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Abstract

Developing new methods for modelling infectious diseases outbreaks is important for moni-

toring transmission and developing policy. In this paper we propose using semi-mechanistic

Hawkes Processes for modelling malaria transmission in near-elimination settings. Hawkes

Processes are well founded mathematical methods that enable us to combine the benefits

of both statistical and mechanistic models to recreate and forecast disease transmission

beyond just malaria outbreak scenarios. These methods have been successfully used in

numerous applications such as social media and earthquake modelling, but are not yet

widespread in epidemiology. By using domain-specific knowledge, we can both recreate

transmission curves for malaria in China and Eswatini and disentangle the proportion of

cases which are imported from those that are community based.

Author summary

This paper introduces a mathematically well-founded method for infectious disease out-

breaks known as Hawkes Processes. These semi-mechanistic models are relatively new to

the infectious diseases toolkit and enable us to combine disease specific information such

as the infectious profile with statistical rigour to recreate temporal disease transmission.

We show that these methods are very suited to modelling malaria in communities close to

eliminating malaria—in particular China and Eswatini—where we are able to disentangle

the contribution of exogenous (external) transmission and endogenous (person-to-per-

son) transmission. This is particularly important for developing policies when counties

are approaching elimination.
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Introduction

Modelling infectious disease transmission is an important tool for monitoring outbreaks and

developing public policy to limit the spread of the disease. One common source of data avail-

able during these types of outbreaks are line lists, or case counts, from surveillance systems.

These define the time at which patients are infected, along with other epidemiological infor-

mation such as the sex, age and symptoms of the patient, locations they were infected or live

and if they have travelled recently. An ideal model would combine all the information available

from the line lists with disease-specific mechanisms developed by experts of the disease to rec-

reate case counts over time and accurately predict future behaviour. Traditionally, SIR (Sus-

ceptible—Infected—Recovered) type models, such as the seminal Kermack-McKendrick

model [1], or individual-based models (for example [2] and [3]) have been used to model dis-

ease outbreaks. These methods encode well-known disease-specific mechanisms and can pro-

duce very good fits to data. However, they can require large amounts of data to produce these

accurate fits, are cumbersome and computationally demanding to simulate from and difficult

to forecast with. Therefore, there is scope to develop new methods and software to simulate

outbreak behaviour. An alternative method proposed by Routledge et al. [4, 5] estimates tem-

poral and spatial reproduction numbers by studying information diffusion processes in the

form of network models, which reconstruct information transmission using known or inferred

times of infection in a Bayesian framework [6]. These methods provide an adaptable frame-

work to integrate multiple data types at different scales and identify missing data or external

infection sources, but require very good data sets to accurately be able to predict from the

models [6, 7].

SIR models can be linked to a well known statistical point process called Hawkes Processes

[8], which we propose is a better alternative to model infectious disease outbreaks if the data is

of high enough fidelity. These processes are semi-mechanistic, so give us the ability to encode

disease specific information such as serial interval and incubation period, but are easier and

computationally cheaper to simulate from and fit to data. Hawkes Processes model the inten-

sity of infectious diseases by separating out contributions from exogenous and endogenous

processes. The relative contributions of these two terms is disease specific and may have differ-

ent levels of importance depending on the disease. The majority of transmission of Ebola is

direct contact by human, and Kelly et al. [9] has recreated the Democratic Republic of Congo

epicurve, or cases counts over time, using a Hawkes Process model with an endogenous term

and a simple background transmission rate. However, there is a real need to correctly parame-

terise more complex exogenous terms for diseases such as malaria in near-elimination settings

and cholera to reproduce and predict the spread of the disease accurately.

In this paper, we focus on applying Hawkes Processes to malaria in near-elimination set-

tings, where current models may not be especially well suited [4, 10]. In 2016, the World

Health Organisation identified 21 countries with the potential to eliminate malaria by 2020;

seven of these countries (Algeria, China, El Salvador, Iran, Malaysia, Paraguay, and Timor-

Leste) have eliminated malaria since that list was published [11]. Since then, The Lancet Com-

mission has published research by Feachem et al. [12] suggesting that malaria eradication

within a generation is ambitious, achievable and necessary, but there needs to be an immedi-

ate, firm, global commitment to achieving such eradication by 2050. This involves developing

new methods for modelling near-elimination settings, which can accurately capture the behav-

iour and help governments and public health organisations implement the best interventions

to bring their countries closer to elimination.

Malaria is a complex disease to model, especially in low transmission settings, where the

entomological inoculation rate (number of infected bites a person receives) varies greatly due
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to focal transmission and is potentially unstable due to sensitivity to heterogeneity in vector

populations [4, 13, 14]. There are also inaccuracies in parasite prevalence rate estimations

below 1-5% because a large sample size is necessary to accurately predict the proportion of the

population with malaria [15]. We hypothesise that Hawkes Process models will help provide

new insight into malaria transmission in these settings.

