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Abstract—In data stream mining, concept drift may cause
the predictions given by machine learning models become less
accurate as time passes. Existing concept drift detection and
adaptation methods are built based on a framework that is
buffering new samples if a drift-warming level is triggered and
retraining a new model if a drift-alarm level is triggered. How-
ever, these methods neglected the problem that the performance
of a learning model could be more sensitive to the amount of
training data rather than the concept drift. In other words, a
retrained model built on very few data instances could be even
worse than the old model trained before the drift. To elaborate
and address this problem, we propose a fast switch Naı̈ve Bayes
model (fsNB) for concept drift detection and adaptation. The
intuition is to apply the idea of following the leader in online
learning. We manipulate a sliding and an incremental Naı̈ve
Bayes classifier, if the sliding one overwhelms the incremental
one, the model reports a drift. The experimental evaluation shows
the advantages of fsNB and demonstrates that retraining may not
be the best options for a marginal drift.

Index Terms—concept drift, data stream, machine learning

I. INTRODUCTION

Concept drift refers to a data stream learning task in which
the target variable may change over time. Algorithms designed
to address concept drift have acknowledged the importance
of balancing the short-term and long-term performance [1],
[2]. Conventional machine learning models assume that the
learning problem is well represented by the training data and
has the same pattern as further analysis tasks, that is, the data is
stationary. However, in real-world scenarios, this is assumption
may not hold, especially for applications involving data stream
analysis [3]–[5]. In industrial applications, data collected from
manufacture and operation processes demonstrate an inherited
non-stationary nature. For example, the measurement of a
sensor could vary due to faulty, aging or changes in operation
conditions [2]. The main challenge of concept drift is that such
changes are unforeseeable and there is no guarantee that data
received in the future have the same distribution as the past
[6], [7].

Real drift and virtual drift are two major types of concept
drift. Real drift occurs when there are changes in the class
boundaries. These changes will make the current model obso-
lete. By contrast, virtual drift means changes in the marginal
distribution, while the class boundaries are not affected [3]–
[5]. In real-world scenarios, these two types of drift could
occur at the same time. In this paper, we focus on real drift
detection and adaptation with a supervised learning setting,
that is, we assume the true label is available after prediction.

One issue remains unsolved in the literature for real drift
handling is when and how to update the learning models.
The most popular drift detection and adaptation framework
is setting two levels of drift, which are drift-warning level
α = 0.05 and drift-alarm level α = 0.01 [3], [8], [9]. In
this case, the system will start buffering new data instances
if warning level is reached and will use the buffered data to
retrain a new model if a drift alarm is triggered. However,
this strategy has a risk that there could be insufficient data for
retraining a model. In other words, the retrained model may
be underfitting. For example, as shown in Fig 1., if the drift
alarm is triggered after six time points of the warning level is
reached, there will be only six data instances for retraining. It
is hardly to affirm that the new retrained model will be better
than the old one.

If a drift adaptation cannot improve the prediction accuracy
after a drift, even the drift detection result is correct, and
we consider this as a redundant adaptation. We call the
concept drift adaptation that reduces the model performance
as negative drift adaptation. Existing drift detection algorithms
neglect this issue. Hence there is a clear need for efficient
methods that can help concept drift handling algorithms to
decide on when to choose fine-tuning over retraining.

There are few algorithms build with paired learners that are
capable of handling this issue. They compare the performance
of a fine-tuned and a retrained model at every time point
[1], [2], [10]. This strategy is useful and straightforward but
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Fig. 1. A demonstration of existing real drift detection and adaptation
framework. The problem is how to determine a drift adaptation is beneficial
to the learning model but not reducing its overall performance.

not efficient enough. These methods have to retrain a model
whenever a new data instance is available. If the instances
arrive in sequence, they have to manually configure a sliding
time window to store the data for retraining. This process has
a very high computational cost and may easily be affected by
noisy [2]. Besides, the learner switch threshold is also unclear.
Most of the thresholds are chosen by grid search or expert
experience [1], [2].

In this paper, we assume that, without concept drift, the
residual of a learning model would be stable. As a result,
a two-sample hypothesis test, such as Kolmogorov–Smirnov
two-sample test (KS test), should be able to identify whether
the residual of an incremental learner is statistically smaller
than a non-incremental one’s. According to the hypothesis
test result, the learning model can decide to switch to a new
retrained model or stay on the incrementally fine-tuned model.
This is an improvement to the paired learners because we do
not need to choose the replacement threshold manually. Also,
the residual of the retrained model can be reused; therefore,
no retraining process is required for new data instances, unless
there is a concept drift.

