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Abstract Descriptions of temporal patterns in the reproduction of damselfishes 13 

(family Pomacentridae) and adaptive hypotheses for these patterns are derived mostly 14 

from studies of coral reef species. It is unclear whether the types of temporal patterns 15 

and the explanatory power of the adaptive hypotheses are applicable to damselfishes 16 

of temperate rocky reefs. This study tested hypotheses about the existence of lunar 17 

spawning cycles, the diel timing of hatching, and the synchronization of temporal 18 

patterns in hatching and tides in the schooling planktivorous damselfish Chromis 19 

hypsilepis on a rocky reef in New South Wales, Australia. Reproductive behaviour 20 

was observed daily for 223 d between August 2004 and March 2005. C. hypsilepis 21 

formed large spawning aggregations of 3,575–33,075 individuals. Spawning occurred 22 

at a uniform rate throughout the day on a semi-lunar cycle. The greatest number of 23 

spawnings occurred 1 d after the new moon and 1 d before the full moon. The cost to 24 

males from brood care was an 85% reduction in their feeding rate. The semi-lunar 25 

spawning cycle may be an outcome of the use of the lunar cue to synchronize the 26 

aggregation for spawning of widely dispersed individuals and the need for males to 27 

recuperate after brooding. Eggs hatched 3-7 hr after sunset following a 4.5 d 28 

incubation period. This study provides no support for hypotheses that link temporal 29 

patterns in hatching with particular tidal regimes believed to facilitate early survival 30 

of larvae and their dispersal. The result that hatching occurred over the tidal cycle was 31 

due to the rapid off-reef dispersal of larvae from the spawning ground at all stages of 32 

the tide. C. hypsilepis is similar to other planktivorous damselfishes in its semi-lunar 33 

spawning cycle, cost of brood care, and protracted diel spawning regime. It differs in 34 

its lengthy period of hatching and its breeding in spawning aggregations, believed to 35 

be rare among demersally spawning fishes. 36 

37 
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Introduction 38 

 39 

Reproduction by damselfishes (family Pomacentridae) involves demersal spawning in 40 

a prepared nest site, a period of broodcare by the male parent, and a pelagic larval 41 

phase (Thresher 1984; Asoh and Yoshikawa 2002). Descriptions of temporal patterns 42 

in damselfish reproduction have mostly focused on three aspects: lunar cycles of 43 

spawning within the reproductive season; diel patterns in spawning; and the timing of 44 

hatching (Keenleyside 1972; Pressley 1980; Doherty 1983; Thresher 1984; Foster 45 

1987; Gladstone and Westoby 1988; Kohda 1988; Robertson et al. 1990; Alcaly and 46 

Sikkel 1994; Goulet 1995; Sikkel 1995; Tzioumis and Kingsford 1995; Mizushima et 47 

al. 2000; Asoh and Yoshikawa 2002; Asoh 2003). Spawning by most damselfishes 48 

occurs on a lunar or semi-lunar cycle (Gladstone and Westoby 1988; Asoh 2003). 49 

Adaptive explanations for these cycles invoke benefits to: (1) the hatching propagules 50 

(such as facilitated off-reef dispersal from synchronization with spring tides, predator 51 

swamping, and reduced intraspecific competition for food); (2) the spawning adults 52 

(such as migration to the spawning site and crepuscular spawning itself being 53 

facilitated by moonlight); or (3) the brooding males (such as cooperative defense 54 

against predators and the opportunity to recover from the energetic costs associated 55 

with territory defense and broodcare) (Robertson et al. 1990; Robertson 1991). 56 

 57 

The larvae of damselfish hatch 1–2 hr after sunset following a 3–5 d 58 

incubation period (Doherty 1983; Thresher 1984; Gladstone and Westoby 1988). 59 

Various authors have suggested that reproductive success will be increased if larvae 60 

hatch on a falling tide, especially the spring tide, and are rapidly removed from reef-61 

based predators and/or more widely dispersed (Johannes 1978; Lobel 1978; Ross 62 

1978; Barlow 1981; Doherty 1983; Robertson 1983; Gladstone and Westoby 1988). 63 

The potential benefits to larvae from hatching on a falling tide has been one of the 64 

most widely invoked explanations for the temporal patterns in hatching, despite the 65 

fact that not all damselfish larvae hatch on a falling tide and that the predicted benefits 66 

have not been demonstrated (Shapiro et al. 1988; Robertson et al. 1990). 67 

 68 

An understanding of the patterns of temporal variation in damselfish 69 

reproduction and the associated adaptive hypotheses has been developed largely from 70 

studies of coral reef species. Reviews of the reproduction of damselfishes indicate that 71 