We introduce the traditional Hawkes Process in this paper and define the basic fitting and

simulation algorithms, which use incidence data opposed to prevalence data. We then use our

knowledge of malaria in near-elimination settings to tailor our exogenous and endogenous

terms to best fit our data sets. We first evaluate our method for a simulated example and then

for two case studies (China and Eswatini). These data sets include the time of symptom onset

and if the case was reported as an importation through travel history. We apply our methods

to recreate the case counts over time in our two data sets, show goodness of fit measures and

forecast forward 35 days to evaluate our model predictions.

Background

A uni-variate Hawkes Process is a self-exciting point process with a conditional intensity, λ(t),
defined as:

lðtÞ ¼ mðtÞ þ
X

t>ti

�ðt � tiÞ; ð1Þ

where μ(t) is the exogenous time dependent contribution to the intensity from external disease

importations and
P

t>ti
�ðt � tiÞ is the self exciting endogenous contribution representing per-

son-to-person interactions [16]. Eq 1 means that the arrival of an event increases the likelihood

of receiving a further event in the near future but that the importations are independent of all

other events. Alternatively, a person getting infected increases the short term chance of other

infections within the community, but people can also be infected independently from outside

sources, such as zoonotic spillover or by travelling into the community already infected. The

function ϕ(�) is often referred to as the triggering kernel in the Hawkes Process literature and

describes a parameter similar to the serial interval distribution, or the expected time between

infection and subsequent transmission. The parameter ti refers to the times of the past events

or in epidemiological applications, previous infections.

Similar to the simplest class of point processes, the Poisson Process [17], each event can be

independently sampled from an intensity distribution. Unlike Poisson Processes, the intensity

distribution of Hawkes processes is dependent on previous events because they are self-excit-

ing, i.e. the occurrence of past events increases the likelihood of future events. The intensity of

the Hawkes Processes is a stochastic function because it depends on event times which are ran-

dom variables, however the Hawkes Process can be treated as a non-homogeneous Poisson

Process between events. The methods have been used successfully to model numerous applica-

tions such as earthquakes [18], crime [19], financial time series [20] and social media [21–24].

However, although a few people now use Hawkes Processes for epidemiological modelling [9,

25–27], they are not common place methods in this field yet.

The link between Susceptible—Infected—Recovered (SIR) and Hawkes Process models has

been shown by Rizoiu et al. [8] for finite population sizes. They generalise the Hawkes Process

to HawkesN and show that these types of models are conceptually similar to SIR models. The

time varying intensity function of HawkesN, λH(t), is defined as

l
H
ðtÞ ¼ 1 �

Nt

N

� �

mðtÞ þ
X

t>ti

�ðt � tiÞ

 !

ð2Þ
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where N is the total population, Nt is the number of infections that occurred before or at time t
(assuming immunity from the disease arises post infection) and, as before, μ(t) is the exoge-

nous time dependent contribution to the intensity from external disease importations and
P

t>ti
�ðt � tiÞ is the self exciting endogenous contribution representing person-to-person

interactions. This is similar to the Hawkes Process intensity in Eq (1) but also includes a popu-

lation weighting term. Past events generate new events at a rate of ϕ(t) in HawkesN, which is

analogous to the population adjusted infection rate
bSt
N in the SIR models [1, 28], where β is the

infection rate, St is the number of susceptible individuals at time t and N is the population size.

Rizoiu et al. provide evidence that if the events in a HawkesN Process with parameters {μ
(background intensity), α (magnitude of infection kernel), δ (parameter controlling duration

of infection), N (size of population)} have the intensity λH(t) and the new infections of a

stochastic SIR model with parameters {β (infection rate), γ (recovery rate), N (population

size)} follow a point process of intensity λI(t), the expectation of λI(t) over all event times

T ¼ t1; t2; . . . is equal λH(t):

ET ½l
I
ðtÞ� ¼ l

H
ðtÞ; ð3Þ

when μ = 0, β = α and γ = θ. In this paper we consider the univariate Hawkes Process (as

described by Eq (1)), instead of HawkesN, because we consider near-elimination malaria out-

breaks where we assume an infinite susceptible population. This means that Nt/N is small.

