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Abstract—Causal inference from observational data aims to
estimate causal effects when controlled experimentation is not
feasible, but it faces challenges when unobserved confounders
exist. The instrumental variable method resolves this problem by
introducing a variable that is correlated with the treatment and
affects the outcome only through the treatment. However, existing
instrumental variable methods require two stages to separately
estimate the conditional treatment distribution and the outcome
generating function, which is not sufficiently effective. This paper
presents a one-stage approach to jointly estimate the treatment
distribution and the outcome generating function through a
cleverly designed deep neural network structure. This study is
the first to merge the two stages to leverage the outcome to the
treatment distribution estimation. Further, the new deep neural
network architecture is designed with two strategies (i.e., shared
and separate) of learning a confounder representation account
for different observational data. Such network architecture can
unveil complex relationships between confounders, treatments,
and outcomes. Experimental results show that our proposed
method outperforms the state-of-the-art methods. It has a wide
range of applications, from medical treatment design to policy
making, population regulation and beyond.

Index Terms—observational data, causal inference, instrumen-
tal variable, neural networks

I. INTRODUCTION

Causal inference is to infer the causal effect of an event
A on another event B. For example, people wish to evaluate
the effect of smoking on health over a long time. Though
randomized controlled experiments are the gold standard to
estimate causal effects, it is often either unethical, technically
impossible, or too costly to implement [1]. As an example, it is
immoral to force people to smoke in a controlled experimen-
tation. Also, a double-blind assignment smoking experiment
is nearly impossible, as the smokers or non-smokers will
know if they smoke or not in the experiments. Even if it is
feasible, it may take a considerable amount of money and
several decades. An alternative practical way is to conduct
causal inference from uncontrolled observational data which
typically includes observed confounders, treatments, and out-
comes. In the smoking example, the observed confounders
denote people’s characteristics, the treatment is to smoke,
and the outcome is people’s health. Some successful methods
for causal inference from observational data include but not
limited to Bayesian Additive Regression Trees [2] and multi-
task Gaussian process [3]), tree-based methods [4], and neural
networks [5]–[7].

Those causal inference methods assume that there are no
unobserved confounders that affect both the treatment and
outcome. For example, genes of people are an unobserved con-
founder for the smoking example because genes may influence
people’s smoking and impact on the people’s lung cancer. One
method to remove the influence of unobserved confounders is
to use limited experimental data [8], but it does not work in a
setting where only observational data is available. Another is
instrumental variable method [9] which estimates the causal
effect when there is one or more instrumental variables.

However, existing instrumental variable methods require
two-stage solutions: 1) estimate the conditional treatment
distribution at the first stage 2) and then fit outcomes gen-
erating function using the estimated conditional treatment
distribution from the first stage. Such two-stage solutions have
the following two weaknesses: 1) estimating the conditional
treatment distribution cannot utilize the information from the
outcome generating function (e.g., DeepIV [10]), so the final
performance of causal effect estimation is restricted because
outcome is one significant component of observational data; 2)
the conditional treatment distribution and the target outcome
generating function often have complex hidden relationships
with observed confounders, many two-stage solutions lack
strong representation ability to capture such relationships (e.g.,
2SLS [11] and nonparametric kernel [12]).

In this paper, we propose a one-stage deep instrumental
variable method to estimate causal effect. Specially, we have
designed a new deep neural network architecture to jointly
estimate the conditional treatment distribution and fit the
outcome generating function, where former two stages can
borrow the knowledge from each other in our one-stage
method. An unified loss function is formulated to train the
network structure using the observational data. Further, the
designed deep neural networks have powerful capability of
unveiling complex hidden relationships than other methods,
like linear [11]. The comparative experiments with existing
state-of-the-art two-stage methods show the effectiveness of
our designed new one-stage deep neural network architecture.
Also, the comparative experiments with classical linear-based
and kernel-based methods show that our method has superior
performance due to the powerful ability of deep neural network
on complex function fitting.

Two contributions of this study are summarized as follow:



• The one-stage deep instrumental variable method esti-
mates the conditional treatment probability distribution
and fits the target outcome generating function simulta-
neously. Training two quantities jointly is more effective
and makes it possible to borrow the information from
each other during training.

• A new deep neural network architecture is designed
with two strategies (i.e., shared and separate) of learning
a confounder representation account for different ob-
servational data. Such network architecture can unveil
complex relationships between confounders, treatment,
and outcomes.

The remainder of this paper is organized as follows. Sec-
tion II discusses the related works. Section III describes the
concepts of causal inference and the instrumental variable. We
introduce our one-stage deep instrumental variable method in
Section IV. Section V presents experiments showing perfor-
mance and related analysis. Finally, Section VI concludes our
study and discusses future work.