 4 

the temporal patterns of reproduction are known only for a limited number of 72 

temperate reef damselfishes. Gladstone and Westoby (1988) summarized data on 26 73 

species of tropical damselfishes. Robertson et al. (1990) studied 15 species of tropical 74 

damselfishes. Tzioumis and Kingsford (1995) reviewed information on the 75 

reproductive behaviour of four species of temperate damselfishes and 31 species of 76 

tropical or sub-tropical species. Asoh (2002) summarized the spawning parameters of 77 

30 species of tropical and sub-tropical damselfishes. Since the review of Tzioumis and 78 

Kingsford (1995) information on the spawning of only one further temperate reef 79 

species has been published (Picciulin et al. 2004). Factors that potentially influence 80 

reproductive strategies of fishes, including biology (e.g. body size, diel behaviour 81 

patterns, prevalence of predators) and environment (e.g. productivity, seasonality, 82 

shelter availability), differ between tropical and temperate regions (Ebeling and Hixon 83 

1991). The generality of the explanatory models for damselfish reproduction is 84 

therefore potentially limited by this focus on tropical species. 85 

 86 

Chromis hypsilepis (Günther, 1876) is a planktivorous damselfish that feeds in 87 

large schools over rocky reefs in south-east Australia, Lord Howe Island, Norfolk 88 

Island, and northern New Zealand. It attains a maximum length of 150 mm (Kuiter 89 

2000). C. hypsilepis is especially abundant on the rocky reefs of central-southern New 90 

South Wales (personal observations). Although reported to spawn with no predictable 91 

frequency (Tzioumis and Kingsford 1995) there are no detailed studies of its 92 

reproduction. Evidence from other planktivorous damselfishes (Gladstone and 93 

Westoby 1988; Robertson et al. 1990; Tzioumis and Kingsford 1995; Asoh and 94 

Yoshikawa 2002) suggests that C. hypsilepis is likely to be a colonial spawner on a 95 

lunar or semi-lunar cycle with males brooding demersal eggs that hatch just after 96 

sunset. Accordingly, this study tested the following hypotheses: (1) C. hypsilepis 97 

spawns on a lunar cycle; (2) the eggs of C. hypsilepis hatch within 2 hr of sunset; and 98 

(3) temporal patterns in hatching coincide with the falling tide. 99 

 100 

Materials and methods 101 

 102 

Study area 103 

 104 
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This study was carried out at Terrigal reef, New South Wales, Australia (33°27'00"S, 105 

151°26'00"E) (Fig. 1). Terrigal reef fringes a coastal headland for a distance of 2.2 km 106 

and consists of 4 habitats: a shallow algal-dominated fringe at 3-5 m; barren boulder 107 

reef slope with abundant sea urchins (Centrostephanus rodgersii) from 5–18 m; deep 108 

reef from 18–22 m (where the reef edge met sandy bottom) dominated by encrusting 109 

life forms (e.g. sponges, ascidians, corals); and stands of kelp (Ecklonia radiata) 110 

interspersed between barren boulder and deep reef habitats at 10–15 m depth. This 111 

mix of habitats is typical of the coast of New South Wales (Underwood et al. 1991). 112 

Preliminary observations indicated that Chromis hypsilepis at Terrigal reef spawned 113 

only in the barren boulder habitat in a small section of the reef at its western extremity 114 

at 7–10 m depth (hereafter called the spawning ground). The tidal regime at Terrigal 115 

reef is semi-diurnal tidal with approximately 2 high tides and 2 low tides occurring 116 

over a 24 hr period. 117 

 118 

Field observations of spawning 119 

 120 

Daily surveys were undertaken (weather permitting) between 1 August 2004 and 11 121 