Methods

Hawkes Processes are semi-mechanistic because we can incorporate disease specific informa-

tion into our infection mechanism. Instead of using the traditional exponential kernel as

explained in S1 Text, we propose using a Rayleigh kernel of the form

�ðt � tiÞ ¼ a � ðt � tiÞe� d�ðt� tiÞ
2=2 8t > ti ð4Þ

to model the within country transmission of malaria, where α� 0 controls the magnitude of

the force of infection from an infected individual and δ� 0 controls the length of the infec-

tious period. We choose this kernel because a person is not most infectious immediately after

they are bitten by a mosquito. This kernel is little used in applications of Hawkes Process but

has been suggested by Wallinga et al. [29] Gomez et al. [30] and Ding et al. [31] and has already

been used to represent the serial interval in malaria models [4]. We also used malaria domain

specific knowledge to impose a delay between the mosquito biting an infectious person and

become infectious and the person that mosquito going on to bite becoming infectious. There-

fore, our kernel is

�ðt � ðti þ DÞÞ ¼ a � ðt � ðti þ DÞÞe� d�ðt� ðtiþDÞÞ
2=2 8t > ti þ D; ð5Þ

where Δ> 0 represents the delay. This delay is novel and requires modifications to be made to

the usual simulation approach; this is explained further below. We fit α and δ in our model

and assume the value of Δ = 15 days from literature [5]. The incorporation of a delay is still

necessary despite our infection times being the time of symptoms onset due to the role of the

mosquito. There is still a delay before the second person can onset due to the time it takes for

the mosquito to pass on the infection.

We also propose using a more complex time varying exogenous term than is found in liter-

ature (e.g. [23] and [32]) to capture the behaviour of the imported malaria cases. Our μ has the
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form

mðtÞ ¼ max Aþ Bt þM cos
2pt
p

� �

þ N sin
2pt
p

� �

; 0

� �

; ð6Þ

where p = 365.25 and A, B,M and N are constants that are fitted from data. This captures the

linear decrease in exogenous events that we would expect in a malaria elimination setting

along with the yearly fluctuating seasonality trends that often are associated with malaria. The

M and N parameters will contribute less to the importations in areas with little or no seasonal-

ity. Unfortunately this also leads to a more complicated simulation process because the sinu-

soidal terms cause μ to increase periodically and also can result in non-convexity in our log-

likelihood [23], see below.

Fitting Hawkes Processes

We use optimx from the optimx package [33] to minimise our log-likelihood and choose our

optimal values for α, δ, A, B,M and N. We provide the analytic directional derivatives of our

log-likelihood in S2 Text, which we use as additional parameters to improve the efficiency of

the optimx package. We calculate 95% confidence intervals for our parameters using the boot-

strapping approach in Reinhart [34] and Sarma et al. [35]. We simulate 10,000 simulations fol-

lowing the procedure below and re-fit each set of parameters, ensuring that Tmax in our

simulations is equal to or less than the last infection in our data set. The 95% confidence inter-

vals are the 2.5% and 97.5% quantiles of the 10, 000 refits. We ensure our optimal parameter

sets from re-fitting each simulation form a true minima and not a saddle point by refitting

until all the eigenvalues from our hessian, evaluated at the optimal solution, are positive.

We use goodness of fit tests to evaluate our fits. First we consider how Λ(ti) varies with

index of the event, i. Similar to Brown et al. [36], we define

LðtiÞ ¼
Z ti

0

lðtÞdt: ð7Þ

If the model fits well, the integral of the intensity evaluated at each event plotted against the

index should lie along a straight line. We also use the time–rescaling theorem. According to

this theorem, the difference in Λ(ti) between two subsequent events are independent exponen-

tial random variables with mean 1. We present Kolmogorov–Smirnov (KS) tests and quantile–

quantile (Q–Q) plots as goodness of fit tests to assess the quality of our fits; the points should

lie on a 45-degree line if the model is a good fit.

Simulating from a complex intensity function

It is not trivial to simulate from our intensity function for two reasons. First, our kernel is not

monotonically decreasing and, second, we impose a fluctuating exogenous term. Alternative

cluster based methods for simulation e.g. Reinhart [34] could provide similar results to the

algorithm we present below, but were not implemented here to allow further developments to

be added to the kernel in due course and to reduce the complexity in the termination

conditions.

The time of the maximum intensity from a single Rayleigh kernel at time t is

tmax intensity ¼ t þ
1
ffiffiffi
d
p : ð8Þ

However, we can only place bounds on the time at which the intensity is maximum when it is

comprised of multiple Rayleigh kernels, includes delays, Δ, and has a time varying μ; we did
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not find an analytic solution. When μ = 0 or is constant, the maximum lies between tlast event

and tlast event þ 1ffiffi
d
p þ t, see S3 Text. These bounds have to be widened when considering non-

monotonically decreasing exogenous terms because the maximum value of λ can occur after

tlast event þ 1ffiffi
d
p þ t if μ periodically increases. In Fig 1A and 1B the maximum of the kernel still