The main contribution of this paper is as follows.

• A novel and efficient time window evaluation strategy is
proposed so that the paired learner will not need to retrain
at every time point.

• A simple but effective residual-based real drift detection
algorithm is developed. The drift detection is aiming to
reflect the difference in the performance between a fine-
tuned model and a retrained model, but not the change
in the data distribution.

• A follows by leader drift adaptation algorithm is devel-
oped. The drift adaptation can automatically choose the
drift threshold and switch the leader model based on their
performance.

II. LITERATURE REVIEW

In this section, we formally present the definition of concept
drift. Followed by the state-of-the-art learner error-based drift
detection and adaptation algorithms. At last, we introduce the
methodology of Naı̈ve Bayes classifier.

A. Real drift and virtual drift
Concept drift is defined as a phenomenon that the statistical

properties of a target domain change over time in an arbitrary
way [3]. These changes could be caused by hidden variables or
some features that cannot be measured directly. More formally,
concept drift is defined as: at time t a set of observations is
given, denoted as Dt = {(Xi, yi)}ni=1, where Xi ∈ Rd is the
feature vector, d is the dimensionality, yi ∈ Y is the label,
and the n denotes the number of instances arrived at time t.
Given that Dt follows a joint distribution pt(X, y), concept
drift is identified whenever there is a statistical significant
difference between any two instances sets Dt, Dt+1 that
pt(X, y) 6= pt+1(X, y). The joint distribution can be presented
as p(X, y) = p(y|X)ṗ(X). In considering problems that use
X to infer y, concept drift is generally divided into virtual drift
that p(X) changed while p(y|X) remains unchanged and real
drift that p(y|X) changed while p(X) remains unchanged.
In the real-world scenarios, most applications aspire to find
the p(y|X) change, because such changes directly affect the
performance of the learning model [11].

According to a recent literature survey [5], virtual drift
detection and adaptation algorithms are focusing on measuring
and reducing the distribution discrepancy between two sam-
ple sets. For example, [6], [12], [13], they have a limited
representation of the model’s performance change. In other
words, in some extreme cases that the data distribution drift
significantly, but the decision boundary does not change,
impulsive retraining may impair the overall performance. In
contrast, real drift detection and adaption algorithms, such as
EDDM [8], ADWIN [14], ECDD [15] and HDDM family
[9] FW-DDM [16] are more productivity-oriented that only
updating the models when their performance has significantly
dropped.

Among the real-drift detection and adaptation algorithms,
few research works are aiming at comparing the performance
of a retrained model and a fine-tuned model [1], [2]. How-
ever, they have few parameters chosen empirically, such as
the evaluation window size and the drift threshold [1], [2].
In general, we summarized the unsolved problems of these
algorithms in Fig. 2., as follows: Problem 1: over frequent
retraining; Problem 2: the evaluation window size is sensitive
and will affect the overall performance; Problem 3: model
switch threshold is uncertain.

B. Naı̈ve Bayes Classifier
Naı̈ve Bayes methods are a set of supervised learning

algorithms based on applying Bayes’ theorem with the “naive”
assumption of conditional independence between every pair of
features given the value of the class variable. Bayes’ theorem
states the following relationship, given class variable y and
dependent feature vector xi through xd,

p(y|x1, . . . , xd) =
p(y)p(x1, . . . , xd|y)

P (x1, . . . , xd)
.

Using the naive conditional independence assumption that

p(xi|y, x1, . . . , xi−1, xi+1, . . . , xd) = p(xi|y)
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Fig. 2. A summary of paired learners for concept drift handling. The cost of
frequent retraining is problem 1. How to set the window size for evaluation
is problem 2. And how to set the drift threshold is problem 3.

for all i, this relationship is simplified to

p(y|x1, . . . , xd) =
p(y)

∏d
i=1 p(xi|y))

p(x1, . . . , xd)
.

Since p(x1, . . . , xn) is constant given the input, we can use
the following classification rule:

p(y|x1, . . . , xd) ∝ p(y)

d∏
i=1

p(xi|y),

and we can use maximum a posterior estimation to estimate
p(y) and p(xi|y), i.e.,

ŷ = arg max
y

p(y)

d∏
i=1

p(xi|y).

The former is then the relative frequency of class y in the
training set [17]. According to the “naive” assumption, Naı̈ve
Bayes classifier can be implemented in an incremental manner.
For data stream learning tasks, we consider the incremental
learning process as a model fine-tune process.