March 2005. No prior information was available on the spawning seasonality of C. 122 

hypsilepis although preliminary surveys by the author had established that spawning 123 

did not occur during the period March-September 2003. Therefore the study period 124 

was selected to determine the specific duration of the spawning season. A 50 m fixed 125 

transect (identified by regularly spaced, small sub-surface floats) was established in 126 

the middle of the spawning ground at the beginning of the study. On each daily census 127 

of the fixed transect the following variables were recorded: (1) number of adult C. 128 

hypsilepis occurring in a 1 m band to one side of the transect and within 1 m of the 129 

substratum and engaged in reproductive activities (defending territories, inspecting 130 

territories, courtship, egg care); (2) number of spawnings. Daily censuses were done 131 

over a 30 min interval between 0800 and 1000 h. The number of spawnings that 132 

occurred on days when observations were not possible because of poor weather was 133 

estimated by back-calculating from the number of egg clutches recorded, the last date 134 

these egg clutches were observed, and a 4.5 d incubation period (see Results). This 135 

was only necessary for days 49-55 (Fig. 2a). 136 

 137 
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The days on which spawnings occurred were converted to a day in a 29 d lunar 138 

cycle where the new moon occurred on day 1 and the full moon occurred on day 15. 139 

The total number of spawnings that occurred on each day of the lunar cycle was 140 

calculated and converted to a percentage of total spawnings. Rayleigh’s test (Zar 141 

1999) was used to test whether spawning frequency was uniformly distributed 142 

throughout the lunar cycle. The existence of distinct cycles of spawning was 143 

examined by autocorrelation analysis. The data set of the number of spawnings 144 

observed daily over 136 d (from the start of spawning on 1 October 2004 to the last 145 

day on which spawning was observed, 12 February 2005) was made stationary by 146 

first-order differencing prior to analysis (Chatfield 1996). 147 

 148 

Diel variation in the frequency of spawning was quantified from the number of 149 

spawnings observed in the fixed transect over a 30 min period on a single day at 0600 150 

h, 0830 h, 1130 h and 1500 h in each of 3 consecutive spawning cycles. Observations 151 

were done in 2005 on 10 January, 22 January and 9 February. Sunrise occurred at 152 

approximately 0500 h during this period. The number of spawnings was standardized 153 

to the number of spawnings 1000 adult-1 C. hypsilepis present in the fixed transect so 154 

that variations in the size of the spawning aggregation between cycles did not obscure 155 

diel differences in spawning frequency. 156 

 157 

Cost of brooding 158 

 159 

Feeding rate was quantified in January 2004 as a measure of the potential costs 160 

associated with brood care by males and as a possible explanatory factor for the 161 

observed spawning periodicity (Robertson et al. 1990). The feeding rate of C. 162 

hypsilepis was quantified as the number of bites min-1. The feeding rate of C. 163 

hypsilepis that were not engaged in egg care was determined while scuba diving with 164 

a school as they fed in the water column (at 2–5 m depth) and separately observed 10 165 

individuals for a period of 5 mins each. The number of bites observed during that time 166 

was recorded. As C. hypsilepis are planktivorous it was not possible to observe 167 

individual prey items being consumed. It was therefore assumed that a biting action in 168 

the water column indicated a successful feeding event. It was also not possible to 169 

determine the sex of individuals as they fed in the water column. It was therefore 170 

assumed that the feeding rate did not differ between males and females outside the 171 
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reproductive periods. The feeding rate of males that were engaged in egg care (four 172 

days after spawning) was quantified by separately observing 10 individuals for 5 mins 173 

each while scuba diving and recording the number of bites in the water column. The 174 

null hypothesis of no difference in the feeding rates of individuals not engaged in egg 175 

care and males engaged in egg care was tested by a t-test. 176 

 177 

Length of incubation and diel timing of hatching 178 

 179 

The length of the incubation period was determined by monitoring all egg clutches in 180 

the transect from the day they were laid until the day after they hatched during a 181 

spawning cycle in October 2004 and January 2005. The position of individual egg 182 

clutches was noted in relation to their distance along the fixed transect and prominent 183 

substrate features, to allow daily monitoring of their development. Diel timing of 184 

hatching was determined by collecting a sample of eggs from each of 6 clutches on 185 

the day they were due to hatch and placing each in separate 500 mL plastic jars 186 

immersed within aerated 75 L aquaria in the laboratory. Eggs were observed hourly 187 

from 1600 h (3 hr before sunset) and larvae present at each hourly census were 188 

siphoned from the plastic jars until hatching was completed. 189 

 190 

The daily records of spawning frequency were lagged by 4.5 d (the incubation 191 

period) to produce a daily record of hatching frequency. This method was used as an 192 

indicator of temporal variation in hatching in preference to daily measurements of the 193 

size of egg clutches because the latter would have accidentally disturbed or damaged 194 

nearby nests because of the high density of brooding males in the spawning 195 

aggregation site. The experiment on diel hatching times provided information on the 196 

starting time and duration of hatching (3 hr after sunset and 4 hr respectively, see 197 

