 7.

2. Literature Reviews

Considering the rapid development of electronic image sta-
bilization and target detection technologies, this study pro-
poses a main technical framework based on the comprehen-
sive analysis of relevant research.

2.1 Electronic image stabilization technology

Electronic image stabilization technology mainly includes
three parts: motion estimation, motion filtering, and motion
compensation. Motion estimation is the premise of elec-
tronic image stabilization technology. Accurate global mo-
tion estimation directly determines the performance of im-
age stabilization. The global motion estimation algorithms
are widely used based on image block matching methods
[10]-[12] and FPs matching methods [13]-[15]. In general,
due to the invariance of translation, rotation, and lighting
of FPs, they are more effective than the image block match-
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ing method, but the above algorithms are only applicable
to the cases where there are no significant moving targets
in the video. To cope with this problem, Grundmann et
al. [16] used a grid-based segmentation technology, which
applied the Random Sample Consensus (RANSAC) algo-
rithm [17] to motion estimation in each grid. This algorithm
improved the estimation accuracy, but it still did not distin-
guish the BFPs from the FFPs accurately . Kim et al. [18]
proposed an FPs classification algorithm that used a pro-
jection transformation to transform the FPs from one frame
to next frame. By repeatedly calculating the minimize dis-
tances between FPs, FPs are divided into BFPs and FFPs.
Based on the foregoing, Chen and Hu et al. [19]-[23] further
explored the FP classification method, then, they achieved
accurate classification of BFPs and FFPs through cluster-
ing, homography transformation, and pole geometry. Ling
and Zhao et al. [24]-[26] extended the classification of
FPs to the classification of optical flow trajectories and their
trajectory derivatives. At the same time, they proposed a
feedback mechanism to further strengthen the judgment of
foreground optical flows. It had a significant effect when the
targets occupied a large area of the image. The above al-
gorithms achieved good results, but more custom thresholds
were introduced in the calculation process. In addition, Liu
et al. [27]-[29] proposed a concept of pixel profile instead
of optical flow trajectories for video stabilization, but such
algorithms were also based on the FPs detection. The per-
formance was poor when there were large foreground targets
at close range. In terms of maritime image stabilization,
Cao [[30] presented a dual image stabilization technology
based on the combination of mechanical image stabilization
and electronic image stabilization. Liu [31] developed a
two-level electronic image stabilization algorithm based on
vibration measurement and SSL detection. These algorithms
used SSLs to estimate inter-frame image motion. However,
they only considered the translation motion in the vertical
direction and the rotation motion but fail to consider the
translation motion in the horizontal direction.

2.2 Maritime target detection technology

Target detection experiences two historical periods in the de-
velopment, namely traditional target detection (before 2014)
and target detection based on deep learning (after 2014) [32].
Traditional target detection is mainly based on the charac-
teristics of artificial design, and three milestone detectors
are formed. In 2001, Viola and Jones [33] proposed the VJ
detector, which achieved the real-time detection of human
faces for the first time without any constraints. In 2006, Dalal
and Triggs [34] proposed the histogram of oriented gradi-
ents (HOG) detector, which made significant improvements
to the scale-invariant feature transform SIFT algorithm. In
2008, Felzenszwalb [35] proposed the deformable part based
model (DPM), which was derived from the HOG detector.
It was the peak of traditional target detection algorithms.
Target detection based on deep learning mainly includes two
types of detection models, namely the two-stage detection
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Fig.1  Algorithm flowchart, where A; and A, represent the feature values of the corner detection,
AH 31 and H tlf ++1 represent the transformation matrices, and Ir4+; and [ tﬁl respectively represent the

t-th frame and the (¢ + 1)-th stable frames.
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Fig.2  FPs detection results with N = 50. (a) Corner detection in the entire image. (b) Corner

detection in ROL.

model and the single-stage detection model. The former is
represented by the region-based CNN (R-CNN) series [36]—
[38], and the latter is represented by You Only Look Once
(YOLO) [39] and the single shot multibox detector (SSD)
[40]. Then, with the continuous development of target detec-
tion, the detection model achieves the balance between accu-
racy and speed gradually, through the new feature extraction
network [41], accurate region proposal network (RPN) [42],
complete classification method of ROI [43], sample post-
processing technology [44] and mutual reference between
various models [45]-[47].