Another advantage of Naı̈ve Bayes classifier is its low
runtime complexity. The runtime complexity of Naı̈ve Bayes
and incremental Naı̈ve Bayes is O(Nd), where N is the size
of the training data. Low runtime complexity is essential for
data stream learning [5], [18], [19].

III. FAST SWITCH NAÏVE BAYES FOR LEARNING WITH
CONCEPT DRIFT

In this section, we formally present the proposed fast switch
Naı̈ve Bayes model (fsNB) for learning under concept drift.
The model includes a novel time window evaluation strategy, a
residual-based drift detection algorithm, and a drift adaptation
algorithm based on the Follow the Leader principle.
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Fig. 3. The time window strategy of fsNB. There are three time windows
for fsNB to implement drift detection and adaptation. The first window is a
fixed window for model retraining, denotes as WR. The second window is a
landmark time window for model fine-tuning, denotes as WF . The last one is
a sliding window that stores the residuals of most recent instances, denotes as
WE . In the beginning, we build a model on WR and evaluate it on WE . The
residual vector is buffered for drift detection, denotes as VR. We initialize a
fine-tuned model and its residual VF by copying the first model and VR. For
a new data instance (Xt, yt), the fine-tuned model will make the prediction
and calculate the residual rt. The rt will be appended to VF and the first
element of VF will be removed, which forms a sliding residual buffer.

A. The Time Window Strategy for Fast Switch Naı̈ve Bayes

Time window strategy is a vital component for data stream
learning [5]. It helps organizing training and testing data from
data streams. According to an empirical study [16], different
time window settings will result in totally different results.
To illustrate how fsNB organized data instances in a data
stream, we present the proposed time window strategy in
Fig. 3. The fsNB maintains three time windows: retraining
window WR, fine-tuning window WF and evaluation window
WE . The window size of them are denoted as NR, NF , and
NE respectfully. The time windows will not store the data.
They are only to demonstrate how the models are trained and
evaluated.

This time window strategy poses no additional runtime com-
plexity to incremental Naı̈ve Bayes classier. All the data will
only be accessed once, except the most recent [−(NR+NE) :]
data. Because these data will be used for creating a new
retrained model and its residuals when concept drift occurs.

B. Drift Detection based on the Residual of Naı̈ve Bayes
Classifier

The underlying assumption here is that without a concept
drift, residuals of a model on any two testing data batches
should have the same distribution. Compare to using the
model’s accuracy or the frequency of correct predictions, using
residuals contains more details about the model’s performance
change and could be an alternative way for drift detection.

The intuition of using residual for drift detection is to
simplify data representation methods. We map high dimen-
sional data to one-dimension by building a learning model, i.e.,
mapping the joint distribution p(X, y) to residual, denoted as
fNB(X, y)→ r . Since real-drift only cares about the p(y|X)
drift, this mapping help simplify the drift detection problem.



According to the definition of Naı̈ve Bayes classifier, we have
the residual of a data instance r(Xj , yj) calculated by

r({xji}di=1, yj) = 1− p(yj)
d∏

i=1

p(xji|y = yj)

or shorten for rj . And we have the residual vector of a batch
of evaluation data as V = {rj}NE

j=1, where NE denotes the
size of the evaluation window. For easy memory, we consider
all batch data as a time window retrieved from a data stream,
therefore, using W to denote the data batch. Drift detection is
implemented by using the Kolmogorov-Smirnov two-sample
test (KS test) to compare the residuals. Since we have a fixed
retrained model and an incremental fine-tuned model, we could
have two residual vectors on the evaluation data batch, denoted
as VF , VR. We report a real drift if the KS test rejects the null
hypothesis that p(VF ) = p(VR).

The empirical distribution function for NE independent and
identically distributed (i.i.d.) ordered residuals ri is defined as

FNE
(r) =

1

NE

NE∑
i=1

I[−∞,r](ri)

where I[−∞,r](ri) is the indicator function, equal to 1 if ri ≤ r
and equal to 0 otherwise.

The Kolmogorov–Smirnov statistic for the empirical distri-
bution of residuals of retrained FR(r) and fine-tuned FF (r)
models is

sKS = sup
r
|FR(r)− FF (r)|.

Then for large samples, the null hypothesis is rejected at level
α if

sKS > c(α)

√
|VR|+ |VF |
|VR||VF |

,

where | · | denotes the cardinality of a set and the c(α) is
calculated in general by

c(α) =

√
−1

2
ln
α

2
.