Results). The state of the tide during hatching was determined from the times of high 198 

and low tides in tables of the predicted tides for Sydney Harbour 199 

(http://www.waterways.nsw.gov.au/), with no lag observed between the 2 locations. 200 

The hypothesis that hatching occurred on a falling tide was tested by overlaying the 201 

daily record of hatching frequency with the record of days on which high tide 202 

occurred during the hatching period. A coincidence of the 2 sets of records would 203 

indicate that hatching only occurred on days when high tide occurred 3–7 hr after 204 

sunset. A more detailed test of an association between hatching and tide was done by 205 
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determining the stages of the tide that occurred over the course of hatching of each 206 

clutch. The observed frequency distribution of hatching times (in units of hours before 207 

and after high tide) was compared to an expected distribution of hatching times (of the 208 

same total number of hatchings) that would occur if hatching was restricted to the 209 

falling tide. The expected distribution of hatching times was assumed to be a left-210 

skewed distribution with the largest frequencies of hatching occurring midway 211 

between high and low tides and no hatchings occurring on the rising tide. The 212 

observed and expected distributions were compared by the Kolmogorov-Smirnov test 213 

(Sokal and Rohlf 1995). The hypothesis that the numbers of clutches that hatched 214 

peaked on days of spring tide was tested by cross correlation analysis. At significant 215 

correlation at a lag of zero days would support the hypothesis. The number of clutches 216 

that hatched daily was equal to the number of observed spawnings lagged by the 217 

incubation period (4.5 d). The daily maximum in tidal height was obtained from the 218 

predicted tides for Sydney Harbour. 219 

 220 

Results 221 

 222 

General observations 223 

 224 

Male Chromis hypsilepis established territories at the spawning ground from 6 225 

September 2004 and the numbers of fish increased daily thereafter (Fig. 2a). Females 226 

traveled to the spawning ground in lines of about 100 individuals and upon entering 227 

the spawning ground began examining males’ territories. Spawning occurred on a 228 

rock surface within the male’s territory. Although not quantified, females spawned 229 

with more than 1 male on a single day and males spawned with more than 1 female on 230 

a single day. Egg clutches were 15–30 cm diameter. Females left the spawning ground 231 

after spawning and males remained in their territory defending egg clutches until 232 

hatching. Males left the spawning ground after their eggs hatched. The only exception 233 

to this occurred in October 2004 during the first spawning cycle of the season when 234 

males remained on the spawning ground to feed and defend their territories until the 235 

next spawning cycle began. 236 

 237 

There was considerable variation in the size of the spawning aggregation over 238 

the spawning season (Fig. 2a). The maximum density of males and females that 239 
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aggregated in a spawning cycle varied from 143 to 1,323 fish 50 m-2 (n=9 cycles). 240 

Scaling upwards to the total area of the spawning ground suggests that the total 241 

number of adult C. hypsilepis that aggregated varied between 3,575 and 33,075. 242 

 243 

Spawning cyclicity 244 

 245 

Nine spawning cycles were observed in the 2004/05 spawning season (Fig. 2b). 246 

Spawning began on 1 October 2004 (water temperature 180C). The last eggs hatched 247 

from the final spawning cycle on 16 February 2005 (water temperature 21.50C). 248 

Therefore the spawning season lasted from 1 October 2004-16 February 2005, a total 249 

of 139 d. The duration of spawning cycles (i.e. number of days between first 250 

spawning and completion of egg hatching) was 6-13 d (mean±SE=9.0±0.8 d). 251 

Spawning continued for 2-9 d (5.0±0.8 d) within a spawning cycle. The interval 252 

between successive spawning cycles was 5-12 d (8.2±1.0 d). A total of 875 spawnings 253 

were observed in the fixed transect in 2004/05. The daily spawning frequency (i.e. the 254 

number of spawnings observed during the daily survey) was significantly correlated 255 

with the total number of C. hypsilepis in the fixed transect (RS=0.58, P<0.001, n=39, 256 

significance determined by randomization because of lack of independence). 257 

 258 

Plots of the daily sizes of spawning aggregations (Fig. 2a) and the daily 259 

spawning frequency (Fig. 2b) suggest that peaks in both occurred around the times of 260 

the new and full moons. Spawning frequency peaked within 1-3 d of the new and full 261 

moons, except for the first two spawning events when spawning peaked 5 d after the 262 

new moon and 4 d after the full moon respectively. The semi-lunar spawning cycle 263 

was confirmed when all spawnings were standardized to a day of the lunar month 264 