Fig 1. Illustrative plot of intensity function for events occurring at times 0, 1.2, 2.5, 8 and 9 with kernel parameters α = 1.0 and δ
= 1.0, a 1 day delay and a time varying μ. The coloured dots refer to different events or infections and the dashed pink line indicate

the time of the theoretical maximum value of a single Rayleigh kernel at the last event time. The solid black line indicates the time of

the maximum value of the kernel after the last event. Fig 1A shows a constant μ and Fig 1B and 1C show sinusoidal μ with a linear

decrease of different magnitudes. The parameters for Eq (6) in each case are as follows: A—A = 1; B—A = 1, B = −0.001,M = 0.2,

N = 0.2 and p = 20; C—A = 1, B = −0.001,M = 0.75, N = 0.75 and p = 20. These parameters are only illustrative and do not reflect

parameters we would expect real in malaria models.

https://doi.org/10.1371/journal.pcbi.1008830.g001
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lies between the last event and the time of the maximum value of the kernel at that time. How-

ever, Fig 1C shows that the maximum value of λ can occur outside that region and up until the

maximum of the μ term. This is particularly important if the exogenous term dominates,

which we predict happens in a near-elimination malaria settings.

We propose a new algorithm for finding the maximum of λ(t). First we bound the times at

which the maximum can occur; we calculate 1ffiffi
d
p þ t and the time of the maximum value of the

exogenous term, tμ max between the previous event and the final time of the simulation:

tlast event < tmax < max tlast event þ
1
ffiffiffi
d
p ; tm max

� �

: ð9Þ

Since the intensity is the juxtaposition of multiple functions with known maximums, we can

be sure that the maximum does not lie outside this bound. We then use a root finding algo-

rithm similar to uniroot.all from the rootSolve package [37, 38] to locate all the roots of the

derivative of the intensity. We do not know prior to the calculation how many roots there are

so split the bound into a pre-defined number of sections and search for a sign change inside

the interval. Once we have the times of these turning points, we evaluate them and find the

maximum value of the intensity. This is summarised in Algorithm 1.

Algorithm 1: Algorithm for finding λ?

Bound the region in time which the maximum value of the intensity
occurs;
(a) The minimum value of the region is the time of the previous event
by definition tmin bound = tlast event;
(b) The maximum value of the region is the larger of the maximum time
of a single kernel at the last event time or the maximum value of μ

after the event tmax bound ¼ max tlast event þ 1ffiffi
d
p ; tm max

� �
;

Compute the derivative of the intensity;
Find all roots of the derivative of the intensity or the turning
points of the intensity between tmin bound and tmax bound;
Evaluate the intensity at the turning points;
Select λ?;

Simulated data

In this paper we first evaluate our model using simulated data. We simulate 10, 000 sets of

events using Algorithms 1 and Supplementary Algorithm 1 for α = 0.017, δ = 0.057, A = 0.400,

B = 0.0001,M = 0.305 and N = −0.123 with the 15 day delay. These were chosen because they

are the optimum parameters that were fit to the Eswatini data set. We then use optimx to mini-

mise our log-likelihood and find the optimal values of each of our simulations. We compare

these fitted parameters to the initial parameters used for the simulation and evaluate our good-

ness of fit using the integral of our intensity evaluated at each event time, Λ(ti), and a KS plot.

We then consider the impact of under-reporting on the Hawkes Processes fits of our simu-

lated data, which is common phenomenon in malaria case reporting. We choose to investigate

this for our simulated data since we know these case series are complete, instead of inevitably

missing cases in our two case study data sets especially in Eswatini. We implement this by ran-

domly sampling different proportions (10% to 95%) of the first 1, 000 simulations computed

above and compare the optimal fits from one initial set of parameters for each simulation to

the original parameter sets. We can also estimate how the case reproduction number, Rc, varies

with under-reporting by considering the branching factor of the Hawkes Process. The Rc is

equal to the reproduction number in the presence of a range of interventions and is defined in

Hawkes Process literature as the average number of children events that result from one parent
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event. This is derived in S4 Text for a Rayleigh kernel and is equal to the integral of the kernel

between 0 and infinity:

Rc ¼
a

d
: ð10Þ

Malaria case studies

In addition to simulated data, we fit our model to line lists of individuals with malaria in two

countries over 1, 000 days. We consider malaria cases caused by the Plasmodium vivax parasite

between 1st January 2011 to 24th September 2013 in Yunnan Province, China [5] and all

malaria cases between 24th February 2010 to 16th November 2012 in Eswatini [39]. These line

lists only include people who attended a health clinic and received treatment. There are 2153

cases in our China and 627 cases in our Eswatini datasets. We assume all patients were treated

as they were reported on our line list, which reduces the length of time they were infectious

compared to an untreated malaria case. We chose these two data sets because the imported

cases are labelled, although we do not use information about if a case was imported or local in

our fitting process. Our cases are disaggregated by day, so we add right handed uniform jitter

(ensuring the dates of each infection remain the same) to our times to ensure we have unique

times for our events. This is a limitation of this method, but necessary for the Hawkes algo-

rithm. We initialise the optimisation routine for fitting each data set from 10 different start

points and select our final parameters to be the ones with the minimum negative log-

likelihood.