II. RELATED WORK

This section reviews the study on learning methods for
causal inference. We organize existing works in this area into
two groups: one group for general studies of causal inference;
the other group focusing on instrumental variable methods.

A. Learning methods for causal inference

Under the assumption of there is no unobserved con-
founders, exiting learning methods or causal inference mainly
falls into three categories: methods based on treatment mod-
eling, methods fitting outcome regressions, and doubly robust
methods combining the two methods above [13].

One important school of methods for causal inference is
methods based on treatment modeling. The idea is to replicate
a randomized experiment that has similar covariate distribu-
tions in the treated and the control groups. Matching [14] aims
to balance the covariate distributions in the treated and control
groups by choosing matched subjects. That is matching meth-
ods aim to estimate a conditional treatment distribution based
on observed covariates. Some examples of popular matching
methods are genetic matching [15], optimal matching [16] and
kernel matching [17]. Matching methods have a few key ad-
vantages: matching methods are complementary with outcome
regression adjustment and perform well in combination, they
can still give acceptable results when there is no sufficient
overlap of covariate distributions between the treated and
the control groups, and it is straightforward to obtain which
performance that matching methods can assess. However, most
matching methods assume fully observed covariates; it is
hard for matching methods to deal with missing covariates.
Additionally, selecting the suitable matching method can be
unclear. The reason is different distance measure selected in
matching methods may lead to different results.

Another way for treatment modeling is to apply propensity
score methods. Propensity score [18] is defined as the con-
ditional treatment distribution given observed covariates. The

main propensity score methods are propensity score matching,
stratification on the propensity score, inverse probability of
treatment weighting (IPTW) and covariate adjustment using
the propensity score. Generally, propensity score matching and
IPTW gain better performance [19]. Propensity score methods
work fine in simpler settings, for example, we can use a
logistic regression to estimate the propensity score. Propen-
sity score methods could balance the covariate distributions
using the information of a large number of observations. But
propensity score methods suffer from the high dimensionality
problem, have a weak ability to deal with hidden variables,
and are not designed for time-varying treatments.

The second popular school of methods falls into outcome
regression adjustment [7], [20]. Bayesian methods, such as
Bayesian additive regression trees (BART) [2] and multi-
task Gaussian process [3], have good interpretation and gain
good performance. But Bayesian methods lack flexibility in
running time. Another group is ensemble methods (such
as Random forests based causal tree [4] and super learner
[21]). These methods are easy to understand and can often
get better performance. But some of these methods need a
large size of observations and most are time-consuming to
run. A large number of methods belong to neural network-
based methods. Balancing neural networks [5], [6] learn a
”balanced” representation for covariate distributions of treated
and control groups. SITE [7] preserves local similarity and
balances covariate distributions simultaneously based on deep
representation learning. Causal effect variational autoencoder
(CEVAE) [22] uses deep neural networks to estimate the joint
distribution for causal inference. Neural networks have good
performance and are able to capture complex relationships
among treatments, covariates and outcomes. However, neural
networks need big data and often experience with overfitting.

Doubly robust [23] estimation combines propensity score
methods and outcome regression to estimate the causal effect
of the treatment on the outcome. When propensity score
methods and outcome regression adjustment are used individu-
ally, propensity methods or outcome regression adjustment are
unbiased only if the statistical models are correctly specified.
The doubly robust estimators that are unbiased only need
one of the two models to be correctly specified. Targeted
maximum likelihood estimation (TMLE) [24] first estimates
the conditional outcome distribution given the treatment and
the observed covariates. Then TMLE estimates the propensity
score. Next, TMLE updates the estimate of the conditional
outcome distribution. Finally, TMLE generates targeted esti-
mate of the target parameter. Double learning [25] combines
the residuals of a propensity score model and the residuals
of an outcome regression into a new regression to estimate
average causal effect. For inference on treatment effects in the
interactive model, the estimator uses the AIPTW estimator
where the nuisance parameters are estimated using machine
learning algorithms.
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Fig. 1: Graphical model for standard causal inference. T is the
treatment, X is the observed confounders, and Y is the outcome.

B. Instrumental variable methods

The instrumental variable method estimates the causal effect
when there is unobserved confounding and one or more
instrumental variables. An instrumental variable is a variable
that is independent of unobserved confounders and affects
the treatment but does not have a direct effect on the out-
come beyond its effect on the treatment. The two-stage least
squares (2SLS) [11] regression applies linear models to both
two stages. Though 2SLS easily gives interpretations, it has
strong assumptions of linearity and homogeneity. To relax
these assumptions, nonparametric extensions of 2SLS use
linear combinations of basis functions [26] or construct kernel
smoothed estimators [12]. Though these methods introduce
heterogeneity in low dimensional space, they need to carefully
choose smoothing parameters and are not scalable with data
dimensions. DeepIV [10] develops deep neural networks [27]
for two stages. First, they fit the conditional distribution of
the treatment given the instrument variable and the observa-
tional covariates. Then, they incorporate the fitted conditional
treatment distribution to minimize the loss function. DeepIV
is an exciting work that is computationally efficient and scales
with high dimensional data. But the validation of DeepIV
depends on the model from the first stage, and samples used
for MC approximate for integral at the second stage affect the
prediction accuracy of the model used at the second stage.
The two-stage neural networks framework of DeepIV makes
it hard to tune hyperparameters.