(Fig. 3). Rayleigh’s Z-statistic found that spawnings were not uniformly distributed 265 

throughout the lunar cycle (Z = 75.98, P < 0.001). Autocorrelation analysis revealed 266 

significant correlations at lags of 2 d and 12 d (Fig. 4). The significant 12 d 267 

autocorrelation supports the separation of peak spawning frequencies in Fig. 3. The 268 

significant 2 d autocorrelation indicates a short-term correlation in the numbers of C. 269 

hypsilepis spawning. 270 

 271 

Diel variation in spawning 272 
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 273 

Comparison of mean spawning frequency throughout the day by analysis of variance 274 

showed that, although spawning frequency gradually declined throughout the day, this 275 

diel variation was not significant (Fig. 5). Therefore the frequency of spawnings 276 

recorded in the daily censuses between 0800 and 1000 h was likely to be a reliable 277 

indicator of the maximum daily spawning frequency. 278 

 279 

Cost of brooding 280 

 281 

In non-reproductive periods C. hypsilepis fed from 2–3 m above the substratum to 0.5 282 

m below the surface. Feeding bouts (when biting occurred almost continuously) lasted 283 

1-3 min with a bite rate of 36.1±1.45 bites min-1 (mean±SE, n=10) (range: 25-42). 284 

Male C. hypsilepis guarding clutches of eggs fed in bouts during which they swam 285 

upwards to about 1 m above their clutch, bit at plankton for no longer than 2-3 sec, 286 

then returned to their clutch. The average bite rate of males tending a clutch was 287 

5.4±1.45 bites min-1 (range: 1-13). The two feeding rates were significantly different 288 

(t=14.99, P<0.001). 289 

 290 

Hatching 291 

 292 

Daily monitoring of individually identified egg clutches produced from recorded 293 

spawnings showed that egg clutches were absent on the fifth morning after spawning 294 

had been observed. This indicates an incubation period of 4.5 d. This did not appear to 295 

change throughout the spawning season, despite the change in water temperature from 296 

180C to 21.50C. Eggs progressed in appearance from a light pink coloured mat on the 297 

same day of spawning to dark grey on the day of hatching with the eyes of embryos 298 

clearly visible as silver spots. Frequently the edge of egg clutches began to peel away 299 

from the rock on the day of hatching. In the aquarium experiment it was found that 300 

eggs began hatching at 2200 h (3 hr after sunset) and no further larvae hatched after 301 

0200 h (7 hr after sunset). On the night of the experiment high tide occurred at 2230 h 302 

and therefore most larvae hatched that night on a falling tide. However, this pattern 303 

was not repeated for all hatchings over the spawning season. A visual comparison of 304 

the daily record of hatching frequency and the record of days when high tide occurred 305 
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3 – 7 hr after sunset (Fig. 6) shows that most hatchings occurred close to or coincided 306 

with high tide only in cycles 3, 4, 6, 7 and 8. This pattern is confirmed upon 307 

examination of the state of the tide that occurred during the course of hatching of each 308 

clutch (Fig. 7). Clutches hatched at all stages of the tidal cycle, with the greatest 309 

frequency of hatchings occurring 1 hr before and 1 hr after high tide. The observed 310 

and expected frequency distributions of hatchings over the tidal cycle were 311 

significantly different (D=165.08, P<0.001). 312 

 313 

Peaks in the number of clutches hatching coincided with spring tides for 2 314 

spawning cycles (cycles 3 and 8) and coincided with, or were near to, ebb tides for 6 315 

spawning cycles (cycles 1, 2, 5, 6, 7 and 9) (Fig. 6). The cross-correlation factor for a 316 

lag of zero days (0.14) was not significant (Fig. 8), which indicated that the number of 317 

clutches that hatched on a day was not correlated with the daily maximal tidal height. 318 

 319 

Discussion 320 

 321 

Chromis hypsilepis spawned on a semi-lunar cycle, with the greatest number of 322 

spawnings occurring 1 d after the new moon and 1 d before the full moon. This result 323 

contrasts with the observation of Tzioumis and Kingsford (1995) that C. hypsilepis at 324 

other locations spawned with no predictable cycling frequency. Spawning periodicity 325 

has been reported for many species of damselfishes with lunar, semi-lunar or periodic 326 

cycling more common than acyclic spawning (Thresher 1984; Ochi 1986; Gladstone 327 

and Westoby 1988; Robertson et al. 1990; Robertson 1991; Tzioumis and Kingsford 328 