The two-sample test checks whether the two residual set come
from the same distribution.

To determine whether the drift is improving or deteriorating
the performance, we add a constrain before triggering the drift
detection, i.e., the mean absolute value (MA) of the fine-tuned
model residuals should be lower than the retrained one. This
rule is presented as follow

if MA(VR) ≤ MA(VF ) then KStest(VR, VF ).

This ensures the drift adaptation will only be performed
when the retrained model significantly outperforms the fine-
tuned one. The pseudocode of fsNB drift detection algorithm
is shown in Alg. 1.

Algorithm 1: fsNB Drift Detection
Input : residual of retrained model, VR

residual of fine-tuned model, VF
drift significant level, α = 0.01 as default

Output: drift indicator, Idrift ∈ {0, 1}
1 if MA(VR) ≤ MA(VF ) then
2 run KS-test and calculate the

pValue=KStest(VR,VF );
3 if pValue ≤ α then
4 return 1;

5 return 0;

C. Drift Adaptation by Follow the Leader Principle

Concept drift adaptation or reaction is to update existing
learning models according to the situation after a concept
drift. If the drift severity or the impact is not significant, the
model can incrementally be fine-tuned by new data instances.
However, in some cases, the incremental fine-tune process is
too slow for the drift recovery to keep the model meet its
performance requirements. Therefore, a retraining process will
be triggered. In this section, we propose a follow the leader
drift adaptation algorithm for learning with concept drift.

The simplest learning rule to try is to select the hypothesis
that has the least loss over recent past time. This principle is
called follow the leader, and is simply given at time t. The
leader is selected by

Leader = arg min
f(x)∈H

t∑
i=1

|f(xi)− yi|,

where the hypothesis set is {fR(x), fF (x)}, namely the re-
trained model and the fine-tuned model. In our case, we can
simply substitute the residual as the loss measurement, and we
have the leader selected by

Leader = arg min
f(x)∈{fR(x),fF (x)}

MA(VR)−MA(VF ),

This method can thus be looked as a greedy algorithm,
because it does not consider the following situation. For a
pair of learners, the one has the best performance on the
most recent predictions will lead the model. In this case, the
drift detection can be considered as a leader selection process.
If there is a leader changed, which means the rank of their
performance switched, the model reports a concept drift. The
pseudocode of fsNB drift adaption algorithm is shown in Alg.
2 and the pseudocode of fsNB data stream learning algorithm
is shown in Alg. 3, where the time windowing method is
included.

IV. EXPERIMENT EVALUATION

This section presents an implementation of the proposed
algorithm in Section III. Six algorithms (3 baselines and 3
state-of-the-art algorithms) and five data sets were used for
evaluating the performance of fsNB. Section IV-A introduce



Algorithm 2: fsNB Drift Adaptation
Input : Most recent NR +NE data,

Wbuff = Stream[−(NR +NE) :]
residual of retrained model, VR
residual of fine-tuned model, VF
drift indicator, Idrift

Output: leader learner

1 if Idrift = 1 then
2 retrain model on

fR(x) = NaiveBayes(Wbuff[: NR]);
3 calculate residual VR = Y[−NE :] − fR(X[−NE :]);
4 copy fF (x)← fR(x) and VF ← VR;

5 return fF (x);

Algorithm 3: fsNB Data Stream Learning
Input : data stream {(Xi, yi)}ti=1

drift significant level, α = 0.01 as default
Retrain window size NR = 200
Evaluation window size NE = 10

Output: {ŷ}ti=1

1 initial retrain window WR = (Xi, yi)
NR

i=1;
2 initial evaluation window WE = (Xj , yj)

NE

j=1;
3 initial retrain model fR(x) = NaiveBayes(WR);
4 initial retrain residualVR = yj − fR(Xj);
5 initial fine-tune model and its residual

fF (x)← fR(x), VF ← VR;
6 while stream has Xt for prediction do
7 predict ŷt = fF (Xt);
8 calculate new residual rt = yt − proba(ŷt);
9 slide fine-tune residual VF [1 :]← [VF [1 :], rt];

10 slide evaluation window
WE [1 :]← [WE [1 :], (Xt, yt)];

11 detect drift Idrift = fsNBDetection(VR, VF , α);
12 fsNBAdaptation([WR,WE ], Idrift, VF , VR);

13 return {ŷ}ti=1;

the configuration of the compared algorithms. Section IV-B
presents the statistics of the data sets, and section IV-C
summarised the evaluation results and discuss the findings.
The dataset and the source code of this research are available
online1.