We simulated 10, 000 realisations of our Hawkes Process up to Tmax = 1, 000 using Algo-

rithms 1 and Supplementary Algorithm 1, and our fitted parameters. From this we could recre-

ate the daily number of cases and the epicurve, or cumulative cases, over time. We also

simulated 10, 000 realisations of just the μ term, or the endogenous cases only, which repre-

sented the imported malaria cases. We used the same algorithms as before, but set α = δ = 0

because we were not considering the cascade of infections from these importations at this

time. We compared these simulations to a simple Hawkes Process model fitted using the tradi-

tional exponential kernel with a 15 day delay and a parametric growth model using the growth-
rates R package [40].

It is also possible to use Hawkes Process models for prediction. We can see how well our

model fits future data by not fitting our model to all the available data. Instead we hold back

the last portion of the epicurve and forecasting over the period of the withheld data. We simu-

lated for 35 days more than we fit to so that we could investigate the predictive power of the

model. Again, we compare our forecasts with those from the parametric growth rate model.

All our Hawkes Process code is provided in the epihawkes package and available open source

on GitHub1.

Results

Simulated data

We show in Fig 2A and 2B (and Fig 3 (100% bar)) that we can recover the initial parameters

from our 10, 000 refits to our simulations. We find that a small number of our fits (under 2%)

lie in a different parameter regime, which corresponds to a different minima in our non-con-

vex log-likelihoood. This is a problem with having a non-convex optimisation surface, so care

should be taken to ensure the parameter space is widely explored to maximise the chance of

selecting the global minima. S1 Fig shows the un-magnified version of Fig 2B.
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Good performance of our fitting and simulation algorithms are suggested by our goodness

of fit tests. The integral of our intensity, Λ(ti), evaluated at our event times plotted against the

event index (Fig 2C) lie along a straight line, which suggests goodness of fit. In addition, we

find that the black dots of a KS plot from a sample simulation in Fig 2D are approximately

Fig 2. Model fits for simulated data using parameters: α = 0.017, δ = 0.057, A = 0.400, B = 0.0001, M = 0.305, N = −0.123 and our fixed delay Δ =

15. Fig 2A shows the kernel from the true parameter in red with the kernels generated from the refits to each simulation in black. Fig 2B shows the how

the exogenous term or importation intensity varies through time. The red line shows the importation intensity calculated from the initial parameters

and the black lines shows the importation intensity calculated from the parameters fit from each simulation. This figure is magnified to show the region

around the true value, but the un-magnified version is given in S1 Fig. Fig 2C shows the integral of the intensity evaluated at each event time plotted

against the event index, for one simulation. The red solid line is y = x. Fig 2D shows the KS goodness of fit test from one simulation. The red solid line is

y = x and the red dashed lines represent the 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1008830.g002
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linear and all lie within the confidence intervals of the plot. This suggests that the difference in

Λ(ti) between our simulated events are independent exponential random variables with mean

1, as expected.

We can also see that our Hawkes Process model is robust to some level of missing data, or

under reporting. In Fig 3 we show that the true parameters lie within the interquartile range of

all parameters for 90% of the data included in each fit, or 10% under reporting. We find that

our kernel parameters are especially robust in most of the scenarios considered. This make

sense because the kernel defines the biological process, with the background intensity chang-

ing to accommodate the missing cases. We find that these changes in parameters results in the

median value of Rc decreasing from 0.261 to 0.101 between 100% and 40% of cases reported

being reported with overlapping confidence intervals, see S2 Fig. Our uncertainty is wide

because our optimisation surface is non-convex and sometimes we arrive in a different local

minima.

Case studies

We can recreate our kernel and exogenous term using the optimal parameters returned by our

fitting procedure. Fig 4A shows the fitted intensity for both China and Eswatini. The duration

over which a person remains infectious, or where the intensity is greater than zero, is around

12 to 15 days for both China and Eswatini, but the individual contribution to the intensity

Fig 3. Box and whisker plots showing the distribution of our fits to different proportions of the data. Each of the parameters in our model is shown

as a different plot. The red line is the true parameter used to generate our simulations and the box shows the interquartile range with the whiskers

showing 1.5 times the interquartile range above and below the 25th and 75th percentile.

https://doi.org/10.1371/journal.pcbi.1008830.g003
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from one person is greater in China than Eswatini. The kernel, ϕ(t − ti), is zero for the first 15

days, which corresponds to the delay in a secondary person becoming infectious due to the

mosquito stage, even though we assume the infector is infectious at symptoms onset. Fig 4B

shows how μ varies over time for our proposed model. This variation is very different between

China and Eswatini; μ decreases significantly over the 1, 000 days in China, but the initial

intensity is much lower in Eswatini and increases slightly. Using these parameters, we calculate

the Rc for China to be 0.39 [0.23 − 0.99] and Eswatini to be 0.30 [0.05 − 1.02], where the square

brackets denote the 95% confidence intervals calculated through a boot strapping method.