3. Construction of the PLM

In the sea-sky image, the FPs are usually used for motion

estimation because of their rich local information and large
intensity changes in various directions. However, due to the
complexity and variability of the maritime environment, it
is difficult to be distinguished accurately between the BFPs
and FFPs, which is not conducive to the realization of video
stabilization. As SSLs are important background features
in maritime video sequences, analyzing the SSLs’ motion
characteristics of two adjacent frames can perform vertical
and rotative compensation. Nevertheless, it cannot achieve
horizontal compensation. Thus, the PLM is constructed for
accurate classification of BFPs and FFPs.

The PLM uses the corner detection algorithm proposed
by Harris et al [48]. It uses the first-order partial derivatives
to describe the intensity change of the pixel in any direction,
i.e. the gray change caused by the image moving a small



displacement (u, v) of the image in any direction, as shown
in Eq. (1) below, where w(x, y) is a window function.

E(uo)= Y wxy)(x+uy+o)=1xy]* (1)

(x,y)

In order to better evaluate the detection results, this
study uses the Shi-Tomasi scoring function, as shown in Eq.
(2) below, where 11, A, are the eigenvalues.

R = min (/11,/12) (2)

e When A; and A, are both small, then |R| is also small
and this region is a flat region.

e When A; > A, or A, > A4, then R < 0 and this region
is an edge region.

* When both A; and A, are large, then R is also large,
min (A;,4;) is larger than the threshold 7', and this
region is a corner region.

For the corner region, the threshold value 7 used to
generate the corner points is a global threshold value, which
will cause a large deviation in the region with a strong image
texture. In the sea-sky image, the texture information of the
sky region is weak, and it is difficult to generate stable corner
points. The sea region is rich in texture information due to
noise interference such as wave and sea clutter, which will
generate a large number of corner points, resulting in a large
deviation of the global threshold. The texture information of
the region near the SSL is relatively rich, and the features of
the target ships are obvious. So the region near the SSL is
suitable for corner detection to obtain stable FPs as ROL.

For the edge region, the non-maximum suppression and
lag thresholds are used to obtain accurate edges. Then, the
longest straight line in the edge image is extracted by the
Hough transformation to extract the SSL. Considering that
SSL is usually a straight line that runs through the entire
image and generally has a certain oblique angle, this study
uses a rectangle to describe the region of the SSL. In order
to reduce the error, N pixels are added both above and below
the rectangular region as ROI. The FP detection results with
N = 50 are shown in Figure 2.

The SSL is simple in description and has a stronger
anti-noise capability than the FPs. It can estimate the global
motion vector, which is of great significance to the stabiliza-
tion of maritime videos. In order to facilitate the analysis
of SSL motion characteristics, this study simplifies the im-
age motion model of two consecutive frames into a rigid
transformation model, i.e. only considering translation and
rotation motion. The rigid transformation model is shown in
Eq. (3) below:

cosO —sinf d,
E =|sin cosf d, 3)
0 0 1

where d and d,, represent translation motions along the x
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Fig.3  SSL inter-frame motion diagram.

axis and y axis, respectively, and 6 represents the rotation
motion around the optical axis of the camera. This model
neither distorts the original shape of the object nor changes
the size of the object.

This study marks the SSLs of two consecutive frames
in the same coordinate system, as shown in Figure 3. The
lines L; and L, represent the SSLs at the ¢-th and (7 + 1)-th
frames, respectively, and their respective angles are 6; and
0:+1. The parameter d, represents the difference between
the midpoints of the lines L, and L,y in the y axis, and
(0:41 — 6,) represents the angle difference between the lines
L;ypand L;.

From Figure 3, it can be seen that there is a rotation
and translation motion of SSL position relationship from
the ¢ frame to (¢ + 1) frame, i.e., L; rotates (0,41 — ;) and
moves along the y axis by d, to L;4;. When calculating the
motion vector between frames using SSLs, it is impossible to
calculate the translation in the x axis direction (i.e. d, = 0),
and only d, and 6 can be calculated. Therefore, the rigid
transformation model can be described as Eq. (4) below:

cos(0r41 — 6;) —sin(041 —6;) 0
E =|sin(0;+1 —0;) cos(0r41 = 6;) dy 4
0 0 1

In ROI, the optical flow method is used to obtain the
matching FPs in two consecutive frames. This study defines
the FPs in the #-th frame by P, and the matching FPs in the
(t + 1)-th frame by P;;;. The optical flow vectors in two
consecutive frames can be expressed as V;.;+1, such as Eq.
(5). This study defines V;.;+; with two elements of opti-
cal flow angle ¢ and length p, as shown in Eq. (6), where
(X¢41, Yr+1) € Pryp and (x;,y;) € P;. The distribution of
Vi~t+1 in the Cartesian coordinate system is shown in Figure
4(a), where the x axis represents ¢ and the y axis represents p.
Vi~1+1 can be divided into background optical flows (defined
as VP ) and foreground optical flows (defined as V", )).
In the rigid model VE ] is affected by d, d, and 6, while
Vfi .1 18 affected by its own motion in addition to the above
factors. In this study, the rigid model E obtained by the SSL
motion is used to transform the FPs of the 7-th frame, and
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then the new optical flow vectors (VE .+1) are obtained by

using Eq. (7). The distribution of VtE~ .41 in the Cartesian

coordinate system is shown in Figure 4(b). By using this
method, it can eliminate the effects of d, and 6, the differ-
ence between VE . and th ;41 1s more obvious, which is
convenient for their further classification.

Victr1 = Pral — Py (5)
Vietst = (6,p)
8 =tan ™ (Yrs1 — yr)/ (xese1 — X¢) (6)

pP= \/(xt+1 —x1)2 + Yy — yr)?

Vi =P —ExP, @)
Then the K-means algorithm is used to cluster Vf 1’

and the number of clusters is defined as k. The choice of the
value of k directly determines the quality of the clustering
results, and the elbow method is adopted, as shown in Figure
5(a). The value k is taken from 2 to 20, and the ordinate
value represents the cost function of the clustering, which
is expressed by the sum of the degree of distortion of the
categories. In order to automatically obtain the k value cor-
responding to the elbow position, the optimization algorithm
proposed by Ville et al. [49] is used to rotate and normalize
the blue curve in Figure 5(a) to the position in Figure 5(b).
This study connects the endpoints of the blue curve to make
a straight line, find the difference between the ordinate val-
ues of the blue curve and the straight line. The difference is
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Fig.8 FPs classification processing results. (a) Difference image of two consecutive stable frames.
(b) Binary image of the difference image (& = 8). (c) FFPs processing results.

(a)

(d)

(©

(@

Fig.9 Subsequent processing results. (a) Single frame processing results. (b) Three consecutive
frames processing results. (c) Morphological processing results. (d) Target detection results.

represented by the red curve. So, this study can obtain the
vertex abscissa values of the red curve and transform it to
the initial coordinate system, as shown in Figure 5(c).

The clustering results obtained by the above method
are shown in Figure 4(c). The k clusters are defined by
C = {Cy,C,,...,Cy}, and the numbers of optical flows in
the k respective clusters are defined by n = {ny, na, ..., ny }.
According to the clustering results, fo .41 and Vi (41 Qre
classified according to the following principles:

For the number of optical flows n; in any cluster C;,

e if n; < 7, C; is considered to be a noise cluster and
needs to be deleted;
e if n; > 7 and n; = max(n), C; is considered as the

background cluster;
* the remaining clusters are considered as the foreground
clusters.

According to the classification results of Vt’f (11> the FPs in
the 7-th frame and (¢ + 1)-th frame are displayed in the t-
th frame with red and green dots, respectively, as shown
in Figure 6, where the blue lines represent thi (1> and the
yellow lines represent VF .

4. Construction of the PCM

After classifying FPs by the PLM, the BFPs and FFPs are
separately processed. The specific FP processing strategy is
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shown in Figure 7, where I, and I;; represent respectively
the 7-th frame and (¢ + 1)-th frame of the original image
sequences, P,B and Pﬁl (also, Pf and Pﬁl) represent the
BFPs (also, FFPs) from two consecutive frames of the PLM,
and H ﬁ .1 Tepresents the transformation matrix from I, to
I1s1. Besides, IY and I7, | stand for the 7-th frame and (¢ +
1)-th frame after image stabilization, where P55 and PF'S
are the BFPs and FFPs, respectively, in /7 (also, P25 and

Pfisl represent the BFPs and FFPs, respectively, in IzS+1)'

Also, HPS | represents the transformation matrix from I7
to IzS+1’ and AHP (also, AH? ) refers to the transformation
matrix from the original image sequence to the stable image
sequence for the z-th frame (also, the (¢ + 1)-th frame).