1995; Mizushima et al. 2000; Asoh and Yoshikawa 2002; McIlwain 2002; Asoh 329 

2003; Picciulin et al. 2004). Ecological hypotheses proposed to explain spawning 330 

periodicity invoke benefits to either the larval offspring (via enhanced off-reef 331 

dispersal, predator saturation, tracking of larval food, reduced competition, or 332 

synchronization with ideal settlement periods) or the adults (via moonlight facilitating 333 

migration and/or spawning, saturation of egg predators, enhanced predator defence, or 334 

reductions in the overall cost of paternal care to males) (Allen 1972; Keenleyside 335 

1972; Johannes 1978; Colin et al. 1987; Gladstone and Westoby 1988; Foster 1989; 336 

Robertson et al. 1990; Gladstone 1994; Petersen and Warner 2002). 337 

 338 
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In attempting to provide an ecological explanation for the semi-lunar 339 

spawning cycle of C. hypsilepis it is possible to eliminate hypotheses relating to the 340 

use of moonlight for migration, pre-dawn spawning, and facilitated egg care. 341 

Migration to the spawning ground and egg care occurred in both the low light (i.e. 342 

near new moon) and high light (i.e. near full moon) phases of the lunar cycle. This is 343 

evident in Fig. 4 when the spawning data is lagged by the incubation period of 4.5 d. 344 

Spawning also occurred during daylight hours. In addition, hypotheses relating to 345 

saturation of predators of larvae, eggs, and brooding males are also unlikely 346 

explanations for the periodicity of spawning by C. hypsilepis. The variable amounts of 347 

time that spawning occurred for in each spawning cycle (range of 2–9 d) meant that 348 

hatching, and numbers of brooding males present at the spawning site, were not 349 

highly synchronous. A high degree of synchronicity is required for these hypotheses 350 

to be true (Robertson et al. 1990). 351 

 352 

I suggest that the semi-lunar cycling of reproduction in C. hypsilepis is a 353 

response to two factors: (1) the costs of reproduction; and (2) the need for a cue to 354 

synchronize the gathering of widely dispersed individuals for spawning. Male C. 355 

hypsilepis incurred a cost associated with their egg care, measured as a reduction in 356 

feeding rate of 85%. This is comparable to, although higher than, the costs recorded 357 

for other planktivorous, egg-brooding damselfishes (Robertson et al. 1990). Female C. 358 

hypsilepis also incur a cost from reproducing via their production of eggs and travel to 359 

the spawning aggregation site. Cycling would therefore provide an opportunity for 360 

both male and female C. hypsilepis to recover from their reproductive efforts. 361 

However, the need for brooding males to recuperate after each spawning cycle cannot 362 

be the sole explanation for the observed semi-lunar periodicity. A simple periodic 363 

cycle unrelated to the lunar cycle could provide that recovery (e.g. Chromis dispilus in 364 

Tzioumis and Kingsford 1995). C. hypsilepis is a schooling planktivore. Feeding 365 

schools were observed at different locations around the reef’s perimeter (a total length 366 

of 2.2 km) and it is likely that some individuals migrated over this total distance to 367 

reach the spawning ground. Schools of C. hypsilepis occasionally fed over the 368 

spawning ground (personal observations), although the schools were never of the 369 

same size as the aggregations observed in the spawning ground. It is therefore 370 

unlikely that aggregations (of the size observed in this study) formed as a result of 371 

social cues provided by a small number of males that established mating territories 372 



 13 

(Robertson 1991). I suggest that the semi-lunar spawning cyclicity reflects the use of 373 

lunar cues by C. hypsilepis to facilitate the aggregation of widely dispersed 374 

individuals, and also allows males to recuperate between spawning cycles. 375 

 376 

Contrary to the proposed hypothesis, the eggs of C. hypsilepis did not hatch 377 

only during a falling tide. Hatching occurred on all stages of the tidal cycle and peaks 378 

in hatching did not coincide with the spring tide. The existence of a link between 379 

hatching and the tidal cycle has been tested frequently in studies of reef fish 380 

reproductive ecology (Johannes 1978; Ross 1978; Thresher 1984; Gladstone and 381 

Westoby 1988; Robertson et al. 1990; Robertson 1991; Gladstone 1994; Tzioumis and 382 