A. Experiment Configuration

To implement the fsNB algorithm, we applied the
Naı̈veBayse module in the skmultiflow.bayes python package
[20]. The evaluation metric is prequential accuracy [21].

preAcct =

{
preAccini, if t = tini

preAcct−1 +
preAccini−preAcct−1

t−tini+1 , otherwise

Compared algorithms and their settings are shown as follows.

1https://github.com/Anjin-Liu/IJCNN-fsNB

TABLE I
SYNTHETIC DATA SET STATISTICS. THE RATIO INDICATES THE CLASS

RATIO.

Data set # Samples # Features # Class Ratio

SEA 10,000 3 2 1:1
RTG 10,000 10 2 1:1
RBF 10,000 10 2 1:1
HYP 10,000 10 2 1:1
AGR 10,000 9 2 1:1

FixNB is a Naı̈ve Bayes classifier trained at the first 200
data instances. It will then be used for testing the rest of the
stream. FixNB is the first baseline method of our evaluation.

IncNB is an incremental Naı̈ve Bayes classifier that contin-
uously fine-tuned on new coming data. The learner will predict
the new data first and then incrementally learn it. We consider
IncNB as the second baseline methods.

PairedLearner is the Paired Naı̈ve Bayes Learners algo-
rithm [1]. PairedLearner is the third baseline methods, because
it has the same drift detection strategy as fsNB.

EDDM [8] is a upgraded version of DDM [22]. It has
been widely used for concept drift detection and adaption
evaluation. Since EDDM has the same mechanism of DDM,
we only use EDDM for comparative analysis.

ADWIN [14] change detector is the most referenced change
detector in the literature so far. It has combined with different
drift adaptation strategy for data stream learning [23]. In this
experiment, we only evaluate its power on drift detection.
All the drift adaptation was implemented by retraining a new
model.

HDDM family [9], including HDDM-A test and HDDM-
W test, that was based on Hoeffding bound. They have shown
reliable power on learner error-based drift detection [5].

All the algorithms were implemented by the MOA platform
[19]. The experiments were conducted on a cluster node with
3.4GHz 8 cores CPU and 32GB RAM. The parameters were
set as the default value as suggested by their authors.

B. The Data Sets

Each approach was tested on five synthetic data sets. The
statistics about these data sets are summarized in Tables I. A
brief description of each follows. The synthetic data sets were:

The SEA generator [24] produces data streams with three
continuous attributes, X = {x1, x2, x3} and x1, x2, x3 ∈
[0, 10]. An inequality determines the label of each data in-
stance, x1 + x2 ≤ θ, where θ is a threshold to control the
label boundary. The entire data stream was divided into four
subsets with different data distributions (“Concepts”) of equal
size, and θ was 8, 9, 7, and 9.5, respectively. This evaluation
method has been widely used in sudden drift detection and
adaptation [16], [23], [25]. There were 10,000 data instances
at a noise ratio of 10%.

The rotating Hyperplane generator [26] produces data
streams with ten continuous attributes, X = {x1, . . . , x10}
and x1, . . . , x10 ∈ [0, 1]. The label boundary for classification
was determined by Σd

i=1wixi ≥ θ, where d is the number
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Fig. 4. A plot of the prequential accuracy and the confidence interval of the baseline and fsNB algorithm. It can be seen that fsNB outperform the baselines
on all evaluated data sets except the RTG data set. This is because RTG data set does not contain any simulated drift.

TABLE II
CLASSIFICATION ACCURACY OF THE STATE-OF-THE-ART ALGORITHMS (%). THE NUMBER IN THE BUCKET INDICATES THE RANK OF THE ALGORITHM
ON THIS DATA SET. ALL THE RESULTS WERE SUMMARIZED BY RUNNING 15 COPIES OF THE DATA SETS, WHICH WERE GENERATED WITH A DIFFERENT

RANDOM SEED. THE ALGORITHMS WITH UNDERLINE ARE THE BASELINE OF OUR METHOD. IT CAN BE SEEN THAT FSNB OUTPERFORMS BASELINES ON
EVERY EVALUATED DATA SET.