For the BFPs, this study calculates the motion trajectory
of the original image sequence, obtains the transformation
matrix and the stable image sequence through the mean fil-
tering and motion compensation algorithms. In the stable
image sequence, P25 and P53 can be obtained by Eq. (8)
and (9), respectively. Then, this study uses the RANSAC
method to calculate P55 and Pﬁrsl for obtaining the transfor-

mation matrix 2 . The difference image, which is shown
in Figure 8(a), can be obtained by Eq. (10), where ¢ is the
threshold. It is automatically obtained by the Otsu method.
The inverse binary thresholding is used to process the dif-
ference image, as shown in Figure 8(b). For the FFPs, this

study first transforms P from I, to 1,41 by Hﬁ .1 and then

uses Eq. (11) to transform (HZ _ * PF) and Pﬁl together

t~t+1
from I, to IS, as shown in Figure 8(c).

t+1°
PBS = AHB « PB )
BS B B
Pl =AH L Pl 9
: s BS s
8BS = 255, if M, —HZ x> e (10)
t~i+l 0, otherwise
BS _ B B F F
Pl =AH « (H  * Py + Py (1D
: DS BS
In the subsequent processing stage, 1,7, and P’ are

fused by the "AND" operator to obtain the moving target
contours. In order to obtain the quality contours, the results
of three consecutive frames are fused and then the target
contours are enhanced by morphological processing. Then
the target positions are obtained using the smallest bounding
rectangles. The processing results are shown in Figure 9.

5. Construction of the ICM

The above algorithm realizes rough detection of the positions
of maritime targets. However, when using the PCM, some
BFPs may be misclassified as FFPs. Itresults in the candidate
bboxes containing ships and backgrounds, which causes false
detection. Therefore, all the candidate bboxes are sent to the
ICM for image classification, eliminating background bboxes
and retaining ship bboxes. The network structure of the ICM
is shown in Figure 10.

The ICM uses a convolutional (Conv) layer with a 5x5
filter to learn the larger features, such as the shape and the
color of the ships, and then learns the detail features by two
identical blocks. In each block, it contains two Conv layers,
two activation layers, two batch normalization (BN) layers,
and a pooling layer. In the first block, each Conv contains
16 filters and in the second block, each Conv contains 32
filters. The activation layer uses a linear activation function
(RELU), and the pooling layer uses max pooling (MaxPool).
Two fully connection (FC) blocks are followed, and each of
them contains Flatten, Dense, RELU, BN and Dropout. In
order to reduce the effect of overfitting, the Dropout are all
set to 0.5.

6. Experimental Results and Discussion

This study mainly contains three datasets. The training set
and the validation set were used to verify the performance
of the ICM. In order to eliminate background interference,
first, this study extracted every firth frame of each video
from the Singapore Maritime Dataset (SMD) [50], then,
used the YOLOV3 to pre-process the images and crops the
bboxes. Through manual annotation, 12,000 training set
images and 4000 verification set images were obtained. The
type of ships includes ferry, vessel/ship, speed boat, boat,
sail boat and others. The testing set includes testing set-1
and testing set-2, among which testing set-1 was used to
verify the image stabilization algorithm, and testing set-2
was used to verify the performance of ship detection. Since
the image stabilization algorithm is not driven by data, the
testing set-1 only contained eight videos, where four videos
came from onboard videos of the SMD taken by shipborne
camera pitching and the others came from dynamic videos
taken by shipborne camera rolling in the real ship. Testing
set-2 contained seven videos on the basis of testing set-1,
also from the onboard videos of the SMD. Each video was
captured 200 consecutive frames. There were a total of 1600
frames in testing set-1, and a total of 3000 frames in testing
set-2. The testing set-1 is shown in Figure 11.

In order to better analyze the effect of image stabi-
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Fig.11  The testing set-1, where V1, V2, V3 and V4 are from the SMD and V5, V6, V7 and V8 are

from real ship shooting.
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Fig.12  Loss and accuracy on training and validation datasets.

lization, the common measures such as mean square error
(MSE), peak signal to noise ratio (PSNR), and structural sim-
ilarity index (SSIM) are introduced as the evaluation metrics
of the algorithm. Besides, in order to accurately analyze
the effect of target detection, the speed and mean average
precision (mAP) are also set as the evaluation metrics of the
algorithm.