Kingsford 1995; Sancho et al. 2000; McIlwain 2002). The basis of this hypothesis is 383 

the assumption that larvae that hatched on a falling tide would be carried rapidly away 384 

from reef-based predators and would suffer less mortality. Although this adaptive 385 

explanation is appealing, the association between hatching and falling tides has been 386 

confirmed for some species of damselfishes (Ross 1978; Kingsford 1985; Robertson 387 

et al. 1990; Mizushima et al. 2000; McIlwain 2002) but not others (Ochi 1986; 388 

Robertson et al. 1990; Tzioumis and Kingsford 1995). 389 

 390 

The most likely explanation for the temporal patterns in hatching of C. 391 

hypsilepis eggs is that tidal phase was irrelevant to the likelihood of larval dispersal 392 

and survival. A parallel study (Gladstone unpublished data) found that dispersal was 393 

much more rapid from the spawning site, compared to non-spawning sites, regardless 394 

of the tidal phase. Therefore, properties of the spawning site used by C. hypsilepis (i.e. 395 

rapid off-reef dispersal regardless of tidal phase) explain the absence of a close 396 

association between hatching frequency and tidal phase.  397 

 398 

C. hypsilepis spawned throughout the day and there was little change in 399 

spawning frequency. This observation is consistent with the results of other studies 400 

that have found that planktivorous damselfishes that engage in colonial nesting spawn 401 

throughout the day (Thresher 1984; Gladstone and Westoby 1988; Robertson et al. 402 

1990; Asoh and Yoshikawa 2002; Asoh 2003). Permanently territorial damselfishes 403 

spawn over a narrow time frame around dawn (Doherty 1983; Thresher 1984; 404 

Gladstone and Westoby 1988; Robertson et al. 1990) but see (Sikkel 1995). Thresher 405 

(1984) argued that spawning time may be optimized so that larvae hatch at the 406 
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optimal time for dispersal, and most damselfishes, except C. hypsilepis, hatch over a 407 

very short time period just after sunset (Doherty 1983; Thresher 1984; Foster 1987; 408 

Gladstone and Westoby 1988; Robertson et al. 1990; Alcaly and Sikkel 1994; Asoh 409 

and Yoshikawa 2002). The adaptive basis for the extended diel spawning period of 410 

colonially nesting damselfishes has not been investigated in detail (Petersen and 411 

Warner 2002). 412 

 413 

The extended diel spawning period of C. hypsilepis is likely to be a result of 414 

factors relating to the timing of hatching and social behaviour. Hatching of C. 415 

hypsilepis eggs was not confined to a particular tidal phase and, therefore, the timing 416 

of spawning was not critical. The extended period of diel spawning is reflected in the 417 

extended period of nocturnal hatching and the lack of tidal controls to hatching. A 418 

social factor that is likely to contribute to the existence of an extended diel spawning 419 

period is the protracted period of female arrivals at the spawning site. Females 420 

continued to arrive at the spawning site throughout the day (personal observations). 421 

The protracted period of arrival is probably due to the distance over which females 422 

had to migrate to reach the spawning site and intrinsic physiological differences 423 

between individual females in their response to the lunar cue for spawning. It is likely 424 

that the cost to males from defending additional eggs in their nest (arising from 425 

continued spawnings) is not excessive. Therefore, males are able to accept additional 426 

spawnings throughout the day. If true, there is no impediment to spawning continuing 427 

throughout the day. 428 

 429 

The large aggregation of C. hypsilepis that formed on a semi-lunar cycle to 430 

spawn and brood eggs can be defined as a ‘spawning aggregation’ (Domeier and 431 

Colin 1997; Claydon 2004). The features of C. hypsilepis’ reproduction that allow it 432 

to be categorized as a spawning aggregation include migration away from the normal 433 

feeding grounds to form temporary aggregations for spawning; use of the same 434 

location by the aggregation over successive spawning cycles within a spawning 435 

season and over successive spawning seasons; and temporal predictability. Although 436 

not documented here, the spawning aggregation was observed by the author in the 437 

same location in 2003/2004 and 2005/2006 and local divers have known about its 438 

existence for 25 years (L Graham personal communication). There was considerable 439 

variation in the size of spawning aggregations throughout the spawning season (Fig 440 
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3a). Kingsford (1980) attributed variations in the size of spawning groups of Chromis 441 

dispilus to variations in local weather conditions. This is unlikely to be the sole reason 442 

for C. hypsilepis because large variations in the size of the spawning aggregation 443 

occurred over similar weather conditions (e.g. the last 3 cycles in Fig 2a). C. hypsileps 444 

is unusual amongst species forming spawning aggregations because of its small size 445 

and demersal spawning habit. Only one other species with a demersal spawning habit 446 