III. PRELIMINARY KNOWLEDGE

A. Causal inference

We describe the toy smoking example in Introduction using
graphical model [28] to represent relationships among the
treatment, the confounders and the outcome (see Fig. 1). The
nodes describe random variables, and the arrows represent
causal relationships. The treatment T affects the outcome Y ,
and the confounders X affects both the treatment T and the
outcome Y . We also use the structural equation model [29] to
represent these relationships. The relationships are described
with deterministic functions. We describe the relationships as
the model, M , using Eq. (1).

x = fx(εx),

t = ft(x, εt),

y = fy(t, x, εy).

(1)

The εx, εt and εy are random disturbances representing back-
ground factors selected not to include in the analysis. The
causes of a random variable should be included in the function
as independent factors (T and X are causes of Y , so T and X
are independent factors in the function fy , and Y is dependent
on T and X). The goal is to predict the outcome Y from the
variables (X,T ).

We assume that Y is structurally determined by an unknown
and potential non-linear continuous function of X and T ,

y = g(t, x) (2)

Suppose a girl wants to know the effect of smoking on a
her health. The effect should be y

′ − y
′′

where y
′

is the
health if she smokes and y

′′
is her health if she does not

smoke. According to Eq. (2), y
′ − y′′

= g(t
′
, x) − g(t′′ , x),

where function g is hidden (only god knows its form). Hence,
we only need to estimate function g(t, x). In the supervised
learning framework, we normally approximate g(t

′
, x) and

g(t
′′
, x) by E[y|t′ , x] and E[y|t′′ , x], respectively. Then, we

have y
′ − y′′

= E[y|t′ , x] − E[y|t′′ , x] = g(t
′
, x) − g(t′′ , x).

Therefore, we can obtain an unbias estimate of causal effect.
However, such unbias estimate only exists when there is
no unobserved confounders. Next, we will introduce how
instrumental variable methods resolve this problem.

B. Causal inference with instrumental variable

Again, we describe the toy smoking example using the
causal graphical model [30] as shown in Fig. 2a. The dashed
nodes represent unobserved variables. Links emanating from
unobserved variables are designated by dashed arrows. Links
connecting observed quantities are designated by solid arrows.
This figure says: People of different genders tend to smoke at
different degree (i.e., gender→ smoke) and also have different
health conditions (i.e., gender → health); genes that are
unmeasured and decide people’s gender (i.e., genes→ gender),
and they are also believed to affect people’s health (i.e., genes
→ health) and may lead people to smoke (i.e., genes →
smoke); and tax rate for tobacco is an instrumental variable
because it affects the smoking via the price of cigarette (i.e.,
tax → smoke) but does not have a direct effect on the health
beyond its effect on the smoking.

We generalize the above toy example to a causal graphical
model shown in Fig. 2b. The observed confounders X and the
unobserved confounders E affect both the treatment T and
the outcome Y . The unobserved confounders E also affect
observed confounders X . The treatment T is also affected by
an instrumental variable Z. The outcome Y is affected by the
treatment T and the (observed and unobserved) confounders.
To make the graphical model easy to understand, we also use
a structural equation model [29] to express relationships of
these variables (see Eq. (3)). The treatment T is decided by the
instrumental variable Z and the confounders and some other
noise. The outcome Y is a function of X , T and E. In our
smoking example, the treatment T is smoking, the outcome
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(b) Causal graphical model for the instrumental variable.

Fig. 2: (Left) The causal graphical model of smoking affecting general health. Smoking is the treatment; health is the outcome; gender is the
observed confounder. The unobserved variable genes decide gender, affect people’s smoking, and also influences people’s health. Tobacco
tax is the instrumental variable, which affects health by smoking. (Right) Causal graphical model for the instrumental variable. T is the
treatment and Y is the outcome. X represents the observed confounders affecting the treatment T and the outcome Y . Z represents the
instruments and E represents unobserved variable influencing X , T , and Y .