Algorihtms SEA RTG RBF AGR HYP AvgRank

fsNB 85.32±1.20 (2) 64.09±4.48 (5) 66.29±3.58 (2) 69.06±3.16 (4) 82.75±1.03 (1) 2.8
HDDM-W test 84.49±0.79 (3) 63.39±4.92 (6) 67.14±1.99 (1) 74.53±0.89 (2) 82.58±1.75 (2) 2.8
HDDM-A test 84.48±0.72 (4) 64.26±4.73 (3) 65.66±2.57 (3) 74.54±0.80 (1) 82.29±2.30 (4) 3
EDDM 85.36±0.62 (1) 64.13±4.61 (4) 65.39±2.87 (4) 70.61±2.37 (3) 82.34±1.61 (3) 3
IncNB 83.62±0.36 (6) 64.36±4.48 (1) 60.42±2.62 (6) 62.09±0.61 (6) 80.27±3.17 (5) 4.8
PairedLearner 84.31±0.75 (5) 57.51±4.09 (8) 62.91±2.78 (5) 65.55±0.92 (5) 72.88±1.67 (7) 6
ADWIN 70.50±12.28 (8) 64.35±4.65 (2) 57.55±5.55 (7) 59.30±0.22 (7) 73.42±8.79 (6) 6
FixNB 80.56±0.60 (7) 62.70±4.58 (7) 53.24±3.63 (8) 56.67±0.60 (8) 71.69±6.29 (8) 7.6

of features related to drift, and wi are weights that randomly
initialize in the range of [0, 1]. Incrementally changing the
threshold θ produces a rotating hyperplane label boundary,
thereby generating incremental concept drifts. In this exper-
iment we set d = 2, that is, only the first two features had
incremental drifts. Again, there were 10,000 data instances,
and the noise ratio was set to 10%.

The AGRAWAL [27] generator creates instances with six
nominal and three continuous attributes. Ten functions are
available to map instances into two classes. We used the first
four functions in MOA to simulate four concepts of equal
length. The same gradual drift configuration was applied to
AGRg.

The Random Tree Generator (RTG) randomly builds a
decision tree and randomly assigns a class label to each leaf
node, after which the data is uniformly distributed to the leaf
nodes. For this dataset, we applied the MOA default setting
to create a non-drifting dataset.

The RBF generator creates data instances using a radial

basis function. It creates centroids at random positions and
associates them with a standard deviation value, a weight, and
a class label. Incremental drifts are simulated by continuously
moving the centroids. For the RBF incremental drift, 50/50
centroids are drifting.

C. Findings and Discussion

The evaluation results were calculated based on 15 runs of
each dataset. The average accuracy and standard deviation of
accuracy are given in Table II. The prequential accuracy of
FixNB, IncNB, PairedLearner and fsNB are plot in Fig. 4.

As shown in Table II, the proposed fsNB and HDDM-W
test have the best performance rank. Compare to the baseline
algorithms, fsNB outperforms them on all evaluated data sets
except the RTG data set, which indicates the improvement and
the efficacy of fsNB. The reason that no algorithm can beat
the IncNB on the RTG data set is that RTG has no simulated
concept drift. Therefore, incremental learning is supposed to
have the best performance. For the algorithm that has no false



alarms, which has no retraining process triggered, it should
have the same result as incremental learning. Otherwise, any
false alarms will result in an accuracy drop. From this point
of view, the performance of the algorithms on RTG can be
used to evaluate the false alarm rate. As shown in the result
table, ADWIN change detector has the closest result to IncNB.
This implies that ADWIN had almost no false alarm triggered.
However, this at the cost of not sensitive to real drift.

V. CONCLUSION AND FUTURE STUDY

In this paper, we proposed a fast switch Naı̈ve Bayes
algorithm for concept detection and adaptation. Unlike conven-
tional concept drift detection and adaptation algorithms using
warning and drift level to control the adaptation process, we
directly switch to the most suitable classifier after detecting
a significant performance difference. The proposed method
can balance the fine-tuned and retrained models based on
the situation. It consists of a novel time window evaluation
strategy, implemented a residual-based two-sample test and
developed a drift adaptation algorithm. Compared to the
baselines, fast switch Naı̈ve Bayes has less retraining process
(target Problem 1) and has a drift threshold dynamically
selected according to evaluation window size (target Problem
2, 3). The empirical study demonstrated the advantages of our
algorithm and showed its potential for further improvements.

In the future work, a diversity generation method could
be developed for ensemble the proposed method, which may
further boost the overall learning performance. We will also
continue to investigate the influence of different drift types on
the model’s residuals and try to understand the impact of the
concept drift on the fine-tuned and retrained model. At last, a
good practice would be extending the proposed framework to
learning models other than Naı̈ve Bayes classifier.
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