6.1 Verification of the ICM

During training, Adma was selected as the optimizer, the
epoch, batch size, learning rate and decay were set to 30,
64, 0.001 and 6.67x1072, respectively. To increase vari-
ability of the training set, the input images were augmented
with random rotation, zoom, shift, shear, and flip settings.
The loss function curve and accuracy curve obtained on the
training set and validation set are shown in Figure 12. It
can be seen that in the first 5 epochs, the loss function curve
decreases sharply, and the accuracy curve increases rapidly.
After 5 epochs, the training loss curve and the training accu-
racy curve are flattened, while validation loss curve and the

validation accuracy curve have some fluctuations, mainly be-
cause in each epoch, the images used for verification have a
certain randomness. After 30 epochs, the training loss value
is reduced to 0.1063, and the training accuracy is 94.14%.
On the validation set, the validation loss is 0.1621, valida-
tion accuracy is 91.67%. Good results were obtained on
both the training and validation dataset, which verifies the
effectiveness of the ICM.

6.2 Comparative Analysis of image Stabilization

In order to verify the image stabilization effects of proposed
algorithm, testing set-1 was used for the comparison experi-
ments. In the setting of benchmark algorithms, the popular
YouTube stabilizer [13] and MeshFlow [21] were employed
as Algorithm 1 and Algorithm 2, respectively. The results
of the three algorithms can be obtained by calculating the
average of the image stabilization metrics, as shown in Table
1.

In Table 1, the MSE, PSNR, and SSIM of Algo-
rithm 1 after image stabilization were respectively reduced
by approximately 45.61%—-70.91%, increased by approxi-
mately 12.09%-24.56%, and increased by approximately
8.30%—-19.65%. The MSE, PSNR, and SSIM of Al-
gorithm 2 after image stabilization were respectively re-
duced by approximately 53.97%—79.41%, increased by ap-
proximately 18.50%—-30.47%, and increased by approxi-
mately 7.27%—-23.06%. After the proposed algorithm sta-
bilized the video, the MSE was reduced by approximately
70.35%-90.93%, the PSNR was increased by approximately
21.01%-45.28%, and the SSIM was increased by approx-
imately 13.00%-32.33%. Our proposed algorithm out-
performed Algorithm 1 in the MSE, PSNR, and SSIM
by —55.42%, 12.30%, 8.8%, respectively, while it out-
performed Algorithm 2 in the MSE, PSNR, and SSIM by
47.87%, 8.66%, 6.94%, respectively. It can be seen that the
image stabilization results of the proposed algorithm were
better than those of the benchmark algorithms.

In order to visually display the image stabilization re-
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Fig.13  Comparative analysis of video stabilization results. (al) - (c1) Contrasts of MSE, PSNR and
SSIM in V3. (a2) - (¢2) Contrasts of MSE, PSNR and SSIM inV4. (a3) - (c¢3) Contrasts of MSE, PSNR
and SSIM in V7. (a4) - (c4) Contrasts of MSE, PSNR and SSIM in V8.
Table 1  Average results of metrics with different algorithms on testing set-1.
Algorithms Metrics V1 V2 V3 V4 Vs A v7 V8 Average
MSE 24516 321.25 24380 311.41 146.23  195.31 213.65 295.46 246.53
Original PSNR(dB) 24.85 23.17 24.76 23.64 26.42 26.89 24.56 24.03 24.79
SSIM(%) 74.23 73.14 75.75 70.93 78.97 74.15 71.24 69.35 73.47
MSE 79.91 100.46 112.69 90.58 68.47 106.23 115.32 100.36 96.75
Algorithml PSNR(dB) 29.97 28.86 28.20 28.90 30.21 30.14 28.35 29.46 29.26
SSIM(%) 86.71 79.21 83.70 82.63 87.31 82.45 85.24 81.22 83.56
MSE 79.74 97.20 84.23 64.13 65.32 86.54 98.35 86.34 82.73
Algorithm2 PSNR(dB) 30.35 30.23 29.64 30.57 30.65 30.87 29.21 30.42 30.24
SSIM(%) 84.85 78.46 86.87 86.40 87.45 86.56 84.32 85.34 85.03
MSE) 51.43 68.45 37.50 28.25 43.36 34.14 49.24 32.67 43.13
The proposed PSNR(dB) 31.60 32.31 32.60 33.82 31.97 33.65 32.01 34.91 32.86
SSIM(%) 88.34 91.98 92.63 92.44 89.24 92.35 88.65 91.77 90.93

sults, V3, V4, V7 and V8 were taken as examples to draw the
MSE, PSNR and SSIM curves after image stabilization, as

shown in Figure 13. The blue curve represents the original
image sequence. The green, yellow, and red curves represent
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(c2)

Fig.14  Comparative analysis of some failed detection frames. (The blue dotted boxes represent the
missed detection targets.) (al) - (c1) Detection results of Algorithm3 in frame 0072 of V2, frame 0012
of V3 and frame 0007 of V6. (a2) - (c2) Detection results of the proposed algorithm in frame 0072 of

V2, frame 0012 of V3 and frame 0007 of V6.