Y is health, the observed confounders X is gender, and the
unobserved confounders E is genes.

z = fz(εz),

e = fe(εe),

x = fx(e, εx),

t = ft(z, x, e, εt),

y = fy(x, t, e)

(3)

The goal is still to predict the outcome Y from the variables
(X,T ). Since we do not have the information of genes, it is
not possible for us to estimate the causal effect of smoking on
health just using the information of X , T and Y .

First, we need to make some assumptions about the data
generating process of the outcome. We use the same setting
for Y as in [10], that is Y is structurally determined by an
unknown and potential non-linear continuous function of X
and T and an additive E,

y = g(t, x) + e (4)

According to Eq. (4), causal effect is y
′−y′′

= (g(t
′
, x)+e)−

(g(t
′′
, x)+ e) = g(t

′
, x)− g(t′′ , x) because e of one person is

constant. With the observational data {x, t, y} of many people
in hand, we normally use supervised learning methods to use
E[y|t′ , x] and E[y|t′ , x] as estimation of g(t

′
, x) and g(t

′′
, x),

and then we have y
′−y′′

= E[y|t′ , x]−E[y|t′′ , x]) = g(t
′
, x)−

g(t
′′
, x) + E[e|t′ , x]− E[e|t′′ , x]. Since E[e|t′ , x]− E[e|t′′ , x]

is not definitely zero, there will exist a bias if we use this
method.

We need additional information in order to get an unbi-
ased estimate of the causal effect y

′ − y
′′

, i.e., estimate of
g(t, x). Instrumental variable methods introduce a variable
that is independent of unobserved confounders and affects the
treatment but does not have a direct effect on the outcome
beyond its effect on the treatment. They satisfy the following
three assumptions

1) Relevance T 6⊥⊥ Z|X , which means Z is correlated with
the treatment conditioning on the observed confounders.

2) Exclusion Z ⊥⊥ Y |(X,T,E), Z does not affect the
outcome directly except affecting the outcome through
affecting the treatment.

3) Mean Independence E[e|x, z] = 0 for any (x, z), the
expectation of E conditioning on X and Z is zero for
any (X,Z).

We show the variable Z in Fig. 2b is an instrumental vari-
able if E[e|x, z] = 0. The arrow between the treatment T and
the variable Z represents assumption Relevance which means
the variable Z is correlated with the treatment T conditional
on the observed confounders X . The lack of an arrow between
Z and Y represents assumption Exclusion. And we have
E[e|x, z] = 0, so assumption Mean Independence holds.

The idea behind instrumental variable methods is to use
the conditional expectation of Y on Z and X to estimate Y
instead of using the conditional expectation of Y on T and X .
Taking conditional expectation on both sides of Eq. (4) and
E[y|x, z] could be described as the following form by using
the assumptions above, that is

E[y|x, z] =
∫
g(t, x)dF (t|x, z) (5)

where F (t|x, z) is the conditional treatment distribution. We
can see that there is no unobserved confoudners in the Eq. (5),
so there is no influence from the unobserved confoudners.
Then the problem becomes to estimate g(t, x) from the
empirical conditional distribution function of F (t|x, z) and
the empirical conditional expectation of E[y|x, z]. Most in-
strumental variable methods apply two-stage solutions. A two-
stage solution firstly regresses the treatment T on the variables
X and Z, and then estimates the effect of predicted T on Y .

Usually, two-stage methods has a disadvantage that estimat-
ing the conditional treatment distribution cannot utilize the in-
formation from the outcome generating function (e.g., DeepIV
[10]), so the final performance of causal effect estimation is
restricted because outcome is one significant component of
observational data. Apparently, merging two stages into one
stage could make the two stages mutually learn from each
other, but it is not trivial.

IV. ONE-STAGE INSTRUMENTAL VARIABLE METHOD

We notice that if the treatment is categorical (assume C
categories), then Eq. (5) has a nice form as the following



equation

E[y|x, z] =
C∑
c=1

g(tc, x)F (tc|x, z) (6)

Then it is possible to estimate the conditional treatment
distribution F (tc|x, z) and the unknown function g(t, x) at
one stage. Intuitively, the problem should be treated as an
optimization problem to find an estimated function g to
minimize the mean squared error of

∑
i(yi − E[y|xi, zi])2 =∑

i(yi −
∑C
c=1 g(tc, x)F (tc|x, tc))2. But, F (t|x, z) is still

unknown in the equation above. Our idea is to add the
information of data likelihood of the empirical conditional
treatment distribution. Thus, the overall idea is to combine the
mean squared error

∑
i(yi − E[y|xi, zi])2 and the likelihood

of the empirical conditional treatment distribution in the loss
function.

We transform the Eq. (6) to the following optimization
problem,

min
ĝ∈G

∑
i

[
yi −

C∑
c=1

ĝ(tc, xi)F (tc|xi, zi)

]2

(7)

Such optimization problem is to find a best-fitted ĝ from
functional space G to minimize the error

∑
i(yi−E[y|xi, zi])2.