This cannot be calculated from the growth model, which we compare our subsequent results

to. Uncertainty in all our model fit parameters are given in S1 and S2 Tables.

We see from our KS goodness of fit test (Fig 4C) that our fit to the China data is very good

and lies within the red dashed confidence interval but our Eswatini fit is less good as we

explain later. This pattern is also repeated in the Q–Q plots presented in S3 Fig. We also com-

pared our fits from the Rayleigh kernel to the more usual exponential kernel and found that

the fits to China are very similar but the fit to Eswatini are slightly closer to the straight line for

the Rayleigh kernel for the higher quantiles. The Akaike information criterion (AIC) values for

our fits confirm the similarity between the kernels. For china that AIC for the Rayleigh kernel

is 340 and exponential kernel is 343, but for Eswatini the Rayleigh kernel AIC is 1614 and

exponential kernel AIC is 1607.

Our 10, 000 simulations show different realisations of the Hawkes Process model and

enable us to validate our fitting. Our intuition says that these simulations represent different

ways that malaria could have transmitted in alternative scenarios. Fig 5A and 5C show daily

malaria case counts over time for China and Eswatini respectively. The solid red line shows

observed daily cases over time and the black lines show daily cases from each simulation.

There is good agreement between the simulated data and the real case counts they are fitted to,

especially in the third year in China where the red line lies within the bounds of our simula-

tions. However there are a few spikes in the first two years of China and second peak in Eswa-

tini that we do not capture well. We are also able to separate out the cases which are

Fig 4. Fitted endogenous and exogenous terms for the China and Eswatini data. Fig 4A shows the fitted kernel intensity for a single infection, which

corresponds Eq (5). Fig 4B shows how the exogenous terms vary through time. Fig 4C shows results from the Kolmogorov–Smirnov goodness of fit

tests. The solid red lines and dots correspond to the China data and the dashed blue lines and dots correspond to the Eswatini data. The black solid line

in Fig 4C is the line y = x and the red and blue dashed lines are the 95% confidence intervals for the China and Eswatini data set respectively.

https://doi.org/10.1371/journal.pcbi.1008830.g004
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importations from the ones that are from within country transmission, which is important in

near-elimination settings. Fig 5B and 5D show the daily number of importations for China

and Eswatini; again the red line shows the observed data and the black lines show our simula-

tions. We note here that the observed importations are not necessarily determined by genetics,

but usually travel history, so may not be fully accurate. We see here that the spikes we miss in

the total daily cases come from importations that we do not capture well, but that we capture

the seasonal trends and the general behaviour. We see this again in S4 Fig where we show the

total cumulative cases and importations over time with the associated intensity. Here it is

again clear that we have a good overall fit, but that we miss a few early spikes in the China data

which offsets our overall importations although the year 3 behaviour is correct. We also com-

pare our results to a simple parametric growth model and find that this model is unable to

account for the seasonality in the daily malaria cases (Fig 5), although it can crudely

Fig 5. Simulated daily cases for the China and Eswatini data. Fig 5A and 5C show the daily malaria case counts for China

and Eswatini respectively. The red line shows the real case counts over time and the black lines show the case counts over time

from 10,000 simulations of the full fitted model. Fig 5B and 5D the daily importations for China and Eswatini respectively.

Again the red line shows the real case counts over time and the black lines show simulation results.

https://doi.org/10.1371/journal.pcbi.1008830.g005
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approximate the total number of cases over the time period (S4 Fig). It also cannot be used to

split out the importations from the within country transmission.

It is also possible to use Hawkes Process models to predict future cases of malaria in a coun-

try. Fig 6 shows predicted total cases in each week for the subsequent 5 weeks after we stop fit-

ting our model. We aggregate at the weekly level because there are very few daily cases. We get

good agreement between the real cases (red crosses) and the 10, 000 simulations for one

month into the future for both countries, but the growth model (purple crosses) does not pre-

dict the new cases each week well in Eswatini because it predicts there is only a total of one

new case during the 35 days considered (this is split over the 5 weeks since it is a continuous

model). This agreement between our model and reality can also been seen in the cumulative

prediction box and whisker plot in S5 Fig. However, neither the growth model fit to China or

Eswatini predict well when cumulative cases are considered instead of weekly new cases. It is

possible to predict further with the Hawkes Process model, but the predictions become less

reliable. In particular in China, the fitted exogenous term has reached zero, meaning the simu-

lations suggest that elimination has occurred. If we refit with more data, the μ(t) trend alters

slightly and elimination is delayed.