Table 2 The comparison results of speed and mAP on testing set-2.

Metrics Algol  Algo2 Algo3  The proposed
Speed(ms) 5872  96.53  35.47 63.58
mAP (%) 72.21 81.34  84.49 90.03

the image stabilization results of Algorithm 1, Algorithm 2,
and the proposed algorithm, respectively. It can be seen that
all the algorithms significantly reduced the MSE, as well as
increased the PSNR and SSIM of the images, compared with
the original video. It indicates that the three image stabiliza-
tion algorithms can all reduce the difference between two
consecutive frames and achieve good effects of video stabi-
lization, while the proposed algorithm is markedly superior
to Algorithm 1 or Algorithm 2.

6.3 Comparative Analysis of Target Ship Detection

In order to analyze the performance of the proposed ship
detection algorithm, this study used SSD-resnet50-fpn and
faster-renn-resnet50 in Tensorflow object detection API as
Algorithm 1 (Algol) and Algorithm 2 (Algo2), respectively.
Also, YOLOV3 was set as Algorithm 3 (Algo3). All of them
were fine-tuned in the SMD, and run on the PC equipped
with Intel® Xeon(R) CPU E5-2620 v4 and NVIDIA GeForce
GTX 1080. The comparison results with the proposed algo-
rithm are shown in Table 2.

From the comparison results of the four algorithms, the
proposed algorithm generated the best performance in testing
set-2, with the mAP value of 90.03%. However, in terms
of running speed, the tuned YOLOV3 was the fastest. The
average processing speed of the proposed algorithm was 64
ms, which is only slightly faster than Algo2. This is mainly
because the proposed algorithm obtained fewer candidate

bboxes, but the process only used the CPU calculations and
failed to use the GPUs for acceleration. It is shown that
the proposed algorithm can be applied on a wider platform
without relying on GPU. The following are some examples to
analyze the failed frame detection of the proposed algorithm
and Algorithm3, as shown in Figure 14.

The comparison between Figures 14(al) and 14(a2) il-
lustrates that the proposed algorithm had a poor performance
on partially occluded targets as it is easy to cause missed de-
tection for occluded small targets, such as the blue dotted
boxes in Figure 14(a2). The comparison between Figures
14(b1) and 14(b2) shows that the candidate bboxes obtained
by the PLM of the proposed algorithm can produce the over-
all outline of the targets well and avoid false detection caused
by local features. The comparison between Figures 14(c1)
and 14(c2) implies that by the processing of the ROI the pro-
posed algorithm can effectively suppress the interference of
cloud layer and prevent false detection targets. However, for
the static or non-obvious motion targets, such as the blue dot-
ted boxes in Figure 14(c2), the PLM model mistakes them as
the background of the image due to the obscurity of optical
flow motion, resulting in the missed detection of targets.

7. Conclusions and Future Work

This study proposes a novel algorithm for ship detection
based on electronic image stabilization technology. Firstly,
the FPs are accurately classified into the BFPs and FFPs
through the PLM. Then the BFPs are used for image stabi-
lization and difference images, and the FFPs together with
difference images are used to obtain the candidate bboxes
through the PCM. Finally, the ICM is used to show the
classification results and candidate bboxes in the stable im-
age sequence, so as to realize the detection and recogni-
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tion of the maritime targets. The experiment results have
shown that the ICM constructed in this study has competi-
tive overall performance, which can provide high accuracy
and effectively reduce the false detection of maritime targets.
Compared with the YouTube stabilizer and MeshFlow algo-
rithms, the proposed algorithm has achieved superior image
stabilization results. The proposed algorithm has also out-
performed traditional maritime target detection algorithms,
which provides a novel and promising research idea for mar-
itime target detection. However, the proposed algorithm still
has some drawbacks in the extraction of candidate bboxes,
which might cause missed detection of targets. Therefore,
one of the future research directions could be investigating a
robust candidate bboxes extraction model for maritime target
detection by combining various characteristics of the sea-sky
image.
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