Since there is an unknown F (t|x, z) in the objective func-
tion, we still need to estimate the conditional treatment
distribution. The basic idea is to add the likelihood of the
empirical conditional treatment distribution as the evalua-
tion of distribution estimation. For this goal, we design
a loss function which is a simple linear combination of∑
i [yi −

∑C
c=1 ĝ(tc, xi)F̂ (tc|xi, zi)]

2
and negative logarithm

likelihood of F̂ (ti|xi, zi). Finally, we have the loss function
as follow

min
θ,φ

w1

∑
i

[
yi −

C∑
c=1

ĝθ(tc, xi)F̂φ(tc|xi, zi)

]2

+

w2

∑
i

− log F̂φ(ti|xi, zi) (8)

We use a deep neural network architecture for our one-
stage instrumental variable method (1SIV) to estimate these
two quantities jointly. Assume the labels of the treatment
are 0, 1, . . . , C − 1. First, we describe how to estimate the
conditional treatment distribution. The output of the fitted con-
ditional treatment probability mass function is the probability
of the treatment belonging to each category. That is, the output
is a vector of (Pr(t = 0|x, z),Pr(t = 1|x, z), . . . ,Pr(t =
C − 1|x, z)) for every input of (x, z). The output could be
realized simply by a softmax activation function. Similarly, in
order to obtain an estimate of the outcome generating function,
we estimate a vector of (g(t = 0, x), g(t = 1, x), . . . , g(t =
C−1, x)) for every input x. It is easy to use a straightly linear
activation function here.

The observed confounders X may share, or not share, a
common part with the treatment and the outcome. In our
experience, we notice that the observed confounders X often

have different relationships with the treatment T and the
outcome Y . That is treatments and outcomes usually have
different complex relations with observed confounders. For
example, the function t = ft(z, x, e, εt) from Eq. (3) may
be a linear model with x, and the function y = fy(x, t, e)
probably has a non-linear relationship with x. Some two-stage
instrumental variable methods lack the ability to capture the
complex relationships, for example, 2SLS [11] is restrictive
with its linear assumptions.

To capture these two different relationships, we design two
separate latent representations for the observed confounders X
in our neural network. We present our one-stage instrumental
variable method framework in Fig. 3a. The output for the
conditional treatment probability mass function Pr(t|x, z)
uses a representation from the instrument variable z and the
observed confounders x. And the output of the target outcome
generating function ĝ(t, x) uses another representation of the
observed confounders x. The multi-output neural network fits
the conditional treatment probability mass function Pr(t|x, z)
and estimates the target outcome generating function ĝ(t, x)
simultaneously. The proposed loss function uses the infor-
mation of the fitted conditional treatment distribution and
integration of the target function over the conditional treatment
distribution.

If the confounders have a common relationship with the
treatment and the outcome, we need to show that our one-
stage neural network architecture has the ability to capture the
common complex relationships. We design a neural network
(we call the neural work as 1SIV-S) with the same archi-
tecture as our proposed network above but taking a shared
latent representation of observed confounders X as input (see
Fig. 3b) instead of taking directly observed confounders X
as input. 1SIV-S aims to obtain strong representation ability
to capture the common relationship of observed confounders
with treatments and outcomes.

Now we describe the procedure for out-of-sample valida-
tion. Validation of methods for causal inference usually suffers
from no samples of counterfactual outcome [6]. Fortunately,
our method uses only observational data. A simple procedure
to validate is to evaluate the loss of validation samples. We use
the simple linear combination proposed above for our method.
An alternative validation method is to use new combinations
of the square error

∑
i(yi − E[y|xi, zi])2 and negative log

likelihood of F̂ (ti|xi, zi).

V. EXPERIMENTS

To evaluate the effectiveness of the proposed method, we
will design a series of experiments in this section. We first
introduce the data simulation method and then explain the
basic experimental setting. We then move to the evaluation
of different perspectives of the proposed model, including hy-
perparameter sensitivity, one stage, and complex relationship
learning using deep neural networks.
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(a) One-stage neural network architecture without a shared
latent representation of the observed confounders X for causal
inference.
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(b) One-stage neural network architecture with a shared latent
representation of the observed confounders X for causal infer-
ence.

Fig. 3: L represents the loss function. The multi-output neural network applies latent representations of the observed confounders X . The
estimate of the conditional treatment distribution also uses information from the instrumental variable Z.