Discussion

Mathematical modelling is an important tool for helping countries close to eliminating malaria

reach their goals. Recreating disease transmission patterns in low-endemicity settings is an

important first step for validating these methods and their utility for informing policy. In this

paper, we have shown that semi-mechanistic Hawkes Process models can be used to model the

number of infections of malaria over time in both Yunnan Province, China, and Eswatini. We

have also shown that it is necessary to make disease specific modifications to the traditional

kernel to recreate malaria transmission. We estimated similar case reproductive numbers as

Fig 6. Predicted total weekly cases of malaria. Fig 6A shows weekly predicted cases of malaria for China and Fig 6B for Eswatini respectively. The red

crosses show real number of cases each week, the purple crosses show the predictions from the growth model and the box and whisker plot show

predictions from the 10,000 simulations. The box shows the interquartile range and the whiskers show 1.5 times the interquartile range above and

below the 25th and 75th percentile.

https://doi.org/10.1371/journal.pcbi.1008830.g006
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other methods using the same data. Routledge et al. [5] estimate a mean Rc of 0.29 in 2011,

0.25 in 2012 and 0.11 in 2013, which is overlaps the confidence intervals of our estimate of

0.39 [0.23 − 0.99] for the first two years. Similarly, Reiner et al. [39] estimate the Rc for Eswatini

in different regions between 0.08 and 1.70, which encompasses our estimate of 0.30 [0.05

− 1.02] although our upper confidence interval is still lower than theirs. We also find that our

seasonality matches the seasonality in the importations well along with the timings of the rainy

seasons and travel patterns in these countries [5, 41]. These Hawkes Process methods enable

us to include mechanisms of transmission that are not considered in purely statistical methods

but do not need the same quality of data that is necessary for network models, as shown by the

robustness of our parameter fitting to 10% missing data. Unfortunately, we do not capture the

initial increase in cases towards the end of year 1 in Eswatini, caused by importations, as well

as the spikes in importations in China during years 1 and 2. This could reflect policy changes,

which decrease the number of importations in the subsequent years.

The use of Hawkes Processes is especially well suited to malaria modelling in near-elimina-

tion settings. This is because not only can these methods be used to recreate cases over time,

which is hard to do, but they can be used to disentangle the relative contribution of importa-

tion verses local transmission where malaria control programs traditionally rely on self

reported travel history that may not be accurate [42]. This is especially important in scenarios

where Rc< 1 and malaria transmission transition from being community driven to being

driven by importations. In these situations, understanding how many cases are being imported

is perhaps more important to policy makers than the reproduction number, since local trans-

mission is not sustained. This means public health bodies can target their interventions and

treatment towards the demographic who travel and also potentially to the neighbouring coun-

tries where the cases are originating from. Our fits to the overall case data are better than to

our importations because we choose the parameters for the Hawkes Process that minimise the

error in the cumulative case counts and do not include information about travel history or

which cases were imported in our fitting procedure. We choose this parameterisation for our

log-likelihood because we wanted to showcase how this method could be used to ascertain the

proportion of imported malaria cases when the health systems do not know how many cases

originated outside the community.

A benefit of modelling malaria transmission is that we can extend our models and forecast

future behaviour. We show that in both China and Eswatini our median estimated case counts

matches the actual case count very well. This could provide insights to policy makers about

short term transmission, which could be further improved by adding in a spatial component.

From Fig 5 we see that China has very successfully managed to reduce importations over the

time period studied, whereas, importations have increased slightly during the study in

Eswatini.

We recognise that despite this novel implementation of the Hawkes Process method pro-

viding a flexible and useful tool for modelling malaria there are several limitations. Our

method requires a unique time stamp for each individual malaria case. This is often not avail-

able in the line lists provided by the surveillance system because they are recorded by the day

of presentation of symptoms. We therefore add noise to the data to recreate unique timings.

We investigated the impact of adding different types of uniform or normally distributed noise

to our dates but this did not impact the fits of our model significantly. We also only consider a

snapshot of dates in our fit because we want to compare our forecasts of the model to true data

and simulation is slow because we are solving a NP hard problem to find the maximum inten-

sity of the Rayleigh kernel with a delay. Speeding this up is an area of ongoing research along

with making this model spatial since the usual methods in e.g. Reinhart [34] did not work sat-

isfactorily for our data set. Our optimisation surface is non-convex so care needs to be taken,
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as we have, to ensure the solution returned is a true minimum and not a saddle point. Our

final limitation is that we do not consider the prospect of some cases coming from previously

relapsed cases instead of new infections.
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S1 Fig. Re-fitted estimates for the how the importation intensity varies through time. This

is an un-magnified version of Fig 2B. The red line shows the importation intensity calculated

from the initial parameters and the black lines shows the importation intensity calculated from

the parameters fit from each simulation.