(Pseudobalistes flavimarginatus, Balistidae) has been documented to spawn in 447 

aggregations (Gladstone 1994) and pelagic spawning has been hypothesized as a 448 

prerequisite to the formation of spawning aggregations. Pomacentrids that nest 449 

colonially are not recognized as aggregative spawners because of the absence of a 450 

migration from the normal feeding grounds to a distinct spawning site (Claydon 451 

2004). The spawning aggregation of C. hypsilepis is likely to be a useful model for 452 

testing general hypotheses about the processes and factors underlying the formation of 453 

spawning aggregations that may be more difficult to test in other, larger species. 454 

 455 

Conclusion 456 

 457 

The temporal patterns of reproduction in C. hypsilepis support predictions that 458 

schooling, planktivorous damselfishes will spawn colonially on a lunar or semi-lunar 459 

cycle over a protracted period of the day. The use of a lunar cue by C. hypsilepis to 460 

synchronize the gathering of widely dispersed individuals and to allow males to 461 

recuperate from their brooding duties lends further support to the usefulness of adult-462 

biology hypotheses (Robertson et al. 1990) to explain temporal patterns in 463 

reproduction. The lack of an association between temporal variation in hatching and 464 

the tidal cycle suggests that local factors (in this case the water movements from the 465 

spawning ground) can explain the observed temporal patterns in hatching. 466 
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FIGURE CAPTIONS 
 
Fig. 1 Chromis hypsilepis. Location of study site. 
 
Fig.2 Chromis hypsilepis. Diel variation in spawning frequency (number of spawnings 
1000 adult-1 Chromis hypsilepis). Values shown are mean number of spawnings ± SE 
(n = 3 cycles). The difference between time intervals is not significant (one-way 
analysis of variance F3,8 = 0.46, P = 0.71, untransformed data, Cochran’s C = 0.62 P 
> 0.05). 
 
Fig. 3 Chromis hypsilepis. Temporal variation in (a) size of spawning aggregations 
(no. fish 50 m-2) and (b) frequency of spawnings (recorded as no. spawnings observed 
50 m-2 during the daily surveys). Daily results are shown for 1 September 2004 (day 
1) to 24 February 2005 (day 179). Daily surveys actually began on 1 August 2004 and 
concluded on 11 March 2005 but no reproductive behaviours were observed before 1 
September 2004 or after 24 February 2005. 
 
Fig. 4 Chromis hypsilepis. Number of spawnings observed on each day of the lunar 
month as a % of total spawnings (day 1 is the new moon).  = new moon. O = full 
moon. 
 
Fig. 5 Chromis hypsilepis. Correlogram of autocorrelation coefficients for daily 
spawning frequency. Correlation coefficients exceeding the 95% confidence limits 
(dashed line) are significant (Chatfield 1996). 
 
Fig. 6 Chromis hypsilepis. The number of egg masses that hatched throughout the 
2004/2005 spawning season in relation to the maximum daily tidal height. Peaks in 
tidal height represent spring tides and troughs represent ebb tides. Daily results are 
shown for 1 September 2004 (day 1) to 24 February 2005 (day 179). The number of 
egg masses that hatched on each day was the number of spawnings lagged by the 
incubation period of 5 d. Boxes enclose days on which high tide occurred 3-7 hr after 
sunset (i.e. times of hatching). 
 
Fig. 7 Chromis hypsilepis. The tidal stages that occurred over the course of each egg 
clutch’s hatching (observed values). Stages of the tidal cycle are represented in units 
of 1 hr before (negative values) and 1 hr after (positive values) high tide. It has been 
assumed that the 875 clutches hatched over 875 x 4 hour-long intervals. The expected 
distribution of tidal stages was simulated by distributing the same number of hour-
long hatching intervals over the high-low tide cycle with maximal hatching occurring 
midway through the falling tide. 
 
Fig. 8 Chromis hypsilepis. Cross-correlation factors (CCF) between number of egg 
masses that hatched on a day and the maximum daily tidal height for lags of 0 to 7 
days. The dashed lines are the 95% confidence limits. 
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