A. Data simulation

Since real non-experimental observational data has no
ground truth, we conduct simulation experiments to validate
the proposed method align with the studies in this literature.
We simulate data according to the causal graphical model
in Fig. 2b. We simulate a binary treatment t, a continuous
outcome y, the observed confounders x, the unobserved con-
founders e and the instrumental variable z. We use a non-linear
function ψ(x) = exp(x − 0.5) + (x− 1)

2 − x/2 to describe
the complex relationship of x and y. The unobserved variable
e has an zero expectation. The overall process is as follow,

z ∼ N (0, 1),

e ∼ N (0, 22),

x ∼ N (0.3 + 0.2e, 22)

t ∼ Bern(expit(−0.3 + 0.5x+ 0.2z + e))

ψ(x) = exp(x− 0.5) + (x− 1)
2 − x/2,

y = 100 + (10 + t)ψ(x)− 20t+ e

(9)

where ‘expit’ is the logistic function. The number of training
samples is five thousand in our simulation. The observational
data is {z, x, t, y}.

In causal inference, we normally use a different data simu-
lation process for test data comparing the process for training
data. The new data simulation process for test data is based on
randomized controlled trials [6]. We generate test samples by
following: Firstly, we generate another five thousand samples
using Eq. (9). Next, we redraw the treatment t to make the
treatment variable independent from the observed confounders
x, the unobserved confounders e, the instrumental variable
z, and other noise. Finally, we use the treatment t and the

observed confounders x to predict the model. Such test method
above is also used in DeepIV [10].

B. Basic experimental setting

With the observational data {z, x, t, y} in hand, our target is
to estimate the outcome generating function g(t, x) = 100 +
(10 + t) ∗ ψ(x) − 20t. When we have a new observed data
{x, t}, we can predict the causal effect of t on x. We use
the mean squared prediction error (RMSE) between estimated
outcome generating function ĝ and the ground truth g as the
evaluation metric for prediction.

For our proposed method, we use multi-layer perceptrons
for our neural network and the network has three hidden layers
with 128, 64, and 32 units, respectively. The network uses
the ReLU activation function and dropout regularization. We
optimize the models using Adam [31] with learning rate =
0.01, β1 = 0.9, β2 = 0.999 and ε = 1e − 8. We train our
model for 20 epochs with a batch size of 128 and a dropout
rate of 0.5. We set w1 = 0.0017 and w2 = 1 in the loss
function.

C. Evaluation on hyperparameter sensitivity

We conduct experiments to analyze the sensitivity of the
hyperparameters for our method and observe the method
behavior under changing hyperparameters within a selected
range. The two hyperparameters are: dropout rate and batch
size. Each value of hyperparameters within the range is inde-
pendently tested ten times and statistics of ten root of mean
squared errors are reported. When testing one hyperparameter,
we keep other hyperparameters constant.

As for the dropout rate, the range is from 0.5 to 0.9 and the
step is 0.1. The results is shown in Fig. 4. We see from the
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Fig. 4: Sensitivity analysis for different dropout rates. We change the
dropout rate from 0.5 to 0.9 in steps of 0.1. The RMSE is used as
the evaluation metric.

32 64 128 256 512

Values of Batch Size

400

600

800

1000

1200

R
M

S
E

Fig. 5: Experimental analysis for the influence of different batch size
values. The values of the batch size tested are 32, 64, 128, 256 and
512. We use the RMSE as the evaluation metric.

figure that the performance of our method gradually decreases
with the increasing of dropout rate, and the variance of the
prediction also decreases with the increasing of dropout rate.
The reason may be that the deep neural networks in our
method are used for regression task, the high dropout rate may
hurt the performance although the high dropout rate makes
increase the model converge rate (the variance is lower).

As for the batch size, we increase its value from 32 to 512
in rates of 2. The result is shown in Fig. 5. The performance
of our approach stays stable when the batch size is set to 32,
64 or 128. However, the performance drops significantly and
the variance increases as well after the batch size is set to 256
or greater. Our proposed neural network prefers batch sizes
below 128.

D. Evaluation on propensity scores

Causal inference often faces difficulties when propensity
scores are low (low rates of objects tend to receive the treat-
ment). As for propensity scores (i.e., the conditional probabil-
ity of treatment assignment given the observed confounders),
we simulate data using Eq. (9) with only the treatment
assignment changed as t ∼ Bern(expit(αt−1.5x+1.7z+e)).
We change αt from -4.7 to 0.3 in steps of 1 to in order to
change the propensity scores. Generally, data with low values
of αt have low propensity scores. We simulate ten datasets
for each value of αt. We test our proposed method in these
datasets. All the data is tested using the same hyperparameters.
The result is shown in Figure 6. The performance gradually

-4.7 -3.7 -2.7 -1.7 -0.7 0.3

Value of Alpha

420

440

460

480

500

R
M

S
E

Fig. 6: Experimental analysis for the influence of different propensity
scores. As the values of αt increased, the mean propensity scores
increased. The RMSE is used as the evaluation metric.
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Fig. 7: The performance (logarithm mean squared error) of DeepIV
using different values of samples drawn from the associated probabil-
ity distribution. We present the values of the samples in a logarithm
scale on the horizontal axis.

decrease from -4.7 to -1.7 and achieves the worst at -1.7. After
that, the performance keeps increasing. The reason is related
to the functional form of propensity scores and its influence
to the outcome function.