(TIF)

S2 Fig. Impact of under-reporting on the case reproduction number. The points show our

median estimate for Rc at each percentage of data fit to and the error bars show the 95% confi-

dence intervals.

(TIF)

S3 Fig. Comparison of goodness of fit measures for the exponential kernel (red) and Ray-

leigh kernel (blue) with a 15 day delay. S3A and S3D Fig show Λ(ti) against i for China and

Eswatini respectively, S3B and S3E Fig show Kolmogorov–Smirnov tests for China and Eswa-

tini respectively and S3C and S3F Fig show quantile–quantile plots for China and Eswatini

respectively. The solid line shows the line y = x and the dashed lines show the 95% credible

intervals for each test.

(TIF)

S4 Fig. Simulated counts and intensities for the China and Eswatini data. S4A and S4C Fig

show malaria case counts for China and Eswatini respectively. The red line shows the real case

counts over time and the black lines show the case counts over time from 10,000 simulations

of the full fitted model. The green line shows the real case count over time from the cases

labelled as importations and the blue lines show the case counts over time from 10,000 simula-

tions of just the exogenous term (Eq (6)). S4B and S4D Fig shows the calculated Hawkes inten-

sity (Eq (1)) for China and Eswatini respectively. The red line shows the intensity calculated

from the fitted parameters and real events, whereas the black lines show the intensity calcu-

lated from the fitted parameters and the simulated events.

(TIF)

S5 Fig. Predicted cumulative cases of malaria presented every seven days after 1000 days

(the time period the model was fit to). S5A Fig shows cumulative cases of malaria for China

and S5B Fig for Eswatini respectively. The red crosses show real number of cumulative cases,

the purple crosses show the predictions from the growth model and the box and whisker plot

show predictions from the 10,000 simulations. The box shows the interquartile range and the
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whiskers show 1.5 times the interquartile range above and below the 25th and 75th percentile.

(TIF)

S1 Table. Values and 95% confidence intervals for model parameters fit the the China data

set. Uncertainty was calculated using the bootstrap method in Reinhart [34] and Sarma et al.

[35].
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S2 Table. Values and 95% confidence intervals for model parameters fit to the Eswanti

data set. Uncertainty was calculated using the bootstrap method in Reinhart [34] and Sarma
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(PDF)

Acknowledgments

The authors would like to thank Joshua Proctor for early discussions about using Rayleigh ker-

nels to model malaria and for his comments on the final draft. They would also like to thank

Jeremy Minton for his help with the coding.

1 https://github.com/mrc-ide/epihawkes

Author Contributions

Conceptualization: H. Juliette T. Unwin, Swapnil Mishra, Samir Bhatt.

Data curation: Shengjie Lai.

Formal analysis: H. Juliette T. Unwin.

Funding acquisition: H. Juliette T. Unwin, Samir Bhatt.

Investigation: H. Juliette T. Unwin.

Methodology: H. Juliette T. Unwin, Isobel Routledge, Seth Flaxman, Marian-Andrei Rizoiu,

Swapnil Mishra, Samir Bhatt.

Project administration: H. Juliette T. Unwin.

Resources: Samir Bhatt.

Software: H. Juliette T. Unwin.

Supervision: Samir Bhatt.

Validation: H. Juliette T. Unwin.

Visualization: H. Juliette T. Unwin.

Writing – original draft: H. Juliette T. Unwin.

Writing – review & editing: H. Juliette T. Unwin, Isobel Routledge, Seth Flaxman, Marian-

Andrei Rizoiu, Shengjie Lai, Justin Cohen, Daniel J. Weiss, Swapnil Mishra, Samir Bhatt.

References
1. Kermack WO, McKendrick AG, Walker GT. A contribution to the mathematical theory of epidemics. Pro-

ceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical

Character. 1927; 115(772):700–721.

PLOS COMPUTATIONAL BIOLOGY Using Hawkes Processes to model malaria cases in near-elimination settings

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008830 April 1, 2021 16 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008830.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008830.s011
https://github.com/mrc-ide/epihawkes
https://doi.org/10.1371/journal.pcbi.1008830


2. Bershteyn A, Gerardin J, Bridenbecker D, Lorton CW, Bloedow J, Baker RS, et al. Implementation and

applications of EMOD, an individual-based multi-disease modeling platform. Pathogens and Disease.

2018; 76(5). https://doi.org/10.1093/femspd/fty059 PMID: 29986020

3. Winskill P, Slater HC, Griffin JT, Ghani AC, Walker PGT. The US President’s Malaria Initiative, Plasmo-

dium falciparum transmission and mortality: A modelling study. PLOS Medicine. 2017; 14(11):1–14.

https://doi.org/10.1371/journal.pmed.1002448 PMID: 29161259
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