E. Evaluation on effectiveness of one stage

One of the main contributions of this study is the one-
stage instrumental variable method which effectiveness will
be verified here.

Before we compare its performance with two-stage meth-
ods. We first analyze a state-of-the-art two-stage method:
DeepIV [10]. DeepIV fits the conditional treatment distribution
at the first stage and uses MC approximate integral in Eq. (5)
via sampling from the estimated distribution. In order to show
the impact from sampling to final performance, we test the
performance of different samples (5, 10, 20, 50, 100 and 1000
samples) drawn from the associated probability distribution.
We run ten times for each value of samples. The influence of
different values of samples is presented in Fig. 7. It is clear
that more samples did not tend to achieve better performance.
The reason is that the estimated probability distribution from
the first stage has a bias with the true distribution, and it brings
other bias for MC approximate for integral in the second stage
using the samples drawn from the estimated distribution. The
more accurate in the first stage, the more bias will bring to
the second stage, like ‘overfitting’. Hence, it could be hard



TABLE I: The performance (RMSE) of estimating the outcome
generating function from simulation data. The treatments and out-
comes have less common relationships with observed confounders.
Our proposed methods are 1SIV and 1SIV-S. DeepIV is a two-stage
instrumental variable method.

Dataset 1SIV DeepIV 1SIV-S

sd-1 358.97 642.67 456.65
sd-2 446.09 640.81 449.80
sd-3 514.58 639.11 464.29
sd-4 533.72 641.22 475.19
sd-5 477.23 644.50 453.72
sd-6 495.79 644.24 544.43
sd-7 455.62 642.51 473.47
sd-8 396.04 643.27 469.50
sd-9 426.23 643.01 449.95

sd-10 379.63 645.52 389.47

to tune the neural networks in the two stages to get a good
performance.

Next, we compare the performance of the proposed method
and DeepIV. We use the same hyperparameters (i.e., dropout
rate, batch size, and layer number). The result is given in
Table I where the performance for each dataset is described
in one row. From the table, we can see that our proposed
one-stage method is better than two-stage method DeepIV.
One may concern that our proposed method performs better
than DeepIV is due to the selected hyperparameters. To clear
that concern, we test different hyperparameters using above
generated data sd-1. We change one hyperparameter and keep
other hyperparameters constant during our test. The values
of dropout are 0.6 to 0.9, the values of batch size are 32,
64, 256, and 512. Additionally, we set epochs as 50, 100,
to 300. The results are summarized in Table II. We see that
1) our method, including 1SIV and 1SIV-S, performs better
than DeepIV on all settings except one with batch size 512;
2) 1SIV is better than 1SIV-S on most settings. Hence, we
can safely claim that 1) our one-stage method can achieve
better performance than two-stage methods in this experiment;
2) separate representations for observed confounders is better
than shared representations in this experiment, but it is not
always right because it depends on the hidden data generating
process.

We design a new experiment to show that shared represen-
tation for observed confounders is better for some data. The
new experiment is the same with above but only has a different
treatment generating process with Eq. (9). We generate the
treatment by t ∼ Bern(expit(−0.3 + ψ(x)(0.2− 2.4z) + e)),
where ψ(x) is a common part of the treatment generating
process and the outcome generating process. We implement
ten simulations for the generating process. The result is given
in Table III. We can see that 1) DeepIV achieves a similar
performance as its performance in the former simulation data.
It seems the shared relationships of X with T and Y does
not affect DeepIV much; 2) As our expectation, 1SIV-S
obtains better performance than 1SIV and DeepIV. The better
performance of 1SIV-S is mostly because its outputs take a
shared latent representation of the observed confounders X .

TABLE II: The experimental analysis for different hyperparameters
applied to neural networks. The evaluation metric is RMSE. Three
different methods are tested here, 1SIV and 1SIV-S are our proposed
methods, and DeepIV is a traditional two-stage instrumental method
with neural networks.

Hyperparameter Value 1SIV DeepIV 1SIV-S

dropout 0.6 461.92 642.46 473.34
0.7 505.81 641.91 523.98
0.8 575.73 644.16 564.65
0.9 633.33 645.25 617.10

batch size 32 350.58 641.99 420.19
64 385.28 643.95 368.21
256 713.12 636.72 511.55
512 651.24 636.38 670.48

epochs 50 151.90 646.39 329.89
100 113.25 641.06 292.86
300 113.99 635.73 132.91

TABLE III: The experimental results (RMSE) of simulation data
that treatments and outcomes share some relationships with observed
confounders. 1SIV and 1SIV-S are our proposed approaches. DeepIV
uses a framework of two-stage neural networks.

Method 1SIV DeepIV 1SIV-S

sd2-1 412.95 643.00 411.93
sd2-2 348.69 642.31 361.34
sd2-3 524.14 639.45 359.40
sd2-4 419.14 642.11 508.10
sd2-5 425.49 645.09 452.31
sd2-6 431.38 645.78 461.22
sd2-7 523.03 645.48 482.83
sd2-8 446.28 643.56 452.58
sd2-9 379.33 643.77 357.49

sd2-10 411.43 644.75 411.43

TABLE IV: The experimental performance (RMSE) of neural net-
works applied with different hyperparameters. The treatments and
outcomes share a common function with the observed confounders.
Our proposed approaches are 1SIV and 1SIV-S. DeepIV applies two-
stage neural networks.

Parameter Value 1SIV DeepIV 1SIV-S

dropout 0.6 493.66 642.26 450.95
0.7 506.28 641.08 509.05
0.8 581.07 643.34 563.11
0.9 638.59 644.61 617.19

batch size 32 374.46 640.11 407.12
64 409.93 643.20 394.12
256 474.00 636.32 442.03
512 538.62 635.52 523.42

epochs 50 299.87 645.05 203.79
100 298.74 641.91 165.47
300 157.18 640.83 147.97



TABLE V: The performance (RMSE) of estimating the outcome
generating function from simulation data. Our proposed 1SIV and
1SIV-S are one-stage methods. 2SLS and NonPar are two-stage
instrumental variable methods.

Dataset 1SIV 2SLS NonPar 1SIV-S

sd-1 358.97 649.25 427.18 456.65
sd-2 446.09 635.93 489.89 449.80
sd-3 514.58 637.15 496.11 464.29
sd-4 533.72 636.25 56.78 475.19
sd-5 477.23 637.19 508.34 453.72
sd-6 495.79 642.89 538.79 544.43
sd-7 455.62 638.82 520.89 473.47
sd-8 396.04 743.45 502.92 469.50
sd-9 426.23 644.80 540.78 449.95
sd-10 379.63 671.76 90.58 389.47

We notice that 1SIV has a comparative result with 1SIV-S.
The performance of 1SIV does drop but not much compared
with the performance in the former simulation. We also
analyze the influence of different hyperparameters to the final
performance. The experiment setting is the same with above.
We see that 1) 1SIV-S has the strongest ability to capture
the common part of the treatment generating process and the
outcome generating process; 2) The performance of 1SIV is
comparable with 1SIV-S.

F. Evaluation on complex relationship modeling

To verify the effectiveness of deep neural network archi-
tecture, we compare the proposed method with a linear and
kernel-based methods:
• two-stage least squares regression (2SLS) [11] first es-

timates the treatment using a linear regression t =
v + α1x + α2z, then regresses y on t̂ and x by y =
e+β1x+β2t. We use python package linearmodels [32]
to conduct the 2SLS estimation.

• NonPar [12] uses an estimation procedure for g(t, x)
based on Tikhonov regularization. We use R package
np [33] to complement the nonparametric instrumental
variable estimation.

We use the generated datasets (i.e., sd-1 to sd-10) in Table I
and summarize the results of these methods in Table V.
The performance of these datasets is present as sd-1, sd-2,...
in each row. We can see that our proposed approach 1SIV
outperforms the other methods in most datasets. The reason
for the poor performance of 2SLS is due to its linearity and
homogeneity assumptions. NonPar has very good performance
in two datasets, but it is worthy of notice that such method
is extremely slow in practice. Thus, it is not suitable for
large datasets. Therefore, we can draw the conclusion that our
designed deep neural network is stronger than other methods
on complex relationship modeling.

VI. CONCLUSION AND FUTURE WORK

We have proposed a one-stage deep instrumental variable
method for causal inference with unobserved confounders. A
new deep neural network architecture is specially designed
for the one-stage method, which contains two strategies to

handle representation of observed confounders: separate and
shared. The experiments have verified that one-stage method
is generally better than two-stage method on causal effect esti-
mation in our experiments, and the comparative advantages of
deep neural network on complex hidden relationship modeling
has also been demonstrated. Besides, our method has good
performance with data of low propensity scores.

The limitations of our approach are the lack of ability to
estimate uncertainty over predictions, and it is restrictive to
categorical treatments. In our follow-up study, we concentrate
on combining Bayesian methods and deep learning which
has the potential to explicitly estimate the uncertainty in
predictions and extend to more general treatment situations.
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